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A B S T R A C T 

The abundance of clusters of galaxies is highly sensitive to the late-time evolution of the matter distribution, since clusters form 

at the highest density peaks. Ho we ver, the 3D cluster mass cannot be inferred without deprojecting the observations, introducing 

model-dependent biases and uncertainties due to the mismatch between the assumed and the true cluster density profile and the 
neglected matter along the sightline. Since projected aperture masses can be measured directly in simulations and observationally 

through weak lensing, we argue that they are better suited for cluster cosmology. Using the Mira–Titan suite of gravity-only 

simulations, we show that aperture masses correlate strongly with 3D halo masses, albeit with large intrinsic scatter due to the 
varying matter distribution along the sightline. Nonetheless, aperture masses can be measured ≈2–3 times more precisely from 

observations, since they do not require assumptions about the density profile and are only affected by the shape noise in the weak 

lensing measurements. We emulate the cosmology dependence of the aperture mass function directly with a Gaussian process. 
Comparing the cosmology sensitivity of the aperture mass function and the 3D halo mass function for a fixed survey solid angle 
and redshift interval, we find the aperture mass sensitivity is higher for �m 

and w a , similar for σ 8 , n s , and w 0 , and slightly lower 
for h . With a carefully calibrated aperture mass function emulator, cluster cosmology analyses can use cluster aperture masses 
directly, reducing the sensitivity to model-dependent mass calibration biases and uncertainties. 

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmological parameters – cosmology: observations –
cosmology: theory – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

he next decade of cosmological galaxy surveys such as Euclid 1 and 
he Rubin observatory le gac y surv e y of space and time (LSST) 2 will
lucidate the late-time evolution of the Universe by measuring the 
arge-scale distribution of galaxies out to a redshift of z ≈ 2. The
heer volume of these surv e ys will result in the detection of o v er a
illion galaxies that can be used to trace the underlying dark matter
istribution. The main focus of these surv e ys is on measuring the
atter distribution through the clustering of galaxies and through the 

ensing-induced distortion of galaxy shapes due to the intervening 
arge-scale structure, the cosmic shear. 

Galaxy clusters, located at the most significant peaks of the 
ensity field, will be another particularly powerful probe. Due to 
he hierarchical growth of structure, the abundance of clusters as 
 function of mass and time depends sensitively on the amount 
f matter, �m 

, how clustered it is, σ 8 , and also on the late-time
xpansion due to dark energy, quantified by its equation-of-state 
arameter w 0 and its time deri v ati ve w a (e.g. Haiman, Mohr &
older 2001 ; Allen, Evrard & Mantz 2011 ; Pratt et al. 2019 ).
 E-mail: debackere@strw .leidenuniv .nl 
 https://www.euclid-ec.org 
 ht tps://www.lsst .org/
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ore than 10 5 galaxy clusters will be detected in the coming decade
e.g. Sartoris et al. 2016 ), transforming galaxy cluster cosmology 
nto a cosmological probe limited only by our understanding of its
ystematic uncertainties (e.g. K ̈ohlinger, Hoekstra & Eriksen 2015 ). 

Observationally, clusters are identified as highly significant peaks 
n maps of some observed signal, O that traces the total-mass
istribution, such as the galaxy o v erdensity, the weak lensing shear,
he X-ray emission, or the Sun yaev–Zel’do vich (SZ) effect signal.
ext, after some quality cuts on the cluster candidates, we are left
ith a cluster catalogue for the surv e yed volume. To deriv e the

osmological constraints from this catalogue, we need a theoretical 
rediction for the cosmology-dependent cluster abundance, and a 
ay to link the theoretical predictions to the observed clusters. In
rinciple, any halo property that depends on cosmology can be used,
ut the halo mass, M , is the most obvious candidate. This, then
equires knowledge of the dependence of the halo mass function, 
 ( M | �), on the cosmological parameters, �, the mass–observable
elation, P ( O| M ), and the cluster selection function, S. Any
ystematic error in these quantities will degrade the cosmological 
onstraints from cluster cosmology. 

To calibrate the mass–observable relation, we need observational 
easurements of the halo mass, M , for a subsample of the detected

lusters. We will denote the halo mass inferred from observations as
 obs . There are multiple ways in which halo masses can be defined,

ince haloes do not have clear boundaries. Weak lensing observations 
is is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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ave become the de facto standard to calibrate cluster masses as they
rovide the only way to directly probe both baryonic and dark matter
for a re vie w, see Hoekstra et al. 2013 ). Masses can be obtained
rom weak lensing observations either by fitting a density profile to
he observed shear and inferring the mass within some radius, or by
irectly adding up the surface mass density – which can be obtained
rom the shear – within some aperture. Since we are only able to
ecurely identify clusters abo v e some threshold in the observed
ignal, O lim 

, a correct calibration of the mass–observable relation
lso requires the abundance of clusters to be taken into account. After
ll, the number of haloes around the detection limit will depend not
nly on the uncertainty in the mass–observable relation, but also on
he expected number of haloes at that given mass (see Mantz 2019
or a clear discussion of this effect). 

A full cluster cosmology analysis then calibrates the
osmology- and redshift-dependent relations P ( O, z| M obs , �, S)
nd P ( M obs , z| M , �, S), by fitting them jointly with the theoretical
alo abundance, n ( M , z| �, S), to the observed cluster number
ounts within bins O i and z j , N ( O i , z j ). The halo abundance possibly
epends on the selection function for quality cuts based on the halo
nvironment, for example to exclude chance alignments or mergers.
e write out the forward model as 

( O i , z j | �, S) = �sky 

O i+ 1 ∫ 
O i 

d O 

z j+ 1 ∫ 
z j 

d z 
d V ( z, �) 

d �d z 

∫ 
d M d M obs 

×P ( O, z| M obs , �, S) P ( M obs , z| M , �, S) 

× n ( M , z| �, S) , (1) 

here O and z are integrated over their respective bins, and M obs 

nd M o v er all possible values. We convert the halo number density
o the number counts taking into account the cosmology-dependent
omoving volume at redshift z , V ( z , �), probed by a surv e y co v ering
 solid angle �sky . Correctly modelling the cluster selection is of
ital importance in any attempt to derive cosmological constraints
rom galaxy clusters. Ideally, we would detect clusters through an
bservable that has a straightforward selection function. Since the
election function depends on the surv e y under consideration, we
ill assume here that the selection has been modelled correctly. This

implifies the deri v ation of the main points we want to make. 
Currently, cluster analyses infer 3D halo masses from weak lensing

bservations to determine the mass–observable relation (see e.g.
ocquet et al. 2020 ; DES Collaboration et al. 2020 ). The appeal of
D halo masses stems from analytic arguments such as the (extended)
ress–Schechter theory (Press & Schechter 1974 ; Bond et al. 1991 ),
hich predict that the 3D halo mass function has a universal shape

et only by the significance of the seed perturbation of a halo in the
nitial Gaussian density field. In recent years, ho we ver, e ver larger
uites of cosmological dark matter-only (DMO) simulations have
hown that the assumed universality of the 3D halo mass function
oes not hold in detail. Simulated abundances can deviate from
he universal prediction by > 10 per cent depending on the redshift
nd the exact cosmology (see e.g. Tinker et al. 2008 ; Bhattacharya
t al. 2011 ; Despali et al. 2016 ; Diemer 2020 ). Hence, suites of
arge-volume cosmological simulations, run on a grid of different
osmological parameter values, are vital to capture the cosmology
ependence of the halo mass function through either analytic fitting
unctions (Tinker et al. 2008 ; Bhattacharya et al. 2011 ) or emulators
McClintock et al. 2019 ; Nishimichi et al. 2019 ; Bocquet et al.
020 ). 
Problematically, 3D halo masses cannot be measured directly

rom observations, which first need to be deprojected. Generically,
NRAS 515, 3383–3405 (2022) 
eprojection requires the assumption of a spherically symmetric
ensity profile, which will be affected by baryons and scatter
ntroduced by halo triaxiality, substructures, and correlated structures
see e.g. Becker & Kravtsov 2011 ; Oguri & Hamana 2011 ; Bah ́e,

ccarthy & King 2012 ; Henson et al. 2017 ; Debackere, Schaye &
oekstra 2021 ). This introduces model-dependent biases and in-

reases the uncertainty in the inferred 3D halo masses, degrading the
osmological constraints from cluster cosmology. Note that this step
s only required to transform the observations to theory predictions.
s we argue in this paper, such a procedure is not necessary. 
Since modern theoretical predictions for the halo abundance

lready rely on large simulation suites, it is possible to perform
he cluster mass calibrations with halo properties that can be

easured directly in both observations and simulations. This has the
dditional advantage that dark matter-only simulations can optionally
e replaced by hydrodynamical simulations in order to account for
aryonic effects on the halo mass function (e.g. Velliscig et al. 2014 )
r to directly predict a baryonic observable. We focus on weak
ensing observations because they probe the total matter content
nd are thus less sensitive to uncertainties in how baryonic matter
races the dark matter. From the weak lensing shear signal, we can
irectly measure projected aperture masses within apertures of a fixed
ngular or physical size, without the need to assume any density
rofile (see e.g. Schneider 1996 ; Bartelmann & Schneider 2001 ).
mportantly, these aperture masses can also be measured directly in
imulations. 

Aperture masses have been studied before, in the context of
luster cosmology with purely shear-selected samples in order to
ypass uncertainties due to the selection based on some baryonic
bservable such as the X-ray luminosity, the SZ signal or the galaxy
 v erdensity (e.g. Reblinsk y & Bartelmann 1999 ). Marian, Smith &
ernstein ( 2010 ) argued that future surv e ys would no longer need

o convert shear peaks to 3D halo masses, if predictions for the
alo abundance as a function of their aperture mass were available.
o we v er, Henna wi & Spergel ( 2005 ) showed that while almost all
assive clusters produce significant aperture mass peaks, there is
 large population of significant peaks that cannot be ascribed to a
ingle cluster but rather is the result of chance superpositions along
he line-of-sight due to the broad lensing kernel. Hence, to decrease
he number of false-positive cluster detections, baryonic observables
re still required for confirmation. More recently, Hamana et al.
 2015 ), Shan et al. ( 2018 ), and Martinet et al. ( 2018 ) have used
eaks identified from weak lensing observations to constrain the
atter density and clustering of the Universe. 
With the availability of large-volume simulation suites run for
any different cosmological models, it is now possible to calibrate

he cosmology dependence of the halo aperture mass function.
mportantly, with aperture mass measurements, the theoretical model
ssumptions separate cleanly from the purely observational data
n equation ( 1 ). That is, equation ( 1 ) splits into an observational
caling relation, P ( O, z| M obs , �, S), independent of the cluster
ensity profile, and a calibration between the observed and the
imulated aperture mass measurement, P ( M obs , z| M , �, S). The
ncertainty in the observational scaling relation will depend on how
ccurately O can be measured in the surv e y, and how strongly it
orrelates with the aperture mass. The theoretical calibration, on the
ther hand, will have a fixed uncertainty set by the shape noise
f the observations, since the aperture mass measured from the
eak lensing shear is an unbiased measure of the true aperture
ass (Schneider 1996 ). Moreo v er, as shown by Debackere et al.

 2021 ), halo aperture masses are expected to be less sensitive to
aryonic effects, especially when measured within larger apertures
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Table 1. Cosmological parameter values for the Mira–Titan suite of large- 
volume, cosmological N -body simulations. 

Parameter Min Max 

�m 

h 2 0 .12 0 .155 
�b h 2 0 .0215 0 .235 
�νh 2 0 .0 0 .01 
σ 8 0 .7 0 .9 
h 0 .55 0 .85 
n s 0 .85 1 .05 
w 0 − 1 .3 − 0 .7 
w b ≡ ( −w 0 − w a ) 1 / 4 † 0 .3 1 .3 
w a − 1 .56 1 .29 

Note. † Heitmann et al. ( 2016 ) show that this rescaling improves the prediction 
accuracy of cosmological models with w 0 + w a ≈ 0, by putting slightly more 
points near the w 0 + w a = 0 boundary. 
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hat are able to capture more of the ejected halo baryons. We study
ow baryons modify aperture mass measurements in Debackere, 
oekstra & Schaye ( 2022 ). 
Here, we investigate the behaviour of the different components 

hat enter the model for the cluster number counts in equation ( 1 ),
.e. the uncertainty in the mass–observable relation and the halo 

ass function for halo aperture masses. We will show that the 
ass–observable relation can be calibrated more precisely with 

perture masses than with the standard deprojected 3D halo masses. 
dditionally, we will use an emulator calibrated on the Mira–Titan 

uite of large-volume cosmological N -body simulations to show that 
he halo aperture mass function is also highly sensitive to variations 
n the cosmological parameters, in agreement with Marian et al. 
 2010 ). This study serves as a proof-of-concept that can be applied
n future cosmological analyses when carefully calibrated emulators 
or the halo aperture mass function are available. 

The paper is structured as follows: first, we introduce the large- 
olume simulation suite that we use for our analysis in Section 2 .
hen, in Section 3 , we study the dependence of the aperture mass
n both the 3D halo mass and the aperture size, and use the clean
eparation between the theoretical and observational uncertainties in 
perture mass measurements to study the behaviour of the mass–
bservable relation. In Section 4 , we build an emulator to investigate
he sensitivity of the aperture mass function to changes in the 
osmological parameters, comparing it to the 3D halo mass function. 
e compare our analysis with the wider literature, discuss advantages 

nd possible difficulties, and provide future applications in Section 5 . 
inally, we conclude in Section 6 . 

 SIMULATION S  

e use the Mira–Titan suite of cosmological, gravity-only simula- 
ions, run with the HACC N -body code (Hardware/Hybrid accel- 
rated cosmology code, Habib et al. 2016 ). This simulation suite
s well-suited to our purpose: it contains large-volume simulations 
ith cosmological parameters sampled using a nested space-filling 
esign that is ideal for interpolating the simulation predictions. The 
imulations include dynamical dark energy and massive neutrinos. 
he publically available data products of the simulation suite are 
escribed in more detail in Heitmann et al. ( 2019 ). So far, Mira–
itan has been used to construct emulators for the matter power 
pectrum (Heitmann et al. 2016 ; Lawrence et al. 2017 ) and the 3D
alo mass function (Bocquet et al. 2020 ). 
The simulation suite consists of a grid of 111 simulations that 

 ary eight dif ferent cosmological parameters. The cosmological 
arameters are chosen according to a nested lattice design that en- 
orces space-filling properties at multiple design steps (see Section 3 
f Heitmann et al. 2016 ). This design works well with Gaussian
rocess emulators and has an important global convergence property 
hat allows systematic impro v ement of emulation accuracy as more 
esign points are added. All cosmologies are spatially flat with �k = 

. The models vary the cosmological parameters within the ranges 
hown in Table 1 . The full grid of cosmological parameters is shown
n Fig. 1 of Bocquet et al. ( 2020 ). 

The Mira–Titan suite consists of three nested tessellations that 
efine the higher level grids (M011–M036, M037–M065, and M066–

111, respectively). These models all include massive neutrinos. To 
nable accurate predictions for the standard model of cosmology 
ith massless neutrinos, the simulation suite includes an additional 
0 simulations with m ν = 0 with the remaining seven cosmological 
arameters sampled on a symmetric Latin hypercube (M001–M010). 
ll simulations have box sizes of 2.1 Gpc (except for M006, 
023, and M046 with 2.091, 2.085, and 1.865 Gpc, respectively) 
nd include 3200 3 particles with masses m dm 

= 7 . 23 × 10 9 –1 . 22 ×
0 10 M � depending on the cosmology. Hence, groups and clusters 
ith m > 10 13 M � are generally resolved with > 1000 particles. All

imulations use a force softening length of ε = 6 . 6 kpc . For our
nalysis, we focus on the 100 simulations with massive neutrinos 
M011–M110, for the distribution of the cosmological parameters, 
ee fig. 1 of Bocquet et al. 2020 ). 

We now briefly describe how dynamical dark energy and massive 
eutrinos are included in the simulations, referring to Upadhye et al.
 2014 ) and Heitmann et al. ( 2016 ) for the full details. Both massive
eutrinos and dynamical dark energy are included at the level of the
ackground evolution, H ( z), and the initial conditions. Particularly, 
he linear z = 0 transfer function includes dark matter, baryons,
nd massive neutrinos and is normalized to the correct σ 8 . Then,
he matter component including dark matter and baryons is evolved 
ack to the initial redshift assuming a scale-independent growth 
actor including all species in the homogeneous background and 
sed to determine the initial particle positions and velocities. This 
nsures that the z = 0 linear power spectrum of the simulation is
orrect on large scales. For power spectrum calculations, the neutrino 
ontribution needs to be included by hand. Hence, the simulations do
ot account for neutrino clustering, which is no cause for concern,
ince this effect is much smaller than the suppression of the halo mass
unction due to neutrino free-streaming for the neutrino mass range 
onsidered. 

The saved simulation data products had to be chosen carefully 
ue to the large volume of the simulations and the size of the
osmological parameter hypercube. For each simulation output, the 
ull particle data is downsampled by a factor 100 before saving.
imulation haloes are identified on the fly, i.e. from the full particle
ata, using a friends-of-friends (FoF) algorithm with linking length 
 = 0.168. Subsequently, spherical o v erdensity masses, defined as
 � c = 4 / 3 π�ρcrit ( z ) r � c ( z ) 3 , with o v erdensity � = 200 are deter-
ined around the potential minimum of the F oF halo. F or all haloes
ith > 1000 particles (corresponding to m FoF � 10 13 M �), all the
articles belonging to the FoF halo are also saved separately. We will
se the downsampled particle catalogues to compute the projected 
perture masses around the identified FoF haloes with spherical 
 v erdensity masses m 200c > m 200c , lim 

= 10 13 . 5 M �. In Fig. 2 and
ection 3.1 , we show that the Poisson noise due to the downsampling

ntroduces an uncertainty of > 15 per cent in the measured aperture
asses of haloes with m 200c < 10 14 M �. Hence, we will mainly focus

n haloes with m 200c > 10 14 M � in the rest of this paper. 
MNRAS 515, 3383–3405 (2022) 
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M

Figure 1. Surface mass density maps for randomly selected haloes in mass bins log 10 m 200c /M � ∈ [13.5, 14.0, 14.5, 15, 15.5] for simulation M000 at z = 0.43. 
Each cutout has size 10 × 10 cMpc and is plotted on the same colour scale. The dashed circles indicate the spherical o v erdensity radius r 200c for each halo. With 
the coloured lines, we show the inner apertures R 1 = [0 . 5 , 1 . 0 , 1 . 5] cMpc which we use throughout this work. The red shaded region shows the outer control 
annulus between R 2 = 2 . 0 cMpc and R m 

= 3 . 0 cMpc for the background subtraction. 

Figure 2. Distribution of the uncertainty in the aperture mass, given in 
equation ( 2 ), for different 3D halo mass bins due to the factor of 100 
downsampling of the saved simulation particle catalogues. We add the Poisson 
uncertainties of the downsampled number of simulation particles within 
R < R 1 = 1 . 0 cMpc and R 2 ≤ R < R m 

in quadrature for all haloes with 
m 200c > 10 13 . 5 M � in M000 at z = 0.43. Different coloured lines correspond 
to different 3D halo mass bins and the dashed lines indicate the median 
uncertainty. The downsampling results in a significant uncertainty in the 
derived aperture masses for haloes with m 200c < 10 14 . 25 M �. 
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 AP ERTU R E  MASS–OBSERVABLE  RELATI ON  

o quantify the uncertainties in the aperture mass–observable rela-
ion, we first need to measure the halo aperture masses. In Section 3.1 ,
e describe how we extract the halo aperture masses from the Mira–
itan suite. We sho w ho w halo aperture masses depend on the 3D halo
ass and the aperture size in Section 3.2 . Finally, we investigate the

ossible theoretical and observational uncertainties in the aperture
ass–observable relation and compare our results to 3D halo masses

n Section 3.3 . 

.1 Extraction from the simulations 

e will use the term aperture mass, in accordance with the literature,
o refer to the projected mass difference 

M( < R 1 | R 2 , R m 

) = πR 

2 
1 ( 
 ( ≤R 1 ) − 
 ( R 2 < R ≤ R m 

)) 

= M( ≤R 1 ) − M bg ( ≤R 1 ) , (2) 
NRAS 515, 3383–3405 (2022) 
here we have introduced the mean enclosed surface mass density,
 , which is defined as 

 ( R 2 < R ≤ R m 

) = 

2 

R 

2 
m 

− R 

2 
2 

∫ 
R 2 <R<R m 

d R R 
( R ) . (3) 

he second term in equation ( 2 ) corrects the mass within the
perture R 1 for the average surface mass density within the control
nnulus bounded by R 2 and R m 

, which acts as a local background
ubtraction, M bg . Both terms get the same contribution from the mean
osmological background density along the line-of-sight, which
ancels out in the difference. The background subtraction makes
he aperture mass independent of the line-of-sight integration length,
rovided it is large compared with the clustering length (as also noted
y Marian et al. 2010 ). We verify this below. 
The power of the aperture mass defined in equation ( 2 ) is that

t can be obtained directly from weak lensing observations, as
hown in equation ( A14 ) in Appendix A . Moreo v er, choosing fix ed
hysical or angular aperture sizes remo v es the need to assume a
luster density profile, in contrast to spherical o v erdensity radii.
e will measure aperture masses within three different but fixed

pertures of R 1 = [0 . 5 , 1 . 0 , 1 . 5] cMpc , with R 2 = 2 . 0 cMpc and
 m 

= 3 . 0 cMpc . These apertures are similar to the typical aperture
izes used in weak lensing cluster mass calibrations (e.g. Applegate
t al. 2014 ; Hoekstra et al. 2015 ). Moreo v er, the y also roughly
orrespond to the halo radii for haloes with m 200c > 10 13 M �. Smaller
pertures will give better signal-to-noise ratios (SNRs) for lower-
ass haloes since they are better matched to their sizes (Schneider

996 ). To compare these results with aperture masses inferred from
bservations, the distances in the simulations need to be converted
nto angular positions, θ , using the angular diameter distance to the
ens for the simulated cosmology. 

Since the aperture mass from weak lensing observations is inferred
rom the shear signal within the annulus between R 1 and R m 

, the
ptimal choice of the aperture sizes balances the increased signal
rom decreasing R 1 and increasing R m 

, respectively, against the
ncreased modelling uncertainty due to contamination from cluster

ember galaxies and mis-centring errors, and the contribution of
osmic noise in the cluster outskirts (e.g. Mandelbaum et al. 2010 ).
e stress that the aperture mass in equation ( 2 ) will be computed

irectly from the simulation data without any assumptions about
he weak lensing observations. Any observational uncertainty in
onverting the weak lensing signal to the surface mass density will
hus be included in the P ( � M obs | � M , z) term in equation ( 1 ), leaving
he aperture mass function unaffected. We discuss such observational
ncertainties in Section 3.3 . In practice, the observed weak lensing
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Figur e 3. Conver gence of the aperture mass, � M , with the line-of-sight depth, L , centred on random positions (first column), and haloes within increasing 
m 200c bins (second to fourth columns). Light grey lines indicate the individual positions/haloes, which were chosen to have x -coordinates within ±5 cMpc of the 
centre of the x -axis along which we project. The median and 16–84th percentile scatter are indicated with thick black lines and the shaded re gion, respectiv ely. 
The median aperture mass along random lines-of-sight is zero, as expected, with a slight increase in the scatter for larger line-of-sight integration lengths. 
Lines-of-sight centred on haloes generally converge within ≈30 cMpc along the line-of-sight, with a large scatter that increases slightly with increasing L . The 
aperture mass for individual haloes can increase or decrease significantly when encountering a massive structure along the line-of-sight within R 1 or R 2 < R < 

R m 

, respectively. 
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perture mass includes the contribution of mass along the line-of- 
ight, weighted by the lensing kernel. Ho we ver, as we will show in
ig. 3 , the total aperture mass is dominated by the correlated structure
ithin ≈30 cMpc of the cluster, which justifies neglecting the lensing 
ernel weighting in our analysis. 

Given the downsampled particle catalogue, calculating halo aper- 
ure masses is relatively straightforward. First, we correct the particle 
atalogues for the downsampling (see Section 2 ) by increasing 
he particle masses by a factor 100. We investigate the effect of
his downsampling on the accuracy of the derived halo masses 
elow. We generate projected maps of the surface mass density, 
, along the three principal axes of the simulation volume on a

rid of 21 000 × 21 000 pixels, corresponding to a pixel size of
 L/ 21000) 2 = (0 . 1 cMpc ) 2 (except for the simulations with smaller
ox sizes). Subsequently, we can directly obtain halo aperture masses 
rom the surface mass density maps by calculating equation ( 2 )
entred on the identified halo centres. 

In Fig. 1 , we show the surface mass density maps centred on
our random haloes within mass bins with bin edges specified 
y log 10 m 200c /M � ∈ [13.5, 14.0, 14.5, 15.0, 15.5] for reference
imulation M000 at z = 0.43. Clearly, the downsampling of the 
article catalogue results in emptier and noisier mass maps. Every 
article in the simulation has a chance p, with p = 1 per cent,
f being included in the downsampled particle catalogue. As a 
esult, particle catalogues of downsampled haloes will include a 
hot-noise contribution of pN , resulting in a fractional uncertainty 
n the final 3D halo mass of δm/m = 

√ 

pN 

−1 
, which is ≈[20, 10,

, 3, 2] per cent for haloes located at the mass bin edges. Since
he spherical o v erdensity halo masses were saved on the fly, the
ownsampling does not affect the halo mass catalogues. The aperture 
asses, ho we ver, are af fected by the particle do wnsampling. We

how the distribution of the fractional aperture mass uncertainty due 
o the finite number of particles for different 3D halo mass bins
n Fig. 2 . We show the fractional uncertainty, σ log � M 

= σ� M 

/ � M ,
or R 1 = 1 . 0 cMpc , since this aperture size is similar to the virial
adius for haloes with 10 13.5 < m 200c /M � < 10 14 . We calculate the
ncertainty by adding the shot-noise contributions to M ( < R 1 ) and
 bg ( < R 1 ) in quadrature. Even though the individual contributions to
he aperture mass in equation ( 2 ) can be determined at high accuracy
ue to the extra particles included along the line-of-sight, their 
ifference has a large fractional uncertainty. Hence, we will limit 
ur halo sample to the haloes with m 200c > 10 14 M �, whose aperture
asses can be determined with a median fractional uncertainty of 
 15 per cent from the available particle data. We note that even 

hough the median uncertainty of the mass bin 10 14.0 < m 200c /M � <

0 14.25 is � 15 per cent , there are also significant outliers. 
It is important to verify that the background subtraction in the

perture mass definition, equation ( 2 ), actually makes the aperture
ass independent of the line-of-sight integration depth. In Fig. 3 ,
e show the calculated aperture masses as a function of the line-of-

ight integration length, L , centred on 10 000 random positions (first
olumn) or on all haloes within different halo mass bins that have x -
oordinates that are within ±5 cMpc of the midpoint of the x -axis of
he simulation box (second to fourth columns) for simulation M000 at
 = 0.43. When centring on random positions, the aperture masses are
onsistent with zero since the average surface mass densities within 
 1 and the control annulus are equal. The scatter in the aperture
asses for randomly-positioned apertures, which is equi v alent to 
easuring the cosmic shear on the scale of the aperture, increases
ith the line-of-sight integration depth, since larger modes contribute 

o the dispersion 〈 � M 

2 ( < R 1 , < L | R 2 , R m 

) 〉 (see e.g. Schneider et al.
998 ). This effect is also present when centring on haloes, but since
he cosmic shear introduces a fixed scatter, the effect is relatively
maller for more massive haloes (Hoekstra 2001 ). For haloes, the
verage aperture mass generally converges to its final value within 
30 cMpc . Ho we ver, the indi vidual halo trajectories along the line-

f-sight can increase or decrease significantly when encountering 
assive structures within R 1 or R 2 < R < R m 

, respectively. Hence,
e confirm that the aperture mass measurements are converged with 

espect to the line-of-sight integration length of L = 2100 cMpc . 
The aperture mass measurements in the simulations automatically 

nclude the intrinsic scatter due to halo triaxiality and substructure, 
nd due to both correlated and uncorrelated large-scale structures. 
e do not include observational uncertainties since these will depend 

n the surv e y of interest. One source of observational systematic
ncertainty is the shear map generation, which relies on the accuracy 
MNRAS 515, 3383–3405 (2022) 
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Figure 4. Top panel: The distribution of aperture masses, �M( < R 1 = 

1 . 0 cMpc | R 2 = 2 . 0 cMpc , R m 

= 3 . 0 cMpc ), as a function of the 3D spherical 
o v erdensity mass m 200c for simulation M011 at z = 0.43. The dashed line 
indicates the one-to-one relation, the solid line indicates the median relation, 
and the dash–dotted lines indicate the 16–84th percentile scatter. The diamond 
indicates the 3D halo mass for which r 200c = R 1 . The large scatter in � M 

at fixed m 200c is caused by the large variation in the matter distribution 
along the line-of-sight. Bottom panel: The logarithmic scatter in the aperture 
mass distribution at fixed m 200c , calculated as half the difference between the 
84th and the 16th percentiles. The scatter decreases from σ log � M 

≈ 0.45 at 
m 200c = 10 14 M � to � 0.2 for m 200c > 10 14 . 5 M �. 
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f the shape measurements of the background source galaxies and
he determination of their redshift distribution (e.g. Von der Linden
t al. 2014 ; Hoekstra et al. 2015 ). Another source of uncertainty is
he centring of the aperture on the halo. In the simulations, we centre
he surface mass density maps exactly on the potential minimum
f the spherical o v erdensity, but observationally this centre cannot
e identified so unambiguously. Ho we ver, Hoekstra et al. ( 2012 )
howed that deprojected mass estimates derived from aperture mass
easurements within large apertures corresponding to o v erdensity

adii with � < 1000, are only affected by � 5 per cent for mis-
entring radii up to 0 . 5 h 

−1 
70 cMpc . For reference, the distribution of

he offset, � R , between the SZ signal peak and the location of the
rightest cluster galaxy position shows that the bulk of clusters ( ≈95
er cent) are well centred with σ� R � 0.2 R 500c , which is smaller than
 . 5 h 

−1 
70 cMpc for all clusters with m 500c � 5 × 10 15 M �, while the

emaining clusters show a larger dispersion σ� R ≈ 0.7 R 500c (see e.g.
aro et al. 2015 ; Bleem et al. 2020 ). In the same vein as the results
f Hoekstra et al. ( 2012 ), aperture masses measured within apertures
onsiderably larger than the mis-centring radius of the cluster should
ot be significantly affected by mis-centring. Hence, ignoring mis-
entring does not change the conclusions of our work. Next, we will
how the dependence of halo aperture masses on the 3D halo mass
nd the aperture. 

.2 Aperture mass behaviour 

ince, halo properties are mostly studied as a function of their
D masses, we show the distribution of aperture masses for R 1 =
 . 0 cMpc , R 2 = 2 cMpc , and R m 

= 3 cMpc as a function of the 3D
alo mass, m 200c , at z = 0.43 in the M011 simulation in the top
anel of Fig. 4 . The median � M –m 200c relation, indicated with the
olid line, is slightly shallower than one-to-one: the aperture mass
or haloes with r 200c � ( � ) R 1 is smaller (larger) than m 200c, since the
alo mass represents a larger (smaller) fraction of the total aperture
ass. For simulation M011, the halo radius r 200c = R 1 = 1 . 0 cMpc

or m 200c ≈ 10 13 . 65 M �. Haloes at fixed m 200c can have huge differing
perture masses due to differences in the matter distribution along
he line-of-sight of haloes at fixed 3D mass (see also Fig. 3 ). For
ow-mass haloes, the scattering around the median relation increases
ignificantly since mass outside the halo contributes relatively more
o the mass within the aperture. 

In the bottom panel of Fig. 4 , we show the logarithmic scatter
round the median � M –m 200c relation. We calculate the scatter as
alf the difference between the 84th and the 16th percentile of
og � M . The scatter increases strongly for low-mass haloes, partially
ue to the particle downsampling of the halo catalogues shown in
ig. 2 , but also since matter outside the halo contributes more to the
perture mass. The intrinsic scatter in the aperture mass at fixed halo
ass decreases from σ log � M 

≈ 0.45 for m 200c = 10 14 M � to � 0.2
or m 200c > 10 14 . 5 M �, which is similar to the scatter in the weak
ensing-inferred 3D halo mass at fixed halo mass due to triaxiality
nd substructure (see Fig. 7 and Section 3.3 for a comparison with
he mock weak lensing analysis from Bah ́e et al. 2012 ). The scatter
t high halo masses is dominated by differences in the projected
tructure along the line-of-sight to the halo, both correlated and
ncorrelated, since the downsampling has a negligible effect on high-
ass haloes. 
Since different apertures are naturally tuned to detect haloes of

ifferent mass and size, we show the median relation between the
perture mass, � M , measured in different apertures and the 3D halo
ass, m 200c , for all cosmologies in the hypercube in the left-hand

anel of Fig. 5 . Smaller apertures, more closely, capture the 3D mass
NRAS 515, 3383–3405 (2022) 
f lo wer-mass haloes, ho we ver, as is clear from Fig. 4 , there is a
arge scatter around the median relation due to the differing matter
istributions along the line-of-sight to different haloes. For higher-
ass haloes, measuring the mass in different apertures allows the

haracterization of the halo density profile, since the matter belonging
o the halo dominates the total aperture mass out to larger apertures.

In the right-hand panel of Fig. 5 , we show the redshift evolution
f the aperture mass within a fixed aperture of R 1 = 1 cMpc . Since,
e measure within fixed comoving apertures, the uncorrelated large-

cale structure contribution to both M ( < R 1 ) and M bg ( < R 1 ) should
e the same on average. Hence, the redshift evolution is dominated
y the local o v erdensity changes around the halo. At fixed m 200c , the
irial radius r 200c will increase less rapidly with increasing time than
he aperture radius does as the critical density – and also r 200c ( z) –
pproaches a constant in the dark energy-dominated era. As a result,
he aperture mass increases with time, since more matter outside of
he halo is included within the same comoving aperture at fixed halo

ass. For angular apertures, there would be an additional change due
o the changing angular diameter distance. For a halo mass defined
ith respect to the mean matter density, such as m 200m 

, the virial
adius and the comoving aperture radius do not evolve with redshift
t fixed halo mass and, hence, the redshift evolution would be set by
he change in the halo density profile. 

To study how the scatter in � M at fixed m 200c changes with
osmology and redshift, we show the redshift evolution of the median
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Figure 5. Left-hand panel: The relation between the median projected aperture masses of all cosmologies in the hypercube, 〈 �M( < R 1 | R 2 , R m 

) 〉 �, within 
different apertures R 1 (thick coloured lines) and the 3D spherical o v erdensity mass m 200c . The thin, transparent lines show the results for individual simulations. 
The black-dashed line indicates the one-to-one relation. The coloured diamonds show the halo mass for which r 200c = R 1 . The reference annulus for all aperture 
mass measurements spans the region between R 2 = 2 cMpc and R m 

= 3 cMpc . Masses measured within larger apertures, more closely, match the 3D masses of 
more massive haloes. Right-hand panel: The redshift evolution of the relation between the median aperture mass of all cosmologies and m 200c . At fixed m 200c , 
the ratio of the virial radius, r 200c and the comoving aperture radius decreases with time due to increasing contribution of dark energy to the critical density. The 
extra contribution of the halo outskirts within the fixed comoving aperture increases the measured aperture masses with time. 

Figure 6. The median redshift evolution of the scatter in the � M –m 200c distribution measured in apertures R 1 ∈ [0 . 5 , 1 . 0 , 1 . 5] cMpc for all simulations (left 
to right columns). Coloured lines and shaded regions indicate the median and the 16–84th percentile scatter for all cosmologies at different redshifts. The 
R 1 = 0 . 5 cMpc distribution is indicated with dashed lines and repeated in the other panels. The coloured diamonds show the median halo mass for which r 200c = 

R 1 (these masses are smaller than 10 13 . 5 M � for R 1 ≤ 0 . 5 cMpc ). At fixed m 200c and R 1 , the scatter increases significantly with time for haloes whose virial 
radius, r 200c , is not significantly larger than the aperture (low-mass haloes) or whose number density increases (high-mass haloes). Increasing R 1 at fixed m 200c 

increases the scatter when the virial radius becomes comparable to the aperture due to the increased sensitivity to matter outside the halo. 
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catter, σ log � M 

, of all cosmologies in the Mira–Titan suite for the 
ifferent apertures in the panels of Fig. 6 . The shaded regions show
he 16–84th percentile scatter. We indicate the median halo mass for
hich r 200c = R 1 with a coloured diamond. The o v erall trends are

he same as in the bottom panel of Fig. 4 , i.e. less scatter for higher-
ass haloes. Within the smallest aperture, R 1 = 0 . 5 cMpc , there is

ery little redshift evolution: the aperture is significantly smaller than 
 200c for all halo masses shown, and the halo matter dominates the
perture mass. For all apertures, the increase in the scatter with time
or the most massive haloes results mainly from their increasing 
umber density with time. For the most massive haloes, the scatter 
nly changes by ≈± 5 per cent for different aperture sizes, as can be 
een by comparing the dashed lines (which are for R 1 = 0 . 5 cMpc
n every panel) with the results for larger apertures in the middle
nd rightmost panels of Fig. 6 . For lower-mass haloes, however, the
catter is more sensitive to the aperture and increases when the halo
adius becomes comparable to the aperture. 

So far, we have shown that aperture masses can be measured easily
n simulations and that they correlate strongly with the true, 3D halo

ass, albeit with a large intrinsic scatter due to their sensitivity to
he matter along the line-of-sight to the halo. Paradoxically, this 
ould give the aperture mass an advantage in the context of cluster
osmology since it means that the line-of-sight structure contributes 
o the aperture mass signal, not its noise. We will investigate the
ossible strengths and difficulties of aperture mass calibrations for 
luster cosmology next. 
MNRAS 515, 3383–3405 (2022) 
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M

Figure 7. The median observational fractional uncertainty in the aperture 
mass at fixed halo mass within different apertures for a lensing cluster at 
z = 0.24 and source galaxies at z = 1 with a mean background density of 
n̄ gal = 30 arcmin −2 and shape noise σ gal = 0.2. The thick, coloured lines 
indicate the median uncertainty o v er all cosmologies for m 200c and within 
different apertures. The shaded region shows the variation of the observational 
uncertainty for R 1 = 1 cMpc due to the median scatter in � M at fixed m 200c 

for all cosmologies, shown in Fig. 6 . The black points show the scatter in 
the 3D masses inferred from the mock weak lensing observations by Bah ́e 
et al. ( 2012 ). Smaller apertures have a lo wer observ ational uncertainty due to 
the larger number of background galaxies as the masses are measured within 
R 1 < R ≤ R m 

. Aperture masses can be determined more precisely than 3D 

masses o v er the full halo mass range. 
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.3 Uncertainties 

or cluster cosmology, it is crucial that cluster masses inferred
rom observations can be calibrated accurately, that is without bias
nd, ideally, also with small uncertainties. Due to the exponential
ensitivity of the halo abundance to the halo mass, biases and
ncertainties that are not accounted for in the cluster mass measure-
ent can introduce catastrophic biases in the inferred cosmological

arameters. Consequently, minimizing the uncertainty in the mass–
bservable relation can dramatically increase the constraining power
f cluster surv e ys. Previously, we hav e shown that the intrinsic scatter
etween the aperture mass and the 3D halo mass can be large,
articularly for low-mass haloes. We will now consider the strengths
nd the difficulties of aperture masses for cluster cosmology. 

Taking equation ( 1 ) as our guide, we see that the uncertainty in
he mass–observable relation is due to the uncertainty in the relation
etween the measured observable and the measured aperture mass,
 ( O| M obs ), and the observational uncertainty between the mea-
ured aperture mass and the true halo aperture mass, P ( M obs | M ),
ometimes referred to in the literature as the intrinsic uncertainty
e.g. Becker & Kravtsov 2011 ). First, we will look into the intrinsic
easurement uncertainty of the halo aperture mass, comparing it to

hat of 3D halo masses. 
The stringent requirements on the accuracy of the shear measure-
ents for future surv e ys mean that the finite number of background

alaxies used to sample the shear field and the source redshift
istribution set the baseline, minimum uncertainty for any weak
ensing mass measurement (e.g. K ̈ohlinger et al. 2015 ). The source
edshift distribution determines the critical surface mass density that
nables the conversion from the measured weak lensing shear to
urface mass density. This uncertainty will affect any weak lensing
ass measurement similarly, so we do not include it here. The
NRAS 515, 3383–3405 (2022) 
ncertainty of aperture mass measurements is then fully determined
y the galaxy shape noise, as shown by Schneider ( 1996 ). In
omparison, 3D halo masses inferred from deprojected weak lensing
bservations are intrinsically highly sensitive to the large variation
n the line-of-sight matter distribution at fixed, true 3D halo mass. 

To quantify the intrinsic measurement uncertainties for 3D halo
asses of individual clusters, we look at the literature. Bah ́e et al.

 2012 ) have estimated the uncertainty of the P ( M obs | M ) scaling re-
ation by generating mock weak lensing observations of clusters with
 200c > 10 14 M � at z ≈ 0.2, a shape noise of σ gal = 0.2, and with a
ean lensed background galaxy number density n̄ gal = 30 arcmin −2 

or sources at z = 1. This set-up assumes perfect knowledge of
he source redshift distribution and the critical surface mass density.
hey find a large uncertainty of σlog m obs = 0 . 45 (0 . 25) for haloes
ith m 200c = 10 14 (10 15 ) M � when inferring m obs from fitting NFW
ensity profiles to the observed lensing shear. Importantly, Bah ́e et al.
 2012 ) only include the local, correlated large-scale structure within
0 cMpc of the halo when generating the lensing signal. Ho we ver,
ncorrelated large-scale structures add to the scatter of the true
ensing signal (e.g. Hoekstra 2001 , 2003 ). Hence, their results should
e considered a lower limit on the true scatter in the inferred 3D halo
asses. Becker & Kravtsov ( 2011 ) similarly find an uncertainty of

log m obs ≈ 0 . 3 for a mock sample with m 200c > 10 14 . 5 h 

−1 M � that
ncludes the cosmic noise due to uncorrelated large-scale structure. 

On the other hand, for the same set-up as Bah ́e et al. ( 2012 ),
eak lensing aperture masses are only affected by the shape-noise
ue to the finite number of galaxies, used to sample the shear field.
ore specifically, the uncertainty is given by equation ( A10 ) in
ppendix A . We derive a fixed uncertainty σ�M obs = 1 . 16 × 10 13 M �

or R 1 = 0 . 5 cMpc , R 2 = 2 cMpc , and R m 

= 3 cMpc . For reference,
rom Fig. 5 we see that �M( m 200c = 10 14 M �, R 1 = 0 . 5 cMpc ) ≈
0 13 . 75 M �, implying a fractional uncertainty σlog �M obs ≈ 0 . 2, i.e.
ore than two times smaller than the fractional uncertainty in the

D mass and without any dependence on an assumed density profile.
mportantly, the fractional uncertainty scales inversely with the halo
perture mass, giving fractional uncertainties of ≈0.1 and 0.05 for
 M /M � = 10 14 and 10 14.5 , respectively. 
In Fig. 7 , we show the aperture radius dependence of the median

ractional observational uncertainty, σlog �M obs , at fixed halo mass,
 200c , calculated from equation ( A10 ), for a lensing cluster at
 = 0.24 and source galaxies at z = 1 with background density
 gal = 30 arcmin −2 and shape noise σ gal = 0.2, similar to Bah ́e et al.
 2012 ). The aperture mass uncertainty in equation ( A10 ) additionally
epends on the chosen filter, that is the aperture radii R 1 , R 2 , and
 m 

. To obtain the fractional uncertainty, we divide σ�M obs from
quation ( A10 ) by the aperture mass, � M . For R 1 = 1 cMpc , we
ndicate the median uncertainty in the aperture mass at fixed m 200c 

 v er all cosmologies (the solid line in the middle panel of Fig. 6 )
s the shaded re gion. F or comparison, we show the observational
ncertainty in 3D halo masses inferred from the mock weak lensing
bservations of Bah ́e et al. ( 2012 ). Over the entire halo mass range,
he aperture mass can be determined at least two times more precisely
han the 3D halo mass for apertures, similar to the halo radius.
ncreasing the inner aperture radius, R 1 , increases the observational
ncertainty since the weak lensing signal is inferred from the smaller
umber of galaxies within R 1 and R m 

. Hence, aperture masses can
e measured more cleanly from the observations than the 3D halo
asses since the line-of-sight structure contributes to the signal as

pposed to the noise. 
The uncertainty in aperture mass calibrations for cluster surv e ys

ith baryonic observables, such as the galaxy o v erdensity, the SZ
ignal or the X-ray luminosity, will also depend on the relation
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etween the observable, O, and the measured aperture mass, � M obs .
s mentioned before, this relation depends solely on observational 
roperties of the clusters and the uncertainty will be highly sensitive 
o the observable O under consideration. 

A particularly ill-suited scenario for aperture masses would be an 
bservable that is not sensitive to projection effects, such as the X-ray
uminosity or the thermal energy of the hot gas, Y X . These observables
epend strongly on the gas density and predominantly trace the 
luster core. Due to the tight correlation with small scatter between 
he X-ray luminosity and the 3D halo mass, m , the uncertainty in
 ( O| �M obs ) can be approximated by P ( m | � M obs ). As can be seen

rom the spread in m 200c at fixed � M , in the top panel of Fig. 4 , this
ncertainty is considerable. Such an observable is ideal for 3D halo 
ass calibrations. Ho we ver, the uncertainty between the observ able, 
, and the true halo mass, m , will still be limited by the uncertainty

oor in P ( m obs | m ), set by the deprojection of the lensing profile. 
In the best-case scenario for aperture masses, the observable 

losely traces the total projected mass with small uncertainty. 
ndreon & Congdon ( 2014 ) show that the richness is such an
bservable when measured within the same aperture as the weak 
ensing aperture mass. Other studies also find that the stellar mass
raction, when measured sufficiently far away from the brightest 
luster galaxy, is approximately constant in groups and clusters (e.g. 
ahcall & Kulier 2014 ; Budzynski et al. 2014 ; Zu & Mandelbaum
015 ; Wang et al. 2018 ). For observables related to the stellar mass
f clusters, aperture masses provide mass calibrations with low 

ncertainty and without any model dependence which is ideal for 
luster cosmology. 

We would also expect the SZ signal to be sensitive to the projection
ffects, since it is independent of redshift, and since its pressure
ependence allows it to probe larger scales. However, the steep 
caling of the SZ signal with the 3D halo mass due to its scaling
ith the gas temperature and density, means that low-mass haloes 
ill constitute an approximately constant background that can be 

orrected for (e.g. Angulo et al. 2012 ; Le Brun, McCarthy & Melin
015 ). Hence, the SZ signal is likely less sensitive to the projection
ffects than the cluster stellar mass, but more sensitive than cluster 
-ray properties. 
A full comparison between the performance of aperture and 3D 

ass calibrations for different surv e y observables would require gen- 
rating mock surv e ys and mimicking the aperture mass measurement 
nd the 3D mass inference from mock weak lensing observations, 
hich is beyond the scope of this work. 
All in all, halo aperture masses provide clear advantages for 

luster cosmology. The direct connection between aperture masses 
easured from simulations and observations make them practically 

ndependent from assumptions about the density profile of clusters. 
oreo v er, the relation between the cluster observable of interest and

he true cluster aperture mass cleanly separates in a purely obser-
ational scaling relation and an intrinsic measurement uncertainty 
etween the observed and the true aperture mass, which can be 
alibrated using simulations. Next, we turn our attention to the final 
ngredient for cluster cosmology in equation ( 1 ): the aperture mass
unction. 

 H A L O  A P ERTURE  MASS  F U N C T I O N  

aving introduced the aperture mass and compared it to the 3D halo
ass, we now study the aperture mass function. We show how the

perture mass function depends on the aperture mass in Section 4.1 .
hen, we briefly explain how we fit a Gaussian process emulator to
apture the cosmology dependence of the aperture mass function in 
ection 4.2 , leaving the details of the implementation to Appendix B
nd the verification to Appendix C . Finally, we discuss the cosmology
ensitivity of the aperture mass function in Section 4.3 . 

.1 Aperture mass function behaviour 

e compute the aperture mass function by dividing the number of
aloes in mass bins of log 10 � M by the simulated volume and the
in width. The number density, n , dependent on the cosmological
arameters, �i , can be defined either as a function of the comoving
olume, V , 

 V ( �M, z, �i ) = 

d N ( �M, z, �i ) 

d V ( z, �i )d log 10 �M 

(4) 

r as a function of the probed surv e y volume 

 �( �M, z, �i ) = 

d N ( �M, z, �i ) 

d �( z, �i )d zd log 10 �M 

. (5) 

e have introduced the cosmology-dependent differential solid 
ngle, d �, and the redshift range, d z. For cosmological simulations,
 V naturally matches the data since we can divide the mass-binned
umber counts directly by the comoving simulation volume. The 
rowth of structure from the initial density field fixes the cosmology
ependence of the volumetric number density, n V . The cosmology 
ependence of the observed halo number density, ho we ver, recei ves
n additional geometric contribution since we observe our past light- 
one. We obtain the observed number density from the volumetric 
umber density as 

 �( �M, z, �i ) = n V ( �M, z, �i ) 
d V ( z,�i ) 

d �d z , (6) 

here the geometric conversion depends on the comoving distance 
nd the transverse comoving distance at redshift z for the assumed
osmology. The conversion scales the amplitude of the volumetric 
perture mass in a cosmology and redshift-dependent way. The same 
eometric factor also applies to the simulated 3D halo mass function.
Since the weak lensing aperture mass receives contributions from 

tructure along the past light-cone weighted by the lensing kernel, 
echnically, the scatter in the aperture mass at fixed halo mass adds
 geometry sensitivity to the volumetric aperture mass function. 
o we ver, as we have shown in Fig. 3 , for higher-mass haloes, this

catter becomes less important compared to the intrinsic scatter due 
o the differing matter distribution close ( L � 30 cMpc ) to the cluster.
ence, neglecting the past light-cone should not significantly change 
ur conclusions. 
In what follows, we will initially show results for n V as it is

enerally done for the 3D halo mass function in the literature to aid
n the interpretation of our results. Ho we ver, only n � includes the full
osmology dependence of both the aperture mass function and the 
D halo mass function. We will use n � to investigate the cosmology
ensitivity of the aperture mass function in Section 4.3 . 

In the left-hand panel of Fig. 8 , we show the median aperture mass
unction, n V , and its 16–84th percentile scatter for all cosmologies
n the parameter hypercube and aperture masses measured within 
ifferent apertures. All aperture masses have been computed with the 
ame control annulus between R 2 = 2 cMpc and R m 

= 3 cMpc , and
nly haloes with m 200c > m 200c , lim 

= 10 13 . 5 M � are included within
he sample. Since larger apertures will result in higher aperture 

asses for the same halo, increasing the aperture size shifts the
perture mass function to higher aperture masses. The aperture mass 
unction decreases towards both high and low aperture masses. The 
ormer is caused by the rarity of high-mass haloes and the latter
y the halo mass selection of the sample and the large scatter in
MNRAS 515, 3383–3405 (2022) 
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Figure 8. Left-hand panel: The median aperture mass function, for a fixed comoving volume, n V , of all cosmologies in the hypercube for aperture masses 
measured within different apertures R 1 (thick coloured lines) at z = 0.43 for all haloes with m 200c > 10 13 . 5 M �. The shaded regions show the 16–84th percentile 
scatter. The reference annulus for all aperture mass measurements spans the region between R 2 = 2 cMpc and R m 

= 3 cMpc . Larger apertures result in higher 
aperture masses and shift the aperture mass function to the right. The number density decreases for low aperture masses if a significant fraction of the haloes 
has 3D masses near the selection limit, indicated by the crosses that show the 84th percentile aperture mass for haloes with m 200c , lim 

= 10 13 . 5 M �. Right-hand 
panel: The redshift evolution of the median aperture mass function with R 1 = 1 cMpc . The number density increases with time as haloes grow more massive. 
The peak of the aperture mass function shifts to larger values with time due to the increased scatter at the fixed 3D halo mass limit. 
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perture mass at fixed halo mass. When a significant fraction of the
aloes at fixed aperture mass has 3D masses near the selection limit,
he number density starts decreasing. We show this by highlighting
he 84th percentile aperture mass for haloes with 3D masses at the
election limit with a cross. These crosses coincide almost perfectly
ith the peak in the aperture mass function. The right-hand panel of
ig. 8 shows that the aperture mass function increases with redshift as
ore massive haloes form, just like the traditional halo mass function

oes. The peak of the aperture mass function shifts towards higher
perture masses with time due to the increased scatter at the fixed
D halo mass limit (see Fig. 6 ). 
In Fig. 9 , we show how the aperture mass function changes when

ncreasing the 3D mass limit, m 200c, lim 

/M �, from 10 13.5 to 10 14.5 . The
umber density for the largest aperture mass haloes is not strongly
ffected since the scatter in the aperture mass at the mass limit
ecreases with increasing mass limit. For all mass limits, the cross
ndicates the 84th percentile aperture mass for haloes with 3D masses
t the selection limit. Since the � M –m 200c relation is sublinear,
he median aperture mass at m 200c, lim 

, and therefore also the peak
ass increase less strongly than the 3D halo mass when increasing
 200c, lim 

. The number density for aperture masses beyond the peak
s still affected by the mass limit, albeit less so. Hence, for aperture

ass cosmological analyses, it will be important to select clusters
sing observables that either have small scatter with respect to the
perture mass, or whose scatter is well-understood. 

We stress that the haloes in Fig. 9 are selected solely based on
heir 3D halo mass. Ho we ver, lo w-mass haloes that scatter to much
igher aperture masses than the median relation for their halo mass,
re either part of the correlated structure or chance alignments with
 massive cluster. In realistic observational scenarios, such haloes
ould not be part of the cluster sample, as they would blend in
NRAS 515, 3383–3405 (2022) 
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Figure 10. The median fractional variance in the aperture mass function for 
different apertures for all cosmologies at z = 0.43 (solid, coloured lines). 
All haloes are selected to have m 200c > 10 13 . 5 M �. The reference annulus 
for all aperture mass measurements spans the region between R 2 = 2 cMpc 
and R m 

= 3 cMpc . The shaded regions show the 16–84th percentile scatter 
and the dashed lines show the median shot-noise expectation. The crosses 
indicate the peak of the aperture mass function. The aperture mass function 
variance generally exceeds the shot-noise. 
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ith the larger cluster. Ho we ver, this also requires such haloes to be
xcluded from the theoretical aperture mass function calculation. The 
ame problem applies to the 3D mass function; end-to-end pipelines 
re needed to model such effects. 

Finally, we investigate the sample variance of the aperture mass 
unction, which we will need to accurately calibrate the emulator. 
ince large-scale modes can locally and coherently boost or suppress 

he number counts, the variance of the aperture mass function needs 
o be estimated by resampling the data o v er sufficiently large volumes
hat include the inherent correlation structure. Crocce et al. ( 2010 )
nd Smith & Marian ( 2011 ) have shown that the 3D halo mass
unction variance is dominated by Poisson noise at high halo masses,
nd that a jackknife-type resampling can reco v er the true variance
ccurately. For this reason, we use bootstrap resampling to divide 
he projected mass maps into ( n , n ) subregions. We then compute the
perture mass function variance for 10 000 halo samples generated 
y including n 2 = 25 randomly chosen, possibly repeating, subareas. 
his way, we can estimate the sample variance of the aperture 
ass function for cluster samples obtained from an equal simulation 

olume. 
We show the bootstrapped fractional aperture mass variance in 

ig. 10 . We also include the Poisson expectation based on the number
f haloes at the fixed aperture mass. We find that the sample variance
f the aperture mass function exceeds the Poisson expectation by 
p to a factor of ≈1.5, except for the lowest- and highest-aperture
ass haloes. We will use the bootstrapped variance estimates for 

he individual simulations when fitting the aperture mass function 
mulator in the following section. 

.2 Emulating the aperture mass function 

e construct an emulator to infer the general cosmology dependence 
f the aperture mass function from the available grid of cosmological 
arameters. Usually, emulators fit some compressed form of the true 
nderlying data, such as the cosmology dependence of either the 
arameters of a theoretical fitting function (e.g. McClintock et al. 
019 ) or the weights of the principal components of either the
ata or some functional approximation (e.g. Bocquet et al. 2020 ).
o we ver, all these methods assume that those compressed models

ccurately capture the underlying halo mass function behaviour 
or all masses. While this assumption can be checked as long as
aloes are abundant, it might not hold in the exponentially declining
ail which contains important cosmological information, potentially 
esulting in confident but inaccurate predictions. 

We therefore fit a Gaussian process directly to the simulated data at
ach redshift independently, only assuming Gaussian correlations in 
he latent function and a discrete likelihood for the observed number
ounts. Previously, fitting a Gaussian process directly to the large data 
ets with non-Gaussian likelihoods was not feasible: there was no 
ell-understood and unified way to both account for general, non- 
aussian likelihoods, and deal with the computationally intensive 

nversion of the covariance matrix in the model optimization. 
o we ver, since the work of Titsias ( 2009 ) and Hensman, Matthews &
hahramani ( 2014 ), this is no longer an issue. We gain a subtle but

mportant advantage by modelling the number counts directly with a 
aussian process: the high-mass tail of cosmological models with no 
bserved clusters can be fit consistently with the correct likelihood 
nd without assuming any functional form for the aperture mass 
unction. 

We provide a detailed description of our emulator implementation 
nd the performance in Appendices B and C , respectively, but detail
he main insights here. Briefly, we will fit the normalized aperture

ass function 

 ( x i = 

(
�M , �i ) 

T 
) = log n ( �M , �i ) − log 〈 n ( �M, �i ) 〉 �, (7) 

o reduce the dynamic range and the impact of the peak in the
perture mass function on the emulator calibration. We have checked 
hat training the emulator on n V and n �, defined in equations ( 4 )
nd ( 5 ), respecti vely, gi ves consistent performance. Then, we assume
 Gaussian process prior for the mean and the variance of f 

 [ f ( x i )] = μ (8) 

ar [ f ( x i ) , f ( x j )] = k( x i , x j ) , (9) 

here k( x i , x j ) is the covariance function between inputs x i and x j .
e will be using the radial basis function (or squared exponential)

ernel for k : 

( x , x ′ ) = σ 2 
d ∏ 

i= 0 

exp 

(
− (( x ) i − ( x ′ ) i ) 2 

2 
 2 i 

)
, (10) 

here i runs o v er the d = 9 dimensions of x and each dimension has
ts own covariance length-scale 
 i , resulting in hyperparameters θ = 

 μ, σ 2 , � ). The hyperparameters, θ , can be optimized to accurately
apture the cosmology dependence of the aperture mass function, 
ssuming the likelihood of the simulated number counts, ( x i , N i ),
iven the model, f ( x i ). 
We leave the details of optimizing this Gaussian process to 

ppendix B , but the scalable, variational inference method developed 
y Titsias ( 2009 ) and Hensman et al. ( 2014 ) allows us to fit directly
o the large, simulated data set, assuming a discrete likelihood that
aturally matches the simulated number counts, meaning that we 
o not need to assume any functional form for the aperture mass
unction. 

We find that the Gaussian process emulator is able to predict most
f the simulated aperture mass functions to within ±2 per cent in the
igh-abundance regime and to within the shot-noise for high-aperture 
asses (see Fig. C1 ). The emulator also generalizes well in a leave-

ne-out-test as it is generally able to predict most simulations within
MNRAS 515, 3383–3405 (2022) 
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Figure 11. The sensitivity of the aperture mass function for a fixed comoving volume, n V , to changing individual cosmological parameter values by ±1, 5 per 
cent at z = 0.43. The cosmological parameter being varied is indicated in the top-left corner of each panel (note the different y -axis scaling for the different 
parameters). We assume w a = ±0.01, ±0.05 since the fiducial value is 0. Coloured lines indicate the fractional changes in the individual cosmological parameters 
with respect to the fiducial Planck Collaboration et al. ( 2020 ) cosmology, with the line thickness varying from thin to thick for R 1 = 0 . 5 , 1 . 0 , 1 . 5 cMpc . All 
aperture masses were measured with ( R 2 , R m 

) = (2 , 3) cMpc and all haloes have m 200c > 10 13 . 5 M �. The peak of the aperture mass function is indicated with a 
cross. Increasing the aperture size mainly shifts the aperture mass function to higher masses. The amplitude also changes noticeably for different aperture sizes 
when varying �b and �ν . The aperture mass function is most sensitive to the changes in σ 8 , �m 

, and h , with additional sensitivities to the scalar spectral index 
of the initial power spectrum, n s , and the dark energy equation-of-state parameters w 0 and w a . 
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5 per cent when not including them in the emulator calibration (see
ig. C2 ). 
At this point, we are satisfied with the emulator performance in

apturing the underlying cosmology dependence of the aperture mass
unction. Ho we ver, we want to reiterate that our goal has not been to
alibrate the emulator to the level of accuracy required for future
urv e ys. Such an emulator needs to be calibrated specifically to
he surv e y specifications such as the chosen angular aperture size,
he probed redshift range, the selection function of the observable,
nd needs to compute the aperture masses from the full past light-
one. We require the emulator only to be able to investigate how
 arying indi vidual cosmological parameters af fects the aperture mass
unction. 

.3 Cosmology dependence of the aperture mass function 

e can use the calibrated emulator to investigate the cosmologi-
al sensitivity of the aperture mass function. Previously, Marian,
mith & Bernstein ( 2009 ) and Marian et al. ( 2010 ) showed that the
perture mass function for a filter that optimizes the cluster SNR,
losely follows the cosmology dependence of the 3D mass function,
uggesting a similar cosmology sensiti vity. Ho we ver, their chosen
lter required assuming a typical density profile for clusters, which
e have been careful to avoid. 
Fig. 11 shows the sensitivity of the volumetric aperture mass

unction to the changes in individual cosmological parame-
ers (different panels) and the aperture (different line thickness)
t fixed redshift. We reiterate that the full cosmology depen-
NRAS 515, 3383–3405 (2022) 
ence of the observed aperture mass function also depends on
he geometry through the volume of the past light-cone, as
quation ( 6 ) shows. We adopt a fiducial Planck Collaboration
t al. ( 2020 ) cosmology with � ≡ { �m 

, �b , �ν, σ8 , h, n s , w 0 , w a } =
 0 . 315 , 0 . 049 , 0 . 0014 , 0 . 811 , 0 . 674 , 0 . 965 , −1 , 0 } , with �ν corre-
ponding to M ν = 0 . 06 eV , and separately vary each of the cosmo-
ogical parameters by ±1 and 5 per cent (different colours). For
 a , we assume fixed values ±0.01 and ±0.05, since the fiducial

alue is 0. In agreement with the 3D halo mass function, to which
e explicitly compare in Fig. 13 , the shape of the aperture mass

unction at the fixed redshift is most sensitive to changes in σ 8 and
m 

, with a ±1 per cent change in σ 8 ( �m 

) resulting in > 10 per cent
up to 5 per cent) changes in the aperture mass function. Besides

m 

and σ 8 , the aperture mass function is also sensitive to both the
imensionless Hubble parameter, h , and the scalar spectral index of
he linear power spectrum, n s . The equation-of-state parameters, w 0 

nd w a , mainly affect the abundance of high-aperture mass haloes.
ncreasing the aperture size shifts the aperture mass function to larger
perture masses. Ho we ver, apart from this approximate shift for
ifferent aperture sizes, the amplitude of the aperture mass function
lso changes noticeably for �b and �ν . 

In Fig. 12 , we show the cosmology sensitivity of the aperture
ass function for masses measured within R 1 = 1 cMpc at different

edshifts. At all redshifts, the aperture mass function is most sensitive
o the changes in σ 8 , �m 

, and h . For most cosmological parameter
hanges, the abundance changes more strongly at higher redshifts.
oticeably, the dark energy equation-of-state parameters affect the
alo abundance more significantly at higher redshifts. The peak of

art/stac1687_f11.eps


Halo aperture mass function 3395 

Figure 12. The sensitivity of the aperture mass function for a fixed comoving volume, n V , to the changing individual cosmological parameter values by 
±1 , 5 per cent for R 1 = 1 cMpc and different redshifts. We assume w a = ±0.01, ±0.05, since the fiducial value is 0. The cosmological parameter being varied is 
indicated in the top-left corner of each panel. Coloured lines indicate the fractional change in the individual cosmological parameters with respect to the fiducial 
Planck Collaboration et al. ( 2020 ) cosmology, with the line thickness varying from thick to thin for the redshifts z = 0.24, 0.43, 1.01. All aperture masses were 
measured with ( R 1 , R 2 , R m 

) = (1 , 2 , 3) cMpc , and all haloes have m 200c > 10 13 . 5 M �. The peak of the aperture mass functions is indicated with a cross. The 
peak of the mass function shifts to higher masses for lower redshifts. The aperture mass function is most sensitive to changes in σ 8 , �m 

, and h . The relative 
impact of changing the cosmological parameters on the abundance increases with redshift. 
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he aperture mass function, which is indicated with a cross, shifts to
igher aperture masses with decreasing redshift. 
The dominant cosmology dependence of the aperture mass func- 

ion can be understood from the 3D halo mass function, since 

 ( �M, z| �) = 

∫ ∞ 

0 
d m 200c n ( m 200c , z | �) P ( �M, z | m 200c , �) . (11) 

he large scatter in aperture mass at fixed 3D halo mass causes
ifferences in the detailed mass dependence. In Fig. 13 , we compare
he cosmology sensitivity of the 3D halo mass function (dash–
otted lines) and aperture mass function (solid lines) for the median 
perture mass at m 200c , for all cosmologies in the hypercube, 
 �M| m 200c 〉 �. The individual cosmological parameters vary by ±5
er cent around the Planck Collaboration et al. ( 2020 ) best-fitting
arameters (coloured lines in the different panels). For the 3D halo 
ass function, the peak height of haloes determines their abundance, 
ith more significant peaks being less abundant. Increasing σ 8 , while 
xing the remaining cosmological parameters, boosts the average 
ariance on all scales equally, which decreases the peak height at all
alo masses and results in an increased abundance, as can be seen
n the top right-hand panel of Fig. 13 . In the exponentially declining
ail, the constant decrease in the peak height increases the abundance 

ore dramatically. The aperture mass function follows these trends. 
When changing the other cosmological parameters, it is important 

o remember that we fix σ 8 , implying that the initial normalization of
he matter power spectrum, A s , does change. Fixing σ 8 instead of A s 

educes the impact of changing the other cosmological parameters 
n the mass function. Increasing �m 

in a flat universe will result in
eeper dark matter potential wells, a faster growth of structure, and a
elayed onset of dark energy domination. The peak height decreases 
or all haloes, resulting in higher abundances. The top left-hand panel 
f Fig. 13 shows that the abundance of low-aperture mass haloes
hanges less than the 3D halo mass function for low-halo masses
ue to the increasing incompleteness at fixed, low aperture mass (see
ig. 9 ). At high aperture masses the large scatter in aperture mass at
xed m 200c results in a larger sensitivity of the aperture mass function
ompared to the 3D halo mass function due to the contribution of
bundant low-mass haloes. 

Increasing h at fixed �m 

increases the density which results in 
aster structure formation and makes haloes at fixed m 200c more com-
act, decreasing their peak height and increasing their abundance. 
he aperture mass function is significantly more sensitive to changes 

n h than the 3D halo mass function. Increasing the scalar spectral
ndex, n s , at fixed σ 8 shifts the power from large to small scales,
esulting in more low-mass and fewer high-mass haloes for both the
D and the aperture mass function. Finally, increasing the magnitude 
f the equation-of-state parameter of dark energy, w 0 , dampens the
rowth of the most massive haloes, reducing their abundance. Again, 
he aperture mass function is more sensitive to these changes than
he 3D halo mass function. 

Finally, in Fig. 14 , we compare the volumetric mass functions,
efined in equation ( 4 ) (thin lines), to the observed mass functions
ncluding the cosmology-dependent volume of the past light-cone, 
efined in equation ( 5 ) (thick lines), for both the 3D halo mass
unction (dash–dotted lines) and the aperture mass function (solid 
ines). Changing the background evolution of the Universe modifies 
he number of observed haloes per fixed solid angle, d �, and redshift
nterval, d z, due to the change in the probed comoving volume. The
ackground evolution does not depend on σ 8 , n s , and �b (since �m 

s fixed). 
The background evolution is most sensitive to changes in the 

ubble parameter. Increasing (decreasing) h reduces (increases) the 
MNRAS 515, 3383–3405 (2022) 
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Figure 13. Comparison between the cosmology sensitivity of the 3D halo mass function (dash–dotted lines) and the aperture mass function (solid lines), 
for a fixed comoving volume, to changing individual cosmological parameter values by ±5 per cent at z = 0.43. We assume w a = ±0.05, since the 
fiducial value is 0. The aperture mass function is plotted for the median aperture mass at m 200c for all the simulations in the hypercube, and for apertures 
( R 1 , R 2 , R m 

) = (1 , 2 , 3) cMpc . All haloes have m 200c > 10 13 . 5 M �. The cosmological parameters are indicated in the top-left corner of each panel. Coloured 
lines indicate the fractional change in the individual cosmological parameters with respect to the fiducial Planck Collaboration et al. ( 2020 ) cosmology. Both the 
3D mass and the aperture mass function show similar sensitivity to the changes in the σ 8 , n s , and �ν . The aperture mass function is more sensitive to changes 
in �m 

, h , the dark energy equation-of-state parameters, w 0 and w a , and �b . 

Figure 14. Comparison between the cosmology sensitivity of the 3D halo mass function (dash–dotted lines) and the aperture mass function (solid lines) with 
( n �, thick lines) and without ( n V , thin lines) including the cosmology dependence of the surv e y solid angle and redshift interval at z = 0.43. The cosmological 
parameter being varied by ±5 per cent (coloured lines) with respect to the fiducial Planck Collaboration et al. ( 2020 ) cosmology is indicated in the top-left 
corner of each panel. We assume w a = ±0.05 since the fiducial value is 0. The aperture mass function is plotted for the median aperture mass at m 200c for all the 
simulations in the hypercube, and for apertures ( R 1 , R 2 , R m 

) = (1 , 2 , 3) cMpc . All haloes have m 200c > 10 13 . 5 M �. The probed comoving volume for a fixed 
observed area is mainly sensitive to h , �m 

, w 0 , and w a . Compared to the 3D halo mass function, the aperture mass function is more sensitive to the changes in 
�m 

and w a , similarly sensitive to σ 8 and w 0 , and less sensitive to h . 
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istance to redshift z. As a result, a fixed survey area at redshift z
ill probe a smaller (larger) comoving volume. Hence, we would 
bserve fewer (more) haloes for a fixed volumetric number density. 
he bottom left-hand panel of Fig. 14 shows that the decrease in the
robed volume is larger than the increase in the volumetric number 
ensity due to the increased matter density. Changing h results 
n the largest difference between the observed and the volumetric 

ass functions, making the 3D halo mass function more sensitive to 
hanges in h , and the aperture mass function less sensitive. 

Increasing the matter density, �m 

, similarly reduces the probed 
olume for a fixed survey area at fixed redshift. This suppresses the
bserved number density, n �, compared to the volumetric number 
ensity, n V , for both the 3D halo mass function and the aperture
ass function. The aperture mass function is still more sensitive 

o changes in �m 

than the 3D halo mass function. The comoving 
olume for a fixed area on the sky increases (decreases) significantly 
hen increasing (decreasing) the magnitude of w 0 , resulting in more 

fewer) observed haloes. This geometric effect is stronger than the 
ecrease (increase) in the volumetric number density due to the 
ess (more) efficient structure formation. Increasing (decreasing) w a 

ecreases (increases) the magnitude of w( z) for z > 0, which in
urn lowers (raises) the observed number density compared to the 
olumetric number density. The aperture mass function becomes 
ess sensitive to changes in w 0 and w a . However, compared to the
D halo mass function, the total sensitivity to changes in w a remains
igher and the sensitivity to w 0 becomes similar. 
Providing a detailed comparison between the performance of 

perture masses and 3D halo masses in a cluster cosmology analysis 
s more complicated than investigating the percentage differences in 
he mass functions given a difference in the cosmological parameters. 
quation ( 1 ) shows that the number counts depend on the integral
 v er the mass function taking into account the uncertainty in the
ass–observable relation. Even though we have shown that the 

ntrinsic measurement uncertainty in aperture mass measurements is 
uch lower than that in 3D halo mass inference, the total uncertainty

n the mass–observable relation still depends on the scatter between 
he surv e y selection observable and the measured aperture or 3D

ass. F or surv e ys that do not select clusters based on their weak
ensing shear signal, the scatter in the observable at fixed aperture 

ass can still result in a significant total uncertainty in the aperture
ass–observable relation. Hence, a comparison between 3D and 

perture mass calibrations in a full cosmological analysis also needs 
o take into account the surv e y observable. 

In conclusion, the sensitivity of the aperture mass function to 
mall changes in the cosmological parameters opens the possibility 
f calibrating cluster masses with weak lensing aperture masses, 
ypassing the modelling uncertainty introduced when deprojecting 
he observations. 

 DISCUSSION  

e hav e pro vided arguments for calibrating cluster masses with weak
ensing aperture masses. As long as we do not have predictions for
he halo abundance directly as a function of the surv e y observable,
uch as the galaxy o v erdensity, the X-ray luminosity, or the SZ signal,
luster cosmology needs to follow a two step process. Assuming that 
he selection function has been accounted for, the mass–observable 
elation needs to be calibrated and the cosmology dependence of the 
ass function needs to be understood. Equation ( 1 ) shows that the
ass calibration requires both the calibration between the observable 

nd the mass inferred from observations, and the calibration between 
he inferred mass and the theoretical mass used in the mass function.
To more closely match weak lensing observations, it makes 
ense to calibrate cluster masses with the projected aperture mass, 
hich can also be measured in simulations. The mass calibration 

hen separates cleanly into a purely observational relation between 
he measured aperture mass and the observable, and a calibration 
etween the theoretical and the measured aperture mass. This clean 
eparation does not hold for 3D cluster masses, which can only
e inferred by deprojecting the observations under the assumption 
f a density profile. Any mismatch between the assumed and the
rue cluster density profile biases the inferred 3D masses. The large
ariation in the matter distribution along the lines-of-sight to different 
lusters adds further uncertainty. 

We showed that aperture masses correlate strongly with the 3D 

ass, albeit with large scatter due to the matter along the line-of-
ight. We found that the aperture masses can be measured much
ore precisely than 3D masses, since the precision is only limited

y the shape noise of the background galaxies. Next, we calibrated
n emulator to reproduce the cosmology dependence of the aperture 
ass function, finding that it is also highly sensitive to variations

n the cosmological parameters. Now we will discuss some of the
ifficulties that arise in cluster cosmology, and how they affect the
perture mass specifically. We will also position our contribution 
ithin the wider literature. 

.1 Impact of the selection function 

ne vital ingredient of a cluster cosmology analysis that we did not
iscuss in this paper is the selection function of the cluster sample.
he completeness, i.e. the fraction of all clusters that is detected, and

he purity, i.e. the fraction of detections that are real clusters, of the
luster sample should be as high as possible (e.g. Allen et al. 2011 ;
guena & Lima 2018 ). We have studied the aperture mass function

n the idealized setting of perfect purity since we have centred
irectly on the known clusters in the simulations. Our halo sample
ecomes increasingly incomplete for aperture mass bins that contain 
 significant fraction of haloes with 3D masses near our selection
imit, as can be seen from Fig. 9 . Future aperture mass function
mulators should thus ensure that they can reliably measure aperture 
asses for haloes with masses significantly below the expected 

etection limit of the surv e y, which we were unable to do due to
he downsampling inherent to the Mira–Titan particle catalogues 
although this is not a problem in principle for simulations). 

Since haloes with masses below the mean expected mass at the
bservable selection limit can scatter abo v e the signal threshold, the
ompleteness of the cluster sample near the selection limit depends 
n the scatter of the mass–observable relation (e.g. Mantz 2019 ).
he main benefit of aperture masses is the ease with which they can
e measured both in simulations and in observations, which signif- 
cantly decreases the intrinsic measurement uncertainty in the mass 
alibration, P ( M obs | M ), compared to 3D masses, as we showed in
ection 3.3 . Ho we ver, this gain can be lost if the observable used

o select clusters has a significantly larger scatter at fixed aperture
ass compared to its scatter at fixed 3D mass. Hence, aperture
asses could greatly increase the performance of cluster surv e ys

ased on observables that correlate with the aperture mass with 
mall uncertainty. This will be the case for observables that are more
ensitive to projection effects, such as the SZ signal (e.g. Hallman
t al. 2007 ), galaxy o v erdensities (e.g. van Haarlem, Frenk & White
997 ; Erickson, Cunha & Evrard 2011 ), and, naturally, the shear
ignal. 

The purity of the halo sample will depend sensitively on the
luster detection method, with shear-selected samples only reaching 
MNRAS 515, 3383–3405 (2022) 
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 maximum purity of ≈85 per cent, since chance line-of-sight
lignments can generate a significant signal due to the broadness
f the lensing kernel (e.g. Hennawi & Spergel 2005 ). The purity of
ther detection methods that are also susceptible to such projection
ffects, such as the SZ signal or the galaxy o v erdensity, will need to be
odelled in simulations. Baryonic observables that predominantly

race the inner cluster density profile, such as the X-ray luminosity,
n the other hand, should reach higher purity (e.g. Voit, Evrard &
ryan 2001 ). Ho we ver, samples selected from these observables are
ecessarily more sensitive to the halo density profile, introducing
ossible detection biases near the selection limit (e.g. Chon &
 ̈ohringer 2017 ). 
We highlight one final important point about the synergy between

bserved and simulated aperture mass measurements. Since the
etection bias for observables such as the SZ signal and the galaxy
 v erdensity is in large part due to projection effects (e.g. Shirasaki,
agai & Lau 2016 ; Zhang & Annis 2022 ), this bias is naturally

ncluded in aperture masses measured in simulations. Hence, em-
lators calibrated on a cluster sample generated by mimicking the
urv e y selection in the simulations will naturally include the surv e y
etection bias while providing aperture mass measurements that are
irectly comparable to those measured observationally. 

.2 Impact of systematic uncertainties 

n a realistic cosmological analysis, different observational system-
tic effects need to be taken into account. Any weak lensing mass
easurement will be sensitive to the systematic errors in the shape
easurements, the redshift distribution of the sources, contamination

f the lensing signal due to uncertainty in the photometric redshift
etermination of cluster galaxies, and mis-centring of the cluster (e.g.
on der Linden et al. 2014 ; Hoekstra et al. 2015 ). 
The main advantage of aperture masses o v er 3D masses is that

o density profile needs to be assumed in the analysis, eliminating
he impact of this modelling uncertainty. The aperture mass within
 1 is actually measured from the lensing signal of galaxies outside
 1 , significantly reducing the impact of sources of systematic error
ear the cluster centre, such as mis-centring and contamination (e.g.
andelbaum et al. 2010 ). The optimal choice of R 1 balances the

educed contamination of the lensing signal by cluster galaxies when
ncreasing R 1 against the increase in the statistical uncertainty due
o the reduced number of background galaxies. Since the bulk of
he haloes have mis-centring radii < 0.2 R 500c (e.g. Saro et al. 2015 ;
leem et al. 2020 ), apertures can be chosen large enough such that

he mass within the aperture should only be slightly affected, while
imiting the increased statistical uncertainty. 

Another advantage stems from the fact that aperture masses can
l w ays be computed unambiguously, even for triaxial and merging
ystems. As long as the choice of aperture in the mass function
nd the observations is consistent, the mass measurement should
ield similar results. Moreo v er, since emulators can be calibrated for
ifferent aperture sizes, the consistency of the inferred cosmology
or an analysis using different apertures can pinpoint possible biases
n the cosmological analysis. 

A limitation of our preliminary study is the fact that we did not
onstruct convergence maps from the full past light-cone. The lensing
fficiency of matter structures at redshift z l for source galaxies at a
xed redshift z s , ε( z l , z s ) = D l D ls / D s , is very broad. This means

hat matter o v er a significant range of redshifts can contribute to the
ensing signal of a given background galaxy. A full line-of-sight in
imulation M000 with L = 2100 cMpc at z = 0.5 corresponds to
 redshift range z ≈ [0.2, 0.85]. Hence, projecting the mass along
NRAS 515, 3383–3405 (2022) 
he simulation volume at fixed z does not take into account the time
volution of the included structures or the change in the angular
iameter distance across the length of the box. As such, aperture
ass functions should really be calibrated on simulation light-cone

utputs, not on single snapshots. This makes the analysis more
omplex since the resulting lensing maps need to be reconstructed
or different source redshifts, z s . 

Finally, since we have used gravity-only simulations, we have
ot included the impact of baryonic physics on the aperture mass
unction. For 3D halo mass functions, it is well established that the
ass of haloes with m 200m , dmo � 10 14 . 5 M � decreases significantly

ue to galaxy formation physics processes (e.g. Velliscig et al. 2014 ).
e expect baryonic physics to also impact the cluster aperture mass
easurements, albeit less significantly due to the projected nature of

he measurement (e.g. Debackere et al. 2021 ). We study the impact of
aryonic physics on the aperture mass measurements in a companion
aper (Debackere et al. 2022 ). 

.3 Comparison to previous work 

he abundance of clusters is a powerful probe of the cosmological
volution of the Universe, so an active effort is underway to
inimize the impact of mass calibration uncertainties. For example,
randis et al. ( 2021 ) directly calibrate the mass–observable relation,
 ( O| M ), using simulations. They generate lensing profiles from
ydrodynamical simulations which they fit with NFW density
rofiles with a fixed concentration and assuming a mis-centring
istribution. They then calibrate the resulting relation between the
est-fitting NFW mass and the true mass of the matched cluster
n DMO simulations. This method then converts a weak lensing-
nferred 3D halo mass into the 3D halo mass of the matching DMO
alo, allowing the use of 3D halo mass function emulators calibrated
n DMO simulations. This method is still explicitly limited by the
catter between the inferred and the true 3D halo mass due to the
ssumed density profile. 

Cromer et al. ( 2021 ) impro v e the accuracy of weak lensing-
nferred 3D halo masses by fitting the lensing shear with an emulated
luster density profile that includes a phenomenological contribution
ue to baryons. Their model results in more accurate cluster mass
stimates, but, again, relies on the ultimately inaccurate assumption
hat the complex cluster density profile can be modelled accurately
ith simplified, spherically symmetric profiles. 
Marian et al. ( 2009 , 2010 ) carry out analyses that are the most

imilar to ours. They generate lensing maps for different slabs in
MO simulations to which they apply a hierarchical peak finder

hat extracts the aperture mass within a filter designed to optimally
etect the cluster signal. They show that the resulting peak abundance
unction has a similar cosmological sensitivity as the 3D mass
unction. Similarly to us, they find that the peak aperture masses
how a large scatter at fixed halo mass. Ho we ver, at the time of their
ork, large suites of cosmological simulations and emulators were
ot yet available. Hence, they resorted to constructing an analytic
ramework to extract cosmological information from weak lensing
eak counts. 

Another option is to neglect the cluster selection entirely and use
he distribution of shear peaks as a function of their signal-to-noise
atio to constrain the cosmology (see e.g. Wang, Haiman & May
009 ; Dietrich & Hartlap 2010 ; Kratochvil, Haiman & May 2010 ).
o we ver, since the evolution of clusters with time contains a wealth
f cosmological information, stronger cosmological constraints can
e obtained by including redshift information for the observed peaks,
s suggested by Hennawi & Spergel ( 2005 ). The main difficulty with
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hese shear-selected analyses is that a significant fraction of the highly 
ignificant peaks arises from chance line-of-sight alignments due the 
roadness of the lensing kernel (e.g. Hennawi & Spergel 2005 ; Yang
t al. 2011 ). In recent studies, Hamana et al. ( 2015 ), Shan et al. ( 2018 )
nd Martinet et al. ( 2018 ) have used peaks identified from weak
ensing observations to constrain the matter density and clustering of 
he Universe. 

We locate our work in between peak abundance studies and cluster 
nalyses based on 3D cluster masses: Our method corresponds to an 
dealized surv e y that selects clusters based on a secondary observable
hat perfectly correlates with the 3D halo mass, while the cluster 

asses are determined through aperture masses which would in 
ractice be derived from weak lensing observations. Hence, our work 
s very similar to a standard cluster cosmology analysis, as w ork ed out
n detail by Mantz et al. ( 2010a, 2010b ), but now using the aperture

ass to calibrate the cluster masses. In such an analysis, one assumes
 functional form for the mass–observable relation, which gets 
alibrated simultaneously with the cosmology-dependent aperture 
ass function by forward modelling the observed cluster abundance 

s a function of the observable signal, taking into account the 
election function of the observable for a given survey . Importantly ,
ny cosmology dependence in the mass–observable relation needs 
o be taken into account implying that the cosmology dependence 
f both P ( �M obs | �M, �, z) and P ( O| �M obs , �, z) need to be
alibrated from mock observations in realistic cosmological and, 
referably, hydrodynamical simulations (e.g. Dietrich et al. 2019 ). 

 C O N C L U S I O N S  

e have argued that cluster cosmology analyses can decrease their 
ensitivity to modelling assumptions by using weak lensing-like 
xcess aperture mass measurements to calibrate cluster masses. 
s long as predictions for the cosmology-dependent abundance of 

lusters as a function of their observed signal are not available, cluster 
osmology necessarily relies on an accurately determined and well- 
nderstood mass–observable relation and a theoretical prediction 
or the cosmology dependence of the mass function. Only suites of
arge-volume simulations with varying cosmological parameters can 
redict the mass function at the accuracy required for future surv e ys.
f we are using simulations, ho we ver, we might as well predict the
perture mass function instead of (or along with) the 3D halo mass
unction. 

Aperture masses are a natural choice for cluster mass calibra- 
ions since they can be measured accurately both in observations 
nd in simulations, with an uncertainty determined solely by the 
ackground galaxy shape noise in the weak lensing observations. 
n contrast, 3D halo masses can only be inferred by deprojecting 
bservations assuming a density profile. The mismatch between the 
ssumed density profile and the true, triaxial halo density profile, 
ncluding substructure and correlated matter, and the neglected matter 
long the line-of-sight, introduce a model-dependent bias and scatter 
n the inferred mass. 

We used the Mira–Titan suite of large-volume, DMO simulations 
o measure the excess projected mass of clusters within fixed aperture 
izes of R 1 = 0 . 5 , 1 . 0 , 1 . 5 cMpc with a background subtraction
alculated in an outer annulus between 2 < R /cMpc < 3. We
tudied the behaviour of these aperture masses and the corresponding 
perture mass function. We showed that the aperture mass correlates 
trongly with the 3D halo mass, with aperture masses being larger 
smaller) than the halo virial mass when measured within apertures 
arger (smaller) than the virial radius (Fig. 5 ). The aperture mass
xhibits large scatter at fixed halo mass when the halo virial radius
s not significantly larger than the aperture due to the contribution of
atter outside the halo (Fig. 6 ). Advantageously, the uncertainty in

he measurement of the aperture mass is between two to three times
maller than that of the inferred 3D mass (Fig. 7 ). This is because the
easurement uncertainty depends only on the background galaxy 

hape noise in the weak lensing observations, and since line-of- 
ight structures contribute to the aperture mass signal whereas they 
ntroduce noise in the deprojection for 3D masses. 

We did not investigate the scatter between the surv e y observable
nd the aperture mass since the Mira–Titan suite does not include
ydrodynamics to model the complex baryonic processes related 
o galaxy formation. Ho we ver, we argued that observables such as
he galaxy o v erdensity, and the shear should correlate strongly with
perture masses with small uncertainty, since they are also sensitive 
o line-of-sight matter structures beyond the halo. X-ray luminosities, 
n the other hand, due to their steep scaling with the 3D halo mass,
ay show large scatter at fixed aperture mass, similarly to the 3D

alo mass. The uncertainty between the observable and the measured 
perture mass will ultimately determine the scatter in the mass–
bserv able relation, gi ven the small intrinsic scatter of the measured
perture mass with respect to the true aperture mass. Investigating 
he uncertainty between the observable and the measured aperture 

ass in hydrodynamical simulations is a fruitful direction for future 
esearch. 

We used the Mira–Titan hypercube of DMO simulations to cali- 
rate a Gaussian process emulator to directly emulate the cosmology 
ependence of the aperture mass function given the simulated number 
ounts and their likelihood, i.e. without assuming an underlying, 
imensionality-reducing model for the simulation data. This is 
ossible thanks to advances in Gaussian process modelling, allowing 
or the efficient optimization of large data sets and non-Gaussian 
ikelihoods. We argued that this gives an advantage o v er usual
mulators since the high-mass tail of the emulator will only depend on 
he simulation data and the assumed likelihood, not on the assumed

ass dependence for the assumed data model. We showed that the
mulator can accurately reproduce most of the simulations within 
wo per cent or within the bootstrapped variance at high-aperture 
asses (Fig. C1 ). 
Isolating the influence of structure formation on the halo abun- 

ance, we found that, compared to the 3D halo mass function, the
perture mass function is similarly sensitive to changes in σ 8 and n s ,
nd more sensitive to changes in �m 

, h , w 0 , and w a (Fig. 13 ). Even ±1
er cent changes in �m 

, σ 8 , and h result in > 10 per cent changes in the
xpected halo number density at fixed redshift (Fig. 11 ). Including the 
osmology dependence of the volume probed by the past light-cone, 
e found that, compared to the 3D halo mass function, the aperture
ass function is more sensitive to changes in �m 

and w a , similarly
ensitive to changes in σ 8 and w 0 and slightly less sensitive to changes
n h (Fig 14 ). We stress that a detailed comparison between the
erformance of the aperture mass function compared to the 3D halo
ass function also needs to take into account the surv e y observable.

mportantly, since emulators can easily be calibrated for multiple 
pertures, the consistency of the inferred cosmology for an analysis 
sing different apertures can provide useful insights into possible 
iases in the cosmological analysis. 
In the future, it will be possible to emulate cluster surv e ys using

ight-cones output from hydrodynamical simulations, mimicking 
he observable measurement and selection directly while skipping 
he mass calibration step (given that one can trust the simulation
redictions at the accuracy required for future surveys, or marginalize 
 v er the simulation uncertainty). To validate the fidelity of such
imulations, aperture masses provide the best choice to test the 
MNRAS 515, 3383–3405 (2022) 
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imulated mass–observable relations. Since no such simulations are
urrently av ailable, ho we ver, we argue that our approach provides a
aluable intermediate step. Emulators of the aperture mass function,
hich is closer to the data than the 3D halo mass function, can

lready be trained, minimizing the impact of uncertain modelling
ssumptions on cluster cosmology analyses. 
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PPEN D IX  A :  W E A K  LENSING  

E A SUREM ENTS  O F  T H E  APERTURE  MASS  

n this appendix, we sho w ho w aperture mass measurements 
rom weak lensing observations relate directly to aperture masses 
easured from simulations. Overdensities in the mass distribution 
odify the light propagation from background galaxies depending 

n the projected distance from the o v erdensity, distorting the galaxy
hapes. By measuring the average shape distortion of a large sample 
f background galaxies within some annular region, we can derive 
he total mass contained within that annulus without making any 
ssumptions about the mass distribution. 

In general, weak lensing-derived aperture masses are filtered 
easurements of the surface mass density centred on a position 

0 , with a filter function U ( θ − θ0 ). We follow the notation of
artelmann & Schneider ( 2001 ) and write 

 ap ( θ0 ) = 

∫ 
d 2 θ U ( θ − θ0 ) κ( θ ) . (A1) 

e have introduced the convergence 

( θ ) = 


( θ ) 


 c 
, (A2) 

here the critical surface mass density 
 c , which sets the magnitude
f the lensing, is a physical constant given by 

 c = 

c 2 

4 πG 

1 

βD l 
, (A3) 

hich depends on the angular diameter distance to the lens, D l , and
he lensing efficiency, β = max(0, D ls / D s ), for a source at angular
iameter distance D s from the observer and D ls from the lens. There
s no lensing signal ( β = 0) when the source is in front of the lens,
.e. D ls < 0. 

For a radial, compensated filter obeying the relation 
∫ 

d θ θU ( θ ) = 0 , (A4) 

quation ( A1 ) can be rewritten in terms of the tangential shear as 

 ap ( θ0 ) = 

∫ 
d 2 θ Q ( | θ − θ0 | ) γT ( θ | θ0 ) , (A5) 

here the tangential shear is defined as 

T ( θ ) = 


 ( ≤ θ ) − 
( θ ) 


 

, (A6) 

c 
nd the new filter function Q ( θ ) is related to the surface mass density
lter U ( θ ) as 

 ( θ ) = 

2 

θ2 

∫ θ

0 
d θ ′ θ ′ U ( θ ′ ) − U ( θ ) . (A7) 

hoosing filters U ( θ ) that are constant within some small inner
perture θ1 will result in Q ( θ ) = 0 for θ < θ1 . Similarly, compensated
lters with U ( θ ) = 0 outside θm 

give Q ( θ ) = 0 for θ > θm 

. Hence,
perture masses can be measured from the tangential shear within 
ome finite region θ1 < θ < θm 

for carefully chosen filters U . The
egion can be chosen with θ1 large enough to a v oid the contamination
rom the densely populated cluster core and, importantly, to ensure 
easurements within the weak lensing regime. Generally, gravita- 

ional lensing does not measure the tangential shear directly, but is
nstead sensitive to the reduced shear 

 T ( θ ) = 

γT ( θ ) 

1 − κ( θ ) 
. (A8) 

o we ver, if θ1 is chosen large enough, then κ( θ ) � 1 and the weak
ensing assumption g T ≈ γ T holds. 

Since, galaxy ellipticities are an unbiased estimator of the local 
hear field in the weak lensing regime, the aperture mass can be
stimated directly by summing o v er the observ ed galaxy ellipticities
Schneider 1996 ). Assuming the mean number density of lensed 
ackground galaxies, n̄ gal , we get 

 ap ( θ0 ) = 

1 

n̄ gal 

∑ 

i 

Q ( | θ i − θ0 | ) γT ( θ i ) . (A9) 

he uncertainty in this aperture mass measurement depends only on 
he shape noise due to the finite number of galaxies sampling the
hear field. For an average uncertainty σ gal in the shear measurement 
T of an individual galaxy, and a background galaxy number density 

¯ gal , the uncertainty in M ap is 

2 
M ap ( θ0 ) 

= 

σ 2 
gal 

n̄ gal 

∑ 

i 

Q 

2 ( | θ i − θ0 | ) . (A10) 

The aperture masses that we have used in this paper are directly
elated to the ζ c -statistic, introduced by Clowe et al. ( 1998 ), which
an be measured from the tangential shear as 

c ( θ1 ) = 2 
∫ θ2 

θ1 

d ln θ〈 γT 〉 + 

2 

1 − θ2 
2 /θ

2 
m 

∫ θm 

θ2 

d ln θ〈 γT 〉 . (A11) 

e have introduced the tangentially averaged tangential shear, 〈 γ T 〉 ,
efined as 

 γT 〉 ( θ ) = 

1 
2 π

∮ 
d φ γT ( θ, φ) . (A12) 

quation ( A11 ) implies a filter function 

 ζc ( θ ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 

πθ2 
for θ1 < θ ≤ θ2 

1 

πθ2 

θ2 
m 

θ2 
m 

− θ2 
2 

for θ2 < θ ≤ θm 

0 elsewhere . 

(A13) 

e can readily obtain � M from ζ c as 

M( < θ1 | θ2 , θm 

) = 
 c ζc ( < θ1 ) πθ2 
1 . (A14) 

PPENDI X  B:  SCALABLE  GAUSSI AN  

ROCESSES  F O R  N O N - G AU S S I A N  

I K E L I H O O D S  

e start by introducing our notation. For each of the 100 cosmolo-
ies, �i , simulated in Mira–Titan, we have calculated the aperture 
MNRAS 515, 3383–3405 (2022) 
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ass function n ( �M, �i ) on a log-spaced grid of 50 points with
og 10 � M /M � ∈ [13.5, 15.5] for the redshifts z ∈ { 0.1, 0.24, 0.43,
.66, 1.0, 1.6, 2.0 } . For a set of input locations and observations
 ( x i , N i ) | i = 1 , . . . , n } , with n = 100 × 50 (100 cosmologies with
0 mass bins each), we group the 1 × d -dimensional input vectors
 

T 
i containing the cosmological parameters and the mass bin, into the
ows of the n × d matrix X, i.e. X i = x T i , and the measured number
ounts for each redshift z j into the n -dimensional vector N j . We will
rop the subscript j in what follows, since the procedure will be the
ame for each redshift with only the input measurements differing. 

Given the large dynamic range and the peaked nature of the
perture mass function, we do not model the number counts directly.
nstead, we predict the number density normalized to the mean value
 v er all cosmologies in the grid 

 ( x i ) = log n ( x i ) − log 〈 n ( �M l ) 〉 �, (B1) 

ith x T i = ( �T 
k , �M l ), a vector containing the aperture mass for

ifferent cosmologies. We stress that a single cosmology, �k , has
0 mass bins, � M l , and we normalize the aperture mass function
ith the mean o v er all cosmologies for each mass bin. This nor-
alization reduces the dynamic range of the latent function f ( x i ) to

alues approximately between −1 and 1. We can easily reco v er the
redicted number counts from f ( x i ) by converting it to n ( x i ) using
quation ( B1 ), and multiplying by the volume element and the bin-
pacing in � M . As long as the mean number density 〈 n ( M l ) 〉 � > 0
n equation ( B1 ), the high-mass tail of cosmological models with no
bserved clusters can be fit consistently with the correct likelihood
nd without assuming any functional form for the aperture mass
unction. 

To fit this model to the simulated mass functions, we need to
ssume the likelihood of the simulated data. Since the number counts
re discrete observations with exponential cosmology sensitivity in
he low-number count, high-mass tail, we cannot assume a Gaussian
ikelihood that does not accurately describe low number counts. We
annot assume a Poisson likelihood either, since, as shown in Fig. 10 ,
he dispersion of the aperture mass function exceeds the Poisson
alue. Hence, we assume a ne gativ e binomial likelihood for the data
 i given the model f ( x i ). The probability density function of the
e gativ e binomial distribution can be written in terms of the mean,
, and the variance, αμ, where α > 1 captures the o v erdispersion
ompared to the Poisson distribution. In our case, we write the
ikelihood of the simulated number counts, N i , given the model,
 ( x i ), as 

( N i | f ( x i )) = N B ( N i | N ( x i ) , αi ) , (B2) 

here N ( x i ) is the number of haloes inferred from f ( x i ), and
i is calculated as the ratio between the bootstrapped variance
nd the observed number of haloes in the mass bin. Standard
aussian processes cannot be solved analytically for data with non-
aussian likelihoods, so we will use the approximate, variational

nference Gaussian process method from Hensman et al. ( 2014 ) and
mplemented in GPyTorch 3 (Gardner et al. 2021 ). 

The Gaussian process assumption models the latent function in
quation ( B1 ) as (following the notation of Rasmussen & Williams
006 ) 

 ( x ) ∼ GP ( μ, k( x , x ′ | θ )) , (B3) 

hich is shorthand for 

E [ f ( x )] = μ, (B4) 
NRAS 515, 3383–3405 (2022) 

 https://github.com/cornellius-gp/gpytorch 

t  

p  

s  
Var [ f ( x ) , f ( x ′ )] = k( x , x ′ | θ ) , (B5) 

nd means that the values of f are fully determined by the mean, μ,
nd the covariance function k( x , x ′ | θ ) between different inputs x and
 

′ . We will be using the radial basis function (or squared exponential)
ernel for k : 

( x , x ′ | θ ) = σ 2 
d ∏ 

i= 0 

exp 

(
− (( x ) i − ( x ′ ) i ) 2 

2 
 2 i 

)
, (B6) 

here i runs o v er the d = 9 dimensions of x and each dimension
as its own covariance length-scale 
 i , resulting in hyperparameter
= ( μ, σ 2 , � ). 
The power of Gaussian process regression stems from the con-

itioning property of Gaussian distributions. In what follows, we
ssume μ = 0 for simplicity. Given the assumed joint Gaussian
istribution between function values at X and X 

∗, p( f , f ∗), which we
an write as 

( f , f ∗) = p 

([
f 
f ∗

])
= N 

([
0 
0 

]
, 

[
K XX K X X ∗

K X ∗X K X ∗X ∗

])
, (B7) 

he conditional distribution p( f ∗| f) is a new Gaussian distribution
iven by 

( f ∗| f, θ ) = N 

(
K X ∗X K 

−1 
XX f, K X ∗X ∗ − K X ∗X K 

−1 
XX K X X ∗

)
. (B8) 

ere, we have introduced the n × n covariance matrix K XX , with
 K XX ) ij = k( x i , x j ) and k given by equation ( B6 ), containing the
ov ariance between dif ferent input points in X. Importantly, the
robability distribution of f ∗ for an arbitrary input location X 

∗

epends solely on the finite set of measured inputs X. Clearly, the
ccuracy of the prediction f ( x ∗) depends on the distance to the
earest measured input x in X and the length-scale hyperparameter
 , with the function values f ∗ regressing to the mean 0 and prior
ncertainty k( x ∗, x ∗) for K x ∗X → 0 T . We can use p( f ∗| f, θ ) to predict
 ( X 

∗). 
The optimal hyperparameters, θ , for the simulated data, N , are

ound by maximizing 

 ( θ | N ) = 

p ( θ ) p ( N | θ ) 

p ( N ) 
. (B9) 

here we introduced the marginal likelihood 

( N | θ ) = 

∫ 
p( N | f ) p( f | θ )d f , (B10) 

hich cannot be solved analytically in the case of a negative binomial
ikelihood. 

This standard Gaussian process encounters two major difficulties.
irst, the K 

−1 
XX -term in equation ( B8 ) becomes computationally

 xpensiv e for data sets with large n . Second, non-Gaussian likeli-
oods require approximations to optimize equation ( B9 ), since no
losed-form analytical solution exists. Both of these problems have
een solved by the sparse method using inducing variables and the
ariational free energy as introduced by Titsias ( 2009 ) and applied to
on-Gaussian likelihoods by Hensman et al. ( 2014 ) and formalized
y Matthews et al. ( 2016 ). We will briefly introduce the necessary
ngredients for this method. 

The idea behind the method of Titsias ( 2009 ) is to introduce both
n extra set of m � n inducing (or pseudo) inputs Z of the Gaussian
rocess such that f( Z) ≡ u and an approximate distribution o v er
hese function values, q ψ ( u ). The inducing point locations Z and the
arameters ψ of the approximate distribution family will be chosen in
uch a way that they optimally capture the true posterior probability

https://github.com/cornellius-gp/gpytorch
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f the Gaussian process, i.e. q ψ ( f) � p( f| N ). Assuming a Gaussian
istribution for q( u ) with 

 ψ ( u ) = N ( m , S) , (B11) 

e get ψ = ( m , S) and we calculate the full approximate distribution
s 

 ψ ( f, u ) = p( f| u ) q ψ ( u ) . (B12) 

he optimization of ( Z, m , S) now needs to ensure that 

( f| N ) � 

∫ 
p( f| u ) q( u )d u 

� p( f| u ) = N 

(
K XZ K 

−1 
ZZ u , D XX 

)
= N 

(
K XZ K 

−1 
ZZ m , D XX + K XZ K 

−1 
ZZ SK 

−1 
ZZ K ZX 

)
, (B13) 

ith D XX = K XX − K XZ K 

−1 
ZZ K ZX , due to the conditioning property

f equation ( B8 ) (see Chapter 4.3 of Matthews 2017 for detailed
 xplanations). Evaluating this e xpression only requires the inv erted 
 × m matrix K 

−1 
ZZ , significantly reducing the computational cost of

aking model predictions. 
To determine the optimal values ( Z, m , S), we minimize the dif-

erence between the approximate distribution q ψ ( f, u ) and the model
osterior p( f, u | N ) through the Kullback–Leibler (KL) divergence 

L [ q( f , u ) || p( f , u | N )] = −
∫ 

q( f , u ) log 

(
p( f , u | N ) 

q( f , u ) 

)
d f d u . 

(B14) 

efining this equation as K, we use Bayes’ theorem to rewrite 
( f, u | N ) = p( N | f ) p( f | u ) p( u ) /p( N | θ), making use of the fact that

he observations are only conditionally dependent on their corre- 
ponding function values f. Also filling in equation ( B12 ), we then
nd 

 = −
∫ 

p ( f| u ) q( u ) log 

(
p ( N | f) p ( u ) 

p ( N | θ) q( u ) 

)
d fd u 

= −
∫ 

q( f ) log p( N | f )d f + 

∫ 
p( f | u ) q( u ) log p( N | θ )d f d u 

+ 

∫ 
p( f| u ) q ( u ) log 

(
q ( u ) 

p( u ) 

)
d fd u 

 = log p( N | θ ) − E q( f) 

[
log p( N | f) 

] + KL [ q( u ) || p( u )] . (B15) 

e can rearrange terms in this expression and use the fact that the
L divergence is strictly positive to arrive at the variational evidence 

ower bound (ELBO), which provides a lower bound on the marginal 
ikelihood – also called the model evidence – as the name suggests 

log p( N | θ ) ≥ L ELBO = E q( f) 

[
log p( N | f) 

] − KL [ q( u ) || p( u )] . (B16) 

quality for this equation holds exactly when equation ( B14 ) equals
ero, which is the case when q( f, u ) = p( f, u | N ). Assuming no
ovariance between f i and N j �= i , the likelihood factors and we have 

 ELBO = 

n ∑ 

i= 1 

E q( f i ) 

[
log p( N i | f i ) 

]− KL [ q( u ) || p( u )] , (B17) 

here the first term consists of a sum of one dimensional integrals
hich can be computed easily using Gauss–Hermite quadrature, 

nd the second term is the KL divergence between two multivariate 
aussian distributions, since p( u ) = N ( 0 , K ZZ ) due to the Gaussian
rocess assumption. Optimizing the ELBO is equi v alent to maximiz- 
ng the marginal log-likelihood in equation ( B10 ). 
We use the ApproximateGP 4 implementation of GPyTorch 
o model and optimize f ( x i ) with a custom implementation of the
e gativ e binomial likelihood between N ( x i ) and the measurements
umber counts from the simulations, N i . 

PPENDI X  C :  E M U L ATO R  P E R F O R M A N C E  

he approximate Gaussian process does not sample the simula- 
ion inputs, but instead optimizes the inducing point locations to 
ccurately reproduce the posterior of the full Gaussian process, 
.e. equation ( B14 ). Hence, we will not trivially reproduce the
imulation aperture mass function. In our set-up, we first normalize 
he input parameters, X, so that all parameters lie between 0 and 1.

e use 500 inducing points in the ApproximateGP variational 
istribution and minimize the marginal likelihood, approximated 
y the gpytorch.mlls.VariationalELBO , with the Adam 

ptimizer with a learning rate of 0.01 and mini-batches of 512
bservations each. These settings resulted in the fastest loss function 
inimization in a coarse, manual search for the optimal parameter 

ettings. We resample the initial hyperparameters five times from 

heir uniform priors to a v oid local minima in the optimization. The
mulator parameters are specified by the inducing point locations, 
 , from equation ( B11 ) in Appendix B , the Gaussian process
ean, μ, from equation ( B4 ), and the kernel length-scales and

ormalization, � and σ , respectively, from equation ( B6 ). We choose
niform priors u ∼ U(0 , 1), μ ∼ U( −1 , 1), � ∼ U(0 . 05 , 2 . 0), and
2 ∼ U(0 . 05 , 2 . 0). 
In the top row of Fig. C1 , we show the resulting absolute

eviation between the emulated latent function, equation ( B1 ), and
he normalized number density from the simulation for different 
pertures and all cosmologies. The first three columns correspond 
o the different aperture sizes at z = 0.43, and the final column
hows the median and 16–84th percentile scatter for the emulator 
t different redshifts. For low aperture masses, the emulator error 
arely exceeds the five per cent difference level, and the bulk of the
imulations have residuals within ±2 per cent for the high abundance 
perture mass regime. The median deviation is biased slightly low 

or R 1 = 1 . 0 cMpc , but it is within ±2 per cent for all aperture sizes
nd all but the most massive haloes. The bulk of the simulations
ack haloes at the highest aperture masses resulting in the noticeable
ownturn. While the fractional deviation becomes large, it is still 
ithin the variance of the simulations, which is shown as the shaded

egion. 
To quantify the quality of the fit in the high-mass tail, we show

he equi v alent Gaussian significance of the de viation between the
imulated data and the emulator. We compute the significance by 
alculating the difference between the log-likelihood of the measured 
umber counts in the simulation given the predicted aperture mass 
unction of the emulator, ln L ( N true | N pred ), and the log-likelihood of
he emulated number counts, ln L ( N pred | N pred ), and converting this
robability ratio into the equi v alent Gaussian confidence interval 
 σ around the mean e xpectation, μ, giv en by ln P ( μ + n σ ) −
n P ( μ). We show the significance of the deviation between the
mulator and the simulation data in the bottom row of Fig. C1 .
ndividual simulations behave erratically for low aperture masses, 
apidly oscillating between large and small significance, but rarely 
xceeding 3 σ . The median significance of all cosmologies, on 
he other hand, is consistently ≈1 σ . For the high-aperture mass
MNRAS 515, 3383–3405 (2022) 
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M

Figure C1. Top row: The residuals between the best-fitting emulator and the individual simulations in the hypercube for different apertures at fixed redshift 
z = 0.43 (first three columns) and at different redshifts for a fixed aperture ( R 1 , R 2 , R m 

) = (1 , 2 , 3) cMpc (rightmost column). All halo samples were selected 
with m 200c > 10 13 . 5 M �. For the aperture variations, we show the individual simulations and for the redshift variations the 16–84th percentile scatter to a v oid 
clutter. The thick, coloured line indicates the median emulator residual, and the shaded regions in the aperture plots indicate the median of the bootstrapped 
simulation uncertainties. The black, dash–dotted lines indicate the ±2 per cent deviation. The median emulator residual is within the simulation uncertainty, 
and unbiased for low aperture masses and R 1 = 0 . 5 , 1 . 5 cMpc , while biased low at the ≈1 per cent level for R 1 = 1 . 0 cMpc . For abundant, low-aperture mass 
haloes the emulator reaches an accuracy of ≈2 per cent for the bulk of the simulations, rarely exceeding the 5 per cent level. The most significant outlier, M046, 
which was run with a smaller box size, is indicated with a red line in the different panels. Bottom row: The Gaussian-equivalent significance of the likelihood 
ratio between the simulated data and the emulator. The median significance is mostly ≈1 σ . The significance for the individual simulations can vary wildly, but, 
as the top row shows, the fractional uncertainty remains reasonable. 
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ail, with large fractional deviations between the emulator and the
imulations, the significance of the deviation � 1 σ , indicating that
he emulator captures the trends in the data to within the shot-
oise. 
Finally, we also perform a leave-one-out test on all simulations that

re not at the edge of the parameter space for any of the cosmological
arameters. In Fig. C2 , we sho w ho w accurately the emulator predicts
he aperture mass function for all left-out simulations. We colour the
ines for simulations with cosmological parameters that are within
he first or the last decile of the hypercube with different shades
NRAS 515, 3383–3405 (2022) 
f blue and red, respectively, with darker shades indicating more
ignificant outliers. The emulator can predict the outcome of most

imulations to within ≈5 per cent up to the tail of the mass
unction. The most significant deviations are found for simulations
hat are close to the edge of the cosmological parameter space in
ne or more dimensions. The accuracy achieved by the emulator in
he leave-one-out test indicates that the emulator generalizes well
eyond the trained simulation inputs. 
n 22 January 2023
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Figure C2. The residuals between the leave-one-out emulator and its held out simulation for all simulations that are not at the edge of the parameter space. The 
cosmological parameters are indicated in the top-left corner of each panel. All emulators have apertures ( R 1 , R 2 , R m 

) = (1 , 2 , 3) cMpc and have been calibrated 
at z = 0.43. All halo samples were selected with m 200c > 10 13 . 5 M �. Coloured lines indicate the simulations that are within the first (blue shades) or last (red 
shades) decile for the plotted cosmological parameter, with the saturation indicating the ordering. The black line indicates the median result for all simulations 
and the shaded region the 16–84th percentile scatter. The black, dash–dotted lines indicate the ±5 per cent region. Most emulators are able to reproduce the held 
out simulation prediction within ≈5 per cent. The most significant outliers, M012 and M033, are indicated with red arrows and are simulations that are close to 
the edge of the parameter space for several cosmological parameters. 
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