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A B S T R A C T 

Recent works have shown that weak lensing magnification must be included in upcoming large-scale structure analyses, such as 
for the Vera C. Rubin Observatory Le gac y Surv e y of Space and Time (LSST), to a v oid biasing the cosmological results. In this 
work, we investigate whether including magnification has a positive impact on the precision of the cosmological constraints, as 
well as being necessary to a v oid bias. We forecast this using an LSST mock catalogue and a halo model to calculate the galaxy 

power spectra. We find that including magnification has little effect on the precision of the cosmological parameter constraints 
for an LSST galaxy clustering analysis, where the halo model parameters are additionally constrained by the galaxy luminosity 

function. In particular, we find that for the LSST gold sample ( i < 25.3) including weak lensing magnification only impro v es 
the galaxy clustering constraint on �m 

by a factor of 1.03, and when using a very deep LSST mock sample ( i < 26.5) by a factor 
of 1.3. Since magnification predominantly contributes to the clustering measurement and provides similar information to that 
of cosmic shear, this impro v ement would be reduced for a combined galaxy clustering and shear analysis. We also confirm that 
not modelling weak lensing magnification will catastrophically bias the cosmological results from LSST. Magnification must 
therefore be included in LSST large-scale structure analyses even though it does not significantly enhance the precision of the 
cosmological constraints. 

Key w ords: (cosmolo gy: ) cosmological parameters – (cosmology:) large-scale structure of Universe – gravitational lensing: 
weak – methods: analytical – methods: statistical. 
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 I N T RO D U C T I O N  

s light from distant galaxies travels towards telescopes it is deflected
ravitationally by intervening matter. This means that galaxy images
ppear distorted. On average, the distortions to individual galaxy
mages are very small, but when combined, they can be used
o statistically map the matter distribution in the universe. This
echnique is called weak gravitational lensing. 

Weak gravitational lensing distorts both the shape and size of
alaxy images. Statistical measurements of the shape distortions are
eferred to as cosmic shear, and statistical measurements of the size
istortions are referred to as magnification. Making a magnification
easurement of the matter distribution in the Universe, which

irectly uses size information is challenging because there is a large
ntrinsic variation in the sizes of galaxies, and it is more prone to
erious systematics (Hoekstra, Viola & Herbonnet 2017 ). Ho we ver,
chmidt et al. ( 2011 ) achieved a simplified magnification measure-
 E-mail: mahony@astro.rub.de 

o  

b  

t

Pub
ent using the joint distribution of galaxy sizes and magnitudes, and
here are developing techniques which anchor the size distribution
sing the Fundamental Plane of galaxies (Huff & Graves 2013 ;
reudenburg, Huff & Hirata 2020 ). Most magnification analyses

herefore focus on making a magnification measurement using galaxy
umber density information (Myers et al. 2005 ; Scranton et al. 2005 ;
ildebrandt, van Waerbeke & Erben 2009 ). In a flux-limited surv e y,
istortions to the sizes of galaxy images affect the observed number
ensity of galaxies for two reasons: 

(i) Since surface brightness is conserved by lensing if the observed
ize of a galaxy is increased, so is its observed flux. This means that
alaxies previously too faint to be observed by a galaxy surv e y
ecome observable. The number density of galaxies is increased. 
(ii) It is not only the observed size of individual galaxies that is

ncreased by magnification, but the observed size of the whole patch
f sky behind the lens. This means that the observable separation
etween galaxies behind the lens increases and there is a dilution in
he number density of galaxies. 
© 2022 The Author(s) 
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These two effects compete and contribute to an o v erall fluctuation
n the number density of galaxies, as a result of weak lensing
agnification (for the associated equations see Section 3.1 ). Here, 
e are concerned with how magnification can probe the total matter 
istrib ution, b ut it can also be used to constrain the mass of galaxy
lusters (e.g. Tudorica et al. 2017 ). 

Weak lensing using cosmic shear has been a highly successful tech- 
ique. In recent years, there have been increasingly precise results 
sing cosmic shear from galaxy surv e ys such as the Kilo Degree
urv e y (Joudaki et al. 2018 ; van Uitert et al. 2018 ; Hildebrandt
t al. 2020 ; Asgari et al. 2021 ), the Dark Energy Surv e y (Abbott
t al. 2018 ; Troxel et al. 2018 ; Amon et al. 2022 ; Secco et al.
022 ), and the Hyper Suprime-Cam Surv e y (Hikage et al. 2019 ).
eak lensing magnification has not been included in standard weak 

ensing analyses to date. All that has been included is the sensitivity
f results to including a simplified magnification model (Abbott 
t al. 2019 ). The reasoning is that magnification provides similar
nformation to that of cosmic shear and has a poorer signal-to-noise
atio (Bartelmann 2010 ). Ho we v er, due to impro v ements in statistical
recision, recent works have shown that cosmological results from 

pcoming surv e ys such as the Vera C. Rubin Observatory Le gac y
urv e y of Space and Time (LSST) and Euclid will be biased if the
ffects of weak lensing magnification are not included (Duncan et al. 
014 ; Cardona et al. 2016 ; Lorenz, Alonso & Ferreira 2018 ; Thiele,
uncan & Alonso 2020 ). 
These works have shown that magnification must be included in 

uture surv e ys to a v oid bias, b ut the aim of this work is to determine
hether including magnification as a complementary probe can also 

mpro v e the final precision of the LSST weak lensing results. Duncan
t al. ( 2014 ) and Lorenz et al. ( 2018 ) found no increase in precision
rom including magnification in a weak lensing analysis; ho we ver, 
SST is a special case, because it is a very deep ground-based galaxy
urv e y. This means that there will be a lot of very faint, small and
istant galaxies, which will be poorly resolved. It will therefore not be 
ossible to measure the shape of these galaxies, but it may be possible
o count them for a weak lensing magnification analysis. This means 
hat the potentially usable sample size for weak lensing magnification 
s significantly larger than that for cosmic shear, and as such it is worth
nvestigating magnification’s potential as a complementary probe in 
he case of LSST. 1 Particularly, as Nicola et al. ( 2020 ) showed that
ven with only approximately 100 square degrees, deep samples are 
lready sensitive to magnification. 

In summary, we wish to determine the effect of including weak 
ensing magnification on the precision of the final constraints from 

SST weak lensing. We determine this using the Fisher matrix 
ormalism introduced in Section 2 . We then describe the modelling 
f the observables (weak lensing power spectra and the galaxy 
uminosity function) in Sections 3 and 4 . We describe the details
f our LSST specific surv e y modelling in Section 5 ; and present our
esults and conclusions in Sections 6 and 7 . We verify the stability
f our Fisher matrices in Appendix B . 

 FISHER  A NALYSIS  

he Fisher information matrix summarizes the expected curvature of 
he log-likelihood function around its maximum: 

 ij = 

〈−∂ 2 ln L 

∂ θi ∂ θj 

〉
, (1) 
 Lorenz et al. ( 2018 ) also considered LSST specifically, but did not include 
ystematics or explore departures from the gold sample used for cosmic shear. 

p
s
b  

s

here L is the likelihood and θ i is a model parameter. If the likelihood
unction is sharply peaked for a given parameter, the parameter 
s tightly constrained by the data (Dodelson 2003 ). The marginal
ncertainty on the model parameter θ i can be calculated from the 
isher matrix as 

θi ≥
√ 

( F 

−1 ) ii . (2) 

he greater than or equal relation is in reference to the Cram ́er–Rao
nequality, which specifies that the Fisher matrix gives the minimum 

ossible uncertainty on an unbiased model parameter (Tegmark, 
aylor & Heavens 1997 ). 
The Fisher information matrix can be calculated without data 

nd is therefore a useful tool for forecasting best case parameter
onstraints. In the case of a Gaussian likelihood function and a
arameter independent covariance matrix the Fisher matrix is given 
y 

 ij = 

∑ 

� 

∂C � 

∂θi 

Cov −1 ∂C � 

∂θj 

, (3) 

here C is the theory datavector and Cov is the associated covariance
Tegmark et al. 1997 ). In this work, we consider two component
isher matrices, which we then add together since they concern 
eparate observables: the Fisher matrix where the theory datavector 
onsists of galaxy clustering or galaxy clustering and cosmic shear 
detailed in Section 3 ), and the Fisher matrix where the theory
atavector consists of the galaxy luminosity function (detailed in 
ection 4 ). There may be a small correlation between the observables
ue to cosmic variance, but we do not consider this in this forecast.
he associated covariances are detailed in Sections 5.4.1 and 5.5 ,

espectively. 

 W E A K  LENSING  OBSERVABLES  

he two observable quantities used in this weak lensing analysis are
he shape, often referred to as ellipticity, and the number density
f galaxy images. Since weak lensing is a local effect, the mean
llipticity ε and fluctuation in the number density of galaxies n ,
esulting from weak lensing, is equal to zero when averaged over
arge scales in the absence of systematics. Therefore, the key 
tatistical quantity used in weak lensing analyses is the two-point 
orrelation function. There are three two-point correlation functions 
ommonly considered in large-scale structure and weak lensing 
nalyses: cosmic shear (ellipticity–ellipticity), angular galaxy clus- 
ering (number density–number density), and g alaxy–g alaxy lensing 
number density–ellipticity). In this work, we focus on angular 
alaxy clustering as an individual probe (Sections 6.1 and 6.3 ), and
lso consider a combined clustering and shear analysis, where the 
nalyses occur on separate patches of sky (Section 6.2 ). 

The Fourier space two-point correlation function for angular 
alaxy clustering is given by 

 ̃ n i ( � ) ̃  n j ( � ′ ) 〉 = (2 π ) 2 δ(2) ( � + � ′ ) C 

ij 
nn ( � ) , (4) 

here ˜ n is the Fourier transform of the number density contrast, � is
he angular frequency, δ(2) is the two-dimensional (2D) Dirac delta 
unction, and C 

ij 
nn is the projected number density power spectrum 

etween redshift bins i and j (Joachimi & Bridle 2010 ). It is useful
o work in Fourier space because it simplifies linking to the theory
redictions. The galaxy samples used for weak lensing are often 
plit into redshift bins; a technique called redshift tomography. This 
inning enables weak lensing to probe the evolution of the power
pectrum with time, through autocorrelations and cross-correlations 
MNRAS 513, 1210–1228 (2022) 
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etween the different redshift bins, and hence study the expansion of
he universe and dark energy. 

The Fourier transform of the two-point correlation function for
osmic shear is given by 

 ̃ εi ( � ) ̃ εj ( � ′ ) 〉 = (2 π ) 2 δ(2) ( � + � ′ ) C 

ij 
εε( � ) , (5) 

here ˜ ε is the Fourier transform of the ellipticity and C 

ij 
εε is the

rojected ellipticity power spectrum between redshift bins i and j . 

.1 2D power spectra 

he key quantities in equations ( 4 ) and ( 5 ), are the 2D power spectra
 nn and C εε . These are the observables we model and include in our
isher matrix theory datavector, see Section 2 . 
In this work, we model the 2D observ able po wer spectra C nn and
 εε by breaking them down into their constituent parts. The observed
llipticity of a galaxy comes from a combination of the intrinsic
llipticity of the galaxy before it is lensed εI (the intrinsic alignment;
A, see Troxel & Ishak 2014 ; Joachimi et al. 2015 for re vie ws), the
istortion of the shape by weak lensing shear γ G , and a random
ncorrelated component εrnd which accounts for the randomness in
he intrinsic ellipticity of galaxies: 

i ( θ ) = γ i 
G ( θ ) + εi 

I ( θ ) + εi 
rnd ( θ ) , (6) 

here i denotes the redshift bin. The observed number density of
alaxies comes from a combination of the number density fluctuation
f galaxies as a result of galaxy clustering n g , the distortion to the
umber density from weak lensing magnification n m 

, and a random
omponent n rnd which accounts for the shot noise contribution: 

 

i ( θ) = n i g ( θ ) + n i m 

( θ) + n i rnd ( θ ) . (7) 

In terms of the Fourier space 2D power spectra the uncorrelated
andom components lead to noise power spectra, and separating out
he remaining contributions gives 

C 

ij 
εε( � ) = C 

ij 

GG ( � ) + C 

ij 

IG ( � ) + C 

ji 

IG ( � ) + C 

ij 

II ( � ) , 

C 

ij 
nn ( � ) = C 

ij 
gg ( � ) + C 

ij 
gm 

( � ) + C 

ji 
gm 

( � ) + C 

ij 
mm 

( � ) , 
(8) 

here G represents ellipticity from weak lensing shear, I ellipticity
rom the IA of galaxies, g number density fluctuations as a results of
ntrinsic galaxy clustering, and m number density fluctuations as a
esult of weak lensing magnification. 

We compute all these 2D power spectra C ab from their associated
hree-dimensional (3D) power spectra P ab using the Limber approx-
mation in Fourier space (Kaiser 1992 ): 

C 

ij 

GG ( � ) = 

∫ χhor 

0 
d χ

q i ( χ ) q j ( χ ) 

f 2 K 

( χ ) 
P δδ

(
k = 

� + 1 / 2 

f K 

( χ ) 
, χ

)
, 

C 

ij 

IG ( � ) = 

∫ χhor 

0 
d χ

p 

i ( χ ) q j ( χ ) 

f 2 K 

( χ ) 
P I δ

(
k = 

� + 1 / 2 

f K 

( χ ) 
, χ

)
, 

C 

ij 

II ( � ) = 

∫ χhor 

0 
d χ

p 

i ( χ ) p 

j ( χ ) 

f 2 K 

( χ ) 
P II 

(
k = 

� + 1 / 2 

f K 

( χ ) 
, χ

)
, 

C 

ij 
gg ( � ) = 

∫ χhor 

0 
d χ

p 

i ( χ ) p 

j ( χ ) 

f 2 K 

( χ ) 
P gg 

(
k = 

� + 1 / 2 

f K 

( χ ) 
, χ

)
, 

C 

ij 
gm 

( � ) = 2( αj − 1) C 

ij 

gG ( � ) , 

 

ij 
mm 

( � ) = 4( αi − 1)( αj − 1) C 

ij 

GG ( � ) , 

C 

ij 

gG ( � ) = 

∫ χhor 

0 
d χ

p 

i ( χ ) q j ( χ ) 

f 2 K 

( χ ) 
P g δ

(
k = 

� + 1 / 2 

f K 

( χ ) 
, χ

)
, (9) 

here χ is the comoving distance, f K ( χ ) is the comoving angular
iameter distance, and p i ( χ ) is the probability distribution of galaxies
NRAS 513, 1210–1228 (2022) 
n redshift bin i . q i ( χ ) is a weight function given by 

 

i ( χ ) = 

3 H 

2 
0 �m 

2 c 2 
f K 

( χ ) 

a( χ ) 

∫ χhor 

χ

d χ ′ p 

i ( χ ′ ) 
f K 

( χ ′ − χ ) 

f K 

( χ ′ ) 
, (10) 

here H 0 is the Hubble constant, �m 

the matter density parameter,
nd a ( χ ) the scale factor (for further details see Bartelmann &
chneider 2001 ). The calculation of the 3D power spectra P ab is
etailed in the following section. 
Equation ( 9 ) shows that the 2D power spectra associated with
agnification C gm 

and C mm 

can be computed from the 2D power
pectra associated with weak lensing shear C gG and C GG using αi the
aint end slope of the number counts in redshift bin i . We discuss the
alaxy luminosity function in Section 4 but detail the relationship
etween the magnification and shear power spectra here. 

As mentioned previously, weak lensing magnification contributes
o fluctuations in the number density of galaxies n . If the number
ensity of galaxies abo v e the flux limit f is N 0 ( > f ), magnification
lters the number density of sources as 

( > f ) = 

1 

μ
N 0 ( > f /μ) , (11) 

here N ( > f ) is the observ ed cumulativ e number density of sources
nd μ is the local magnification factor (Bartelmann & Schneider
001 ). If the cumulative number density of galaxies is assumed to
ollo w a po wer law N 0 ( > f ) = kf −α near the flux limit of the surv e y
hen, 

( > f ) = 

1 

μ
k 

(
f 

μ

)−α

= N 0 ( > f ) μα−1 , (12) 

here α is equi v alent to αi mentioned in the previous paragraph. This
eans the fluctuation in the observed number density of galaxies as
 result of magnification n m 

is given by 

 m 

= 

N ( > f ) − N 0 ( > f ) 

N 0 ( > f ) 
= μα−1 − 1 ≈ (1 + 2 κ) α−1 − 1 

≈ 2( α − 1) κ, (13) 

here the weak lensing limit μ ≈ 1 + 2 κ has been employed. 

.2 3D power spectra 

he fundamental ingredient for the construction of all of the 3D
ower spectra P ab in equation ( 9 ) is the matter power spectrum P δδ . It
ummarizes the clustering of matter in the universe and can be derived
umerically using the Boltzmann equations and the primordial power
pectrum predicted by inflation. For the other power spectra, we can
nly rely on an ef fecti ve description, which we detail in this section.
In this work, we compute P 

lin 
δδ using the Boltzmann code CAMB

Lewis, Challinor & Lasenby 2000 ; Howlett et al. 2012 ). To include
on-linear corrections we use HALOFIT (Takahashi et al. 2012 ). The
emaining power spectra used in this analysis are P δI , P II , P gg , and
 g δ . P δI and P II are the IA power spectra, which encode the tendency
f galaxy shapes to point in the direction of a matter o v erdensity
 P δI ) or to have an intrinsic coherent alignment with other galaxy
hapes ( P II ). P gg summarizes the clustering of galaxies, and P g δ the
ross-correlations between galaxy position and gravitational shear.
 g δ is linearly related to the galaxy-magnification power spectrum,
hich is the quantity of interest in this work. We employ a halo model

ormalism to calculate P gg and P g δ , while for the IA power spectra
e use the empirical Non-linear Alignment (NLA) model (Hirata &
eljak 2004 ; Bridle & King 2007 ). 
The halo model (e.g. Cooray & Sheth 2002 ) assumes that dark
atter clusters into dark matter haloes and that all dark matter exists
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ithin dark matter haloes. We define dark matter haloes as spheres
f average density � ̄ρm 

, with � = 200 and ρ̄m 

as the present-day
ean matter density of the Universe. Galaxies are then assumed 

o form within these dark matter haloes, and hence the galaxy 
istribution traces the distribution of dark matter. The model relies 
n two ingredients, the underlying distribution of dark matter and 
ow galaxies populate dark matter haloes. 
The dark matter distribution is summarized by: the halo mass 

unction, which gives the number density of dark matter haloes 
ith mass M at redshift z; the halo bias function, which accounts

or dark matter haloes being biased tracers of the underlying dark 
atter distribution; and the halo density profile, which summarizes 

ow mass is distributed within dark matter haloes. In this work, 
e use the Tinker et al. ( 2010 ) functional forms for the halo mass

unction and halo bias function, and assume that the density of dark
atter haloes follows the Navarro–Frenk–White (NFW) distribution 

Navarro, Frenk & White 1996 ). To parametrize the concentration–
ass relation that enters in the NFW profile, we follow Duffy 

t al. ( 2008 ). We compute the halo mass function using the publicly
vailable Python package HMF (Murray, Power & Robotham 2013 ; 
urray et al. 2021 ). 
We summarize the second ingredient, how galaxies populate dark 
atter haloes, using the conditional luminosity function (CLF, Yang, 
o & van den Bosch 2003 ; Cacciato et al. 2013 ; van den Bosch

t al. 2013 ). The CLF gives the average number of galaxies with a
uminosity L between L ± d L /2 in a halo of mass M . It is divided
nto two parts: 

 ( L | M) = � c ( L | M) + � s ( L | M) , (14) 

here � c ( L | M ) is the CLF for central galaxies and � s ( L | M ) is the
LF for satellite galaxies. Central galaxies reside at the centre of dark
atter haloes and satellite galaxies orbit around them. Following the 

pproach detailed in Cacciato et al. ( 2013 ), we take the CLF of central
alaxies to be modelled by a lognormal distribution: 

 c ( L | M)d L = 

log e √ 

2 πσc 

exp 

[
− ( log L − log L c ) 2 

2 σ 2 
c 

]
d L 

L 

, (15) 

here σ c represents the scatter in the log luminosity of central 
alaxies and L c is parametrized as 

 c ( M) = L 0 
( M/M 1 ) γ1 

[1 + ( M/M 1 )] γ1 −γ2 
. (16) 

 0 = 2 γ1 −γ2 L c ( M 1 ) is a normalization and M 1 is a characteristic
ass scale. The CLF of satellite galaxies is modelled by a modified
chechter function: 

 s ( L | M)d L = φ∗
s 

(
L 

L 

∗
s 

)αs + 1 

exp 

[
−

(
L 

L 

∗
s 

)2 ]d L 

L 

. (17) 

here αs is the faint end slope of the satellite luminosity function. 
∗
s is parametrized as 

log [ φ∗
s ( M)] = b 0 + b 1 ( log M 12 ) + b 2 ( log M 12 ) 

2 , (18) 

here M 12 = M /(10 12 h −1 M 	) and L 

∗
s is parametrized as: 

 

∗
s ( M) = 0 . 562 L c ( M) . (19) 

oth of the functional forms in equations ( 15 ) and ( 17 ) are derived
rom the SDSS galaxy group catalogue in Yang, Mo & van den
osch ( 2008 ). In total, we have nine free parameters in our CLF
odel: log M 1 , log L 0 , γ 1 , γ 2 , σ c , αs , b 0 , b 1 , and b 2 . We include all

f these parameters in our Fisher matrix. 
The halo occupation distribution (HOD) can then be obtained as 
he integral of the CLF over the luminosity interval [ L 1 , L 2 ]: 

 N x | M〉 = 

∫ L 2 

L 1 

� x ( L | M)d L , (20) 

here x can be c, s, or g = c + s; 〈 N c | M 〉 and 〈 N s | M 〉 are the average
umber of central and satellite galaxies in a halo of mass M within
he luminosity interval [ L 1 , L 2 ]. Similarly, we can write n̄ g as the
verage number density of galaxies across all halo masses in a given
uminosity interval: 

¯ g ( z) = 

∫ 

〈 N g | M 〉 n ( M , z)d M , (21) 

here n ( M , z) is the halo mass function mentioned abo v e. To keep
he notation compact, we have omitted the redshift dependence of 
he HOD: It arises as a consequence of the surv e y flux-limit: in this
ase, the luminosity limits L 1 and L 2 in equation ( 20 ) depend on the
pecific redshift bin under consideration. 

Once we have defined the HOD, we can calculate the 3D power
pectra P gg and P g δ . First, the power spectra can be split into
ontributions from the one-halo (1h) and two-halo (2h) terms. The 
h term describes the clustering of galaxies on small scales within
he same dark matter halo and the 2h term describes the clustering of
alaxies on large scales between different haloes. These contributions 
an then be split into the contributions from central c and satellite s
alaxies, as with the CLF. This gives 

 gg = 2 P 

1h 
cs + P 

1h 
ss + P 

2h 
cc + 2 P 

2h 
cs + P 

2h 
ss , 

 g δ = P 

1h 
c δ + P 

1h 
s δ + P 

2h 
c δ + P 

2h 
s δ . (22) 

s shown in van den Bosch et al. ( 2013 ) these contributions can be
alculated using 

 

1h 
xy ( k, z) = 

∫ 

H x ( k, M, z) H y ( k, M, z) n ( M, z)d M, 

 

2h 
xy ( k, z) = P 

lin 
δδ ( k, z) 

∫ 

d M 1 H x ( k, M 1 , z) n ( M 1 , z) b( M 1 , z) 

×
∫ 

d M 2 H y ( k, M 2 , z) n ( M 2 , z) b( M 2 , z) , (23) 

here x and y can be c, s, or δ, and b ( M , z) is the halo bias. The
unction H encodes the matter or galaxy contribution: 

 δ( k, M, z) = 

M 

ρ̄m 

˜ u h ( k| M, z) , 

 c ( k, M, z) = H c ( M, z) = 

〈 N c | M〉 
n̄ g ( z) 

, 

H s ( k, M, z) = 

〈 N s | M〉 
n̄ g ( z) 

˜ u s ( k| M, z) . (24) 

here ˜ u h is the Fourier transform of the normalized density distri- 
ution of dark matter in a halo of mass M (mentioned abo v e), and

˜  s is the normalized number density distribution of satellite galaxies 
n a halo of mass M . In this work, we assume satellites to follow the
patial distribution of the underlying dark matter, i.e. ˜ u s ≡ ˜ u h . 

To calculate the 3D power spectra P II and P I δ we employ the
idely used NLA model. This model links the strength of the tidal
eld when a galaxy forms to the intrinsic ellipticity of the galaxy.
his gives 

 δI ( k, z) = −A IA C 1 ρc 
�m 

D( z) 
P δδ, 

P II ( k, z) = 

(
A IA C 1 ρc 

�m 

D( z) 

)2 

P δδ, (25) 
MNRAS 513, 1210–1228 (2022) 
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Figure 1. Photometric redshift point estimate mode against true redshift. Left-hand panel: Number density sample n -sample. Right-hand panel: Ellipticity 
sample ε-sample. 
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here C 1 is a normalization constant, ρc the critical density of the
niverse today, and D ( z) the linear growth factor. We set C 1 =
 × 10 −14 M 

−1 
	 h 

−2 Mpc 3 based on the IA amplitude measured at
ow redshifts using SuperCOSMOS (Brown et al. 2002 ), and A IA 

aptures the amplitude of the deviation from this reference case.
e take A IA as a free parameter in our Fisher matrix. The NLA
odel is sufficiently flexible for current studies but can be extended

y including a redshift dependent parameter, or using a halo model
ormalism to calculate P II and P I δ on small scales. Recently, Fortuna
t al. ( 2021 ) explored these options and found that the IA signal in
he one halo regime can be ignored at first order, and that including
n extra redshift dependent parameter is possibly sufficient for LSST.
ere, we consider the simplest NLA model, but implementing more

omplex IA models could be a future extension of this work. 

 G A L A X Y  LUMINOSITY  F U N C T I O N  

he second part of our Fisher matrix theory datavector (see Section 2 )
s the galaxy luminosity function. The galaxy luminosity function
escribes the distribution of luminosities in a galaxy sample, the
umber density of galaxies with certain luminosity, and is often
irectly measured from a galaxy sample. As specified in Cacciato
t al. ( 2013 ) the galaxy luminosity function at a given redshift z can
e calculated from the CLF detailed in Section 3.2 : 

 ( L, z) = 

∫ 

d M � ( L | M ) n ( M , z) , (26) 

here � ( L | M ) is the CLF and n ( M , z) is the halo mass function (see
ection 3.2 ). In this analysis, we work with a galaxy sample divided

nto redshift bins (labelled i and j previously) so we wish to compute
he galaxy luminosity function for each redshift bin: 

 

i ( L ) = 

∫ 

d z n i ( z ) � ( L, z ) , (27) 

here � 

i ( L ) denotes the luminosity function of galaxies in redshift
in i , and n i ( z) the normalized redshift distribution in bin i . We
nclude a prediction for the galaxy luminosity function in each
edshift bin in our theory datavector as it helps to constrain the
ine CLF parameters detailed in Section 3.2 , and hence is critical
or obtaining information from the small-scale clustering. The faint
NRAS 513, 1210–1228 (2022) 
nd slope of the number counts is also required to calculate the
agnification 2D power spectra, see equation ( 13 ). 

 SURV EY  M O D E L L I N G  

e perform our Fisher forecast using the cosmological parameter
stimation framework COSMOSIS (Zuntz et al. 2015 ). To calculate the
D power spectra detailed in Section 3.2 we use our own halo model
ode, which has been tested against other halo model codes used in
he literature. 

In this analysis, we define two mock LSST galaxy samples; an
llipticity sample ε-sample and a number density sample n -sample.
e use a 440 square degree mock catalogue from the LSST Dark

nergy Science Collaboration (DESC) Data Challenge 2 (DC2) sim-
lations (cosmoDC2 1.1.4; Korytov et al. 2019 ). These simulations
ere designed to enable preliminary LSST DESC analyses, and the

tatistical distributions of galaxies have undergone a wide range of
alidation tests, for details see Korytov et al. ( 2019 ) and Kovacs
t al. ( 2022 ). The catalogue includes photometric redshifts for all
alaxies with an i -band magnitude less than 26.5, up to redshift 3.
he photometric redshifts were calculated using the template fitting
ode BPZ (Benitez 2000 ). The n -sample is defined as all galaxies
n this mock catalogue with an i -band magnitude less than 26.5
nd photometric redshift greater than 0.1 and less than 2.0. We set an
pper limit as the photometric redshifts begin to degrade significantly
eyond 1.5, see Fig. 1 . The ε-sample is defined as a subset of galaxies
n n -sample with i < 25.3. This corresponds to the LSST gold sample ,
hich will be used for weak lensing (LSST Science Collaboration
009 ). We do not apply a separate signal-to-noise cut, but galaxies
n the n -sample have a signal-to-noise ratio > 5 and galaxies in the
-sample have a signal-to-noise ratio > 20. 

.1 Redshift distributions 

o compute the 2D power spectra in equation ( 9 ) and the luminosity
unctions in equation ( 27 ) we require the redshift distribution of
alaxies in each photometric redshift bin. In this work, we split both
he galaxy samples, n -sample and ε-sample, into 10 tomographic
edshift bins containing equal numbers of galaxies using their
hotometric redshifts. Fig. 2 shows the resulting distribution of
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Figure 2. Number density of galaxies as a function of true redshift for each photometric bin in the galaxy sample. The dashed lines indicate the photometric 
bin boundaries. Left-hand panel: n -sample. Right-hand panel: ε-sample. 
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alaxies with redshift for each tomographic bin, as well as the 
omographic bin boundaries. Fig. 2 shows that the photometric 
edshifts are close to random for bin 10 of n -sample, so our maximum
hotometric redshift cut of 2.0 is well justified. 
We compute the number density of galaxies in each tomographic 

in to be 12.7 arcmin −2 for n -sample and 4.9 arcmin −2 for ε-sample.
o we ver, weak lensing shape measurements typically weight galax- 

es by the uncertainty or ability to calibrate the shape measurements, 
his would reduce the number density for ε-sample, especially at 
igh redshifts. The LSST science book estimates that the number 
ensity of galaxies in the gold sample will be 55 arcmin −2 , with the
umber density of galaxies useful for weak lensing approximately 
0 arcmin −2 (LSST Science Collaboration 2009 ; Chang et al. 2013 ).
his means that our ε-sample is slightly optimistic, with a galaxy 
umber density of 49 arcmin −2 . 

.2 Faint end number count slopes 

he key quantity in determining the amplitude of the fluctuation in the 
umber density of galaxies as a result of weak lensing magnification 
s the faint end slope of the number counts α. If α is equal to 1
here is no o v erall fluctuation but if α does not equal 1 there is either
n increase or decrease in the number density of galaxies. α can be
epresented in terms of magnitudes as 

( i mag ) = 2 . 5 
d log 10 N ( < i mag ) 

d i mag 
, (28) 

here i mag represents the i -band magnitude, and N ( < i mag ) the
nlensed cumulative number density of galaxies with an i -band 
agnitude lower (brighter) than i mag (e.g. Duncan et al. 2014 ). 
We measure the faint end slopes α from our LSST DC2 mock 

atalogue. We compute a value αj for each redshift bin j , in each mock
ample. To compute αj we vary the i -band magnitude in equation ( 28 )
nd compute the cumulative number counts N ( > i mag ). We then fit
he logarithm of N ( > i mag ) with a straight line, and use the slope to
ompute αj . Since we are only interested in the slope at the faint end
high magnitudes) we only fit log 10 N ( > i mag ) o v er the last magnitude
efore the sample magnitude limit; 25.5–26.5 for n -sample, and 
4.3–25.3 for ε-sample. Fig. 3 shows that in general this lower fit
imit (marked by a dotted line) captures the value of αj at the faint
nd of the sample. Increasing the lower fit limit has little effect on
he value of αj obtained, whereas decreasing the fit limit in general
ives a higher value of αj . 
Table 1 shows the αj values obtained for each sample and their

ssociated uncertainties. The uncertainties come from the uncertainty 
n the slope coefficient of the least-squares straight line fit detailed
bo v e, since the y were found to be much larger than the uncertainties
n the values of the cumulative number counts N ( > i mag ) due to
he large number of galaxies in each sample. The uncertainties are
ery small, and would become even smaller when using the full
8 000 square degree LSST area instead of a 440 square degree
ock catalogue. We therefore consider the αj parameters as fixed in 

ur forecast, but note that they can be difficult to measure accurately
rom real data due to the presence of systematics and selection effects
see conclusions for further discussion). 

We can compare the α values in Table 1 to those found in
uncan et al. ( 2014 ) for the Canada–France–Hawaii Lensing Survey

CFHTLenS). In both cases αj generally increases with redshift. 
FHTLenS reaches an αj value of approximately 1 at its i -band
agnitude limit of 24.7, for its highest redshift bin between 1.02 and

.3. This roughly corresponds to α7 and α8 in ε-sample, where the 
agnitude limit of 24.7 is included in the αj fit. Table 1 shows that

ur α7 and α8 values for ε-sample are consistent with CFHTLenS. 

.3 Systematics 

e include a number of systematics in our analysis using nuisance
arameters. For the fiducial values of these parameters and their 
ssociated priors please see Table 2 . To apply a Gaussian prior to
 particular parameter in a Fisher matrix, one simply adds 1 /σ 2 

prior 
o the diagonal element associated with the parameter (Coe 2009 ).
n conceptual terms, the priors on the Fisher matrix parameters can
e summarized by a diagonal covariance matrix with elements σ 2 

prior . 
his covariance matrix can then be inverted into a prior Fisher matrix,
iving 1 /σ 2 

prior diagonal elements, and added to the experimental 
isher matrix. 

.3.1 Shear multiplicative bias 

ystematic uncertainties in the measuring and averaging of galaxy 
hapes can result in a multiplicative scaling of the observed shear.
MNRAS 513, 1210–1228 (2022) 
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Figure 3. The faint end slope of the number counts αi as a function of the limiting magnitude for each tomographic bin in n -sample (red) and ε-sample (blue). 
The αi values used in this analysis were found by fitting the slope of the logarithmic cumulative number counts (see equation 28 ) between the vertical line and 
the right-hand side of the figure. 
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hese systematic effects include: noisy galaxy images, the applica-
ility of the model used to describe the light profile of galaxies,
he details of the galaxy morphology, and selection biases (e.g.
eymans et al. 2006 ; Mandelbaum et al. 2018 ; Zuntz et al. 2018 ;
annawadi et al. 2019 ). We parametrize this multiplicative scaling
sing one parameter m 

i per redshift bin (10 parameters in total),
hich scale the cosmic shear and g alaxy–g alaxy lensing power 
NRAS 513, 1210–1228 (2022) 

2  
pectra as 

C 

ij 
εε( l) → (1 + m 

i )(1 + m 

j ) C 

ij 
εε( l) , 

C 

ij 
n ε( l) → (1 + m 

j ) C 

ij 
n ε( l) . (29) 

e impose Gaussian priors on these multiplicative parameters, which
re guided by the LSST DESC science requirements (Alonso et al.
018 ). These science requirements forecast the uncertainties LSST
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Table 1. Faint end number count slopes αj for each redshift bin j in n -sample 
and ε-sample, with their associated 1 σ uncertainties. 

n -sample ε-sample 

α1 0.445 ± 0.005 α1 0.412 ± 0.005 
α2 0.663 ± 0.006 α2 0.624 ± 0.004 
α3 0.848 ± 0.006 α3 0.677 ± 0.004 
α4 0.781 ± 0.005 α4 0.825 ± 0.006 
α5 0.573 ± 0.004 α5 0.97 ± 0.01 
α6 0.694 ± 0.006 α6 0.74 ± 0.01 
α7 0.74 ± 0.01 α7 0.895 ± 0.006 
α8 0.95 ± 0.02 α8 0.99 ± 0.01 
α9 1.39 ± 0.01 α9 1.08 ± 0.01 
α10 2.24 ± 0.02 α10 1.42 ± 0.01 

Table 2. Fiducial values and priors for the model parameters used to compute 
the fisher matrices in this work. Flat priors do not contribute to the Fisher 
matrix so we simply specify flat, and do not include bounds. 

Parameter Fiducial value Prior 

Sur v ey 
Area 18 000 deg 2 Fixed 
σ e 0.35 Fixed 

Cosmology 
�m 

0.265 Flat 
h 0 0.71 Flat 
�b 0.0448 Flat 
n s 0.963 Flat 
A s /10 −9 2.1 Flat 
w −1.0 Flat 
w a 0.0 Flat 
�k 0.0 Fixed 

CLF 

log ( M 1 ) 11.24 Flat 
log ( L 0 ) 9.95 Flat 
γ 1 3.18 Flat 
γ 2 0.245 Flat 
σ c 0.157 Flat 
αs −1.18 Flat 
b 0 −1.17 Flat 
b 1 1.53 Flat 
b 2 −0.217 Flat 

IAs 
A IA 1.0 Flat 

n -sample Photo-z 
� 

i 
n 0.0 Gauss(0.0, 0.003) 

ε-sample Photo-z 
� 

i 
ε 0.0 Gauss(0.0, 0.001) 

Shear bias 
m 

i 0.0 Gauss(0.0, 0.003) 

Clustering bias 
a m 

0.001 Flat 
b m 

0.0 Flat 
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ill need to achieve in order to meet their main objectives of
ignificantly improving the constraints on the dark energy parameters 
 0 and w a , compared to previous dark energy experiments, and 
btaining dark energy constraints where the total calibratable system- 
tic uncertainty is less than the marginalized statistical uncertainty. 
or the case of shear multiplicative bias the requirement is that the
systematic uncertainty in the redshift-dependent shear calibration’ 
hould not exceed 0.003 by year 10. We therefore apply a Gaussian
rior centred on zero with a standard deviation of 0.003 to each of
ur shear multiplicative bias parameters. 

.3.2 Clustering multiplicative bias 

e parametrize uncertainties in the number count measurement 
sing a similar approach to that for shear. Systematics which affect
he number density of galaxies include: galactic dust obscuring 
ackground galaxies, variable surv e y depth impacting the number 
f sources promoted across the flux limit by magnification, and 
tars contaminating the galaxy sample (Hildebrandt 2015 ; Thiele 
t al. 2020 ). Usually these effects would be partially absorbed by
he galaxy bias (CLF) parameters; ho we ver, since we include the
alaxy luminosity function in our analysis the CLF parameters will 
e tightly constrained. We therefore felt it was important to include
his multiplicative bias parametrization for clustering as well as shear. 

Analogous to shear multiplicative bias, the observed clustering 
ower spectra are scaled by a multiplicative factor as, 

C 

ij 
nn ( l) → (1 + m 

i 
eff )(1 + m 

j 

eff ) C 

ij 
nn ( l) , 

C 

ij 
n ε( l) → (1 + m 

i 
eff ) C 

ij 
n ε( l) . (30) 

o we ver, since most systematics decrease with signal-to-noise ratio, 
e assume m 

i 
eff has a power-law dependence on the signal to noise

f galaxies in redshift bin i . This enables us to reduce the number
f clustering multiplicative bias parameters from 10 parameters (one 
 

i 
eff per redshift bin) to two parameters a m 

and b m 

. m 

i 
eff is given in

erms of a m 

and b m 

by 

m 

i 
eff = m step − m fid 

= 

1 

N i 

[
a m 

N i ∑ 

n = 1 

( S 

N 

)b m 

n 
− a fid 

N i ∑ 

n = 1 

( S 

N 

)b fid 

n 

]
, 

(31) 

here N i is the number of galaxies in tomographic bin i , the sum
s o v er the signal-to-noise ratio S / N of all galaxies in tomographic
in i , a fid is the fiducial value of a m 

, and b fid is the fiducial value of
 m 

. We introduce the m fid term because if m eff = m step , b m 

becomes
nconstrained when a m 

is equal to zero, which breaks the Gaussian
ikelihood assumption in the Fisher matrix prediction. 

We compute the signal-to-noise ratio for each galaxy in our sam-
les from the error on the i -band apparent magnitude. Using the signal
o noise of every galaxy in this bias calculation is computationally 
 xpensiv e, since the total number of galaxies in n-sample and ε-
ample is of order 10 7 and 10 8 . We therefore use a randomly selected
 per cent subsample of galaxies in this calculation. This subsample 
s representative of the full galaxy sample, but prevents our bias
alculation from being prohibitively slow. 

.3.3 Photometric redshift uncertainties 

e model uncertainties in the redshift distributions shown in Fig. 2
y introducing shift factors � 

i (Bonnett et al. 2016 ). � 

i simply shifts
he redshift distribution in bin i so, 

 

i ( z) → n i ( z − � 

i ) . (32) 

ince we have two redshift distributions, one for ε-sample and one for 
 -sample, each divided into 10 bins this results in 20 shift parameters
 

i . These parameters are likely to be correlated, so we are making a
onserv ati ve choice by allowing 20 separate shift parameters, which
ay somewhat weaken our final constraints. We impose Gaussian 

riors on each of these shift parameters, once again guided by the
MNRAS 513, 1210–1228 (2022) 
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Figure 4. Constraints on the cosmological parameters used in this analysis from C nn and C nn including magnification terms for n -sample. Including magnification 
has only a small impact on the constraints. 
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SST DESC science requirements (Alonso et al. 2018 ). The prior is
entred on zero, with a standard deviation of 0.003 for the n -sample
arameters and of 0.001 for the ε-sample parameters. 
A future extension of this work could be to include other modes

f redshift uncertainty, such as a change in the width or to the high
edshifts tails, as in Nicola et al. ( 2020 ). These may be particularly
nteresting for magnification, as the y change the lev el of o v erlap
etween different redshift bins. 

.4 Co v ariances 

n this forecast, we consider two component Fisher matrices. The
isher matrix for the weak lensing observables and the Fisher matrix
or the galaxy luminosity function (see Section 2 ). We therefore
equire two covariances: the weak lensing observables covariance
nd the galaxy luminosity function covariance. 

.4.1 Weak lensing observables covariance 

e compute a Gaussian covariance for the observable weak lensing
ower spectra ( C εε , C nn , and C n ε) using COSMOSIS . The covariance
etween two power spectra is given by 

ov 
[
C 

ij ( � ) , C 

kl ( � ′ ) 
] = δ�� ′ 

2 π

A��� 

[
C̄ 

ik ( � ) ̄C 

j l ( � ) + C̄ 

il ( � ) ̄C 

jk ( � ) 
]
, 

(33)
NRAS 513, 1210–1228 (2022) 
here ijkl denote redshift bins, δ�� ′ is the Kronecker delta, A is the
urv e y area, and �� the size of the angular frequency � bin (Joachimi,
chneider & Eifler 2008 ; Joachimi & Bridle 2010 ). We do not include

he non-Gaussian contributions to the covariance since their effect is
mall, and unlikely to impact our final results (Barreira, Krause &
chmidt 2018 ). To account for the random terms in equations ( 6 ) and
 7 ) we define 

¯
 

ij ( � ) = C 

ij ( � ) + N 

ij , (34) 

here N 

ij is the shot or shape noise contribution. In the case of C εε , 

 

ij = δij 

σ 2 
ε

2 ̄n i 
, (35) 

n the case of C nn , 

 

ij = δij 

1 

n̄ i 
, (36) 

nd in the case of C n ε , N 

ij = 0. Where σ ε is the total intrinsic
llipticity dispersion, and ̄n i is the average number density of galaxies
n redshift bin i (Bartelmann & Schneider 2001 ). We compute the
o wer-spectra cov ariance for 20 log-spaced angular frequency l bins
rom l min = 30, to a v oid inaccuracies in the Limber approximation,
o l max = 3000, to a v oid the very non-linear regime. 
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Figure 5. Constraints on the CLF parameters used in this analysis from C nn and C nn including magnification terms for n -sample. Including magnification has 
little effect on the constraints, since they are driven by the galaxy luminosity function not the weak lensing or clustering observables. 
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.4.2 Galaxy luminosity function covariance 

e compute the galaxy luminosity function covariance by measuring 
he galaxy luminosity functions of our mock LSST galaxy samples 
nd then computing a bootstrap covariance. Since Fisher forecasts do 
ot require a datavector, only a covariance, we only use the measured
uminosity functions to compute the covariance and model the galaxy 
uminosity function in the forecast using the CLF formalism (see 
ection 4 ). 
To measure the luminosity functions for the n -sample and ε-

ample we begin by computing the luminosity of each galaxy from
ts rest-frame absolute magnitude in the i band. We then divide our
ample into the 10 tomographic bins described abo v e and scale the
uminosity function for each bin j by the volume of bin j , to convert
he histogram to a number density. When calculating the bin volume 
e assume that the galaxies do not scatter beyond the tomographic 
in boundaries. This is an approximation, which Fig. 2 shows, is
ecoming problematic for bin 10. 
Ideally, we would use the full range of galaxy luminosities to 

ompute our bootstrap cov ariance. Ho we ver, in order to use the low-
uminosity region we would need to correct our galaxy samples to be
olume complete, for example through the 1/ V max method (Schmidt 
968 ; Felten 1976 ; Cole 2011 ). High-luminosity objects can be
bserved across the full volume of the surv e y, but low-luminosity
bjects can only be observed at smaller distances. This introduces 
 bias referred to as Malmquist bias, and we therefore only want to
nclude galaxies that can be observed across the whole volume of
he surv e y. F or the purposes of this work we deemed it sufficient
o simply cut out the low-luminosity galaxies to make the sample
olume limited, since this is still a significant step forward compared
o previous analyses. For details of how we determine the volume
omplete cut see Appendix A . 

We then compute a bootstrap covariance for our measured galaxy 
uminosity functions. First, we sample our data set with replacement 
00 times and compute the associated datavectors. We then assume 
hat each luminosity bin in each tomographic bin is independent 
each of our data points is independent) and calculate the variance of
hese 100 samples. This gives us a diagonal covariance. The variance
f the 100 samples is in general small, due to the very large numbers
f galaxies in each sample. 

.5 Fiducial values 

he Fisher matrix gives the curvature of the log-likelihood function 
round its peak. It does not find the location of the peak, this is
efined with a set of fiducial values (shown in Table 2 ). The set of
arameters required to calculate the 3D power spectra in Section 3.2
re the cosmological parameters and the CLF parameters. In this 
ork, we consider the constraints on a flat Lambda cold dark matter
MNRAS 513, 1210–1228 (2022) 
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Figure 6. Constraints on the shear multiplicative bias parameters from a joint analysis of C εε and C nn (not including C n ε ) with and without magnification terms, 
where we have not applied the Gaussian prior detailed in Table 2 . C εε is calculated for ε-sample and C nn is calculated for n -sample. Including magnification 
only slightly impro v es the constraints, with a greater impact at higher redshift. 
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osmology, and vary the cosmological parameters; �m 

the matter
ensity, h 0 the Hubble parameter, �b the baryon density, n s the scalar
pectral index, A s /10 −9 the amplitude of primordial fluctuations, and
 and w a the dark energy equation of state parameters. We take their
ducial values from the input values used to generate the simulation
or the LSST DESC mock catalogue, or from the values obtained by
he Planck satellite (Aghanim et al. 2020 ). 

We also vary the full set of CLF parameters log M 1 , log L 0 , γ 1 , γ 2 ,
c , αs , b 0 , b 1 , and b 2 , detailed in Section 3.2 . Here we use the fiducial
alues found for SDSS by Cacciato et al. ( 2013 ), which have been
hown to also be applicable to higher redshift surv e ys (Cacciato, van
itert & Hoekstra 2014 ; van Uitert et al. 2016 ). 

 RESU LTS  

.1 Clustering 

ig. 4 shows the forecast constraints on the cosmological parameters
rom C nn with and without including magnification terms for n -
ample. In the case of including magnification the observable is
 nn = C gg + C gm 

+ C mm 

instead of C nn = C gg . Including magnifi-
ation generally has a small impact on the cosmological parameter
NRAS 513, 1210–1228 (2022) 
onstraints. The greatest change is the 1 σ constraint on �m 

, which
s impro v ed by a factor of 1.3 from 0.003 to 0.0023. 

The forecast constraints on the cosmological parameters from C nn 

nd C nn including magnification terms for ε-sample show that the
mpact of magnification is reduced compared to the n -sample. The
 σ constraint on �m 

is only impro v ed by a factor of 1.03 from 0.0032
o 0.0031, instead of a factor of 1.3 with the n -sample. This shows
hat including magnification has a greater impact for deeper samples.

Fig. 5 shows the forecast constraints on the CLF parameters from
 nn with and without including magnification terms for the n -sample.

ncluding magnification has little effect on the constraints on the
LF parameters. This is expected because the CLF constraints are
redominantly determined by the galaxy luminosity function. We
ocus on the cosmological and CLF parameters, instead of presenting
he full 28 parameter space, for clarity. The steps taken to ensure the
tability of our Fisher matrix are detailed in Appendix B . 

A useful measure of the constraining power of an analysis is the
igure of Merit (FoM) defined as 

oM = det([F 

−1 ] q ) 
1 

N q , (37) 

here [F 

−1 ] q is the inverse Fisher matrix for the set of parameters q
nd N q is the number of parameters q in the set. In this work, we define
 as the full set of cosmological parameters, so the FoM represents
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Figure 7. Absolute difference between C nn with and without magnification, in terms of the uncertainty on C nn without magnification, for n -sample. The grey 
shaded region indicates where C nn including magnification is more than 2 σ away from C nn without magnification. The dashed lines show the difference in C nn 

when �m 

and A s are altered by 5 σ . 
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he power of the constraints on the cosmological parameters. It is also
ommon to define a dark energy FoM where q = { w , w a } (Albrecht
t al. 2006 ). 

When magnification is included in the clustering analysis for the 
 -sample the FoM is increased by a factor of 1.45. Ho we ver, when
agnification is included in the clustering analysis for ε-sample (the 
SST gold sample) the FoM is increased by a factor of 1.08. This
irrors the conclusions from looking at the parameter constraints 

n �m 

– magnification is more beneficial for deeper samples with 
reater numbers of low signal-to-noise ratio galaxies. Interestingly, 
here is no increase in the FoM for clustering without magnification 
hen using the n -sample instead of ε-sample. This implies that 

t is more beneficial to have a smaller sample of high signal-to-
oise objects than a larger sample including lower signal-to-noise 
bjects. This is likely due to the additional fainter objects having 
oorer photometric redshifts and therefore largely contributing to 
he tails of the redshift distribution. Looking back at Fig. 2 we
an see that the redshift distribution for the ε-sample is much 
leaner. 

.2 Shear calibration 

he previous section showed that including weak lensing magnifica- 
ion only has a small effect on the cosmological parameter constraints
rom an LSST-like angular galaxy clustering analysis. In a combined 
lustering and cosmic shear analysis the impact of magnification on 
he cosmological parameter constraints can only be reduced. This 
s because magnification predominantly contributes to the clustering 
ignal and provides very similar information to shear. We therefore 
ocus on the effect of magnification on the shear multiplicative bias
arameters. 
We examine the impact of including magnification on the shear 
ultiplicative bias parameters for a combined LSST clustering C nn 

nd shear C εε analysis, where the analyses occur on separate patches
f sky so the C n ε term is negligible. We are therefore investigating
hether the impro v ed cosmological constraints from magnification 

ranslate into an impro v ed calibration. 
Fig. 6 shows the forecast constraints on the shear multiplicative 

ias parameters from our C nn and C εε analysis, with and without
agnification terms, where C εε is calculated for ε-sample and C nn 

or the n -sample. Including magnification only slightly impro v es
he constraints on the shear calibration parameters, with a greater 
ffect at higher redshift. The 1 σ constraint on m 

1 is impro v ed
y a factor of 1.06, m 

6 by 1.3, and m 

10 by 1.34 when including
agnification. When C nn is calculated using the ε-sample the 

mpact is similar, but less pronounced. These results show that 
ncluding magnification is not particularly helpful for calibrating 
he shear measurement. Ho we ver, the impact of magnification may
e slightly impro v ed when performing a full ‘3x2pt’ analysis,
here the clustering and shear are measured on the same patch 
f sky. 

.3 Bias 

ecent works have shown that cosmological results from upcoming 
urv e ys such as LSST will be biased if the effects of weak lensing
agnification are not included, due to impro v ements in statistical

recision (Duncan et al. 2014 ; Cardona et al. 2016 ; Lorenz et al.
MNRAS 513, 1210–1228 (2022) 

art/stac872_f7.eps


1222 C. Mahony et al. 

M

Figure 8. Absolute difference between C nn with and without magnification, in terms of the uncertainty on C nn without magnification, for ε-sample. The grey 
shaded region indicates where C nn including magnification is more than 2 σ away from C nn without magnification. The dashed lines show the difference in C nn 

when �m 

and A s are altered by 5 σ . 
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018 ; Thiele et al. 2020 ). To examine this for our forecast, Fig. 7
hows the absolute difference between the clustering power spectra
 nn with and without magnification in terms of the 1 σ uncertainty
n the clustering power spectra without magnification. In this case
he clustering power spectra have been calculated using n -sample.
he grey shaded region indicates where C nn including magnification

s more than 2 σ away from C nn without magnification. Particularly
t high � (small scales) C nn including magnification significantly
iverges from C nn without magnification. It is worth noting that this
esult is influenced by the very small uncertainty on the clustering
ignal for a sample of such great depth. For a clustering signal with
reater uncertainty the difference due to magnification in terms of
he 1 σ uncertainty would be reduced. 

F or qualitativ e comparison, we hav e also shown the impact of
hanging �m 

and A s by 5 σ in Fig. 7 . In all of the redshift bin
ombinations sho wn, the dif ference from including magnification
s larger than or comparable to the difference from changing �m 

nd A s by 5 σ . This clearly indicates that not including magnification
erms will catastrophically bias cosmological constraints from LSST.
dditionally, the difference from not including magnification seems

o mimic the behaviour of biasing A s by 5 σ . This implies that not
ncluding magnification could particularly bias the constraints for A s ,
ne of the parameters weak lensing is most sensitive to. 
Fig. 8 shows the absolute difference between the clustering power

pectra C nn with and without magnification in terms of the 1 σ
ncertainty on the clustering power spectra without magnification,
here the clustering power spectra have been calculated using the ε-

ample. In this case the difference from including magnification is not
s large as for n -sample, ho we ver in most redshift bin combinations
NRAS 513, 1210–1228 (2022) 

t  
s still comparable or larger than the differences from changing �m 

nd A s by 5 σ . 

 C O N C L U S I O N S  

revious works have shown that upcoming results from surv e ys such
s LSST and Euclid will be biased if the effects of weak lensing
agnification are not included (Duncan et al. 2014 ; Cardona et al.

016 ; Lorenz et al. 2018 ; Thiele et al. 2020 ). In this work, we forecast
hether including weak lensing magnification as a complementary
robe can additionally impro v e the precision of the LSST galaxy
lustering constraints. We determined this using the Fisher matrix
ormalism, where our theory datavector included galaxy clustering
nd the galaxy luminosity function. To calculate the galaxy clustering
nd the galaxy luminosity function, we employed a halo model,
etailed in Cacciato et al. ( 2013 ). We defined two mock LSST galaxy
amples from the LSST DC2 simulations (Korytov et al. 2019 ) for
se in our forecast; a sample which corresponds to the LSST gold
ample where the i -band magnitude is less than 25.3 (intended to
e used for the weak lensing shear measurement), and a very deep
ample where the i -band magnitude is less than 26.5. 

We found that weak lensing magnification provides little additional
nformation as a complementary probe for LSST. For a galaxy
lustering analysis using the LSST gold sample we found that in-
luding magnification increased the FoM for the set of cosmological
arameters �m 

, h 0 , �b , n s , A s /10 −9 , w, and w a by a factor of 1.08.
hen using the deep galaxy sample we found that magnification

ncreased the FoM by a factor of 1.45. In terms of the precision of
he �m 

constraints, we found for a galaxy clustering analysis using
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he LSST gold sample that including magnification increased the 1 σ
recision by a factor of 1.03, using the deep sample we found a factor
ncrease of 1.3. These results show that including magnification is 

ore beneficial for deeper samples. 
The effect of including magnification would be smaller in a 

ombined galaxy clustering and cosmic shear analysis because 
agnification provides similar information to that of cosmic shear. 
o we ver , we in vestigated the impact of including magnification on

he calibration of the shear measurement. We found that including 
agnification only slightly impro v es the constraints on the shear 

alibration parameters. 
While this forecast is more realistic than many to date, as it includes 

SST mock catalogue data and a flexible galaxy bias model, it still
elies on a number of simplified assumptions about magnification. 
irst, the magnification modelling assumes that the galaxy sample is 
urely flux limited. Often galaxies are also selected based on their 
ignal-to-noise ratio, colours, and morphology which complicate the 
agnification modelling (Hildebrandt 2015 ). Secondly, there are 
 large number of systematics associated with the magnification 
easurement such as dust attenuation, variable surv e y depth, star–

alaxy separation, and the blending of galaxy images (Hildebrandt 
t al. 2013 ; Morrison & Hildebrandt 2015 ; Thiele et al. 2020 ). We
ncluded a multiplicative factor in our modelling of the clustering 
ower spectra in order to incorporate these effects, but more detailed 
odelling is likely required. For example, we could have marginal- 

zed o v er the faint end slopes of the number counts αi , which are
equired to compute the magnification power spectra. We chose to 
x them, since at least for the gold sample it should be comparatively
asy to explore the luminosity function beyond the magnitude limit, 
o measurement errors on αi can be expected to be very small. 
his forecast could therefore be considered a best case scenario for
agnification, and even in this scenario we found that including 
agnification has little impact. Ho we ver, we also confirmed that not

ncluding magnification will strongly bias cosmological results from 

SST, so must be modelled. 
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PPENDI X  A :  VO LU ME  COMPLETE  C U T  F O R  

A L A X Y  LUMI NOSI TY  F U N C T I O N  

OVA R I A N C E  

 deeper galaxy sample will be volume complete to lower lumi-
osities, so when the luminosity function of a shallower sample
iverges from the luminosity function of a deeper sample, we know
he shallower sample has ceased to be volume complete. We can
herefore determine the volume complete luminosity cut for the
-sample by finding where it diverges from the n -sample. Our
ivergence condition is 

| � 

i 
ε( L ) − � 

i 
n ( ε) ( L ) | 

� 

i 
ε( L ) 

> 0 . 2 , (A1) 

here � 

i 
ε is the luminosity function for the ε-sample and � 

i 
n ( ε) is the

uminosity function for the n -sample, where the n -sample has been
inned using the ε-sample tomographic bins. We cut � 

i 
ε when there

s a difference of 20 per cent from the deeper sample � 

i 
n ( ε) . This value

as found to cut � 

i 
ε before it significantly diverged from the deeper

ample whilst allowing for small deviations, see the right-hand panel
f Fig. A1 . 
Since we did not have a sample deeper than the n -sample available

o us, we made a more stringent volume complete cut on the n -
ample luminosity function based on where the luminosity function
f our shallower sample ε-sample diverged. If the shallower sample
s volume complete we can be sure that the deeper sample is also
olume complete. In this case our divergence condition is 

| � 

i 
n ( L ) − � 

i 
ε( n ) ( L ) | 

� 

i 
n 

> 0 . 2 , (A2) 

here � 

i 
n is the luminosity function for n -sample and � 

i 
ε( n ) is the

uminosity function for ε-sample, where ε-sample has been binned
sing the n -sample tomographic bins. While this luminosity cut
nforces that n -sample is volume complete, using a shallower sample
eans that the cut is much more conserv ati ve than necessary. 
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Forecasting magnification for the LSST 1225 

Figure A1. Measured luminosity functions � 

i ( L ) for each photometric redshift bin in n -sample (left-hand panel) and ε-sample (right-hand panel), with 
associated bootstap errors. The dotted lines show the location of the luminosity cuts to n -sample (left-hand panel) and ε-sample (right-hand panel) to make sure 
they are volume complete, and do not introduce a bias. ε-sample n tomographic bin refers to the ε-sample being binned into the n -sample redshift bins, and 
n -sample ε tomographic bin refers to the n -sample being binned into ε-sample redshift bins. L � 

i ( L ) has units of h 3 Mpc −3 . 
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PPEN D IX  B:  FISHER  MATRIX  STABILITY  

igh-dimensional Fisher matrices can be unstable. Here, we detail 
he steps taken to ensure the stability of our Fisher matrices and
ence the robustness of our results. 
v  
The deri v ati ves in equation ( 3 ) are calculated numerically using
 method of numerical differentiation called a 5-point stencil. This 
ethod requires the pipeline to be e v aluated at 4 points around the
odel parameter’s fiducial value (5 points including the fiducial 

alue). The separation between these points is referred to as the step
MNRAS 513, 1210–1228 (2022) 
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Figure B1. Standard deviation of the 1D Fisher likelihoods against the step size used to calculate the deri v ati ves in the Fisher matrix. The chosen step size 
should be in the plateau region where the Fisher matrix is actually capturing the shape of the likelihood. 
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Forecasting magnification for the LSST 1227 

Figure B2. Comparison of the 1D likelihoods from the Fisher matrix calculated using the selected step size against the 1D likelihoods from sampling the 
likelihood directly using a grid sampler. 
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Figure B3. Comparison of the constraints on the cosmological parameters used in this analysis when found using and MCMC or a Fisher matrix. All other 
parameters have been fixed. 

s  

c  

s  

m  

o
 

m  

m  

f  

u  

s  

g  

G  

S  

F  

s  

m  

a
 

F  

a  

w  

b  

b  

i  

s  

o  

m  

a  

t  

l  

i
 

p  

a  

C  

c  

m  

t
 

t  

s  

r

4

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/1/1210/6561632 by Jacob H
eeren user on 22 January 2023
ize. If the step size is too large the Fisher matrix fails to capture the
urvature of the likelihood function about the peak and if it is too
mall numerical difficulties can arise. Therefore when using Fisher
atrices it is vital to verify whether the step size is appropriate,

therwise any results are meaningless. 
We verify our step sizes in one dimension by fixing all but one
odel parameter. We then calculate the 1D likelihood using a Fisher
atrix with a specified step size and by sampling the likelihood

unction directly. If the 1D likelihoods match we know we are
sing a reasonable step size when calculating our Fisher matrix. We
ample the likelihood function directly using a simulated datavector
enerated at the Fisher matrix fiducial values and a grid sampler.
rid samplers e v aluate the likelihood at a specified set of grid points.
ince we are assuming a Gaussian likelihood when calculating our
isher matrix (equation 3 ) we are only interested in whether the
tandard deviation σ of the likelihood calculated using the Fisher
atrix matches the σ of the likelihood from sampling directly using
 grid sampler. 

Fig. B1 shows the σ of the 1D likelihood calculated using the
isher matrix for different choices of step size. These plots show that
s the step size decreases the σ of the 1D likelihood reaches a plateau,
here the step size is actually capturing the shape of the likelihood,
efore becoming unstable (see subplot for the photometric redshift
ias parameter for redshift bin 10). We therefore select a step size
n the range where the σ of the Fisher likelihood is stable. Fig. B2
NRAS 513, 1210–1228 (2022) 
hows the Fisher likelihoods generated using the selected step sizes
 v erlaid with the likelihood from the grid sampler to verify that they
atch. For the case of the magnification bias parameter b m 

the Fisher
nd grid likelihoods do not match. This is because when calculating
he Fisher matrix we assume that the likelihood is Gaussian, and the
ikelihood of b m 

from direct sampling is clearly not Gaussian. This
s a limitation of the Fisher matrix approach. 

We additionally check the Fisher step sizes for the cosmological
arameters, by varying all the cosmological parameters at once
nd exploring the multi v ariate posterior with Markov Chain Monte
arlo (MCMC) sampling. 4 Fig. B3 shows a comparison between the
onstraints obtained from the MCMC and the Fisher matrix. They
atch well and show that our Fisher matrix is adequately capturing

he shape of the likelihood. 
Figs B1 and B2 show only an example case for the parameters used

o generate the C nn Fisher matrix for ε-sample. Ho we ver, the step
izes have been verified using this method for every Fisher matrix
eferred to in the results section. 

 The MCMC we use is emcee (F oreman-Macke y et al. 2013 ). 
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