
Continuous simulation data stream: a dynamical timescale-dependent
output scheme for simulations
Hausammann, L.; Gonnet, P.; Schaller, M.

Citation
Hausammann, L., Gonnet, P., & Schaller, M. (2022). Continuous simulation data stream: a
dynamical timescale-dependent output scheme for simulations. Astronomy And Computing,
41. doi:10.1016/j.ascom.2022.100659

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3515177

Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3515177

Astronomy and Computing 41 (2022) 100659

t
p
a
a
P
s
I
h
r
P
m
o
w
T
w
N
o

h
2

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Continuous Simulation Data Stream: A dynamical
timescale-dependent output scheme for simulations
L. Hausammann a,∗, P. Gonnet b, M. Schaller c,d

a Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauvergny, Switzerland
b Google Switzerland, 8002 Zürich, Switzerland
c Lorentz Institute for Theoretical Physics, Leiden University, PO Box 9506, NL-2300 RA Leiden, The Netherlands
d Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands

a r t i c l e i n f o

Article history:
Received 2 April 2022
Accepted 30 September 2022
Available online 7 October 2022

Keywords:
Methods: numerical
Software: simulations
Simulations: I/O
Galaxies: evolution

a b s t r a c t

Exa-scale simulations are on the horizon but almost no new design for the output has been proposed
in recent years. In simulations using individual time steps, the traditional snapshots are over resolving
particles/cells with large time steps and are under resolving the particles/cells with short time steps.
Therefore, they are unable to follow fast events and use efficiently the storage space. The Continuous
Simulation Data Stream (CSDS) is designed to decrease this space while providing an accurate state of
the simulation at any time. It takes advantage of the individual time step to ensure the same relative
accuracy for all the particles. The outputs consist of a single file representing the full evolution of
the simulation. Within this file, the particles are written independently and at their own frequency.
Through the interpolation of the records, the state of the simulation can be recovered at any point
in time. In this paper, we show that the CSDS can reduce the storage space by 2.76x for the same
accuracy than snapshots or increase the accuracy by 67.8x for the same storage space whilst retaining
an acceptable reading speed for analysis. By using interpolation between records, the CSDS provides
the state of the simulation, with a high accuracy, at any time. This should largely improve the analysis
of fast events such as supernovae and simplify the construction of light-cone outputs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the arrival of the era of exa-scale computing, scien-
ists across all domains have been focused on improving the
erformances of their software. They have been mostly looking
t the scaling of their own physical computation (examples in
strophysics include Schaller et al., 2016; Jetley et al., 2008;
otter et al., 2017; Adams et al., 2009; Müller et al., 2019) with,
o far, little attention given to the way of writing the outputs.
ndeed, in recent years, the HDF5 format (The HDF Group, 1997)
as become the de-facto standard with some applications also
elying on custom-made binary files (e.g. Maksimova et al., 2021;
otter et al., 2017). Scientists rely often solely on the improve-
ents within the HDF5 library itself or on the hardware for their
wn code. This approach is generally successful with simulations
riting data in parallel from 1000s of inter-connected nodes.
his format is particularly well adapted for snapshots that simply
rite the state of the simulation at a few discrete times (e.g.
elson et al., 2015; Norman et al., 2007) containing up to trillions
f particles (Potter et al., 2017; Maksimova et al., 2021; Bocquet

∗ Corresponding author.
E-mail address: loic.hausammann@protonmail.com (L. Hausammann).
ttps://doi.org/10.1016/j.ascom.2022.100659
213-1337/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
et al., 2016). Whilst some studies or software developments have
been focused on improving the performances of the I/O (e.g.
Xiao et al., 2012; Ross et al., 2008; Ma et al., 2006; Mitra et al.,
2005; Ragagnin et al., 2017), or on increasing the level of abstrac-
tion (e.g. Godoy et al., 2020; Lüttgau et al., 2018; Zheng et al.,
2013; Abbasi et al., 2009), little work has been done on rethinking
the general framework used to store data from simulations.

An interesting case where such rethinking was done is the
construction of light-cone data. Such outputs reproduce the be-
havior of observations, where looking further away corresponds
to looking back in time. As only the particles contained within the
light cone surface are interesting, techniques have been devel-
oped to increase the performance of the simulation (e.g. Garaldi
et al., 2020) and to write the outputs in a more efficient way (e.g.
Evrard et al., 2002). This last technique consists in writing a type
of snapshot where the particles are written only when they cross
the light cone surface. While this approach needed to rethink the
outputs, it is not a general solution for astrophysics.

In cosmological simulations (but also more generally in other
simulations where many time-scales are coupled), the gravity is
producing large difference of time scales through the simulated
volume. As it would require too much computational time to use
a single, global, time-step size, a multi (local) and individual time
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ascom.2022.100659
https://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2022.100659&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:loic.hausammann@protonmail.com
https://doi.org/10.1016/j.ascom.2022.100659
http://creativecommons.org/licenses/by/4.0/

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659
Fig. 1. Distribution of time-step sizes (normalized to the smallest time-step)
extracted from a cosmological simulation run with the EAGLE model within a
periodic box of 12 Mpc at z = 3. In this simulation, the ratio between the largest
and smallest time steps is already above 1000 and only a small fraction of the
particles really need a high time resolution.

step approach was designed where each particle or cell is evolved
at its own time scale. This approach ensures that all the particles
or cells are evolved at the same relative accuracy (Aarseth, 1963;
Springel, 2005). As an example of this, in Fig. 1, we show the dis-
tribution of time steps within a cosmological simulation run with
the EAGLE model (Schaye et al., 2015). Only an almost negligible
fraction of the particles actually needs a small time step and the
simulation analysis often focuses on them. They are located in
the most active regions of the simulation Even if this example
simulation is relatively small (107 particles), already a ratio of
1000 can be observed between the smallest and largest time-step
sizes. For the outputs, it means that writing all the particles/-
cells together can potentially provide a far too high accuracy
for particles/cells within regions using long time-steps (e.g. in
voids) and far too low for particles/cells using very short steps
(e.g. within galaxies). A consequence of this is that the traditional
snapshot model is unable to follow accurately fast events such
as supernovae feedback effects and render their interpretation
more complicated. Only by writing an impossibly large number of
snapshots could such events be properly followed in large-scale
simulations. To remedy this issue, many codes are relying on an
additional set of files that describes such fast events (e.g. writing
all the supernovae into a file). While this approach is sufficient
in many cases, it lacks a complete description of the event’s
environment and its impact through time. It does also require an
a priori knowledge of what events will be of interest.

In this paper, we present a novel approach, the Continuous
Simulation Data Stream (CSDS), which allows us to recover the
state of the simulation at any time with higher accuracy and a
lower storage cost than snapshots. To simplify the discussion,
in this paper, we will focus on particle based codes, but this
method could certainly be adapted for Adaptive Mesh Refine-
ments (AMR) or to any other general method. In practice, the
CSDS is implemented as a stand-alone module around the open-
source cosmological code Swift1 (Schaller et al., 2016, 2018).

The paper is organized as follows. In Section 2, we describe in
details the theory behind the CSDS. In Section 3, the implemen-
tation within Swift is provided followed by Section 4 where the
reading strategy is explained. Our results are separated in two
Sections (5 and 7). The first one presents the efficiency of the
CSDS and the second one shows some examples of applications.

1 www.swiftsim.com.
2

The implementation presented in this paper is fully open-
source and included as part of the Swift repository.2

2. The Continuous Simulation Data Stream

The Continuous Simulation Data Stream (CSDS) is a new out-
put strategy and mechanism aimed at replacing or supplement-
ing, at least partially, the traditional snapshot system. Its main
advantage resides in the writing of each individual resolution
element in their own mini logbook. It hence allows to capture
their evolution according to their own time-scale and not only
at the fixed time resolution set globally by traditional snapshots.
Thus, it perfectly adapts to simulations using individual localized
time-step sizes and can achieve extremely high time resolution
while keeping the output size reasonable. Capturing the detailed
progression of the elements using the smallest time-step bin
would require a prohibitive number of fixed-time snapshots;
whilst our mechanism allows us to track this evolution precisely.

2.1. Overview of the different components

To achieve this high resolution, the CSDS uses a single file,
called the logfile, that describes the whole evolution of the simu-
lation. Within this file, all the information is written in the form
of per-particle records (except for the header containing some
general meta-data). This approach allows to write the particles
individually and at their own timescale without any need to
synchronize them during the simulation. When reading the CSDS
for analysis, a synchronization is still required and done through
an interpolation.

To construct the logfile, a general header is written during the
initialization of the simulation. Then, a time record for the initial
step is written followed by a particle record for all the particles
in the volume (i.e. this corresponds to the initial conditions). The
particles then carry a clock (see below) giving them an individual
dump frequency. At each step of the simulation, the CSDS writes
a time record and a particle record for the particles whose timer
is up. At the end of the simulation, all the particles are written
one final time and a time record concludes the logfile. Users can
hence reconstruct the entire history of a given particle by hoping
from record to record through the logfile. If a user requests details
about a given particle in-between two time-records, interpolation
is used. The accuracy (faithfulness) of the whole mechanism is
entirely dictated by the frequency of the dump of each particle.
We note, for instance, that for the simulation shown in Fig. 1, a
large fraction of particles would not need any records between
their initial and final dump as their trajectories can be well
recovered just by interpolation.

To simplify the reading of the logfile, the CSDS uses a set of
index files that describe the state of the simulation at a given
time. While this mimics the behavior of snapshots, they tend to
be smaller as they only contain, for each particle, the last known
location within the logfile and IDs of the particles. The index
files contain also the history of the particles created and deleted
during the simulation (e.g. for MPI exchanges, star formation and
black hole interactions for cosmological simulations). These files
are generated after the simulation and, from our experience, a
small number (∼ 10) of index files is sufficient to achieve good
analysis performance.

2 For the csds-reader we used version 1.5 (available at https://gitlab.cosma.
dur.ac.uk/lhausammann/csds-reader) in this paper. More specifically, all the
plots and numbers shown in this paper were obtained using commit d078e2dd
of Swift and commit c073baf0 of the reader code.

http://www.swiftsim.com
https://gitlab.cosma.dur.ac.uk/lhausammann/csds-reader
https://gitlab.cosma.dur.ac.uk/lhausammann/csds-reader

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659

a

Fig. 2. Representation of the different files. The logfile contains the output of the simulations and the index files can be used to speed up the reading of the logfile.
The logfile starts with a header containing information about the format (e.g version numbers and the different masks, see Section 2.3). Then the file will only contain
records such as the one in the zoom-in. They can either contain a time or a particle and are always composed of a header and the data. In the header, a mask is
stored in order to describe the data part and also an offset to the previous or next corresponding record (see Section 2.2). At the beginning of the simulation, we
first write down the time (T0) and the initial conditions (P0 to PM). Until the end of the simulation, the CSDS writes down the time step at the beginning of each
step and only the required active particles (e.g. P0 and P5 , see Section 2.6 for more information about the writing criterion). Finally, the code writes the particles at
the final time and ends up with a second writing of the time step as a sentinel indicating the end of file. The index files are written once the simulation is done in
order to speedup the reading. They start with a header (e.g. simulation time, number of particles, etc.) and then the particles sorted by type. For each particle, the
position of the last record (offset) and their ID is written. At the end, the file contains the information about the particles created and removed since the last index
file. They are still written in the form of an offset and an ID.
Finally, we also include a metadata file that contains details on
the simulation (e.g. units, cosmological model, subgrid parame-
ters). This file will not be discussed further as the details are not
important to the CSDS mechanism.

As a summary, the different objects used in the CSDS and their
relations are shown in Fig. 2.

2.2. Description of the records

Each record in the logfile is made of a small header followed
by the data, as shown in the zoom-in at the bottom of Fig. 2. In
the header, we store a mask and an offset.

The mask is a simple bit mask describing the fields contained
in the data (coordinates, velocities, internal energies, etc.). This
means that based only on the bit mask, a record can be identified
as containing either the current time or a particle field. It also
means that we can have different writing frequencies for different
particle fields (e.g. metallicities evolve much more smoothly than
temperatures, effectively requiring fewer entries). The offset is
the distance in the file to the previous record of the particle. It
means that the evolution of a particle can be quickly followed
backwards thanks to this offset.

As usually we are interested in moving forward in time, the
offset of the records are reversed during the first read of a logfile
after a simulation has completed.3

In the data part of a record, we simply copy the fields cor-
responding to the mask into the file. As the different fields are
written the one after the other without any information in be-
tween, the order when writing and reading a record must be
respected. This order is indicated in the logfile header.

2.3. Description of the logfile

The logfile starts with a header that contains the version,
the direction of the offset (in order to know if they need to be
reversed), the size of the strings, the number of different masks,
all the available masks (name and data size), and finally the masks

3 This operation is one of the slowest. Thus we might drop it in the future
nd encourage the users to move backward in time.
3

for each particle types (in the writing order). It could be extended
with more data without risk as we also store the position of the
first record. This general structure is shown in Fig. 2.

When the simulation starts, the initial time is written followed
by a record for each particle presents in the initial conditions.
As the CSDS requires some interpolations, this step is required
in order to avoid any extrapolation. Then at each simulation
step, the CSDS writes a time record followed by as many particle
records as required by their individual write frequencies (see
Section 2.6 for a discussion about the writing criterion). The
fraction of particles written during a single step can largely differ
between different steps. On some steps, the CSDSwrites 0 particle
due to a low number of active particles and/or a lack of active
particles requiring a log. The opposite case also exists where all
the particles are written. At the end of the simulation, we write
the final time followed by all the particles in order to avoid any
extrapolation and conclude with a copy of the last time record as
a sentinel marking the end of the file.

2.4. Restart strategy

HPC software should expect to be killed at any time due to a
system failure or to be limited in the amount of time they can run.
In order to restart the simulation, different strategies exist, but
all relies on dumping at least part of their memory into so-called
check-point files and restarting from them.

The CSDS is no different from the rest of the software package
in this situation. While the simulation would be written to the
check-point files as usual, the CSDS simply dumps the position
of the last record written in the logfile. When restarting, the
CSDS starts writing after the position of the last record and thus
automatically get rid of the unnecessary data written between
the last restart file and the crash. We emphasize that we do
not intend the CSDS mechanism to be used as a check-pointing
mechanism by itself.

2.5. Description of the index file

The index files are totally optional as they contain information
that exists in the logfile. They, however, allow for an efficient
usage of the logfile. For example, if the simulation at the final time

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659

i
t
u
t
t
w

s

o
i
w
s
s
o
t

q
l
c
i
m

2

i
r
w
r

p
t
t

s requested, without the index files, it would be required to read
he whole logfile in order to find all the existing particles and then
pdate them until reaching the final time. To solve this problem,
he index files contain enough information to reconstruct quickly
he state of a simulation at a given time (like a traditional snapshot
ould) using the logfile.
The index files are generated when reading the logfile and are

et at regular interval in simulation time.
An index file starts with the current time step and number

f particle and then an array of ID and offset to the last record
s written for each particle (sorted by particle’s type). Next, we
rite down the history of the created and suppressed particles
ince the last index file (if any). The two histories are built in the
ame way than the current state. They consist first in the number
f new particles along with an array of ID and offset (sorted by
ype) and then the same for the suppressed particles.

It is worth mentioning that a low number of index files re-
uires a larger amount of random access memory (RAM) than a
arge number of index files. Indeed, the history of all the particles
reated or removed in between two index files has to be kept
n memory. So increasing the number of index files can help on
achines with a low amount of memory.

.6. Particle writing criterion

The CSDS writes down particles at different times and uses
nterpolations to reconstruct a snapshot at any time in-between
ecords. A natural consequence of this is that the criterion for
riting a particle should depend on the required quality for the
econstruction.

A possibility is to keep in memory some information about the
article since the last record and use this information to evaluate
he quality of the future interpolation. For example, if one wishes
o do a linear interpolation of a field f between records, the
error (∝ dt2 max |f ′′(t)|) could be evaluated based on the time
difference since last record (dt) and the second derivative of
f . This method works well with the CSDS as it can be applied
independently to each particle field and then write only a subset
of the fields in each record. It would therefore reduce the size
of the logfile without losing accuracy. This is also philosophically
very desirable. It means users can specify the accuracy of the
desired output rather than having to pick (almost) arbitrary a
time between traditional snapshots.

Unfortunately, this requires several new fields for each field
written in the logfile and therefore increases considerably the
memory required for the simulation. This increase will also result
in larger MPI communication and, thus, a slow down of the
simulation.

A simpler solution is to use a criterion based on the number
of steps since the last record (i.e. write every N active steps). As
the particle time-step size is based on the time scale allowing to
correctly integrate the particle’s properties (e.g. CFL condition),
the quality of the future interpolation is hence directly linked to
the quality of the actual simulation integration.

2.7. Parallelism considerations

As the CSDS relies heavily on the access to the logfile (both
for the reading and writing), a careful design of the I/O and
good strategies to deal with shared and distributed memory
parallelism are required. Firstly, the I/O needs to ensure a low
number of access to the data storage device in order to reduce
the impact of the storage latency. Secondly, the CSDS needs to
be protected against race conditions due to parallel processing.
The solution to these challenges differs depending on the type
of simulations (shared memory or distributed) and is therefore

described separately.

4

2.7.1. Memory-mapped file
The accesses to the logfile can dramatically decrease the per-

formances of the CSDS due to the storage latency, therefore direct
access through the system functions write and read is strongly
discouraged as they will perform an operation on the file storage
at each call.

In order to avoid this problem, operating systems (OS) provide
functions to memory-map a file and perform lazy operations on
it (see e.g. mmap for the POSIX standard). This means that the OS
will load new pages4 only when requested. When the memory
accesses are predictable, the OS can load them in advance. The
pages will be kept in the memory until the OS estimates that they
will not be accessed anymore. When unloading a page, the OS
lazily copies it to the file storage.

It is also worth pointing the fact that this type of memory-
mapped file is very easily manipulated through the use of a
pointer. This pointer behaves exactly as if the whole file was
loaded in memory and the OS manages everything in the back-
ground.

In case of failure or crash, all the information since the last
mmap synchronization will be lost, but for the rest of the file,
everything will be left intact. In order to ensure a safe restart of
the simulation, it is possible to manually synchronize a memory-
mapped file between the RAM and the file system (msync). This
manual synchronization should be kept to a strict minimum and
should be called only when writing the restart files.

2.7.2. Shared memory strategy
In shared memory parallelization, two threads can try to ac-

cess and update the same bits at the same time which results in a
race condition. To avoid this problem, so-called atomic operations
have been developed in most programming languages in order
to ensure that a single thread access a variable at a given time.
Unfortunately, the atomic operators slow down the execution of
the code and therefore should be used as little as possible.

For the CSDS, when writing a record to the logfile, a race con-
dition can arise as two threads may decide to write at the same
place and erase the work of the other. To avoid this problem, the
memory-mapped file does not need to be protected, but only the
pointer to the next free bytes. When a thread needs to write a
record, it simply computes the record’s size, and then increments
the pointer by the size with an atomic operator. It can later freely
write on the assigned memory. This can be done for multiple
particles at a time to decrease the amount of atomic operations.

2.7.3. Distributed memory strategy
Unfortunately, the simple approach highlighted above works

only for shared memory models, thus in distributed memory
parallelization, a different technique is required.

Two different possibilities are often used when dealing with
files. Either each MPI rank owns a single file or we can predict
the required amount of memory used by each rank and can then
safely write synchronously in different part of the file. Even if
the memory could be easily predicted by checking all the active
particles before the beginning of a time step, we decided to use
a single logfile per rank for the CSDS as it avoids these additional
computations.

For the index files, we follow the same approach and write
a set of files for each rank. Another advantage is that with MPI,
the simulation is usually split in sub-volumes (domains) and each
volume belongs to a single rank. This means that a distributed
approach allows us to not read the entire logfiles when looking at
only a small volume of the simulation for analysis. All is required
is a bunch of meta-data describing which sub-volume is in which

4 A page corresponds to a part of a file.

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659

s
b
l
o

m
w
r
c
t
t

3

r
n

1
T
g
o
s
t

3

p
F
u
s
r
t
u
s
o
n
p
s

m
a
I
f
t
f
e
i

3

d
t
t
t
(
f
o
d
e
r
a

4

c
C
r
d

m

ub-file. We note that an approach using only MPI would also
e possible with one logfile per rank now corresponding to one
ogfile per compute core. The overall CSDS mechanism is agnostic
f the underlying domain and parallelization strategy.
As the different ranks are exchanging particles (e.g. when they

ove out of their domain), the CSDS needs to follow the particles
hen they are leaving/entering a rank. In the logfile, a particle
ecord is written when the particle leaves (enters) the rank and
ontains a flag giving the ID of the other rank. In the index file,
he particle is simply considered as being created or deleted and
hus is written in the history.

. Implementation in the Swift code

Swift (Schaller et al., 2016, 2018) is an open source code
designed for cosmological hydrodynamical simulations but also
used in planetary science (Kegerreis et al., 2019) and with ex-
tension to engineering applications (Bower et al., 2021). We tried
to implement the CSDS as independently as possible from the
rest of Swift and recommend interested readers to copy/adapt
the writer from Swift into their own code. While the writer
is obviously somewhat implementation-dependent due to the
differences in physics and implementation, the reader, however,
should be quite universal.

3.1. Specifics of the Swift code

Swift uses MPI in-between ranks and a task-based parallelism
approach relying on pthreads (Gonnet et al., 2016) within rank.
This latter approach makes it an excellent candidate for the CSDS
as it is able to deal with the CSDS output whilst doing some other
computations. Thus it reduces the stress inflicted to the storage
device due to the lower number of threads accessing the files
concurrently and should provide a higher efficiency than if all the
threads were writing at the same time (as would be the case with
a more traditional parallelism approach).

Swift is designed as an HPC code that interacts the different
types of particles5 together with a minimal knowledge of the
underlying interaction models. It means that the code can easily
switch between different type of simulations (e.g. cosmology,
planets or engineering). During the development of the CSDS, we
also tried to follow this modular approach and included different
writing strategy for the different particles and physics modules.

3.2. Implementation of the CSDS in Swift

In the first sections, an overview of the CSDS was given. As
it does not include some deep technical details, we will cover
the most important of them in this section. Let us start with our
management of the file size followed by masking details.

As we cannot predict the final file size before running the
simulation, we need a mechanism to increase the file size if the
expected size is not sufficient. This is done in between every time-
step where we ensure that the file is large enough to write at
least all the particles once with all their fields (even if it does not
happen). If it is not the case, the size of the logfile is increased
by this amount times a factor in order to avoid increasing it at
every step. This operation can be expensive for large file sizes,
therefore the user should try to estimate accurately the size and
over-allocate a bit. Future versions will attempt to make this
guessing work less necessary by providing a heuristic. It is worth

5 In cosmological simulations, we use up to 7 different types of particles
epresenting the gas, dark matter (2 types), stars, black holes, sink particles and
eutrinos.
 p

5

mentioning that at the end of the simulation, the file is truncated
in order to match the exact space used by the logfile.

Due to our modular approach, the masks need to be assigned
in a dynamic way as each module (gravity, SPH, etc.) defines
its own fields to write. Thus, depending on the configuration
options, the number of fields can vary between runs. The masks
are written in the first 2 bytes of the records’ header; the offsets
use an additional 6 bytes. This implies we can only have 2× 8 =

6 masks including the ones for the time and the special flag.
herefore we cannot log too many fields individually and have to
roup them into a single mask.6 In an effort to reduce the number
f masks needed, we check if two types of particles define the
ame mask (e.g. positions) and assign the same value to both of
hem if it is the case.

.3. Special cases

During a simulation, the particles can go through different
rocesses such as type transformation, creation, or suppression.
or example, in cosmological simulations, the star formation is
sually done through the transformation of a gas particle into a
tar particle or could be done, in a less conventional way, by di-
ectly creating a new star; the black holes destroy some particles
hrough black hole mergers or gas absorption. For engineering
sages, aerodynamics studies use wind tunnel simulations where
ome particles are created on one side and removed on the
pposite side in order to simulate a wind. Finally, in the case of
on-periodic boundaries condition (e.g. planet simulations), the
articles can leave the box and therefore are removed from the
imulation.
The three different cases (creation, suppression and transfor-

ation) can be dealt with an additional mask for the particles and
n additional writing of the particles before and after each event.
n the data, we store a single integer that includes both a flag
or the type of event (creation, suppression, transformation) and
he related data (e.g. the new type of the particle). For the index
iles, we also keep in memory the suppressed and created particle
vents (offset in the logfile and id of the particle) and write them
n the next index file.

.4. MPI strategy

In Swift, the volume is split in smaller volumes that are
istributed to the different ranks according to some evaluation of
he work required for each sub-volume. Throughout a simulation,
he volumes tend to stay attributed to the same MPI rank in order
o avoid too much communications, therefore a particle leaving
entering) a given volume can be considered as being removed
rom (created in) a given rank without having a large impact
n the logfile size. The only difference with the suppression and
eletion presented in the previous section (i.e. due to physics
vents) is that we use a different flag and store the id of the other
ank involved in the transaction. We also ensure that the offsets
re correctly written between the two files.

. Reading strategies

The format of the logfile and index files is not trivial and
annot be easily read. Therefore a library is required to read the
SDS and makes it more accessible to the users. This library (or
eader) is implemented in C++ alongside a python wrapper. A
ocumentation is provided in the repository. We also provide a

6 Depending on the future usage of the CSDS, we might need to change the
asks from a field point of view to a particle type point of view (e.g. one mask
er particle type and not per field).

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659

f
t
p
f

f
a
o
t
i
s
s

r
r
p
t

a
b
t
d
s

r
i
l
n
f

4

s
f

c
i
T
a
t
r
t
w
m
i
t

t
h
o
s
f
a
t

c
i
k
i
n
f

t
3

a
t
a
i
a
c
I
a
t
a
s
t

w
m
s
s
a
s

a
s
t

5

w
h
u
c
p

r
o
a
s
o
d
a
t
s
f
6
f

t
m
r
I
s
d
t

ew functions in C in order to write the files. As was the case for
he writer, the core implementation of the reader is fully inde-
endent of the physics model. Only the reading and interpolation
unctions need to be updated when adding new fields.

The reader naturally provides two important possibilities: (1)
ollow a particle (or a set of particles) through time in an accurate
nd efficient way, and (2) generate a traditional snapshot-like
utput from the CSDS. While the generation of snapshots is not
he best usage of the CSDS, it can greatly improve the compat-
bility of the CSDS with existing analysis codes and provides a
peedup when the user needs to do a deep analyze of a single
pecific time (e.g. at redshift z = 0).
In order to speedup the reading process, the reader does not

ead directly the logfile (except when reversing the offset of the
ecords during the first reading), it always starts by finding the
articles in the index files and then read the logfile starting from
he last offset of the particles of interest.

When reading a subset of the particles, it is important to have
n efficient way of finding the offset of the particles. This is done
y sorting the index files according to the IDs of the particles and
hen using a bisection search. As the initial order of the particles
oes not represent anything meaningful, the index files can be
aved once sorted.
In the case of simulations done with multiple MPI ranks, the

eader will independently read each logfile and the corresponding
ndex files. It means that the user needs to ensure that all the
ogfiles are read and, then, concatenates the output together if
eeded. A more thorough parallelization of this process is left for
uture work.

.1. Implementation details

In this section, the different steps done by the reader are
ummarized in order to give an overview of the method. We
ocused on the most important pieces.

The reader starts by reading the header of the logfile and
hecks if the offsets are already in the correct direction. If it
s not yet the case, the reversal operation is done immediately.
his is done by starting with the first record in the logfile. If
previous record exists, its offset is modified in order to point

o the current record. Once that record has been processed, the
eader moves to the end of the current record and starts over with
he next record. This requires a single linear reading of the file
ith random accesses to some previous part of the file. It is worth
entioning that, in its current implementation, if this process is

nterrupted, the file will be corrupted and it will be complicated
o restore it.

Once the offsets have been reversed, the reader reads all the
ime records and populate a lookup table with them in order to
ave a quick access to the time of the particle records. As this
peration can be long depending on the file size,7 the array is
aved at the end of the first index file and can be restored in
uture readings. The reader finalizes its initialization by reading
ll the index files headers and storing their time. This concludes
he first read and post-processing of the log files.

When requesting some data, the reader starts by setting the
urrent time. This operation is done by selecting the two correct
ndex files: the first one gives the information about the last
nown state of the simulation and the second one provides the
nformation about the particles created and removed. Then the
umber of available particles is computed from the index files
or the allocation of the output arrays. The particles are read one

7 Comparable time to reading the entire state of the simulation (3.0s for
he time array and 4.6s for the state in the millennium simulation with N =

843, ∆n = 10 shown in Section 5).
6

fter the other assuming that they are still present at the required
ime. If it is not the case, the code simply skips the current particle
nd goes to the next one. As this approach could raise some
ssues if the index files or the logfile are corrupted, we perform
sanity check at the end in order to verify that we have the

orrect number of particles and raise an error if it is not the case.
t would be possible to predict which particles are still present
t a given time thanks to the index files, but this would require
oo much work for the particles that are still present. Note that,
s we do not expect a lot of particles to be removed from the
imulation, we decided to use the approach described rather than
he prediction.

The particles are read field by field in order to be more flexible
hen each field is written at a different frequency. As the file is
emory mapped, we always read the same file pages and they
hould stay within the memory during the whole reading of a
ingle particle. Thus, even if we read more often the file and do
bit more operations, the overall efficiency of the code stays the
ame.
Once all the previous operations are done, the output arrays

re given back to the user. As we are reading the particles in the
ame order than the index files, the output arrays are sorted in
he same way (e.g. by particle type and then ids).

. Results

As mentioned in the introduction, our aim is to provide a
ay to recover the state of the simulation at any time with a
igh accuracy and a low storage cost. To demonstrate this, we
sed an isolated disk galaxy ran as a dark matter only simulation
ontaining 360’000 dark matter particles within an Hernquist
otential.8
Using a snapshot as our reference point, Fig. 3 shows the

elation between the reconstruction accuracy of the particles’
rbit within the halo and the storage required for both the CSDS
nd the traditional snapshot strategy. In this graph, both the
napshots and the CSDS use a cubic Hermite interpolation based
n the positions and velocities (see Appendix A) to reconstruct
ata at intermediate times. The accuracy is measured by the rel-
tive error on the orbit position (here the radius). The relation for
he snapshots is obtain through an interpolation of the reference
napshot from two snapshots written at an equal distance in time
rom the reference. The CSDS decreases the error by a factor of
7.8x at a given storage cost or decreases the storage cost by a
actor of 2.76x for a given error.

Let us now look at the convergence of the CSDS. In this case,
he interpolation of the position is done through a quintic Her-
ite interpolation. Due to its high convergence order, it does not

equire many points to accurately represent the orbit of a particle.
n order to illustrate this point with the CSDS, in Fig. 4 we show a
imulation of a planet in orbit around a star. The interpolation is
one with the help of the velocity and acceleration to constrain
he two first derivatives in the interpolation. While the CSDS is
set at low time resolution, the traditional snapshots were written
at high resolution to allow for a fair comparison. During a single
orbit, only three records (in orange) were written. As expected,
the positions of the orange crosses perfectly match the positions
of the snapshots (in blue). The interpolation given in red slightly
differs with the snapshots far away from the records, but provides
overall a correct interpolation. For cosmological simulations, the
situation is more complicated than in this example, but we can
already see here that a low number of points are sufficient to
properly reconstruct the orbits.

8 The initial conditions and parameters are fully provided within Swift’s
repository and correspond to the IsolatedGalaxy_dmparticles example.

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659

o
c
s
a
d
t
l
l

d
o
o

r
(
t
T
N
r
a
w
w
t
t
b
s
o
r
s

p
B
r
s
t
o

6

f
s
e
t
d
v
d

Fig. 3. Relative error of the radial position of the particles as function of the
utput size for both the traditional snapshots and the CSDS. Both relations are
omputed from the same simulation that consists of an isolated disk galaxy
imulated only with gravity. Only particles with r ∈ [5, 10] kpc are taken into
ccount in this figure. The average error is shown as the straight lines and the
istribution is shown with the areas representing the 16/84 percentiles. For both
he CSDS and the snapshots, a cubic interpolation is done. The CSDS requires
ess data storage for a fixed reconstruction accuracy. Or, equivalently, the CSDS
eads to a better reconstruction for the same storage.

Fig. 4. Orbit of a planet around a star reconstructed with the CSDS (red line and
orange crosses) and the snapshots (blue line). The orange crosses correspond to
the place where the CSDS writes a record. The quintic Hermite interpolation
(using the velocity and acceleration) allows to accurately reconstruct the orbit
with a small number of points.

Using the isolated galaxy simulation previously described, in
Fig. 5 we show the relative error of the CSDS as function of
the number of steps between writing (∆n) for different bins of
distances from the galaxy center. As one can expect, the CSDS
converges towards the correct solution when increasing the out-
put frequency (meaning decreasing ∆n). This relation can be used
by users to set a reasonable value of ∆n for their own simulations.

Finally, we demonstrate the use of the CSDS on a real pro-
uction simulation. In Fig. 6 we show the scaling in terms of
utput size and reading speed as function of the time resolution
f the CSDS (∆n) and the number of particles for a cosmological

volume. More precisely, this is the PMillennium-384 example
7

Fig. 5. Relative error of the radial positions of the particles as function of the
number of steps between two dumping of records for an isolated disk galaxy
ran only with gravity. The interpolation is done through a quintic Hermite
interpolation using the positions, velocities, and accelerations stored in each
record. The means of the distributions are shown with the solid lines and
their 16/84 percentiles are indicated using shaded areas. As expected, the CSDS
converges towards the solution provided by a snapshot.

provided within the Swift code. It contains between N = 3843

and N = 15363 particles within a volume of 8003 Mpc3; i.e. a low-
esolution version of the P-Millennium simulation of Baugh et al.
2019). The number of particles within the first graph is 3843 and
he CSDS time resolution in the bottom panel is ∆n = 100 steps.
he largest simulation ran is within the same volume but with
= 15363 particles and with exactly the same physics. As the

eading speed is dependent on the index files, two different lines
re shown. The best case scenario (in red) corresponds to the case
here the requested time matches an index file (z ≈ 0.12). The
orst case scenario (in orange) corresponds to the case where
he requested time is just below an index file (z ≈ 0). It means
hat the index file used is the same as in the best case scenario,
ut the particles need to be updated over 1.6 Gyr. For the MPI
caling, we have seen some relatively modest changes in terms
f performances. On the N = 3843, moving from 1 rank to 16
anks produced a storage increase of 5% and a variation of reading
peed within the error margin (1%).
We note that the simulations here are relatively small (≲ 109

articles) when compared to state-of-the-art simulations (e.g.
ocquet et al., 2016; Ishiyama et al., 2021), however, the data
atios between the CSDS and snapshots approaches remain con-
tant when increasing the simulation volume. We hence expect
he approach to carry over and increase linearly with the number
f particles.

. Discussion

While the snapshots and the CSDS are writing the same in-
ormation, the format is far too different (single time vs whole
imulation) to have a fair and complete comparison. To make it
ven worse, they will not behave in the same way depending on
he type of simulations (e.g. only hydrodynamics vs with gravity)
ue to the differences in the hierarchy of time-step sizes and
ariability of the fields to write. The gravity produces strong
ifferences in timescales and thus will improve the CSDS perfor-

mances when compared to hydrodynamics simulations without
any gravity that can be easily described by a single time step. It
means that the CSDS performances will strongly depend on the
type of simulation. As the CSDS was developed for simulations

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659
Fig. 6. Scaling of the CSDS both in terms of output size and reading time for a
small version of the simulation presented by Baugh et al. (2019). For the first
graph, the number of particles is 3843 and, for the second graph, ∆n = 100. The
first graph shows them as function of the time resolution of the output (number
of steps between records ∆n). The second graph shows them as function of the
simulation size. The dashed black line corresponds to a linear scaling with a
factor of 10 between them. The best case scenario is a requested time that
corresponds to an index file. The worst case scenario is a requested time that
is just before an index file. In green, the difference between the best case and
the worst case is shown.

including gravity, we mainly focused on such simulations in this
paper.

In Fig. 3, we tried to show the relation between the accu-
racy and the storage cost for both the CSDS and the snapshots
on a simulation that includes gravity but no hydrodynamics.
As mentioned in the previous section, the error of the snap-
shots is obtained through an interpolation. We picked a reference
snapshot at equal distance from the snapshots used for the inter-
polation. It means that the snapshot error represents the worst
case scenario. With the CSDS, there is no global worst case sce-
nario, only individual ones that are represented with the upper
limit of the distribution. The CSDS clearly outperforms the snap-
shots in term of accuracy (67.8x) but only moderately decreases
the output storage which was our initial aim. We note that more
advanced interpolation techniques, for instance for particles in
haloes (e.g. Smith et al., 2022) could also be used to improve the
accuracy, or reduce the number of entries needed to reach the
same precision.

In Fig. 5, we showed a convergence study of the relative error
with respect to the number of steps between writing. As it can be
seen, at any point on the orbit, the CSDS converges towards the
correct solution. This graph shows that the CSDS is able to recover
the orbits of all the particles including the most chaotic ones
close to the center of a halo. We can see that writing every 10
8

(gravitational) time-steps is sufficient to produce positions with
an accuracy of 0.1% even close to the galaxy’s center.

Finally, we looked at the scaling of the output size and reading
speed as function of both the output frequency (∆n) and the
number of particles in the simulation. As expected, they both
depend linearly on the number of particles. In the case of the
storage cost, the scaling is also more or less linear as function of
the time resolution, but that will depend on the exact time-step
hierarchy distribution.

Let us now focus on the reading time as function of ∆n.
The best case scenario is when a user is reading an index file
and then directly reading a value from the logfile without inter-
polation (i.e. the data requested corresponds directly to one of
the time records). It means that the time resolution will have
no impact on it and thus the reading time is independent of
∆n. The worst case scenario is more complex as it depends on
when the index files are written and on the hierarchy of time-
step sizes. In cosmological simulations, most of the particles will
have large time steps (see Fig. 1). Therefore, the average number
of ‘‘jumps’’ in the logfile required to update the particles will
be relatively low (between 1.0 and 7.2 for our different time
resolutions in this example). The extra time required to evolve
the particles (i.e. finding the correct records and interpolating) is
almost negligible in all our simulations shown here even if the
evolution interval is relatively large (1.6 Gyr). This demonstrates
the high efficiency of the evolution of the records in comparison
to a single reading of the simulation.

In terms of MPI scaling, the increase of storage is expected as
all the particle exchanges will be written into the logfile. Thus
the results will strongly depends on the MPI splitting strategy. In
this case, at the beginning, we distribute the particles in order
to have the same number of particles on each rank. Then the
corresponding volume is assigned to a rank and it keeps it until
the end of the simulation. The almost constant reading time can
be explained by the fact that the storage spreads over multiple
files which increase the chance of cache hit and thus reduce the
time lost in file accesses.

When comparing with traditional snapshots (e.g. 13.4s for a
simulation with 7683 particles), the reading time of the CSDS is
larger but still manageable. While this can be an issue, it is worth
to explicitly mention that the main advantages of the CSDS are
the accurate reconstruction at any time and the possibility to
evolve the particles quickly once obtained (see the difference be-
tween the best and worst cases). In any case, the CSDSmechanism
is still at an early development state and will certainly benefit
from optimizations in the coming years. In the meantime, if high
performance is required (or if analysis tools require data laid out
in traditional way), it is always possible to construct a snapshot
from the CSDS reader and then work with it.

Some possible optimizations for future versions include tools
to help with the analysis of a completed simulation. It is often
useful to be able to select the particles in a sub-region (e.g. in a
given halo). In a snapshot-based strategy this is often achieved
by sorting the particles at the end of a simulation based on some
coarse-grained grid or space-filling curve. The same approach
could be applied to the index file in the CSDS case. This would
then let users rapidly retrieve particles in regions of interest.
Similarly, tools developed for public release of data via web por-
tals (e.g. Ragagnin et al., 2017) could also be modified to retrieve
the particles of interest at any point in time based on this index
file sorting and the interpolation mechanism of the CSDS.

7. Examples of application

In this section we showcase some application examples that
directly benefit from the CSDS output strategy.

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659
Fig. 7. Light cone image with the time axis along x. The image consists in a single volume where the time of each particle is selected in order to emit lights such
as it reaches the right side at z = 0. With the snapshots, it is required to read the particles by slices and thus produce discontinuities in the image. Thanks to the
CSDS, this is no longer the case as we can find with high accuracy the time when a particle is crossing the light cone.
A problem in the comparison of large scale simulations with
observations comes from light travel times. As in observations,
the further the observed objects are, the older we observe them
to be. We need to produce the same behavior in our simulations.
This is typically done with the method called light-cones (e.g.
Evrard et al., 2002; Garaldi et al., 2020) and the main idea be-
hind it is to extract slices of volume in each snapshot and to
stack them together before projecting along time. Due to the
snapshots, this can be only done approximately or with an ex-
tremely large number of snapshots. Garaldi et al. (2020) solved
this issue by implementing the light cone computation directly
into the simulation code and redesigned it in order to reduce the
resolution in the area outside the light-cone. Thus, a single light-
cone is selected at the beginning of the simulation and cannot
be changed. With the CSDS, it is possible to generate them after
the end of the simulation and for as many light cones as desired
thanks to the high time resolution in the CSDS along with the
interpolation. Instead of constructing snapshots as a slice in time,
we can construct slices in space–time alongside a constant light
geodesic. For example in Fig. 7, a light cone image is produced
from a normal CSDS output, where the position of the observer
and light-cone properties were chosen after the completion of the
run. On the figures, the axis was switched (we project both the
time and position along the x axis) in order to show the time
evolution.

Another usage of the CSDS is the study of fast events. To
illustrate this, in Fig. 8, a phase diagram is shown for a cosmo-
logical simulation of a dwarf galaxies, here using the (Revaz and
Jablonka, 2018) model. The diagram consists of a histogram of
the distribution of the density and internal energy of the gas
at redshift 6 and the time evolution of a reference gas particle
between z ∈ [23, 4] (yellow to purple). The gas inside the galaxy
is in a dense phase (above 10−2 atom/cm3) and can be split into
the cold (below 1010 erg/g) and hot phase that has been recently
touched by a supernova. Inside a galaxy, the behavior of the gas
is extremely chaotic due to the constant explosion of various
supernovae. In these simulations, supernovae are modeled by
directly injecting some energy into the surrounding gas particles
and provoke a quick vertical displacement in the phase diagram.
While the timescale of the impact of a single supernovae is
typically less than a few Myr, the cosmological simulations are
usually done over 14 Gyr. The two different timescales make it
very hard to accurately follow the impact of supernovae with
the traditional snapshots. The CSDS is perfectly able to resolve
both timescales at the same time and can help to enhance our
understanding of supernovae in cosmological simulations. We
note, however, that more advanced choices for the frequency
of dumps in the log might be necessary to fully capture all the
events, especially the ones around shocks or other discontinuity
 m

9

Fig. 8. Phase diagram of the density and internal energy in physical units for
a simulation of the dwarf galaxy 159 with GEAR’s model (Revaz and Jablonka,
2018) in Swift at redshift 6 for the background. The line shows the evolution
of a particles between redshift 23 (yellow) to 4 (purple). With the CSDS, we can
accurately follow the evolution of the particle in the chaotic and dense medium
and clearly see when a supernovae directly touch the particle (straight vertical
line). Due to the evolution between redshift 6 and 4, the final position of the
particle followed does not match the rest of the low density particles.

in the fluid. This could, for instance, include the forceful addition
of an entry in a logfile when a shock is detected in between
regularly scheduled entries. We leave the exploration of such
improvements to future work.

Finally, our last example of usage is in the production of
movies. The CSDS allows for a higher time resolution than when
using traditional snapshots and is therefore particularly useful in
this case as the producer is not limited by the available snapshots.
Thus the movie’s speed can be easily adapted around specific
times or events. Three movies have been produced for this paper
and are hosted on YouTube (described in detail on YouTube):
a cosmological simulation9 (https://www.youtube.com/watch?
v=OKKsk0TigNo), the chemical evolution of the same simula-
tion (https://www.youtube.com/watch?v=5AqmAUGndps), and a
planetary impact (https://www.youtube.com/watch?v=6aBry0CU
gVw). While the first and last movies show the high time res-
olution of the output system for a cosmological simulation and
a planetary impact, the second one shows that it can be used
directly for scientific analysis of the runs.

9 The original movie without YouTube’s compression is available in the
ovie’s description. This simulation is the same as shown in Fig. 8.

https://www.youtube.com/watch?v=OKKsk0TigNo
https://www.youtube.com/watch?v=OKKsk0TigNo
https://www.youtube.com/watch?v=OKKsk0TigNo
https://www.youtube.com/watch?v=5AqmAUGndps
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw
https://www.youtube.com/watch?v=6aBry0CUgVw

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659

8

e
t
o
i
i
e
a
f
n
w
w
a
f

o
t
w
a
a
m
s
t
d
s
a
i
t
c
s
r
i
b
f

C

i

F
i

H

q
m
B
a

. Conclusions

We presented a new output technique that can follow the
volution of all the resolution elements of a simulation and write
hem using their own individual timescale in order to reduce the
utput size and increase the accuracy at any time. This approach
s particularly well fitted for simulations that include gravity as
t produces large differences in time scales between resolution
lements. On the example presented in Fig. 3, we increased the
ccuracy of the output by 67.8x for a given storage space (or a
actor of 2.76x in storage space for a given accuracy). This tech-
ique largely improves on the traditional snapshot method and
ill allow to improve the analysis of fast events (e.g. supernovae)
ithin simulations. While this technique has been specially cre-
ted for particle-based discretization, it could be readily adapted
or grid-based techniques.

Finally, it is worth highlighting that this is a first presentation
f the method and that many improvements will be brought in
he future. Among them, it is worth to mention a few ideas that
e would like to explore. Currently, the index files do not contain
ny physical information. It could be possible to sort the particles
ccording to a tree in order to speedup any spatial selection. In
ost astrophysical codes, such a tree is already present in the
imulation and it would hence not require a lot of computation
o produce such tree-sorted files. Another improvement could be
one on complexifying the frequency writing criterion. In large
cale simulations such as EAGLE, writing the whole simulation
t high resolution requires an extremely large storage. To reduce
t, it would be possible to adapt the writing frequency according
o some physical properties (e.g. write if a given property has
hanged by more than 10%) or spatial position (e.g. focus on a
ingle galaxy). This could help to achieve an extremely high time
esolution within a single galaxy. A last interesting improvement
n terms of physics could be to increase the interpolation order
y the usage of more than 2 records which would decrease even
urther the storage cost for a given accuracy.

RediT authorship contribution statement

L. Hausammann: Methodology, Software, Investigation, Writ-
ng – original draft, Visualization. P. Gonnet: Conceptualization.
M. Schaller: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We thank the anonymous referees for raising interesting
points which improved the quality of this paper. We gratefully
acknowledge the help of Bert Vandenbroucke and Alexei Borissov
to test the CSDS, as well as Jacob Kegerreis for help running
the planetary simulation test-case. We are also grateful for the
ideas raised by Mladen Ivkovic, Yves Revaz and Richard Bower
during our discussions. We thank Alyson Brooks for reviewing an
early version of this paper. MS is supported by the Netherlands
Organization for Scientific Research (NWO) through VENI grant
639.041.749. This work was supported by the Swiss Federal

Institute of Technology in Lausanne (EPFL) through the use of

10
the facilities of its Scientific IT and Application Support Center
(SCITAS) and the University of Geneva, Switzerland through the
usage of Yggdrasil. This work used the DiRAC@Durham facility
managed by the Institute for Computational Cosmology on behalf
of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment
was funded by BEIS capital funding via STFC capital, United
Kingdom grants ST/K00042X/1, ST/P002293/1, ST/R002371/1 and
ST/S002502/1, Durham University and STFC operations, United
Kingdom grant ST/R000832/1. DiRAC is part of the National e-
Infrastructure. We are grateful to the Numpy (Oliphant, 2015),
Matplotlib (Caswell et al., 2018) SciPy (Jones et al., 2001) and
IPython (Perez and Granger, 2007) teams for providing the sci-
entific community with essential python tools. The research in
this paper made use of the Swift open-source simulation code
(http://www.swiftsim.com, Schaller et al., 2018) version 0.9.0.

Appendix A. Interpolation with Co-moving coordinates

The Hermite interpolation between time t0 and t1 at t is given
by:

pn(u) =

(n−1)/2∑
i=0

p(i)0 Hn
i (u) + p(i)1 Hn

n−i(u) (A.1)

where n is the degree of the interpolation, p(i)0 (p(i)1) is the ith
derivative at t0 (t1) and u is the normalized time variable ((t −

t0)/(t1 − t0)). The polynomials Hn
i are given by the line of the fol-

lowing matrix where the first column corresponds to the constant
term (Lind, 2020):

H3
=

⎛⎜⎝ 1 0 −3 2
0 1 −2 1
0 0 −1 1
0 0 3 −2

⎞⎟⎠ . (A.2)

or example H3
0 (u) is given by 1 − 3u2

+ 2u3. For the quintic
nterpolation, the matrix is given by:

5
=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 −10 15 −6
0 1 0 −6 8 −3
0 0 1

2 −
3
2

3
2 −

1
2

0 0 0 1
2 −1 1

2
0 0 0 −4 7 −3
0 0 0 10 −15 6

⎞⎟⎟⎟⎟⎟⎠ . (A.3)

In cosmological simulation, co-moving coordinates are re-
uired to take into account the expansion of the universe (for
ore information on co-moving coordinates see for example
ertschinger, 1998; Peebles, 1993). In Swift, they are defined
s x = ax′, a2ẋ′

= v′ and av̇′
= g ′10 where x′, v′ and g ′ are

the co-moving coordinates, velocities and accelerations, and a is
the scaling factor that depends on time.11 To use the Hermite
interpolation previously described, u is replaced by (a−a0)/(a1 −

a0) and the terms p(i)0 and p(i)1 need to include some cosmological
factors. Those last terms are obtained from the derivation of the
co-moving coordinate with respect to the scale factor. For the
positions, the velocities p(1)0 and p(1)1 need to be modified with
the following expression evaluated at either a0 or a1:

dx′

da
=

dx′

dt
dt
da

=
v′

a2ȧ
. (A.4)

The derivative of a with respect to time is given by:

ȧ = aH0

√
(Ωc + Ωb)a−3 + Ωrada−4 + ΩΛ (A.5)

10 The last one holds only for gravity as hydrodynamics have a different
relation.
11 Size of the universe normalized to today’s value.

http://www.dirac.ac.uk
http://www.swiftsim.com

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659

L
i
i

w

c
a
a

t

A

isting 1: Example of the CSDS’s interface.
mport numpy as np
mport libcsds as csds

Basename of the logfile
BASENAME = " index_0000 "
The ids of the particles that we wish to follow
PARTICLE_IDS = np.array([10, 412, 213], dtype=int)
The simulation time
TIME = 0.5

Open the CSDS
ith csds.Reader(BASENAME , verbose=0) as reader:

Get the time limits within the logfile
t_min, t_max = reader.get_time_limits()

Ensure that the time is correct
if TIME < t_min or TIME > t_max:
raise Exception(" The requested time is unavailable. ")

Ensure that the fields are available for the particle type
fields = reader.get_list_fields(part_type=csds.gas)

if " Coordinates " not in fields or " Entropies " not in fields:
raise Exception(" Field not found in the logfile ")

Read a subset of particles (coordinates and entropies are
2 numpy arrays)
coordinates , entropies = reader.get_data(

fields=[" Coordinates " , " Entropies "], time=TIME,
filter_by_ids=PARTICLE_IDS)

Read all the gas particles
all_fields = reader.get_data(

fields=fields, time=TIME, part_type=csds.gas)
where Ω are the cosmological parameters and H0 the Hubble
onstant. This equation assumes a flat Λ-CDM universe. For the
ccelerations within the position interpolation (p(2)0 and p(2)1), an
dditional derivative is required:

d2x′

da2
=

1
a4ȧ2

(
ag ′

− 2aȧv′
−

a2ä
ȧ

v′

)
. (A.6)

In the case of the interpolation of velocities, the same compu-
ation is required for the accelerations (p(1)0 and p(1)1) and gives:

dv′

da
=

g ′

ȧa
(A.7)

ppendix B. Example of python scripts

The following code shows a quick example of the CSDS’s
interface. The full interface is described in the documentation
provided within the reader’s repository.

References

Aarseth, S.J., 1963. Dynamical evolution of clusters of galaxies, I. Mon. Not. R.
Astron. Soc. (ISSN: 0035-8711) 126, 223. doi:10.1093/mnras/126.3.223, URL
http://adsabs.harvard.edu/abs/1963MNRAS.126..223A.

Abbasi, H., Lofstead, J., Zheng, F., Schwan, K., Wolf, M., Klasky, S., 2009. Extending
I/O through high performance data services. In: 2009 IEEE International
Conference on Cluster Computing and Workshops. pp. 1–10. doi:10.1109/
CLUSTR.2009.5289167, ISSN: 2168-9253.
11
Adams, M.F., Ku, S.-H., Worley, P., D’Azevedo, E., Cummings, J.C., Chang, C.-S.,
2009. Scaling to 150k cores: Recent algorithm and performance engineering
developments enabling XGC1 to run at scale. J. Phys. Conf. Ser. (ISSN: 1742-
6596) 180 (1), 012036. doi:10.1088/1742-6596/180/1/012036, URL http://
iopscience.iop.org/1742-6596/180/1/012036.

Baugh, C.M., Gonzalez-Perez, V., Lagos, C.d.P., Lacey, C.G., Helly, J.C., Jenkins, A.,
Frenk, C.S., Benson, A.J., Bower, R.G., Cole, S., 2019. Galaxy formation in
the Planck Millennium: the atomic hydrogen content of dark matter halos.
Mon. Not. R. Astron. Soc. 483 (4), 4922–4937. doi:10.1093/mnras/sty3427,
arXiv:1808.08276.

Bertschinger, E., 1998. Simulations of structure formation in the universe. Annu.
Rev. Astron. Astrophys. (ISSN: 0066-4146) 36, 599–654. doi:10.1146/annurev.
astro.36.1.599, URL http://adsabs.harvard.edu/abs/1998ARA%26A..36..599B.

Bocquet, S., Saro, A., Dolag, K., Mohr, J.J., 2016. Halo mass function: baryon
impact, fitting formulae, and implications for cluster cosmology. Mon. Not.
R. Astron. Soc. 456 (3), 2361–2373. doi:10.1093/mnras/stv2657, arXiv:1502.
07357.

Bower, R., Rogers, B.D., Schaller, M., 2021. Massively parallel particle hy-
drodynamics at exa-scale. Comput. Sci. Eng. 1. doi:10.1109/MCSE.2021.
3134604.

Caswell, T.A., Droettboom, M., Hunter, J., Firing, E., Lee, A., Stansby, D., de An-
drade, E.S., Nielsen, J.H., Klymak, J., Varoquaux, N., Root, B., Elson, P., Dale, D.,
May, R., Lee, J.-J., Seppänen, J.K., Hoffmann, T., McDougall, D., Straw, A., Hob-
son, P., cgohlke, Yu, T.S., Ma, E., Vincent, A.F., Silvester, S., Moad, C., Katins, J.,
Kniazev, N., Ariza, F., Würtz, P., 2018. Matplotlib/matplotlib v3.0.2. doi:10.
5281/zenodo.1482099, URL https://zenodo.org/record/1482099#.XBDPecYo_
0o.

Evrard, A.E., MacFarland, T.J., Couchman, H.M.P., Colberg, J.M., Yoshida, N.,
White, S.D.M., Jenkins, A., Frenk, C.S., Pearce, F.R., Peacock, J.A., Thomas, P.A.,
2002. Galaxy clusters in hubble volume simulations: Cosmological con-
straints from sky survey populations. Astrophys. J. (ISSN: 0004-637X) 573,
7–36. doi:10.1086/340551, URL http://adsabs.harvard.edu/abs/2002ApJ...573.
...7E.

http://dx.doi.org/10.1093/mnras/126.3.223
http://adsabs.harvard.edu/abs/1963MNRAS.126..223A
http://dx.doi.org/10.1109/CLUSTR.2009.5289167
http://dx.doi.org/10.1109/CLUSTR.2009.5289167
http://dx.doi.org/10.1109/CLUSTR.2009.5289167
http://dx.doi.org/10.1088/1742-6596/180/1/012036
http://iopscience.iop.org/1742-6596/180/1/012036
http://iopscience.iop.org/1742-6596/180/1/012036
http://iopscience.iop.org/1742-6596/180/1/012036
http://dx.doi.org/10.1093/mnras/sty3427
http://arxiv.org/abs/1808.08276
http://dx.doi.org/10.1146/annurev.astro.36.1.599
http://dx.doi.org/10.1146/annurev.astro.36.1.599
http://dx.doi.org/10.1146/annurev.astro.36.1.599
http://adsabs.harvard.edu/abs/1998ARA%26A..36..599B
http://dx.doi.org/10.1093/mnras/stv2657
http://arxiv.org/abs/1502.07357
http://arxiv.org/abs/1502.07357
http://arxiv.org/abs/1502.07357
http://dx.doi.org/10.1109/MCSE.2021.3134604
http://dx.doi.org/10.1109/MCSE.2021.3134604
http://dx.doi.org/10.1109/MCSE.2021.3134604
http://dx.doi.org/10.5281/zenodo.1482099
http://dx.doi.org/10.5281/zenodo.1482099
http://dx.doi.org/10.5281/zenodo.1482099
https://zenodo.org/record/1482099#.XBDPecYo_0o
https://zenodo.org/record/1482099#.XBDPecYo_0o
https://zenodo.org/record/1482099#.XBDPecYo_0o
http://dx.doi.org/10.1086/340551
http://adsabs.harvard.edu/abs/2002ApJ...573....7E
http://adsabs.harvard.edu/abs/2002ApJ...573....7E
http://adsabs.harvard.edu/abs/2002ApJ...573....7E

L. Hausammann, P. Gonnet and M. Schaller Astronomy and Computing 41 (2022) 100659

G

G

G

I

J

J

K

L

L

M

M

M

M

araldi, E., Nori, M., Baldi, M., 2020. Dynamic zoom simulations: A fast,
adaptive algorithm for simulating light-cones. Mon. Not. R. Astron. Soc.
(ISSN: 0035-8711) 499, 2685–2700. doi:10.1093/mnras/staa2064, URL http:
//adsabs.harvard.edu/abs/2020MNRAS.499.2685G.

odoy, W.F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J., Davis, P.,
Choi, J., Germaschewski, K., Huck, K., Huebl, A., Kim, M., Kress, J., Kurc, T.,
Liu, Q., Logan, J., Mehta, K., Ostrouchov, G., Parashar, M., Poeschel, F.,
Pugmire, D., Suchyta, E., Takahashi, K., Thompson, N., Tsutsumi, S., Wan, L.,
Wolf, M., Wu, K., Klasky, S., 2020. ADIOS 2: The adaptable input out-
put system. a framework for high-performance data management. 12,
100561. doi:10.1016/j.softx.2020.100561, URL http://adsabs.harvard.edu/abs/
2020SoftX..1200561G,

onnet, P., Chalk, A.B.G., Schaller, M., 2016. QuickSched: Task-based parallelism
with dependencies and conflicts. doi:10.48550/arXiv.1601.05384, arXiv:1601.
05384 [Cs].

shiyama, T., Prada, F., Klypin, A.A., Sinha, M., Metcalf, R.B., Jullo, E., Altieri, B.,
Cora, S.A., Croton, D., de la Torre, S., Millán-Calero, D.E., Oogi, T., Ruedas, J.,
Vega-Martínez, C.A., 2021. The uchuu simulations: Data release 1 and dark
matter halo concentrations. Mon. Not. R. Astron. Soc. 506 (3), 4210–4231.
doi:10.1093/mnras/stab1755, arXiv:2007.14720.

etley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T., 2008. Massively Parallel
Cosmological Simulations with ChaNGa. IEEE Computer Society, ISBN: 978-1-
4244-1693-6, pp. 1–12. doi:10.1109/IPDPS.2008.4536319, URL https://www.
computer.org/csdl/proceedings-article/ipdps/2008/04536319/12OmNvStcyx.

ones, E., Oliphant, T., Peterson, P., et al., 2001. SciPy: Open Source Scientific
Tools for Python. URL http://www.scipy.org/.

egerreis, J.A., Eke, V.R., Gonnet, P., Korycansky, D.G., Massey, R.J., Schaller, M.,
Teodoro, L.F.A., 2019. Planetary giant impacts: convergence of high-
resolution simulations using efficient spherical initial conditions and SWIFT.
Mon. Not. R. Astron. Soc. (ISSN: 0035-8711) 487, 5029–5040. doi:10.1093/
mnras/stz1606, URL http://adsabs.harvard.edu/abs/2019MNRAS.487.5029K.

ind, M., 2020. Real-time quintic Hermite interpolation for robot trajectory
execution. PeerJ Comput. Sci. (ISSN: 2376-5992) 6, e304. doi:10.7717/peerj-
cs.304, URL https://peerj.com/articles/cs-304 Publisher: PeerJ Inc..

üttgau, J., Snyder, S., Carns, P., Wozniak, J.M., Kunkel, J., Ludwig, T., 2018.
Toward understanding I/O behavior in HPC workflows. In: 2018 IEEE/ACM
3rd International Workshop on Parallel Data Storage Data Intensive Scalable
Computing Systems (PDSW-DISCS). pp. 64–75. doi:10.1109/PDSW-DISCS.
2018.00012.

a, X., Lee, J., Winslett, M., 2006. High-level buffering for hiding periodic output
cost in scientific simulations. IEEE Trans. Parallel Distrib. Syst. (ISSN: 1558-
2183) 17 (3), 193–204. doi:10.1109/TPDS.2006.36, Conference Name: IEEE
Transactions on Parallel and Distributed Systems.

aksimova, N.A., Garrison, L.H., Eisenstein, D.J., Hadzhiyska, B., Bose, S., Sat-
terthwaite, T.P., 2021. ABACUSSUMMIT: a massive set of high-accuracy,
high-resolution N-body simulations. Mon. Not. R. Astron. Soc. 508 (3),
4017–4037. doi:10.1093/mnras/stab2484, arXiv:2110.11398.

itra, S., Sinha, R.R., Winslett, M., Jiao, X., 2005. An efficient, nonintrusive,
log-based I/O mechanism for scientific simulations on clusters. In: 2005
IEEE International Conference on Cluster Computing. pp. 1–10. doi:10.1109/
CLUSTR.2005.347041, ISSN: 2168-9253.

üller, A., Deconinck, W., Kühnlein, C., Mengaldo, G., Lange, M., Wedi, N.,
Bauer, P., Smolarkiewicz, P.K., Diamantakis, M., Lock, S.-J., Hamrud, M.,
Saarinen, S., Mozdzynski, G., Thiemert, D., Glinton, M., Bénard, P., Voitus, F.,
Colavolpe, C., Marguinaud, P., Zheng, Y., Van Bever, J., Degrauwe, D., Smet, G.,
Termonia, P., Nielsen, K.P., Sass, B.H., Poulsen, J.W., Berg, P., Osuna, C.,
Fuhrer, O., Clement, V., Baldauf, M., Gillard, M., Szmelter, J., O’Brien, E., McK-
instry, A., Robinson, O., Shukla, P., Lysaght, M., Kulczewski, M., Ciznicki, M.,
Piatek, W., Ciesielski, S., Błażewicz, M., Kurowski, K., Procyk, M., Spychala, P.,
Bosak, B., Piotrowski, Z.P., Wyszogrodzki, A., Raffin, E., Mazauric, C., Guib-
ert, D., Douriez, L., Vigouroux, X., Gray, A., Messmer, P., Macfaden, A.J.,
New, N., 2019. The ESCAPE project: Energy-efficient scalable algorithms for
weather prediction at exascale. Geosci. Model Dev. 12, 4425–4441. doi:
10.5194/gmd-12-4425-2019, URL http://adsabs.harvard.edu/abs/2019GMD...
.12.4425M.
12
Nelson, D., Pillepich, A., Genel, S., Vogelsberger, M., Springel, V., Torrey, P.,
Rodriguez-Gomez, V., Sijacki, D., Snyder, G.F., Griffen, B., Marinacci, F.,
Blecha, L., Sales, L., Xu, D., Hernquist, L., 2015. The illustris simula-
tion: Public data release. Astron. Comput. (ISSN: 2213-1337) 13, 12–37.
doi:10.1016/j.ascom.2015.09.003, URL http://www.sciencedirect.com/science/
article/pii/S2213133715000864.

Norman, M.L., Bryan, G.L., Harkness, R., Bordner, J., Reynolds, D., O’Shea, B.,
Wagner, R., 2007. Simulating cosmological evolution with enzo. doi:10.
48550/arXiv.0705.1556, Astro-Ph.

Oliphant, T.E., 2015. Guide to NumPy, second ed. CreateSpace Independent
Publishing Platform, USA, ISBN: 978-1-5173-0007-4.

Peebles, P.J.E., 1993. Principles of physical cosmology. doi:10.1515/
9780691206721, Principles of Physical Cosmology By P.J.E. Peebles.
Princeton University Press, 1993. ISBN: 978-0-691-01933-8, URL
http://adsabs.harvard.edu/abs/1993ppc..book.....P.

Perez, F., Granger, B.E., 2007. IPython: A system for interactive scientific com-
puting. Comput. Sci. Eng. (ISSN: 1521-9615) 9 (3), 21–29. doi:10.1109/MCSE.
2007.53.

Potter, D., Stadel, J., Teyssier, R., 2017. PKDGRAV3: beyond trillion particle cos-
mological simulations for the next era of galaxy surveys. Comput. Astrophys.
Cosmol. 4, 2. doi:10.1186/s40668-017-0021-1, URL http://adsabs.harvard.
edu/abs/2017ComAC...4....2P.

Ragagnin, A., Dolag, K., Biffi, V., Cadolle Bel, M., Hammer, N.J., Krukau, A.,
Petkova, M., Steinborn, D., 2017. A web portal for hydrodynamical, cosmo-
logical simulations. Astron. Comput. 20, 52–67. doi:10.1016/j.ascom.2017.05.
001, arXiv:1612.06380.

Revaz, Y., Jablonka, P., 2018. Pushing back the limits: detailed properties of dwarf
galaxies in a LCDM universe. doi:10.1051/0004-6361/201832669, arXiv:1801.
06222 [Astro-Ph].

Ross, R.B., Peterka, T., Shen, H.-W., Hong, Y., Ma, K.-L., Yu, H., Moreland, K.,
2008. Visualization and parallel I/O at extreme scale. J. Phys. Conf. Ser.
(ISSN: 1742-6596) 125, 012099. doi:10.1088/1742-6596/125/1/012099, URL
https://iopscience.iop.org/article/10.1088/1742-6596/125/1/012099.

Schaller, M., Gonnet, P., Chalk, A.B.G., Draper, P.W., 2016. SWIFT: Using task-
based parallelism, fully asynchronous communication, and graph partition-
based domain decomposition for strong scaling on more than 100,000
cores. In: Proceedings of the Platform for Advanced Scientific Computing
Conference. pp. 1–10. doi:10.1145/2929908.2929916, URL http://arxiv.org/
abs/1606.02738 arXiv:1606.02738.

Schaller, M., Gonnet, P., Draper, P.W., Chalk, A.B.G., Bower, R.G., Willis, J.,
Hausammann, L., 2018. SWIFT: SPH with inter-dependent fine-grained task-
ing. Astrophys. Source Code Library ascl:1805.020 URL https://ui.adsabs.
harvard.edu/abs/2018ascl.soft05020S.

Schaye, J., Crain, R.A., Bower, R.G., Furlong, M., Schaller, M., Theuns, T., Dalla Vec-
chia, C., Frenk, C.S., McCarthy, I.G., Helly, J.C., Jenkins, A., Rosas-Guevara, Y.M.,
White, S.D.M., Baes, M., Booth, C.M., Camps, P., Navarro, J.F., Qu, Y., Rah-
mati, A., Sawala, T., Thomas, P.A., Trayford, J., 2015. The EAGLE project:
simulating the evolution and assembly of galaxies and their environments.
Mon. Not. R. Astron. Soc. (ISSN: 0035-8711) 446, 521–554. doi:10.1093/
mnras/stu2058, URL http://adsabs.harvard.edu/abs/2015MNRAS.446..521S.

Smith, A., Cole, S., Grove, C., Norberg, P., Zarrouk, P., 2022. A lightcone catalogue
from the millennium-XXL simulation: improved spatial interpolation and
colour distributions for the DESI BGS. doi:10.1093/mnras/stac2519, arXiv
E-Prints arXiv:2207.04902.

Springel, V., 2005. The cosmological simulation code GADGET-2. Mon. Not. R.
Astron. Soc. (ISSN: 0035-8711) 364, 1105–1134. doi:10.1111/j.1365-2966.
2005.09655.x, URL http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S.

The HDF Group, 1997. Hierarchical data format, version 5. https://www.
hdfgroup.org/HDF5/.

Xiao, Q., Shang, P., Wang, J., 2012. Co-located compute and binary file storage in
data-intensive computing. In: 2012 IEEE Seventh International Conference on
Networking, Architecture, and Storage. pp. 199–206. doi:10.1109/NAS.2012.
29.

Zheng, F., Zou, H., Eisenhauer, G., Schwan, K., Wolf, M., Dayal, J., Nguyen, T.,
Cao, J., Abbasi, H., Klasky, S., Podhorszki, N., Yu, H., 2013. FlexIO: I/O
middleware for location-flexible scientific data analytics. In: 2013 IEEE
27th International Symposium on Parallel and Distributed Processing. pp.
320–331. doi:10.1109/IPDPS.2013.46, ISSN: 1530-2075.

http://dx.doi.org/10.1093/mnras/staa2064
http://adsabs.harvard.edu/abs/2020MNRAS.499.2685G
http://adsabs.harvard.edu/abs/2020MNRAS.499.2685G
http://adsabs.harvard.edu/abs/2020MNRAS.499.2685G
http://dx.doi.org/10.1016/j.softx.2020.100561
http://adsabs.harvard.edu/abs/2020SoftX..1200561G
http://adsabs.harvard.edu/abs/2020SoftX..1200561G
http://adsabs.harvard.edu/abs/2020SoftX..1200561G
http://dx.doi.org/10.48550/arXiv.1601.05384
http://arxiv.org/abs/1601.05384
http://arxiv.org/abs/1601.05384
http://arxiv.org/abs/1601.05384
http://dx.doi.org/10.1093/mnras/stab1755
http://arxiv.org/abs/2007.14720
http://dx.doi.org/10.1109/IPDPS.2008.4536319
https://www.computer.org/csdl/proceedings-article/ipdps/2008/04536319/12OmNvStcyx
https://www.computer.org/csdl/proceedings-article/ipdps/2008/04536319/12OmNvStcyx
https://www.computer.org/csdl/proceedings-article/ipdps/2008/04536319/12OmNvStcyx
http://www.scipy.org/
http://dx.doi.org/10.1093/mnras/stz1606
http://dx.doi.org/10.1093/mnras/stz1606
http://dx.doi.org/10.1093/mnras/stz1606
http://adsabs.harvard.edu/abs/2019MNRAS.487.5029K
http://dx.doi.org/10.7717/peerj-cs.304
http://dx.doi.org/10.7717/peerj-cs.304
http://dx.doi.org/10.7717/peerj-cs.304
https://peerj.com/articles/cs-304
http://dx.doi.org/10.1109/PDSW-DISCS.2018.00012
http://dx.doi.org/10.1109/PDSW-DISCS.2018.00012
http://dx.doi.org/10.1109/PDSW-DISCS.2018.00012
http://dx.doi.org/10.1109/TPDS.2006.36
http://dx.doi.org/10.1093/mnras/stab2484
http://arxiv.org/abs/2110.11398
http://dx.doi.org/10.1109/CLUSTR.2005.347041
http://dx.doi.org/10.1109/CLUSTR.2005.347041
http://dx.doi.org/10.1109/CLUSTR.2005.347041
http://dx.doi.org/10.5194/gmd-12-4425-2019
http://dx.doi.org/10.5194/gmd-12-4425-2019
http://dx.doi.org/10.5194/gmd-12-4425-2019
http://adsabs.harvard.edu/abs/2019GMD....12.4425M
http://adsabs.harvard.edu/abs/2019GMD....12.4425M
http://adsabs.harvard.edu/abs/2019GMD....12.4425M
http://dx.doi.org/10.1016/j.ascom.2015.09.003
http://www.sciencedirect.com/science/article/pii/S2213133715000864
http://www.sciencedirect.com/science/article/pii/S2213133715000864
http://www.sciencedirect.com/science/article/pii/S2213133715000864
http://dx.doi.org/10.48550/arXiv.0705.1556
http://dx.doi.org/10.48550/arXiv.0705.1556
http://dx.doi.org/10.48550/arXiv.0705.1556
http://arxiv.org/abs/0705.1556
http://refhub.elsevier.com/S2213-1337(22)00073-7/sb25
http://refhub.elsevier.com/S2213-1337(22)00073-7/sb25
http://refhub.elsevier.com/S2213-1337(22)00073-7/sb25
http://dx.doi.org/10.1515/9780691206721
http://dx.doi.org/10.1515/9780691206721
http://dx.doi.org/10.1515/9780691206721
http://adsabs.harvard.edu/abs/1993ppc..book.....P
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1186/s40668-017-0021-1
http://adsabs.harvard.edu/abs/2017ComAC...4....2P
http://adsabs.harvard.edu/abs/2017ComAC...4....2P
http://adsabs.harvard.edu/abs/2017ComAC...4....2P
http://dx.doi.org/10.1016/j.ascom.2017.05.001
http://dx.doi.org/10.1016/j.ascom.2017.05.001
http://dx.doi.org/10.1016/j.ascom.2017.05.001
http://arxiv.org/abs/1612.06380
http://dx.doi.org/10.1051/0004-6361/201832669
http://arxiv.org/abs/1801.06222
http://arxiv.org/abs/1801.06222
http://arxiv.org/abs/1801.06222
http://dx.doi.org/10.1088/1742-6596/125/1/012099
https://iopscience.iop.org/article/10.1088/1742-6596/125/1/012099
http://dx.doi.org/10.1145/2929908.2929916
http://arxiv.org/abs/1606.02738
http://arxiv.org/abs/1606.02738
http://arxiv.org/abs/1606.02738
https://ui.adsabs.harvard.edu/abs/2018ascl.soft05020S
https://ui.adsabs.harvard.edu/abs/2018ascl.soft05020S
https://ui.adsabs.harvard.edu/abs/2018ascl.soft05020S
http://dx.doi.org/10.1093/mnras/stu2058
http://dx.doi.org/10.1093/mnras/stu2058
http://dx.doi.org/10.1093/mnras/stu2058
http://adsabs.harvard.edu/abs/2015MNRAS.446..521S
http://dx.doi.org/10.1093/mnras/stac2519
http://arxiv.org/abs/2207.04902
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.1109/NAS.2012.29
http://dx.doi.org/10.1109/NAS.2012.29
http://dx.doi.org/10.1109/NAS.2012.29
http://dx.doi.org/10.1109/IPDPS.2013.46

	Continuous Simulation Data Stream: A dynamical timescale-dependent output scheme for simulations
	Introduction
	The Continuous Simulation Data Stream
	Overview of the different components
	Description of the records
	Description of the logfile
	Restart Strategy
	Description of the index file
	Particle writing criterion
	Parallelism considerations
	Memory-mapped file
	Shared memory strategy
	Distributed memory strategy

	Implementation in the Swift code
	Specifics of the Swift code
	Implementation of the CSDS in Swift
	Special cases
	MPI strategy

	Reading strategies
	Implementation details

	Results
	Discussion
	Examples of application
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Interpolation with Co-moving Coordinates
	Appendix B. Example of python scripts
	References

