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ABSTRACT

Context. Radio loud active galactic nuclei (RLAGNs) are often morphologically complex objects that can consist of multiple, spa-
tially separated, components. Only when the spatially separated radio components are correctly grouped together can we start to look
for the corresponding optical host galaxy and infer physical parameters such as the size and luminosity of the radio object. Existing
radio detection software to group these spatially separated components together is either experimental or based on assumptions that do
not hold for current generation surveys, such that, in practice, astronomers often rely on visual inspection to resolve radio component
association. However, applying visual inspection to all the hundreds of thousands of well-resolved RLAGNs that appear in the images
from the Low Frequency Array (LOFAR) Two-metre Sky Survey (LoTSS) at 144 MHz, is a daunting, time-consuming process, even
with extensive manpower.
Aims. Using a machine learning approach, we aim to automate the radio component association of large (>15 arcsec) radio
components.
Methods. We turned the association problem into a classification problem and trained an adapted Fast region-based convolutional
neural network to mimic the expert annotations from the first LoTSS data release. We implemented a rotation data augmentation to
reduce overfitting and simplify the component association by removing unresolved radio sources that are likely unrelated to the large
and bright radio components that we consider using predictions from an existing gradient boosting classifier.
Results. For large (>15 arcsec) and bright (>10 mJy) radio components in the LoTSS first data release, our model provides the same
associations for 85.3% ± 0.6 of the cases as those derived when astronomers perform the association manually. When the association
is done through public crowd-sourced efforts, a result similar to that of our model is attained.
Conclusions. Our method is able to efficiently carry out manual radio-component association for huge radio surveys and can serve as
a basis for either automated radio morphology classification or automated optical host identification. This opens up an avenue to study
the completeness and reliability of samples of radio sources with extended, complex morphologies.

Key words. methods: data analysis – catalogs – surveys – galaxies: active

1. Introduction

In the low-frequency radio regime, most objects we observe are
either radio-loud active galactic nuclei (RLAGNs) or star form-
ing galaxies (e.g. Wilman et al. 2008). The RLAGNs are often
morphologically complex objects that can consist of multiple
components, such as a core, jets, hotspots, and lobes (e.g. Miley
1980; Hardcastle & Croston 2020). Due to the spectral proper-
ties of the components, we observe large variations in frequency
in the relative apparent brightness of the components (e.g.
Alexander & Leahy 1987; Harwood et al. 2013). As a result, we
do not always observe all components of a RLAGN, and different
components of the same RLAGN can appear spatially separated
on the sky. The steep-spectrum lobes of an edge-brightened
or Fanaroff-Riley type II radio source (FRII; Fanaroff & Riley
1974) might, for example, be observable, while the flat-spectrum
emission connecting the two lobes, from the jets and the core

falls below the noise. These separate radio RLAGN components
need to be grouped together before we can start to look for the
corresponding host galaxy in the optical or infrared and infer the
radio object’s physical parameters including the proper size and
luminosity (Williams et al. 2019).

Commonly used (radio) source detection software is not
designed to group spatially separated components together.
Existing source finders – such as the Python Blob Detection and
Source Finder1 (PyBDSF; Mohan & Rafferty 2015), AEGEAN
(Hancock et al. 2012, 2018), and ProFound (Robotham et al.
2018) – are designed as robust rule-based algorithms to detect
patches of contiguous (radio) emission that surpass the local
noise by a certain threshold and deblend them if necessary. If two
related patches of radio emission (for example, two lobes orig-
inating from a single RLAGN) are spatially separated and the

1 https://github.com/lofar-astron/PyBDSF
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connecting radio emission (from the jets and or lobes) falls below
a user-defined signal-to-noise threshold, they will be treated as
two different radio sources. Even when the emission connect-
ing different components of a resolved radio object does not fall
below the noise level, components are sometimes erroneously
deblended into multiple sources. This is a conscious trade-off
used in existing source detection software to prevent the associ-
ation of spurious unrelated radio emission, and it can be partly
overcome through subsequent manual visual inspection. How-
ever, applying this visual inspection to hundreds of thousands of
well-resolved RLAGNs is a daunting and time-consuming pro-
cess, even when delegated to multiple astronomers. For the Low
Frequency Array (LOFAR; van Haarlem et al. 2013) Two-metre
Sky Survey first data release (LoTSS-DR1; Shimwell et al. 2017),
∼15,000 extended sources (4.9% of the total number of sources
in LoTSS-DR1) were manually associated through visual inspec-
tion over the course of eight months by 66 astronomers who were
part of the LOFAR collaboration (Williams et al. 2019). Over
the course of the inspection of thousands of objects, mistakes
are easily made and certain radio emission can be faint or com-
plex to untangle. Therefore, the LOFAR consortium required
each source to be annotated by five different astronomers,
thereby increasing the required time investment of all
involved.

Even a public crowd-sourced annotation process with thou-
sands of volunteers to associate radio components has its lim-
itations. The sky area and the number of sources requiring
visual inspection increased tenfold for the second LoTSS data
release (LoTSS-DR2; Shimwell et al. 2022) and internal manual
classification was deemed infeasible because of this. A public
version of the crowd-sourced manual annotation platform used
for LoTSS-DR1 was therefore created (Hardcastle et al. in prep.).
In 6 months, ∼80 000 sources will have been annotated by five
different people. Fully annotating LoTSS-DR2 will likely take
more than a year. Unsurprisingly, the time it takes for the public
to annotate sources (and for the astronomers to guide the project)
is hard to predict. Furthermore, the annotation quality is hard to
monitor directly. It can be improved indirectly, by enhancing the
tutorial and introduction on the platform or by requiring more
views per radio component, but the latter comes at the cost of
a decreased rate of completed annotations (e.g. Marshall et al.
2016; Williams et al. 2019). For further LOFAR data releases and
future large-scale sky surveys from the Square Kilometre Array
(SKA; Braun et al. 2015) and its pathfinders, relying solely on
crowd-sourced annotation is clearly unsustainable and undesir-
able. An automated approach is needed. In the future, automated
radio source component association will be an essential step in
the study of the completeness and reliability of extended objects
such as FRI and FRII in existing and upcoming large-scale sky
surveys.

In this work, we aim to create an automated pipeline that
works well on most large (>15 arcsec) radio components at MHz
frequencies. Of all large radio components, 28% are part of
a multi-component source. Large and bright (>10 mJy) radio
components are more often part of a multi-component source
than large and faint radio components (41% versus 21%, respec-
tively). Of all sources that PyBDSF finds in LoTSS-DR1, 94%
are smaller than 15 arcsec. Of these small sources, 95.8% are
unresolved, and 3.7% are slightly resolved but correctly asso-
ciated by PyBDSF. Only 0.5% of the sources smaller than
15 arcsec are part of a multi-component radio source, and in
many such cases (48.7%) one of the other components of
that source is larger than 15 arcsec, and so the source can be
associated with our pipeline.

The specific 15 arcsec cut coincides with the cut above which
Williams et al. (2019) required most components to be manually
associated by professional astronomers and therefore provides
us with a large training set. We procedurally combine the pos-
sibility to learn these manual component associations using
a convolutional neural network as demonstrated by Wu et al.
(2019a, see Sect. 2), with the better completeness of a rule-
based emission detection algorithm and various augmentations
that make the network more suited to associating radio com-
ponents. It is unrealistic to expect any algorithm to perform
perfectly on all extended radio emission, as the observed radio
emission in LoTSS can be faint and too complex even for a radio
astronomer to associate and our method does not make use of
potential optical host information available to researchers dur-
ing visual inspection. We expect our method to work less well
for sources with low signal-to-noise ratios and sources located in
cluster environments, as radio-lobes in those environments can
be greatly distorted and superposed onto a cluster halo or relic
emission.

In the next section, we highlight past automated approaches
to the radio component association problem. In Sect. 3, we lay
out the radio survey and the manual annotation process on which
our automated method explained in Sect. 4 is based. We present
our results in Sect. 5 and we elaborate on the scope and limita-
tions of our method in Sect. 6. Finally, in the same section, we
discuss how our pipeline can aid the development of automated
morphological classification pipelines and cross-identification
pipelines.

2. Existing automated radio component
association approaches

In the past, there have been multiple rule-based attempts to per-
form the task of associating radio components. van Velzen et al.
(2015) assumed that FRII radio sources at z ≈ 1 and 1.4 GH,
appear as two unresolved point sources in images of the Faint
Images of the Radio Sky at 20-cm (FIRST; White et al. 1997) sur-
vey. They proceeded to match all radio blobs in the FIRST cat-
alogue with a minimum separation of 18 arcsec and a maximum
separation of 1 arcmin. The authors noted that this method only
works for FRII with large (>100 kpc) radio lobes. The associa-
tion of unrelated, chance-aligned radio sources using this method
is deemed unavoidable. Fan et al. (2015) combined source associ-
ation with cross-identification using Bayesian hypothesis testing.
They searched for radio components in the Australia Telescope
Large Area Survey (ATLAS; Norris et al. 2006) that lie within
2 arcmin of a source in the Spitzer Wide-Area Infrared Extra-
galactic Survey (SWIRE; Lonsdale et al. 2003) and tested the
likelihood of the association of the radio components and cross-
identification with the infrared source. They assumed a radio
source to consist either of a core with a pair of lobes, just a core,
or just a pair of lobes, and adopted a Rayleigh distribution with a
mean of 9 arcsec as the prior probability distribution function of
possible core-lobe distances. As expected, the likelihood method
works best for cross-identifying infrared sources with single-
core objects (finding 536 out of 558 such sources in common
with a manual cross-identification), reasonably well for triplets
(9 out of 10), and less well for doublet radio sources (19 out
of 27). Unfortunately, the assumption of unresolved point-like
source-components required by these simple parametric mod-
els does not hold for extended sources in LoTSS. The higher
resolution of LoTSS at ∼100 MHz frequencies (Shimwell et al.
2017) and the dense core of the LOFAR antennas allow for better
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surface brightness sensitivity, revealing complex morphologies
for extended sources.

More recent attempts to perform the association task involve
unsupervised and supervised machine learning. In the domain
of unsupervised machine learning, the introduction of a rota-
tion and flipping invariant self-organised maps (SOM) code
by Polsterer et al. (2016; PINK) spurred work on morphologi-
cal clustering of extragalactic radio sources (e.g. Galvin et al.
2019; Ralph et al. 2019; Mostert et al. 2021). Both Galvin et al.
(2019) and Mostert et al. (2021) speculated on the ability to
associate the radio-emission from the simplest resolved radio
objects on the sky: non-bent, double-lobed RLAGNs. Galvin
et al. (2020) trained an SOM with 40 × 40 neurons on images
from FIRST and accompanying infrared images from the Wide-
field Infrared Survey Explorer (WISE; Wright et al. 2010) and
demonstrated the ability to combine component-association and
infrared cross-identification. Galvin et al. (2020) turned the com-
mon radio-emission morphologies, modelled in the neurons of
an SOM, into segmented images. Each segmented image is man-
ually annotated: the authors judge which segments in the image
are likely to belong to the central radio component and which
are not. In the inference phase, an image (from outside the train-
ing dataset) centred on a particular radio component is matched
to the neuron that is morphologically most similar. The radio
components of the image that fall within the neuron segments
that were judged to belong together will be associated with each
other. Although this approach is promising, Galvin et al. (2020)
did not quantify the performance of the radio component associ-
ation. Changes to the SOM parameters or applying this technique
to a different set of surveys, for example on LoTSS and the
Panoramic Survey Telescope and Rapid Response System 1 3π
sterradian survey (Pan-STARRS1; Kaiser et al. 2010), requires
the retraining of the SOM. Moreover, on every such occasion one
is required to manually re-annotate each of the neurons (1600 in
the case of a 40 × 40 SOM) for the approach to work, making
this method less appealing to us.

Wu et al. (2019a) arguably produced the most promis-
ing supervised deep learning approach towards the association
task, as their method is not based on a template and in the-
ory allows for the association of a wide variety of differently
shaped radio sources. They show the possibility to detect radio
emission by predicting rectangular boxes around radio emis-
sion contours based on a combined Stokes-I radio image from
FIRST with an optical image from WISE using a Faster region-
based convolutional neural network (Faster R-CNN; Ren et al.
2015). This is a supervised training process as the neural net-
work improves and validates its performance based on a given
‘ground truth’ region, which is drawn around the radio compo-
nents that volunteers of the citizen science project Radio Galaxy
Zoo (Banfield et al. 2015) considered to belong together. The
approach was intended to replace rule-based detection software
such as PyBDSF, AEGEAN, or ProFound and detect both unre-
solved and resolved radio emission for the SKA data challenge.
Apart from radio emission detection and association, their net-
work also predicts the number of components and the number
of brightness peaks for each detected source. However, the asso-
ciation of multi-component radio objects specifically still poses
a challenge, according to the authors. The part of their test set
that contains more than one source per input achieves a mean
average precision2 of 0.74 out of 1 for the 487 single-component
sources, 0.28 out of 1 for the 13 dual-component sources, and

2 Mean average precision is a single performance metric that combines
precision and recall.

0.89 out of 1 for the five triple-component sources in the test
set. Dual-component sources with more than two brightness
peaks, triple-component sources with more than three brightness
peaks, and all sources consisting of more than three components
were excluded from their training and test sets. This approach
is fine for the FIRST survey, as different sources are often sep-
arated and decomposed in only two or three components. For
LoTSS, the source density is higher than that in FIRST, leading
to more closely neighbouring unrelated emission, and the sur-
face brightness sensitivity of LoTSS is also higher than that of
FIRST, resulting in the detection of more components and more
brightness peaks per source.

More work focussing specifically on the large and extended
objects is thus needed. Indeed, in a recent review of the
techniques used in the first SKA data challenge (Bonaldi &
Braun 2018), Bonaldi et al. (2021) concluded that the ability
to deal with highly resolved radio sources in surveys as effec-
tively as the unresolved source population is an outstanding
challenge.

3. Data

The survey we use in this work, LoTSS, is being carried out
using the high-band (120–168 MHz) antennas of LOFAR and
will eventually cover the entire northern sky. The first data
release covers 424 square degrees (right ascension 10h45m00s
to 15h30m00s and declination 45◦ to 57◦), with a resolution of
6′′ and a median sensitivity of S 144 MHz = 71µ Jy beam−1. It is
accompanied by multiple radio catalogues. Williams et al. (2019)
describe how the PyBDSF source detection software was applied
to the radio intensity images in LoTSS-DR1 to find 325 694 radio
components (the majority of which are unresolved). The sub-
set of components deemed to require manual association were
manually associated by a group of 66 radio astronomers (see
Sect. 3.2). After association, the final source catalogue contained
318 520 radio sources.

The second data release (LoTSS-DR2; Shimwell et al. 2022)3

includes the full LoTSS-DR1 region and covers an area of 5720
square degrees. It consists of two discrete fields that avoid
both the Milky Way and low declinations, denoting the 0h and
13h fields with a resolution of 6′′ and a median sensitivity of
83µ Jy beam−1. The dynamic range of images in LoTSS-DR2
is approximately two times better than those in LoTSS-DR1
(Shimwell et al. 2022). As with LoTSS-DR1, the second data
release is accompanied by a radio component catalogue. A sub-
set of the 4 395 448 detected radio components (outside of the
LoTSS-DR1 region) will be associated with unique radio sources
by a crowd of lay volunteers, this manual association process is
ongoing and will be described in a future publication. Therefore,
we made use of the LoTSS-DR1 catalogue and the LoTSS-DR2
images, for training, testing and validation. The LoTSS-DR1
observed region is divided over 58 observed pointings, from
which we randomly picked 38 to be used for training our net-
work; we used 10 different pointings as ‘validations’ to assess
and choose different design implementations and settings, and
we used ten more pointings for ‘testing’ to assess the final per-
formance of our trained network. We also randomly selected
ten LoTSS-DR2 pointings (outside of the LoTSS-DR1 area) to
assess the performance of our trained network when compared
to the publicly crowd-sourced DR2 catalogue for these pointings
(see Sect. 6.4).

3 LoTSS-DR2 release page: https://lofar-surveys.org/dr2_
release.html
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3.1. Selection of source components

As most radio sources observed in large-scale sky surveys
are unresolved and isolated, it follows that most radio com-
ponents do not require (manual) association with other radio
components. For filtering, which for the 325 694 detected radio
components in LoTSS-DR1 would require manual association,
Williams et al. (2019) used a hand-crafted decision tree. Essen-
tial criteria used inside this tree are total flux density, apparent
angular size, distance to the nearest neighbouring radio compo-
nent, and the number of Gaussians fitted to each radio compo-
nent by PyBDSF. Following this decision tree, 15 806 of the
radio components in LoTSS-DR1 (4.9% of 325 694) required
further manual inspection through Zooniverse, an online plat-
form that enables and simplifies crowd-sourced annotation pro-
cesses4.

In this paragraph, we summarise the relevant steps taken
in their decision tree. First, they reduced the number of imag-
ing artefacts that mostly occur around bright compact sources.
They did so by considering all components brighter than 5 mJy
and smaller than 15 arcsec and selecting the neighbours within
10 arcsec of these components, which are 1.5 times larger. They
visually confirmed 733 of these 884 candidates to be artefacts
and removed them from the catalogue. Next, they filtered out
223 radio components that correspond to apparently large star
forming galaxies by associating the radio components that lie
within the ellipse of a ≥60 arcsec source from the Two Micron
All Sky Survey (2MASS; Skrutskie et al. 2006) extended source
catalogue (2MASSX; Jarrett et al. 2000). Then, the decision
tree splits based on the size of the radio components; com-
ponents are considered ‘large’ when their major axis exceeds
15 arcsec. In this work, we did not consider small components,
but using our method small components may still be associ-
ated with a neighbouring large radio component. For the large
components, the Williams et al. (2019) decision tree splits again
based on the brightness of the components; components are con-
sidered ‘bright’ when their total flux density is >10 mJy. The
6,981 large and bright radio components (44.2% of 15 806) went
to the Zooniverse platform. It is these high signal-to-noise ratio
components (of which we can be relatively certain of the asso-
ciation) that we want to use to train our neural network. For the
13 321 large and faint radio components, Williams et al. (2019)
used pre-filtering (visual inspection by a single expert) to decide
whether these radio components required manual association
using the Zooniverse platform. We did not use the large and faint
radio components for training, but we did estimate the accuracy
of our automated component association on the large and faint
components described in Sect. 6.3.

For our training set, we roughly emulated the tree in Williams
et al. (2019) up to the large and bright components5. We sim-
ply discarded all 876 components that met the artefact candidate
criteria and discarded all 458 radio components belonging to
nearby star forming galaxies (a higher number than that reported
by Williams et al. (2019) as we use a circle instead of an ellipse
in the cross-match process). This left us with 6, 930 large and
bright radio components. Williams et al. (2019) published a
component catalogue that links the names of PyBDSF-detected
components to the value-added source catalogue that includes
manual source component associations. Using this component
catalogue, we were able to link 6573 of the 6930 components

4 https://zooniverse.org
5 For the corresponding script, see https://github.com/
RafaelMostert/lofar_frcnn_prepro/blob/main/imaging_
scripts/multi_field_decision_tree.py

to their final source in the value-added catalogue from Williams
et al. (2019), which we needed in order to create training labels.
Subsequently, we discarded 260 LoTSS-DR1 components that
contained no five-sigma emission in the LoTSS-DR2 images
(due to the improved calibration). We also discarded the compo-
nents for which we were not able to extract large enough cutouts
and those that contained NaNs, which left us with 6,158 radio
components. A random split of the dataset based on 38 point-
ings for training, ten for validation, and ten for testing leads to
3983 components for training, 1,054 for validation, and 1121 for
testing.

The observed pointings do partly overlap, but each unique
component will only appear once in the LoTSS-DR1 catalogue
that we use. If a unique component is observed in multiple point-
ings, it is listed as appearing in the pointing for which it is closest
to the pointing centre. The validation and testing dataset still
partly overlap with the training dataset if some components from
multi-component sources in the training dataset are closer to a
pointing center of a validation or test pointing. This is the case
for three components in the validation set and six components in
the test set, leading us to overestimate the accuracy on these sets
with at most 0.28% and 0.54%, respectively.

3.2. Manual association process

The manual association using the Zooniverse platform for DR1
is described in detail by Williams et al. (2019), but we briefly
recapitulate the process below. This manual process was com-
pleted by 66 astronomers from the LOFAR collaboration and
was not available to the public. For each radio component,
each platform user was informed about the component and its
surroundings through three figures showing radio contours on
a background of Pan-STARRS1 and WISE images. The users
then identified other components that they associate with this
specific component as part of the same physical source. After
each component was viewed by five different users, the resulting
judgements on which components belonged to the same physi-
cal sources were centrally aggregated to form a consensus-based
radio source catalogue. Each radio component associated with
another radio component by at least one user was grouped into
a ‘set’. All sets for which more than two-thirds of the users
agreed were inserted into the catalogue as candidate sources.
For sets that were subsets of larger sets, the largest set with
a two-third consensus was chosen. In the end, radio compo-
nents that belonged to multiple conflicting sets were manually
resolved through visual inspection by a single expert using the
LoTSS-DR1 images, the DR1 component-locations, and the
corresponding WISE and Pan-STARRS1 images.

The LoTSS-DR1 manual associations were performed using
LoTSS-DR1 images, while in this paper we use LoTSS-DR2
images with improved calibration, which improves dynamic
range and reduces the number of artefacts (Shimwell et al.
2022)6. We used the LoTSS-DR2 images for training and infer-
ence because we aim to use our association for the future LoTSS
data releases, which will all use this same improved calibration.
As a result of the improved calibration, more of the connect-
ing structure of extended sources is visible (such as emission

6 The estimation and correction of the effect that instrumental errors
have on the observed visibilities (known as calibration in radio synthesis
imaging), can locally amplify or reduce the noise or signal to the point
of generating spurious source components (e.g. Martí-Vidal & Marcaide
2008; Grobler et al. 2014).
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bridging two lobes or tails extending farther out), making accu-
rate component association easier. The new images spurred us
to manually improve the associations for the large and bright
radio components that we used for training, testing, and val-
idation. For this manuscript, the authors manually sorted all
images into the categories ‘association seems correct’, ‘associ-
ation is hard to judge’, and ‘association seems incorrect’. We
did so through visual inspection by a single expert using the
LoTSS-DR2 images, the DR1 component-locations and associa-
tions, and the corresponding WISE and Pan-STARRS1 images.
For the ‘association is hard to judge’ category, we deem it hard
or impossible to infer a correct association beyond reasonable
doubt given the LoTSS-DR2 image and overlaid WISE and Pan-
STARRS1 source locations. We judged 88.02% and 3.3% of
the radio components to be in the ‘association seems correct’
and ‘association is hard to judge’ category, respectively. These
associations will not be altered. We did manually correct the
associations for the 8.68% of the components that we judged
to be in the ‘association seems incorrect’ category. Appendix B
shows examples of manually corrected associations, of which we
distinguished three sub-categories: the initial association seems
incorrect in light of the improved calibration (58% of 8.68%),
the initial association left an artefact unassociated and unflagged
(26% of 8.68%), and the association seems incorrect due to
human error (16% of 8.68%). The manually corrected catalogue,
and all other data products used for training, can be accessed
online7.

Image artefacts (due to imperfect calibration of the observa-
tions) that enter the final catalogue as individual sources have an
impact on subsequent statistical analysis. Source density counts
will artificially be increased and nearest-neighbour distances will
artificially decrease. In the Zooniverse project, image artefacts
were supposed to be flagged as artefacts. However, if more than
a third of the volunteers did not flag the artefact, the dataset was
entered as an individual radio source. In our manual correction
of the Zooniverse associations, we opted to associate image arte-
facts with the bright sources from which they originate. Ideally,
image artefacts would be automatically detected as a separate
object class and entirely removed from the final catalogue, but
that is beyond the scope of this paper.

For the association of radio-components in LoTSS-DR2 and
the identification of corresponding host galaxies, a public LoTSS
radio galaxy Zooniverse project was set up; this ongoing project
will be the subject of a separate publication8. We invite the
reader to consult Appendix A for an example of its interface. The
required number of views per component and the aggregation
of these clicks is exactly the same for the internal LoTSS-DR1
Zooniverse project as for the public LoTSS-DR2 Zooniverse
project. The public LoTSS-DR2 Zooniverse project is different
in the following ways: the optical background images shown are
from the more sensitive Legacy Surveys (Dey et al. 2019) instead
of Pan-STARRS1; FIRST contours are not shown overlapping
the LoTSS contours; markers for WISE and PAN-STARRS1
objects are not shown; the LoTSS data uses improved calibration
(Shimwell et al. 2022); and users are shown a LoTSS inten-
sity image to help them interpret the LoTSS contour lines in
the other panels. As of August 2, 2022, 10 854 volunteers are
part of the public LoTSS Zooniverse project. As we suspect that
astronomers do a better job at associating radio components than
the public volunteers, we did not use public volunteer labels to
train our network. In Sect. 6.4, we discuss the quality difference

7 lofar-surveys.org/radio_association.html
8 https://www.zooniverse.org/

between the associations in the internal and the public LoTSS
Zooniverse project.

4. Methods

We propose using a neural network to replicate the manual radio
source-component associations performed by a group of radio
astronomers. For this purpose, motivated by the work of Wu
et al. (2019a), we adapted a type of neural network known as
a region-based detector (Liu et al. 2020) or region-based con-
volutional neural network (R-CNN). This type of network is
designed to detect instances of objects of a certain class within
an image. Their output is a set of regions within an image, and
for each region the predicted probability (or class score) for its
most likely object class (example outputs can be found further
below in Figs. 7 and 8 of the results section).

We looked for a single class of object instances: radio
sources. For a given radio intensity image that is centred on a
single radio component, we used an R-CNN to predict which
rectangular region (or ‘bounding box’) exclusively encompasses
the radio source components that belong to the centred radio
component. In practice, the R-CNN evaluates multiple regions
and predicts a likelihood (or predicted class score) for each of
these. We associated the radio source components for which the
central coordinates fall within the predicted region that includes
the centred radio source component and has the highest predicted
class score. Radio components appearing in multiple associated
groups were only assigned to the group inside the largest region.

Our neural network must be trained to give a high probability
(predicted class score) to regions of a radio image that con-
tain likely radio component combinations and low probability to
regions of a radio image that contain an unlikely combination of
radio components. The neural network architecture that we used
is described in Sect. 4.1 and our training and inference processes
are given in Sect. 4.2. We describe how our input images were
created in Sect. 4.3, how we created pre-computed regions in
Sect. 4.4, and we explain how we removed unresolved or barely
resolved sources that are likely unrelated to our large and bright
radio components in Sect. 4.5. Finally, we show how we imple-
mented rotation data augmentation to prevent the network from
overfitting in Sect. 4.6.

4.1. The R-CNN architectures

The region based convolutional neural network that we use, an
adapted Fast R-CNN (Girshick 2015, see Fig. 1), consists of
three consecutive parts: a first part that extracts image features,
a second part that generates region proposals, and a third part
that classifies the proposed regions and suggests improvements
to the location and shape of the proposed region. We cover the
workings of all three parts below.

The part of the architecture that provides the feature image is
a neural network that is generally used for image classification
(we refer to it as the ‘feature-extraction backbone’ hereafter).
Image classification is a task that is performed based on dis-
cernible features within an image. For automated image classifi-
cation, features may be hand-crafted based on a heuristic func-
tion or template. For example, to detect an FRII, we may code
up a template that looks for two edge-darkened, aligned, elon-
gated emission patches (radio lobes) with a small round emission
patch in the middle of the two (the radio core). However, it
is hard to create templates that generalise well. Once the data
deviates from our pre-conceived template, we might not extract
our desired features. Convolutional neural networks (CNNs)
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Fig. 1. Adapted Fast R-CNN diagram, where convolutional layer is abbreviated as ‘Conv layer’, fully connected layer is abbreviated as ‘FC layer’,
and region of interest is abbreviated as ‘RoI’. In the original Fast R-CNN, Selective Search (Uijlings et al. 2013) is a general way to generate region
proposals by exhaustively sampling regions in any image based on hierarchical image segmentation. Instead, we pre-computed our own region
proposals as source detection software provides us with the exact locations of significant blobs of radio emission (see Sect. 4.1). This means we
can also disable the part of the Fast R-CNN that is designed to refine the location and dimension of proposed regions.

are a template-free method to extract features from images
through subsequent convolutional and pooling layers9. Subse-
quent convolutional layers create features with progressively
higher abstractions from the original image. In between con-
volutional layers, the feature maps are commonly downsized
to reduce the number of trainable parameters in the model,
a process known as ‘pooling’. The subsequent convolutional
and pooling layers reduce our Stokes I radio image to a multi-
dimensional array known as a ‘feature image’. Which features
are extracted by the convolution layers depends on the parame-
ters of the convolutional layers. During training (Sect. 4.2), these
parameters are optimised to extract the features that are crucial
to detect the specific objects for the task at hand (radio sources
in our case).

We used the Detectron2 (Wu et al. 2019b) framework, which
implements the Fast R-CNN in PyTorch and enables us to swap
different feature-extraction backbones for our R-CNN. We tested
two industry standard feature-extraction backbones of the feature
pyramid network type (FPN; Lin et al. 2017), specifically FPN-
ResNet (ResNet; He et al. 2016) and FPN-ResNeXt (ResNeXt;
Xie et al. 2017). Feature pyramid networks improve convolu-
tional networks for object detection by outputting feature maps at
different resolutions from different stages of the ResNet, thereby
improving object detection for objects at multiple size scales
(Dollár et al. 2014; Lin et al. 2017). The backbones can have an
arbitrary ‘size’, by which one indicates the number of convolu-
tional and pooling layers, and we tested two common sizes for
each backbone.

After the feature extraction, an R-CNN requires initial
guesses of plausible regions of the image that enclose the objects
of interest. In the architectures used in this work, these regions
are always rectangular regions – and referred to as regions of
interest (RoI). This means it is not always possible to include
only a single object of interest and avoid interlopers. Sect. 4.5
partly addresses this issue. For each region, an ‘objectness’ score
is produced, which predicts the likelihood of the region mostly
overlapping with an object or with the background. Overlap is

9 See Goodfellow et al. (2016), Murphy (2012), or Dumoulin & Visin
(2016) for an introduction to convolutional neural networks.

always measured using the intersection over union (IoU), which
is the overlap between the predicted region and the ground truth
region divided by their area of union. Additionally, for each
object class (we chose a single ‘radio object’ class), changes to
the location, width, and height of the region are predicted that
improve the region and its overlap with the encompassed object.

For training, the number of proposed initial regions is fil-
tered down to a smaller, balanced set of regions with both a high
objectness score (regions likely to contain radio components)
and a low objectness score (regions likely to contain mostly back-
ground noise). Finally, only a few regions that are most likely to
tightly encompass the right radio sources are returned. Techni-
cally, this means that for regions with a high IoU with respect
to each other, the regions with lower objectness scores are dis-
carded; this process is referred to as non-maximum suppression
(NMS).

The Fast R-CNN relies on external algorithms for region
proposal generation. The one used in the original Fast R-CNN
by Girshick (2015) is Selective Search (Uijlings et al. 2013),
which attempts to provide (a few thousand) initial regions for
different kinds of everyday objects in common contexts. How-
ever, regions can in principle be tailor-made depending on the
field of application. In radio astronomy, the detection of emis-
sion is a well-studied problem for which a number of robust
algorithms, such as PyBDSF, ProFound, and AEGEAN, have
already been developed. We can thus use a Fast R-CNN in
combination with pre-computed regions that tightly enclose all
combinations of radio components detected by either one of
these emission-detection algorithms. We describe the creation
of our pre-computed regions in Sect. 4.4.

For the final stage of an R-CNN, the neural network branches
into two parts. Both parts take the same input: the region of inter-
est (or RoI) pooled part of the feature image. One branch predicts
the object class probability of the considered RoI. The other
branch suggests transformations of the shapes of the foreground
regions such that they better enclose the objects located in the
foreground region. This latter branch can be omitted for our
adapted Fast R-CNN, as we provide regions that tightly enclose
the radio emission exceeding five sigma. For reproducibility, the
adapted Fast R-CNN used in this paper, and the image extraction,
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Fig. 2. Diagram of training phase. We start from a radio component cat-
alogue created by PyBDSF. (i) Users indicate which radio components
belong together via crowd-sourced visual inspection. (ii) This infor-
mation is used to create an improved source catalogue (see Sect. 3).
(iii) This improved source catalogue and the component catalogue are
used to draw ground truth regions. (1) We create an image cutout cen-
tred on a radio component from the initial catalogue (if it is included
in our training set). (2) We pre-process the image for the R-CNN. (3)
We pre-compute regions (see Sect. 4.4). (4) The R-CNN evaluates the
regions and predicts corresponding class scores based on the image
(known as a ‘forward pass’). (5) We update the network parameters
using stochastic gradient descent such that subsequent predicted regions
have greater overlap with the ground truth region (known as ‘backprop-
agation’). (6) Steps 1–4 are repeated for all radio components in our
training dataset.

image pre-processing, and pre-computed RoI code are available
online10.

4.2. Training and inference phase

Figures 2 and 3 show a schematic view of our pipeline in the
training phase and in the prediction phase (also known as infer-
ence phase), respectively. Given an image and the pre-computed
regions for the Fast R-CNN (step 3 in Fig. 2), the network will
classify all RoIs with a score between 0 and 1, where a higher
score means the prediction is more likely to have a high overlap
with the ground truth region.

Subsequently (step 4 in Fig. 2), the network parameters are
updated using stochastic gradient descent11 such that predicted

10 lofar-surveys.org/radio_association.html
11 See Goodfellow et al. (2016) or Murphy (2012) for an introduction to
stochastic gradient descent.

Fig. 3. Diagram of inference phase. We start from a radio component
catalogue created by PyBDSF. (A) We create an image cutout centred
on a radio component from the initial catalogue. (B) We pre-process
the image for the R-CNN. (C) We pre-compute regions (see Sect. 4.4).
(D) The R-CNN predicts several regions and corresponding prediction
scores based on the image (known as a ‘forward pass’). (E) We select
the region that covers the central radio component and has the highest
prediction score. We then look for the radio component coordinates that
lie within this region. (F) These radio components will enter the updated
radio source catalogue combined into a single entry. (G) Steps A–E are
repeated for all radio components in our inference dataset.

regions that barely overlap the ground truth region from the
manual association have a higher chance of receiving the ‘back-
ground’ class label, while predicted regions that largely overlap
have a higher chance of receiving the ‘radio source’ class label.
Specifically, we use stochastic gradient descent with a learning
rate of 0.0003, a momentum (Sutskever et al. 2013) of 0.9, and
a weight decay (Hanson & Pratt 1988) of 0.000112. We clas-
sify regions into ‘radio source’ or ‘background’ using a softmax
function and quantify the training error using a cross-entropy
loss function.

At the inference phase (step C in Fig. 3), the neural network
will again predict the likelihood that the suggested regions of the
feature-image contain a radio source. This time, the network will
not be updated using the ground truth region as we are looking
at new data for which there is no manual association, or because

12 The training configuration files are available in our git repos-
itory: https://github.com/RafaelMostert/detectron2/tree/
master/configs/lofar_detection
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we are interested in measuring the performance of the network
on images not used during training (processes known as ‘val-
idation’ and ‘testing’). Due to our pre-computed regions, both
training and inference is relatively fast. On the NVIDIA Tesla
P100-SXM2 graphics card that we use, training takes 1 h and
37 min for 50k iterations, and inference takes 0.043 s per radio
component.

We remind the reader that for training, we will use the
LoTSS-DR2 images within the LoTSS-DR1 area of the sky, as
expert associations are available for this part of the sky. We did
manually correct these expert annotations as they were initially
done using the LoTSS-DR1 images, which had a worse dynamic
range and more image artefacts (see Sect. 3.2).

4.3. Pre-processing the images and labels

We create image cutouts centred on the sources in the LoTSS-
DR1 PyBDSF-created radio source catalogue provided by
Williams et al. (2019) as described in Sect. 3. Per image, the
neural network is also given the coordinates of the ‘ground
truth’: a rectangular region that tightly fits around the five-sigma
radio emission of all radio components that, according to earlier
performed manual association (see Sect. 3.2), belong together.

We take the size of the cutouts to be 300×300 arcsec2, result-
ing in 200 × 200 pixel images for the 1.5 arcsec pixel angular
resolution of LoTSS. This size ensures that 99.30% (93.36%)
of the large and bright sources fully fit inside the cutout if the
focussed component is located in the centre (on the edge) of the
associated source, based on the angular sizes of the sources in
the manually associated LoTSS-DR1 catalogue.

We want to trigger the same prediction for faint as for bright
sources with similar morphology. However, the predictions of
a neural network are dependent on the magnitude of the input
parameters (Karpathy 2015a). The Detectron2 framework was
originally built for regular three-channel images (red, green, and
blue). As our radio images span a broad contrast range, we tested
a number of different ways to encode the radio intensity image
into a three-channel image. For the first channel, we encode the
radio emission square-root stretched between 1 and 30 sigma, the
second channel sets all radio emission above three sigma to one,
and all radio emission below that value to zero. The third chan-
nel sets all radio emission above five sigma to one and all radio
emission below that value to zero. The choice for the third chan-
nel is meant to guide the network to regions enclosing the five
sigma emission (see step 1 of Fig. 2 for an example Stokes-I radio
image and step 2 of the same figure for the three corresponding
channels).

In total, the pre-processing for training, including the cre-
ation of rotation augmentations and pre-computed regions, takes
1.9 s per radio component on a single cpu. Pre-processing for
inference takes 1.0 s per radio component on a single cpu.

4.4. Pre-computed regions

We created our pre-computed regions by drawing regions
around each combination of radio-components in the image that
includes the centred radio component. These regions will be
tightly drawn around the five-sigma-level contours of these radio
components. The resulting number of pre-computed regions is
then equal to 2n−1 where n is the number of radio-components
in the image. Girshick (2015) showed that a Fast R-CNN per-
forms best at recognising everyday objects when the number
of pre-computed regions during training is of the order of a
few thousand. This means that n can easily be as large as

12 (= 2048 proposals), while values above 14 (= 8192 propos-
als) will start to slow down the network. In practice, not every
combination of radio components produces a unique region. We
discard all duplicate regions, reducing the number of propos-
als to evaluate. For simplicity, we discard all sources with more
than 12 PyBDSF-detected components within the cutout from
our datasets. Using our cutout size of 300 arcsec, this results in
the removal of only 17 out of 6192 cutouts (0.27%) from our
dataset. These excluded cutouts tend to be focussed on radio
components in complex, clustered environments worthy of man-
ual visual inspection and association. R-CNNs work with a lower
and an upper IoU threshold for classifying proposals as good
(containing an object) or bad (containing mostly background)
during training. We set the lower IoU threshold to 0.5, this means
that proposals that have an IoU with the ground truth lower than
0.5 will be considered as background (or negative examples) dur-
ing training. We set the upper IoU threshold to 0.8, meaning
that proposals with a higher IoU with the ground truth than 0.8
will be considered as ’foreground’ (or positive examples) during
training. As we want to evaluate all our pre-computed regions,
we disabled NMS.

4.5. Removing unresolved sources

Independent of the association technique, the component asso-
ciation of large and bright RLAGNs is also complicated by the
chance alignment of unrelated radio sources. We simplify the
association task by removing unresolved and barely resolved
sources that are likely unrelated, before feeding the images and
labels to our neural network. We do so by using the predictions
of a gradient boosting classifier (GBC) trained by Alegre et al.
(2022) to detect whether a source can be directly associated with
an underlying optical or infrared host galaxy using a likelihood
ratio or if manual association and cross-identification is required.
If the GBC decides that a source can be matched to an underly-
ing source using the likelihood ratio (at value < 0.20), the source
major axis is smaller than 9 arcsec (1.5 times the synthesised
beam), and the ratio of the major axis over the minor axis is
smaller than 1.5, then we remove the source. The focussed radio
component in a cutout will never be removed. These chosen val-
ues are tradeoffs between removing as many background sources
as possible while keeping the removal of foreground radio com-
ponents low. Specifically, at a likelihood ratio below 0.20, Alegre
et al. (2022) estimate that 0.8% of the radio components that
should have been combined into another radio component are
removed. Removing radio components that are likely unrelated
to the focussed radio component from our images (both dur-
ing training and at inference), greatly reduces the number of
pre-computed regions that require evaluation and simplifies the
association task (see Fig. 4). All details and considerations for
the training of this GBC can be found in Alegre et al. (2022), the
catalogue with GBC predictions that we use can also be found
online13.

For certain large and bright RLAGNs that show two spa-
tially separated lobes and a compact radio core, the GBC can
erroneously identify this core as a source that does not require
manual association and manual optical identification, prompting
us to remove this component before inference. To accommo-
date for this behaviour, we first remove the components at
pre-processing, then secondly run the R-CNN to identify radio
components that need to be associated – in this case, the two

13 See lofar-surveys.org/radio_association.html, specifi-
cally, we use the 0.20 column.
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Fig. 4. Two figures demonstrating the simplification achieved by remov-
ing sources that are likely to not require manual association. The
background shows LoTSS-DR2 intensity images, the black rectangle
indicates our ground truth region encompassing the focussed radio com-
ponent (red square) and its related components (red dots). The green
dots indicate the locations of unrelated radio components. In the second
figure, components removed by the GBC are shown as ‘x’s.

radio lobes will be associated. Thirdly, we draw a convex hull
around the five-sigma contours of the to-be-associated com-
ponents and reinsert all radio components that lie within this
convex hull and were removed earlier (see Fig. 5 for an exam-
ple). In the cases where a compact core is removed, the R-CNN
cannot use this core to help it infer which components should be
associated. However, as the LoTSS data contains many double-
lobed RLAGN without a detected compact core, this should not
be problematic.

Fig. 5. Demonstrating reinsertion of a removed unresolved source. The
background shows a LoTSS-DR2 intensity image, the black rectan-
gle indicates our ground truth region encompassing the focussed radio
component (red square) and its related components (red). The green
markers indicate the locations of unrelated radio components. Compo-
nents removed by the GBC are shown as ‘x’s. Sources that fall within
the convex hull (solid red line) around the five-sigma emission of the
radio components within the predicted region will be reinserted (a ‘+’
on top of an ‘x’).

4.6. Data augmentation through rotation

The radio component association has to perform well, irrespec-
tive of the orientation of the radio sources on the sky plane
presented to our automated pipeline. The features extracted by
our neural network are not inherently invariant to rotation or flip-
ping. The neural network framework by Wu et al. (2019b) that we
adapt has built in on-the-fly flipping augmentation; every train-
ing image and the ground-truth regions are randomly presented
to the network in its original orientation and flipped. To prevent
the network from over-fitting on the specific orientations of the
images it is shown during training, we implemented rotation data
augmentation. Data augmentation is a common practice in deep
learning to increase the size of the training dataset with slightly
modified copies of the initial training dataset. We insert copies
rotated at angles of 25, 50, and 100 degree.

We implemented rotation augmentation in our pre-
processing stage instead of ‘on-the-fly’ at the training time.
This allows us to recalculate the tightest rectangular region
enclosing the relevant five-sigma emission for every new orien-
tation instead of simply drawing a larger rectangle around the
rotated original region (note that our network requires rectangu-
lar regions with edges parallel to the edges of the input image).
This form of data augmentation comes at the cost of longer train-
ing times (as all rotated versions of the training images need to
be evaluated), which scales linearly with the chosen number of
additional rotation angles.

5. Results

Before examining our results, we define suitable quantitative per-
formance metrics. If our predicted region uniquely encompasses
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the central coordinates of the (non-removed or reinserted) radio-
components in accordance with the manual association, we have
a true positive (TP)14. If the region does not encompass all of
the radio components that belong together, we have a false pos-
itive (FP). If the region encompasses all the radio components
that belong together, but also encompasses additional unrelated
radio components, that also counts as a FP. If there is no region
covering the central coordinate of the focussed radio component
with a score surpassing the user-set threshold we have a false
negative (FN). A true negative (TN) is the absence of a region
where this is indeed warranted. True negatives should not appear
in our data, as we only consider radio images centred on radio
components with a signal-to-noise ratio surpassing five. So, for
example, a single component source that has a bounding box that
only encloses this one component is a TP. If the bounding box
does not enclose this component, it will be a FN. If the bound-
ing box includes more than this one component it will be a FP.
The metrics only consider if the bounding box does or does not
enclose the central coordinates of the components that compose
a source. This is all we need as PyBDSF carries the rest of the
morphological and flux information of these components.

We will use catalogue accuracy, defined as accuracy =
TP+TN

TP+TN+FP+FN , as our main metric, although in our case this
reduces to accuracy = TP

TP+FP+FN as our TN is always zero. State-
ments in the results section about the quality of the predictions
(such as the predicted region encompasses too few or too many
radio components) are always with respect to the manual associ-
ations as described in Sect. 3.2. We aim to maximise the single
metric of catalogue accuracy in our experiments.

We explored a number of design implementations of our
pipeline, as discussed in the methods section. The reported
results from Sect. 5.2 onwards are the mean and standard devia-
tions of the catalogue accuracy on our validation dataset, which
were obtained by training our network for three independent runs
with three different random initialisation seeds.

5.1. Baseline and upper-boundary performance

We begin with a catalogue without any radio-component asso-
ciation: a catalogue for which we assume that each PyBDSF-
detected radio component is a single (unique) radio source.
Comparing this catalogue to our corrected LoTSS-DR1 cata-
logue (described in Sect. 3.2) we obtain a baseline catalogue
accuracy of 62.1% for the large and bright sources. This base-
line tells us that almost two-thirds of the radio components in the
large and bright source cut are stand-alone unique radio sources
and do not require association with other radio components. The
accuracy of any component association technique would have to
surpass this baseline to be useful.

We also set a more advanced baseline by training a random
forest to determine for each component A whether it belongs
to another component B. To keep a class imbalance in check,
we only considered components A that are within a 100 arcsec
radius of component B (the larger the radius, the higher the
fraction of components A that do not belong to component B).
The random forest has access to seven features: component A’s
major axis length in arcsec (feature: Maj), the ratio between the
major axis length of A to that of B (feature: Maj_ratio), the

14 Only the central coordinate of a component needs to fall within the
predicted region to be counted as TP or FP. The final radio catalogue
that we create with our pipeline includes all PyBDSF-detected radio
emission, as we only use our predictions to combine certain entries in
the existing radio component catalogue.

total flux density of component A in mJy (feature: Total_flux),
the ratio between the total flux density of component A to that
of B (feature: Total_flux_ratio), the peak flux of compo-
nent A in mJy (feature: Peak_flux), the ratio between the peak
flux of component A to that of B (feature: Peak_flux_ratio),
and finally, the angular on-sky separation between component
A and B in degrees (feature: Separation). The random forest
was trained using the same components in the training point-
ings that our Fast R-CNN uses. We set our random forest, taken
from the scikit-learn Python package, to use an ensemble of
1000 trees. As a result of a grid search whereby we evaluated
the performance on the validation dataset, we take the maxi-
mum number of features to be 0.4 and the maximum depth of
the trees to be 10. We adopt the default settings for all further
hyper-parameters15. The trained random forest is then evaluated
using the same components in the test pointings that our Fast
R-CNN uses.

The relative predictive power of each feature in this ran-
dom forest turns out to be 0.25 for Maj, 0.23 for Separation,
0.18 for Maj_ratio, 0.13 for Total_flux_ratio, 0.11
for Total_flux, 0.05 for Peak_flux_ratio, and 0.03 for
Peak_flux. The resulting catalogue accuracy on the test dataset
for the large and bright radio components is 69.0%. We repeated
this process for the large (>15 arcsec) and faint (<10 mJy) radio
components, which resulted in a catalogue accuracy of 80.1%.
However, we note that this last number might be off by a few
percentage points for two reasons. First, it is generally harder
to associate sources with a low signal-to-noise and this is not
reflected in the (crowd-sourced) labels. Second, we did not man-
ually check and correct the associations for the large and faint
components as we did for the large and bright components (see
Sect. 6.3).

Moving on to our Fast R-CNN method, there is also an upper
boundary to our association performance, since it is based on
combining components within a rectangular region. The tight-
est rectangle around a set of related radio components will
sometimes encompass unrelated radio sources, leading to an
upper-limit in catalogue accuracy of 98.5% for the large and
bright sources. This upper limit is lowered to 96.6% when
source-removal at pre-processing is applied, partly because the
gradient boosting tree erroneously removes related components,
and partly due to the unwarranted reinsertion of a component as
a result of our convex-hull method. We observe that in practice,
the source removal has a positive effect on the attained accuracy
(Sect. 5.3).

5.2. Classification backbone and learning rate experiments

We trained our adapted Fast R-CNN with a constant learning rate
with two different, state of the art, residual convolutional neural
network backbones and for each we tested two commonly used
model sizes16. We tested the FPN-ResNet CNN (He et al. 2016;
Lin et al. 2017) and the FPN-ResNeXt CNN (Xie et al. 2017; Lin
et al. 2017), each at a depth of 50 and 101 layers. The experiments
we performed include source removal (Sect. 4.5) and rotation
augmentation (Sect. 4.6).

The catalogue accuracy on the validation set peaked at
around 20k iterations for the FPN-ResNet-50, but to allow the
15 See https://scikit-learn.org/0.24/modules/generated/
sklearn.ensemble.RandomForestClassifier.html for these
default hyper-parameters.
16 For reproducibility, the full configuration files for all runs are avail-
able in our git repository: https://github.com/RafaelMostert/
detectron2/tree/master/configs/lofar_detection
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Table 1. Maximum catalogue accuracy attained by different CNN
backbones on the large and bright source components.

CNN backbone Train accuracy Val. accuracy

ResNet 50 layers 89.0% ± 0.3 84.3% ± 0.4
ResNeXt 50 layers 87.7% ± 0.3 82.8% ± 0.2
ResNet 101 layers 88.5% ± 0.2 83.1% ± 0.9
ResNeXt 101 layers 87.7% ± 0.5 82.8% ± 0.5

Notes. The reported numbers in this and further tables are the mean and
standard deviations of three training runs with different random seeds
and otherwise equal set-ups.

Table 2. Maximum catalogue accuracy attained on the large and bright
source components by using different learning rate (decay) schemes.

Learning rate Train accuracy Val. accuracy

Constant 89.0% ± 0.3 84.3% ± 0.4
Step-wise 88.7% ± 0.2 83.7% ± 0.4
Cosine 88.7% ± 0.2 83.4% ± 0.2

networks with more parameters to fully train, we trained these
networks with up to 50k iterations. We evaluated the accuracy
after every 10k iterations, and for each interval we reported the
mean and standard deviation of three runs with different random
seeds and all other hyper-parameters kept fixed. Table 1 shows
the maximum attained mean accuracy values for each backbone.
Given this result of four models with insignificant differences
in performance, we proceeded in our experiments with the least
complex model, which is the FPN-ResNet-50 model.

Next, we explore the effect of the learning-rate hyper-
parameter on the accuracy we attain. The learning-rate hyper-
parameter sets the magnitude of the effect of each update of
the model parameters during training. Using the adapted Fast
R-CNN with the FPN-ResNet-50 backbone, we tested different
learning-rate decay schemes with the idea that a high learning
rate might overshoot our global (or even local) minimum. Apart
from a constant learning rate, we tested a step-wise learning rate
that stays constant but drops to a tenth of its former value after
30k and 40k iterations, respectively. We also tested a cosine
learning rate, which starts at the same value as the other two
learning rates, but gradually decreases (following the shape of a
cosine in the 0 to π rad range) to a value of zero at 50 k iterations.
The results of the different learning rate choices are presented in
Table 2. From these results, we conclude that different learning-
rate decay schemes do not significantly affect the results, and
so we simply proceed to evaluate our network using a constant
learning-rate for 20 k iterations.

We also tested whether our three-channel pre-processing
actually benefits the model. In one experiment, we simply con-
verted the FITS-cutouts to a three-channel (red-green-blue) PNG
image using the univariate ‘viridis’ colormap. In a second exper-
iment, we scaled the FITS-cutout such that the image only
displays values within the 1–30 sigma range, again divided
over the three-channel PNGs using the ‘viridis’ colour map. We
compared these results to the custom three-channel image pre-
processing that we use throughout this work that does not rely on
a colour map. As mentioned in Sect. 4.3, we filled one channel
with the 1–30 sigma values of the cutout, we filled the sec-
ond channel with a three-sigma filled contour, and we filled the

Table 3. Maximum catalogue accuracy attained on the large and
bright source components by using different image pre-processing
approaches.

Image preprocessing Train accuracy Val. accuracy

Viridis no-scaling 85.8% ± 0.7 80.7% ± 0.2
Viridis 1–30 sigma 87.5% ± 0.2 81.5% ± 0.2
Custom three-channel 89.0% ± 0.3 84.3% ± 0.4
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Fig. 6. Ablation study of source removal and rotation augmentation for
the large and bright source component training datasets of increasing
size. Round (squared) markers show performance on the full valida-
tion (partial training) dataset. Data points and their error bars are the
mean and standard deviation of three training runs with different ran-
dom seeds and otherwise equal setup. The horizontal scatter of the data
points around each x-axis tick mark is artificially created to prevent
overlap.

third channel with a five-sigma filled contour. Using the adapted
Fast R-CNN with the FPN-ResNet-50 backbone with a constant
learning rate, we trained for up to 50k iterations and three dif-
ferent random seeds and report the values at the number of
iterations that results in the highest catalogue accuracy on the
validation set for each experiment. The results in Table 3 show
that our custom three-channel approach is indeed beneficial.

5.3. Ablation study

Figure 6 shows the effect of source removal (Sect. 4.5) and
rotation augmentation (Sect. 4.6) on the catalogue accuracy.
Comparing the accuracy with (orange data points) and without
(blue data points) source removal, we see that source removal
systematically improves our catalogue accuracy, on both our
training set and our validation set, for all training dataset sizes.
Using the full training dataset, source removal increases the
accuracy on the validation set from 80.2% ± 0.2 to 82.1% ± 0.7.

Comparing the performance with (green data points) and
without (blue data points) data augmentation, we see that the
augmentation also systematically improves our catalogue accu-
racy on the validation set for all training dataset sizes. Rotation
augmentation does not significantly affect the results on the
training set, but it reduces the gap between the validation and
training set. This indicates that rotation augmentation success-
fully prevents the network from over-fitting on our training data:
the predictions are better generalised (more accurate for images
outside of the training dataset). Using the full training dataset,
rotation augmentation increases the accuracy on the validation
set from 80.2% ± 0.2 to 81.8% ± 0.1.
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Fig. 7. Examples of predictions (black dashed rectangles) for images from the validation set that match the manually created catalogue. These
examples are curated to show the model predictions for a wide range of source morphologies. Each image is a 300 × 300 arcsec cutout of LoTSS-
DR2 Stokes-I, pre-processed as detailed in Sect. 4.3. The red square indicates the position of the focussed PyBDSF radio component, and the red
dots indicate the position of PyBDSF radio components that are related to the focussed component according to the corrected LOFAR Galaxy Zoo
catalogue. The green triangles indicate the position of components that are unrelated to the focussed component. ‘x’s (thick marker if related, thin
if unrelated) indicate components that we removed, and a black cross on top of an ‘x’ means the component was automatically reinserted after the
prediction. In our method, all components that fall inside the predicted black rectangular box (and are not removed) are combined into a single
radio source.

Without the source removal and the data augmentation, the
network benefits from a larger training dataset up to about
2000 images, whereas with either source removal or data aug-
mentation, it benefits up to at least the size of our full training set
(roughly 4000 images). The combined effect of the two improve-
ments is smaller than their summed individual effects, but it
is still significant. Specifically, using the full training dataset,
the combined effect of source-removal and data augmentation
raises the accuracy on the validation set from 80.2% ± 0.2 to
84.3% ± 0.4.

5.4. Final results

Up to this point, we present the results on the validation dataset
for three models trained with different random seeds. On the
basis of these tests, we opted to use the adapted Fast R-CNN with
a FPN-ResNet-50 classification backbone, rotation data augmen-
tation, and unresolved source removal, training with a constant

learning rate for 20k iterations. Using this model and settings, we
measured a catalogue accuracy of 85.3% ± 0.6 and 88.5% ± 0.3
for the large and bright source components on the test and train-
ing set, respectively. We note that the trained model happens to
perform slightly better on the images in the test set than in in
the validation set; one may conclude that the performance on the
validation and test sets are roughly equal.

The final results we present here and in the discussion Sect. 6
are based on a single model trained with the random seed that
resulted in the best performing model on our test set. In Fig. 7,
we show examples of successful associations. Going from left
to right in the top row of the figure, we see correct predictions
that tightly encompass physically related radio emission in a
number of different situations, including the following: a single-
component radio source while no other emission is nearby; a
single-component radio source when another compact source
is nearby; a bright unresolved source and the nearby artefact it
produces; and all components of a nearby star forming galaxy.
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Table 4. Results on the large and bright source component test dataset using our trained model.

All components Single component source Part of a multi-component source
Total 1121 (100.0%) 701 (62.5%) 420 (37.5%)

Prediction is correct (TP) 962 (85.8%) 650 (58.0%) 312 (27.8%)
Prediction includes too few components (FP+FN) 63 (5.6%) 1 (0.1%) 62 (5.5%)
Prediction includes too many components (FP) 96 (8.6%) 54 (4.8%) 42 (3.7%)

Notes. The number of components in each category are also given as a percentage of the total number of components in the test dataset. The false
positives (FPs) are broken down further into two categories. If the prediction for a component simultaneously includes both too many and too few
components, it is grouped in the ‘too many’ category.

Fig. 8. Examples of predictions (black dashed rectangles) for images from the validation set that do not match the manually created catalogue. These
examples are curated to show the model predictions for different source morphologies and both single- and multi-component sources. Each image
is a 300 × 300 arcsec cutout of LoTSS-DR2 Stokes-I, pre-processed as detailed in Sect. 4.3. The red square indicates the position of the focussed
PyBDSF radio component, the red dots indicate the position of PyBDSF radio components that are related to the focussed component according to
the corrected LOFAR Galaxy Zoo catalogue. The green triangles indicate the position of components that are unrelated to the focussed component.
‘x’s (thick marker if related, thin if unrelated) indicate components that we removed, and a black cross on top of an ‘x’ means the component
was automatically reinserted after the prediction. In our method, all components that fall inside the predicted black rectangular box (and are not
removed) are combined into a single radio source.

In the second row, the predictions correctly encompass the fol-
lowing multi-component sources: a typical double-lobed radio
source where all related radio emission is clearly connected and
above the noise; a double-lobed radio source where the jet-
related emission fell below the noise; a radio source with two
clear but separated lobes and a radio core that got success-
fully reinserted; a very elongated radio source with a core and
two (fragmented) lobes. In the third row, we show examples of

FRI or edge-darkened radio sources of different sizes, different
signal-to-noise ratios, and different bending angles.

Table 4 summarises the results as a percentage of the total
number of components in the test dataset. In Fig. 8, we show
examples of associations that do not match our manual annota-
tions. Going from left to right in the top row of the figure, the
first two examples show cases where we associate more than one
component with a single-component radio source. This happens
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Fig. 9. Histogram of total flux densities resulting from the incorrect
predicted associations versus the total flux densities resulting from the
ground truth associations. The black dashed lines indicate the 10th,
25th, 50th, 75th, and 90th percentiles of the flux-density ratios. For
legibility, the x-axis shows values up to a ratio of 3, but 3.9% of the
incorrect predicted associations have ratios higher than 3, with the max-
imum being 35.9.

for 7.7% of single-component radio components. The second
two examples show cases where we associate too many compo-
nents with a multi-component radio source (for example in the
case where nearby unrelated unresolved radio sources are not
removed or reinserted). This happens for 10.0% of the multi-
component radio components. The second row shows examples
of multi-component sources where we fail to include all related
radio components. This is the case for 14.8% of the multi-
component radio components. The first two examples of the
second row show cases where we removed emission that turned
out not to be an unrelated background source (the location of this
removed component is indicated with a thick red ‘x’). The third
example from the second row shows that the predicted region
does not encompass both outer lobes of this double-double radio
source, illustrating that the model is less likely to be correct
for rarer morphologies. The fourth example from the second
row shows a prediction that fails to include all related radio
components because the radio source is too large to fit inside
our 300 × 300 arcsec image. The last row shows an example
of a single-component radio source where a predicted region
is entirely lacking. This rare case of a false negative happens
for 0.1% of the single-component radio components; our pre-
processing code did not create a bounding box for the source if
there is no five-sigma emission overlapping the central coordi-
nate of the detected PyBDSF component. The final image shows
an example where we have a multi-component radio source for
which we simultaneously miss some related components and
include some unrelated ones (this is more prone to happening
for fainter and bent sources). Cases in this category are included
in the 13.1% statistic mentioned above.

Another way to quantitatively inspect our incorrectly pre-
dicted associations is to plot the ratios of the total flux densities
that result from these incorrect predicted associations versus
the ground truth total flux densities. Figure 9 shows that the
median flux ratio for the incorrect predictions is well centred:
close to 1. The 25th and 75th percentiles with ratios of 0.9
and 1.2 show that half the incorrect predictions do still lead
to reasonable total flux-density values. The ratios at the 10th
and 90th percentiles, with values of 0.7 and 1.9, show that the
worst incorrect predictions lead to total flux densities that are

farther off the mark when they over-predict than when they
under-predict. Total flux-density over-prediction happens in
52.5% of the incorrect associations and is thus slightly more
likely to happen than under-prediction is.

6. Discussion

We set out to decipher the optimal catalogue accuracy we
can achieve irrespective of the technique used to associate the
radio components. Using the Stokes-I images of LoTSS in com-
bination with images from optical and infrared (IR) surveys,
experts might agree for up to about 95% (100% minus the 3.3%
hard-to-judge category and minus the 8.68% × 16% = 1.39%
human error, Sect. 3.2) as the rest is difficult or impossible to
judge given the information available. No automated method
will be able to surpass this level of accuracy given the same
input information. Given our results, the difference between this
expert-attained accuracy and the accuracy on our training set
(known as ‘avoidable bias’) is of about six percentage points
(95–88.5%). The difference between the accuracy on our train-
ing set and that on our test set (known as ‘variance’) is of about
three percentage points for our final model (88.5–85.3%). High
variance is a sign of over-fitting, while high bias is a sign of
under-fitting.

Given large neural networks such as the ones used in
this work and enough regularisation, avoidable bias might be
decreased without a strongly increasing variance, by increasing
the model size (Krizhevsky et al. 2012; He et al. 2016; Nakkiran
et al. 2021)17. However, Sect. 5.2 demonstrates that both the cat-
alogue accuracy on the validation set and the variance (manifest
in the difference between the accuracy on the training and that
of the validation data) do not significantly increase or decrease
when using the larger CNN backbones. This might be explained
by the observation that deep (many-layered) neural networks,
trained with stochastic gradient descent, seem to have critical
layers (usually the layers closest to the input) that have a lot of
impact on the output and many more layers that do not (Zhang
et al. 2019).

Variance can be addressed by increasing the regularisation;
we might, for example, add in more data augmentation during
training (see Sect. 6.5). Both avoidable bias and variance can be
addressed by increasing the number of images we use for training
and testing (Sun et al. 2017). Generally, the accuracy attained on
a test set will not surpass that of the training set. Given the deep
neural networks of the size that we use in this work, plus source
removal, we can easily over-fit our training data; thus, increas-
ing the size of the training set will simultaneously increase the
attained accuracy on the test set and decrease the attained accu-
racy on the training set (see Fig. 6). By extrapolating the final
results on our training and test set as a function of training dataset
size, using a logarithmic curve fit, we estimate that we would
need at least an additional eight thousand training sources (twice
the size of our current training set) to potentially realise a 2%
increase in the catalogue accuracy of our test set.

A different way to reduce avoidable bias and variance is by
modifying the input features or modifying the model. A sensible
modification of our model input features would be to incorporate
optical and or IR data.

17 Assuming we are not in the ‘double-dip’ critical regime where per-
formance first gets worse and then better with increasing model size
(Belkin et al. 2019; Nakkiran et al. 2021).
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Fig. 10. Catalogue accuracy of our final model binned by its prediction
scores. Error bars indicate the standard deviation between three inde-
pendent runs initiated with different seeds.

6.1. Prediction score versus catalogue accuracy

Predictions using R-CNNs do not only provide a predicted region
and a class label (the single class ‘radio object’ in our case),
but also a prediction score. This score is a number between 0
and 1, and it indicates how strongly the input activates the neu-
ral network for a certain class. These prediction scores can be
compared to the actual catalogue accuracy attained. In Fig. 10,
we plot the catalogue accuracy for subsets of our data, binned
according to their prediction score. If these data points lie along
the diagonal dashed line, our model would be well calibrated.
Figure 10 shows that our model is only well calibrated for com-
ponents with prediction scores below 0.2 and above 0.8. This
means that, for the model we trained, we cannot generally use
the prediction score of a single prediction to obtain a good esti-
mate of the probability that this particular prediction is correct.
Nevertheless, we can still predict the catalogue accuracy of our
model over an aggregated sample of sources.

Depending on our science case, we could accept only the
associations that surpass a certain prediction score at the cost
of leaving more sources to manual association. For example, the
test set indicates that if we only accept associations with a predic-
tion score that surpasses 0.2 (or 0.8), we can associate 99.1% (or
96.4%) of the large and bright components and achieve a level of
accuracy of 86.3% (or 87.4%), which is marginally better than
the 85.3% accuracy level for all large and bright components in
the test set.

Upon inspection, we see that components receive a low pre-
diction score when (i) the source is too large to fit inside our
300 arcsec cutout; (ii) the source is diffuse and the region, which
only encloses the signal exceeding five times the noise level, does
not capture the full shape of the source; and (iii) source removal
erroneously removes a lobe of a double-lobed source. We invite

the reader to consult Appendix C for examples of sources with a
prediction score below 0.5.

6.2. Scope of usability and limitations

Two notable limitations to our method are the impact of imag-
ing artefacts in the input images, which propagate through to the
final source catalogue, as well as the deblending of sources. As
a temporary solution, we trained our network to associate imag-
ing artefacts with the bright radio sources that caused them to
appear, such that they would not distort source-density counts too
much. In future work, a dedicated supervised approach – such as
a decision tree – could be prepended to our pipeline to identify
and discard imaging artefacts.

Deblending individual radio components is also outside the
scope of this paper. Deblending entails separating a radio com-
ponent into two or more unique sources. In LoTSS-DR1, from
the 15 806 radio components that went to LOFAR Galaxy Zoo,
386 (2.4%) were flagged as ‘blended’. This indicates that for
these components, with the given settings, PyBDSF combined
radio emission from multiple physically distinct radio sources
into a single radio component. However, for deeper surveys (e.g.
the LoTSS Deep Fields; Kondapally et al. 2021) or lower res-
olution surveys (e.g. MIGHTEE; Heywood et al. 2022), the
percentage of radio components flagged as ‘blended’ is generally
higher. Individual PyBDSF radio components are themselves
composed of a single or multiple 2D Gaussian. To adapt our
method to deeper or lower resolution surveys, one would first
need to set PyBDSF parameters such that the threshold for merg-
ing multiple 2D Gaussians into a single radio component is
higher. Furthermore, for these types of surveys, adding opti-
cal information to our input images might be more crucial
to performing accurate source-component associations than in
LoTSS.

A third limitation of our method is that source size estimates
for some large FRI sources will be underestimated. Our method
of pre-computed regions that encompass the emission that sur-
passes the local noise more than five times means that we miss
out on parts of large diffuse sources for which individual pixels
do not surpass this signal to noise threshold, while the total flux
density in this large patch of emission is significant. In practice,
this means that for certain large FRI sources, the outer parts of
the lobes will not be associated with the rest of the source.

6.3. Prediction for large and faint radio components

Radio association of large and faint sources (>15 arcsec and
<10 mJy) is possible with the method presented in this paper.
We chose to train our neural network on extended sources with a
high signal-to-noise ratio (>15 arcsec and >10 mJy) as we expect
these sources to clearly show the characteristic shapes that jet-
ted RLAGNs exhibit. The larger size and high signal-to-noise
ratio makes it easier for humans to do the association, which
means that we can have more confidence in the crowd-sourced
labels that we have for these sources. For sources with a lower
signal-to-noise ratio, the associations can be determined with
less certainty, but this is not well reflected in the crowd-sourced
labels; users had no option to indicate when they were uncer-
tain about their component association. We therefore did not
use these labels for training or validation. Instead, we ran our
model, trained on large and bright sources only, directly on the
large and faint radio components. We observed that the pre-
dicted association for radio components for which the predicted
region had a prediction score below 0.1 were mostly incorrect,
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and we decided that these radio components would not be asso-
ciated with any other radio component. We visually inspected
the resulting component association prediction of our model for
all 553 large and faint sources in three random pointings of our
‘testing’ dataset (see Sect. 3) and tentatively judged 80% to be
correct and 11% to be incorrect, and we labelled the remaining
9% as ‘hard to judge’. These percentages could vary within a few
percentage points as the visual inspection is increasingly subjec-
tive for fainter sources. Depending on subsequent science cases,
this performance may or may not be sufficient. As is, our Fast
R-CNN model trained on the large and bright radio components
attains a catalogue accuracy on the large and faint radio com-
ponents that is similar to the catalogue accuracy of a random
forest trained specifically to associate the large and faint radio
components. The random forest is at a relative advantage here
as our Fast R-CNN is trained on the large and bright compo-
nents and then applied to the large and faint test set, while the
random forest is separately trained on the large and faint compo-
nents (including a hyper-parameter search of the large and faint
component validation set) before running inference on the large
and faint test set.

Expanding the scope of our model to unresolved and barely
resolved radio components (<15 arcsec) is of limited additional
value. As mentioned in the introduction, associating the large
and bright lobes will already include 48.7% of the components of
<15 arcsec that are barely resolved and not correctly associated
by PyBDSF. However, this will be different for radio observa-
tions with surveys that are less sensitive to diffuse emission,
such as FIRST, where FRIIs with two lobes often appear as two
unresolved point-like blobs with no emission in between.

6.4. Comparison to the public LOFAR Galaxy Zoo

In the results section of this paper, we compare the performance
of our method against (LoTSS-DR1) manual annotations done
by astronomers in the LOFAR collaboration. In this sub-section,
we assess how well the general public is able to perform man-
ual annotations (for LoTSS-DR2). We show that the accuracy
of our automated associations is on par with that of the pub-
lic. We also show that there is a larger variance in the quantity
of associations per pointing that the public detects compared to
the astronomers. These two observations indicate that expanding
our training data by including the associations done by the public
will not necessarily improve our model.

The first data release (annotated by astronomers) contains
323 343 radio components, of which 3674 (1.14%) were com-
bined into multi-component sources. In our manual correction
of the DR1 annotations (see Sect. 3.2), we combined 3,982 com-
ponents (1.23%) into multi-component sources. For DR2 (anno-
tated by the public), 1 838 763 components have been processed
up to this point, and 17 993 (0.98%) of those were labelled
as multi-component sources. The top panel of Fig. 11 shows
that our manual correction of DR1 increased the percentage of
multi-component sources as we added missing associations. The
top panel also demonstrates that DR2 annotations show a large
variation between the percentages of multi-component sources
in different pointings compared to the DR1 associations. We
excluded pointings that contain fewer than 1000 components, so
a small number of sources per pointing cannot explain this effect.

This effect is more clear if we focus on just the large
(>15 arcsec) and bright (>10 mJy) components. The number of
components associated into multi-component sources is 34.36%,
39.95%, and 24.70% for DR1, DR1-corrected, and DR2, respec-
tively. The lower number of associations in DR2 compared to
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Fig. 11. Percentage of radio components that are manually associated
with other radio components. The top panel shows the percentage for
all radio components per pointing, while the bottom panel shows the
percentage of just the large (>15 arcsec) and bright (>10 mJy) compo-
nents. The vertical black lines in the bottom panel show the association
percentage for the ten DR2 pointings that we selected for further inspec-
tion.

DR1 is a sign that astronomers are able to recognise associations
that some lay volunteers miss. The bottom panel of Fig. 11 shows
that the variation in the number of associations across different
pointings is also larger in DR2 than in DR1.

Northcutt et al. (2021) show that it is crucial to verify pub-
lic annotations of a dataset before assessing the accuracy and
design aspects of a model on the training, validation, and test
data. Therefore, we inspected the large (>15 arcsec) and bright
(>10 mJy) components of ten DR2 pointings in more detail –
their percentages of multi-component sources per pointing are
visible in the bottom panel of Fig. 11. Sorting the 1, 097 compo-
nents from these pointings into the categories ‘association seems
correct’, ‘association is hard to judge’, and ‘association seems
incorrect’ (as we did for DR1 in Sect. 3.2), we ended up with
82.8%, 3.5%, and 13.8% in each category, respectively. That
means we observe more components in the public ‘seemingly
incorrect’ category compared to the 8.68% in the ‘seemingly
incorrect’ category of the expert-annotated DR1. Especially as
57% of this 8.68% could be attributed to not having access to
better-calibrated images. There are multiple reasons why volun-
teers could miss an association, but one reason we spot by our
visual inspection of this data is that volunteers did not flag a
number of large radio components that fell out of the variable-
sized cutouts that were presented in the LOFAR Galaxy Zoo
project as ‘too zoomed-in’. Both in the internal and the public
LoTSS Galaxy Zoo project, if more than two out of five of the
users clicked the ‘too zoomed-in button’ in the annotation pro-
cess, the source would be associated by a single expert using an
interface that allowed panning and zooming.

We manually corrected the annotations in the ‘seemingly
incorrect’ category for the ten DR2 pointings and compared this

A28, page 16 of 21



R. I. J. Mostert et al.: Automated radio source-component association

corrected catalogue to the predictions from our Fast R-CNN with
rotation augmentation and unresolved sources removed. The
baseline assumption in which we do not combine any radio com-
ponent would lead to a catalogue that is correct for 67.4% of the
components. Predicted associations of our trained model give a
catalogue accuracy of 84.0%. This number falls within the range
of seemingly correct public associations (82.8%) and ‘seemingly
correct’ plus ‘hard to judge’ public associations (82.8%+3.5% =
86.3%). We can therefore claim that, given the project design
and aggregation choices made in the public LoTSS Zooniverse
project, our automated method yields associations that are sim-
ilar in quality to the associations obtained through this public
crowd-sourcing effort.

6.5. Future work

As our network accuracy is already comparable to that attained
by public crowd-sourcing, increasing the quality of the anno-
tated data is more prescient even if that comes at the cost of
the quantity of the annotated sources. The quality of the man-
ual annotation can be improved by increasing the number of
viewers per source and increasing the weight of the annotations
performed by vetted persons (be they experienced volunteers
or astronomers). As discussed in Sect. 6, even additional high-
quality (expert-annotated) data on the full large and bright
component population would not drastically improve our net-
work accuracy. However, the increased number of annotations
per source would allow us to predict a calibrated posterior on
possible source-component associations on a source-by-source
basis. Walmsley et al. (2020) demonstrated this possibility for
galaxy morphology classifications using a Bayesian CNN. In our
current work, we were able to judge the accuracy of our predicted
associations for the full sample, but as Fig. 10 implies, not on a
source-by-source basis.

A complementary approach would be to focus the manual
association effort on the radio components that are poorly clas-
sified by our neural network and thus efficiently target the defi-
ciencies of the network. Ideally, a future pipeline suggests radio
sources for manual inspection – for example by suggesting more
sources that receive a low prediction score from our R-CNN
or sources that are automatically flagged as exhibiting unusual
morphology (Mostert et al. 2021) – and uses the obtained anno-
tations to retrain its association network and suggest further
sources for manual annotations. This practice, known as ‘active
learning’, has proven itself across many research fields where
manual annotation is costly (see Settles 2009 for a review). Most
notably, Walmsley et al. (2020) applied an active learning tech-
nique described by Houlsby et al. (2011) to reduce the number of
annotations required by the Galaxy Zoo 2 project (Willett et al.
2013).

On a technical level, given more training labels, the flexible
Detectron2 framework (Wu et al. 2019b) allows us to replace the
feature-extraction backbone with a future state-of-the-art back-
bone. Complementarily to this, Karpathy (2015b) writes that
training an ensemble of models and averaging their predictions
at test time will generally improve performance of classification
networks by a few percent18. As there are not many different
automated techniques for radio component association as of yet,
we believe exploring new techniques and heuristics will be more
fruitful than making significant effort to combine the existing

18 This technique is employed by all winners of the ImageNet
Object Detection competition since 2014 (https://image-net.org/
challenges/LSVRC).

techniques into an ensemble of models. A sensible modification
of the techniques used in this paper would be to move from the
rectangular bounding boxes to arbitrarily shaped segmentations
(e.g. He et al. 2017).

Our model’s performance on large and faint sources is likely
to improve by training the network with (correlated) noise aug-
mentation. One could train the network on copies of the images
with the large and bright radio components, for which we artifi-
cially raised the noise level. The benefit of noise augmentation is
that it requires no additional manual labelling or label-checking
as it relies on the labels of large and bright components that we
already have: labels of which we can be more confident as they
are based on high signal-to-noise ratio emission.

On the input side, we could augment our data with opti-
cal or IR information. The most straightforward way to do so
would be to swap one of the three radio channels in our current
images for (normalised) image cutouts of a single band extracted
from an optical or IR survey; for example, z-band from the DESI
Legacy Imaging Surveys (Dey et al. 2019) or unWISE band 1
(Meisner et al. 2018). A more involved approach would be to
swap one of our current channels for an image that represents
some of the information present in the optical or IR source cata-
logue within the cutout. We could plot the optical or IR sources
as 2D Gaussians. The location and variance of these Gaussians
could reflect the optical source’s coordinates and apparent size,
and the amplitude of the 2D Gaussians could reflect a property
of the optical source. The benefit of this last approach would be
the absence of image artefacts including diffraction spikes, trails,
and ghosts; the ability for us to filter out unrelated objects such as
stars; and the flexibility to let the amplitude of the 2D Gaussian
reflect either a source’s apparent magnitudes, its colour, or any
other sensible feature available in the optical or IR catalogue.
The source density in optical surveys is generally much higher
than in radio surveys, which is a potential source of confusion
for both inexperienced volunteers and automated methods. Wu
et al. (2019a) showed that masking the optical information where
there is no significant radio emission works best to mitigate this
problem.

The work in this paper paves the way for three avenues of fur-
ther application. The first is that of morphological classification
or the clustering of jetted RLAGNs. Given that the application
of our method results in the mostly correct association of well-
resolved radio components, subsequent classification into FRI
or FRII objects becomes a lot easier – both for simple, feature-
based classifications and for supervised deep neural networks.
Correct associations also simplify the process of automatically
determining radio-lobe bending angles, allowing large samples
of (non)bent objects to be studied, for example, in relation to
their (cluster) environment. The second avenue opened up by the
results in this work leads us towards finding the galaxies (in the
optical or infrared regime) that host the RLAGNs from which
the radio emission originates. Except for cluster or RLAGN-
remnant-related emission, the origin of most extragalactic radio
emission can be found by tracing two related radio lobes to the
point where the two radio jets (are projected to) meet (Barkus
et al. 2022). Incorporating morphological outlier detection and
host-galaxy identification in a future active learning pipeline
would be an efficient replacement of manual pre-filtering of
sources for crowd-sourced annotations. The third avenue opened
up by the combination of the previous two avenues it that of
assessing the completeness and reliability of different types of
extended radio objects in LoTSS and other large-scale sky sur-
veys. To assess the completeness of a survey for a particular type
of radio object, one has to reinsert and detect fainter copies of
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the corresponding object in the survey images up to and includ-
ing the parameter space where the reinserted noisier objects are
either not detected, misclassified, and/or their components are
not correctly associated.

7. Conclusions

In this work we adapted a fast region-based convolutional
neural network to perform radio-component association using
Stokes-I radio images as the sole input. We constructed training
labels from manually performed expert radio component asso-
ciations. We tested different backbone architectures (Sect. 4.1),
implemented rotation data augmentation in the pre-processing
stage (Sect. 4.1), leveraged the radio components from regular
radio-source-detection software to create pre-computed regions
(Sect. 4.4), and simplified the association task for large and
bright sources by using a gradient boosting classifier trained by
Alegre et al. (2022) to remove unresolved and barely resolved
sources that are likely unrelated (Sect. 4.5).

We conclude that for large (>15 arcsec) and bright
(>10 mJy) radio components, our automated method – an
adapted Fast R-CNN with rotation augmentation and unresolved
sources removed, trained on expert annotations from the LoTSS
first data release – performs component associations on the
LoTSS second data release with a level of accuracy (84.0%) that
is comparable to that attained by public crowd-sourcing efforts
(82.8 ∼ 86.3%).

We show that with a deep neural network, a similar perfor-
mance can be achieved using a variety of different settings. We
show that stepwise and cosine learning rate decay schemes have
similar performances. Also, for our training dataset, deeper net-
works – convolutional neural networks with more layers – do not
result in significant performance gains.

We implemented two features that do improve the perfor-
mance of our model. Firstly, overfitting on our training data is
successfully decreased by adding rotation augmentation. Sec-
ondly, we can reliably increase the component association
performance on large and bright radio components by remov-
ing unresolved and barely resolved radio components in the
pre-processing stage.

As is, our network can be used to replace the crowd-sourced
manual radio-component association for large and bright radio
components. It can also serve as a basis for either automated
radio-morphology classification or automated optical-host iden-
tification.
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Appendix A: LoTSS-DR2 Zooniverse project
interface

For the association of radio components and the cross-
identification with host-galaxies in LoTSS-DR2, a public radio
galaxy project was set up by the LOFAR collaboration. Figure
A.1 shows three panels of the interface as shown to the user. The
project is live and ongoing.19 A future publication will describe
the results of the completed project in more detail.

Fig. A.1. Three figures or panels available to the user in the manual
association process of LoTSS-DR2 in the public Zooniverse project.
The first and third figures show the LEGACY (optical) R-band inten-
sity image and the second figure shows LoTSS-DR2 stokes I intensity.
LoTSS-DR2 radio stokes I (yellow) contours are overlaid on the first
figure. The light blue ellipses show the FWHM of the PyBDSF-fitted
Gaussians to each LoTSS-DR2 radio component. The light blue ellipse
with solid line indicates which component the user should focus on.
The users are asked to click on the centre of each dashed ellipse that
they believe should be associated with the emission behind the full
ellipse. The figures are taken from the ongoing public LOFAR Galaxy
Zoo project at LOFARGALAXYZOO.NL.

Appendix B: Manually corrected associations

We manually corrected the human expert associations from
LoTSS-DR1 that seem incorrect (see Sect. 3.2). The main reason
for the initial incorrect association stems from the fact that the
LoTSS-DR2 images with higher dynamic range (LoTSS-DR2;
Shimwell et al. 2022) were not available to the experts at the
time of annotation (this seems to be the case for 58% of the
manually corrected associations), or human error (16% of the
manually corrected associations). We also chose to associate
image artefacts that were not flagged and removed in LoTSS-
DR1 with the source that created them. These sources account
for the final 26% of the manually corrected components. As
explained in Sect. 3.2, we do so to prevent artificially inflated
source counts and to prevent futile attempts at optical host identi-
fication for these artefacts by users of our radio source catalogues
(see Fig. B.1 for examples of sources in each error sub-category).

19 https://lofargalaxyzoo.nl

Fig. B.1. Three examples of manually corrected associations before
training. Each dashed red circle represents a separate catalogue entry.
The left panel shows LoTSS-DR1 Stokes-I image and the initial human
expert association, the right panel shows the LoTSS-DR2 Stokes-I
image and the manually corrected association. Each row shows a dif-
ferent type of corrected association: the first stems from the improved
quality of the LoTSS-DR2 images, the second shows a human error, the
third stems from our decision to group image artefacts with the source
they originate from.

Appendix C: Regions with low prediction scores

Figure C.1 shows nine sources with regions that have a predicted
score below 50%. These images highlight low scores caused
by our method (fixed cutout size, which can be smaller than
the entire source; incorrect source removal) and low scores due
to faint radio components (for which some components are not
detected by PyBDSF). For 1.4% of the radio components in our
test set, a score below 50% was predicted.
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Fig. C.1. Characteristic examples of regions (dashed black rectangles) with a predicted score below 50%, sorted by ascending prediction score (see
Fig. 7 for an explanation of the markers used).
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