
extinguishing metaflammation: mechanisms and
therapeutic opportunities for immunological control of
metabolic dysfunctions
Zande, H.J.P van der

Citation
Zande, H. J. P. van der. (2023, January 26). extinguishing metaflammation:
mechanisms and therapeutic opportunities for immunological control of
metabolic dysfunctions. Retrieved from https://hdl.handle.net/1887/3513911
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3513911
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3513911


CHAPTER 4

The mannose receptor: from endocytic receptor and biomarker 
to regulator of (meta)inflammation

Hendrik J.P. van der Zande#, Dominik Nitsche#, Laura Schlautmann#, Bruno Guigas*, 
Sven Burgdorf*

#These authors contributed equally to this study
*These authors contributed equally to this study

Frontiers in Immunology. 12:765034. (2021)
PMID: 34721436

doi: 10.3389/fimmu.2021.765034



Chapter 4

102

Abstract
The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind 
and internalize a variety of endogenous and pathogen-associated ligands. Because of these 
properties, its role in endocytosis as well as antigen processing and presentation has been 
studied intensively. Recently, it became clear that the mannose receptor can directly influence 
the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-
presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. 
On the other hand, serum concentrations of a soluble form of the mannose receptor have 
been reported to be increased in patients suffering from a variety of inflammatory diseases 
and to correlate with severity of disease. Interestingly, we recently demonstrated that the 
soluble mannose receptor directly promotes macrophage proinflammatory activation and 
trigger metaflammation. In this review, we highlight the role of the mannose receptor and 
other CLECs in regulating the activation of immune cells and in shaping inflammatory 
responses.
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Introduction
The mannose receptor (MR), also termed CD206, is a member of the C-type lectin (CLEC) 
family. Members of this family contain C-type lectin domains (CTLDs), which play an 
important function in ligand recognition. Typically, type I transmembrane CLECs contain 
multiple CTLDs at their extracellular region, whereas type II membrane CLECs only 
contain a single CLEC (Figure 1). In addition, type II transmembrane CLECs can bear 
signaling motifs at their cytosolic tail (Figure 1).

The MR is mainly expressed by subpopulations of macrophages, immature dendritic 
cells (DCs) and endothelial cells (1, 2). Its expression level varies upon the situation and can 
be differentially regulated by cytokines (e.g. IL-10, IL-4, IL-13 and IFNg), prostaglandins, 
LPS and the transcription factor PPARγ (3-7). Hence, MR expression is closely related to 
the activation status of the MR-expressing cell.

The MR encompasses a nearly 175 kDa type I transmembrane protein, consisting of an 
N-terminal cysteine-rich (CR) domain, a fibronectin (FN) type II domain, eight C-type lectin 
domains (CTLDs), a transmembrane region and a short cytosolic region. Similar to most other 
CLECs, a main feature of the MR is the recognition and internalization of specific ligands. 

Since every MR region has its own binding specificity, ligands can vary substantially 
in their molecular structure. The cysteine-rich domain mediates binding to sulphated sugars 
(8) including glycosylated hormones, chondroitin sulphate and sulphated LewisX and LewisA 
(9), but also specific proteins attached to sulphated glycostructures, such as CD169 and 
CD45 (10). With its fibronectin type II domain, the MR recognizes collagen (especially type 
I-IV) (2, 11), and mediates collagen internalization by macrophages and liver sinusoidal 
endothelial cells (2). Its CTLDs are responsible for the recognition of glycoconjugates. 
More precisely, CTLD4 binds to glycostructures with terminal mannose, fucose or 
N-Acetylglucosamine (GlcNAc) in a calcium-dependent fashion (12, 13). Since these sugar 
moieties are often exposed on microorganisms, the MR contributes to the clearance of a 
variety of infections, including Candida albicans (14), Leishmania (15, 16), Mycobacterium 
tuberculosis (17) and Klebsiella pneumoniae (18). Hence, the MR can bind to and internalize 
a variety of both endogenous ligands and pathogens (Figure 2).

Since the intracellular region of the MR lacks any known signaling domains, no MR-
intrinsic signaling has been reported yet. Still, the presence of the MR has been linked to 
a direct induction of several target genes (19-21), probably because the MR might assist 
other receptors in their signaling cascade (Figure 2). For example, it has been demonstrated 
that the MR interacts with TLR2 after binding to Pneumocystis carinii and stimulates a 
TLR2-mediated signaling cascade (22). The molecular mechanisms enabling MR-mediated 
stimulation of signaling events, however, remain to be elucidated.
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Figure 1. Th e CLEC family. Type I transmembrane CLECs typically contain multiple CTLDs 
at their extracellular region, whereas type II CLECs contain only one CLEC. All CLECs display 
individual expression patterns. Parts of the fi gure were created using templates from Servier Medical 
Art, which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.
servier.com. CTLD: C-type lectin domain, FN type II: fi bronectin type II domain, CR: cysteine-
rich domain, CLEC: C-type lectin, ITAM: immunoreceptor tyrosine-based activation motif, ITIM: 
immunoreceptor tyrosine-based inhibitory motif; DC: dendritic cell; Mφ: macrophage; FcRγ: Fc 
receptor gamma chain; C: C-terminus; N: N-terminus.

Apart from its membrane-bound form, the MR can also be proteolytically cleaved by 
metalloproteases and released into the extracellular space as a soluble form (sMR) (Figure 
2) (23, 24). Consequently, sMR can be detected in the supernatant of MR-expressing cells 
and in the serum of mice and humans as a soluble protein. Additionally, a recent study also 
indicated the presence of sMR in extracellular vesicles (25).

As the sMR encompasses all extracellular regions of full-length MR, preserving its main 
ligand binding properties (23, 24), this suggests that proteolytic cleavage must occur directly 
after the transmembrane region, in close proximity to the cell membrane. MR shedding 
occurs constitutively and levels of sMR correlate with the amount of total MR expressed in 
the cells (23). In addition to constitutive shedding in MR-expressing cells, MR shedding is 
specifi cally stimulated by fungal particles (P. carinii, Candida albicans, Aspergillus fumigatus 
and zymosan) and requires Dectin-1-mediated signaling (9, 26). However, whether this is 
due to activation of specifi c proteases involved in MR shedding or to other reasons has not 
been elucidated so far.
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Figure 2. Cellular functions of the MR. Th e membrane-bound MR can recognize extracellular 
ligands, leading to their internalization. Endocytosed antigens are targeted into early endosomes, 
from which they are processed mainly for cross-presentation onto MHC I molecules and subsequent 
CD8+ T cell activation. Furthermore, the MR can assist other molecules in their signaling cascade, 
like enhanced TLR2 signaling after recognition of P. carinii. Finally, the MR can be shed by 
metalloproteases and released as a soluble form (sMR) in the extracellular space. MHC, major 
histocompatibility complex; MR, mannose receptor. Parts of the fi gure were created using templates 
from Servier Medical Art, which are licensed under a Creative Commons Attribution 3.0 Unported 
License; https://smart.servier.com.

Th e MR mediates antigen uptake and processing for cross-
presentation
Due to its ligand binding capacities and its role in the clearance of multiple pathogens, the 
endocytic properties of the MR have been extensively studied. Under normal conditions, the 
MR localizes to the plasma membrane and in early endosomes, from where it is constantly 
recycled, even in the absence of ligands. Upon ligand binding, the MR is internalized in a 
clathrin-dependent fashion, a process mediated by the FENTLY motif in the cytoplasmic 
tail of the receptor. Th e di-aromatic YF motif is responsible for its intracellular traffi  cking 
into early endosomes (27). 

Specifi c intracellular routing of MR-internalized antigens into early endosomes(28-33) 
was shown to have pronounced consequences for its role in antigen presentation. In fact, 
MR-internalized antigens are targeted towards a distinct non-degradative early endosome 
population, where they are rescued from lysosomal degradation and concomitant 
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presentation on MHC II molecules (28). Mechanistically, the MR has been postulated to 
actively prevent the fusion of such early endosomes with lysosomes (34, 35). From this 
early endosomal compartment, MR-internalized antigens are predominantly processed 
for antigen presentation on MHC I molecules, a process called cross-presentation (Figure 
2) (28, 36). Additionally, ligand binding to the MR induces its ubiquitination, which in 
turn contributes to the recruitment of the cross-presentation machinery. Interestingly, MR 
cross-linking using antigens conjugated to MR-specific antibodies can also induce lysosomal 
targeting and concomitant MHC II-restricted presentation of the internalized antigens 
(37-39). Additionally, antibody-mediated cross-linking of the MR has been demonstrated 
to activate an anti-inflammatory immunosuppressive program in antigen-presenting cells 
(APCs) (19), pointing out the possibility that ligand binding and receptor cross-linking 
might regulate the functional outcome of MR-mediated antigen recognition. The role of 
the MR in antigen uptake, processing and presentation, however, is extensively described 
elsewhere (40-42) and is not a central topic of this review.

In addition to its role in endocytosis, the MR has also been postulated to be involved 
in macrophage migration, as MR-deficient bone marrow-derived macrophages display 
increased migration independent of a CSF-1 gradient (43). Although the underlying 
molecular mechanisms remain to be identified, it is thinkable that these effects were mediated 
by MR-mediated interaction with collagen.

Membrane-bound MR on antigen presenting cells induce T 
cell tolerance
Apart from its function in antigen recognition, internalization and processing for cross-
presentation in APCs, the membrane-bound MR has been shown to directly regulate the 
function of other immune cells. Due to its association with antigen uptake and presentation, 
the MR became an attractive receptor in antigen targeting strategies. Such antigen targeting 
towards the MR has been linked to the induction of antigen-specific tolerance (44). In 
fact, in a mouse model of experimental autoimmune encephalomyelitis, injection of 
mannosylated myelin peptides surprisingly inhibited the onset of disease (45). Additionally, 
MR engagement on monocyte-derived DCs contributed to the induction of a regulatory 
phenotype (19, 46) and MR expression is mainly restricted to immunoregulatory cells, 
including tolerogenic DC subtypes, liver sinusoidal endothelial cells and alternatively 
activated macrophages (47, 48), for which the MR constitutes one of the main marker 
proteins.
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Recent advances demonstrate that the membrane-bound MR is not a mere marker 
for tolerogenic cells, but also plays an active role in the induction of T cell tolerance (Figure 
3) (11). Indeed, CD8+ T cells activated by MR-expressing DCs displayed a clearly reduced 
cytotoxicity. This impaired T cell activation was mediated by a direct interaction of the 
membrane-bound MR on APCs with CD45 on T cells. CD45 is an immune cell-specific 
phosphatase which can be expressed as different isoforms depending on the immune cell 
subset. CD45 isoforms differ in the presence of the alternatively spliced exons A, B and C 
(49) and are frequently used to identify or distinguish bone marrow-derived immune cell 
subsets. Functionally, CD45 has been shown to play an important role in signaling mediated 
by the T and B cell receptors (50), whereas little is known about the role of CD45 in other 
immune cells. Importantly, the interaction of membrane-bound MR with CD45 on CD8+ 

T cells during T cell activation caused inhibition of its phosphatase activity, which resulted 
in T cell reprogramming and a significant upregulation of tolerance-associated genes. One 
of these genes encodes CTLA-4, which was mainly responsible for the impaired T cell 
cytotoxicity (11).

Surprisingly, MR-mediated inhibition of CD45 did not alter T cell receptor (TCR) 
signaling, as TCR-induced Lck activity, phosphorylation of ZAP70, LAT and ERK, 
intracellular calcium release and NFAT activation were not clearly influenced by the presence 
of the MR on the APC. However, transcription factor binding prediction analysis at the 
CTLA-4 promoter identified B-cell lymphoma 6 (Bcl-6), a transcription repressor normally 
involved in the differentiation of T follicular helper cells (51), as novel regulator of CTLA-
4 expression. Using computational analyses, Electrophoretic Mobility Shift Assay (EMSA) 
and chromatin immunoprecipitation (ChIP) experiments, two Bcl-6 binding sites were 
identified within the CTLA-4 promoter. Indeed, Bcl-6 recruitment towards the CTLA-
4 promoter prevented CTLA-4 transcription. Moreover, Bcl-6 expression was induced 
by CD45 phosphatase activity during T cell activation. Hence, MR-mediated inhibition 
of CD45 prevented the induction of Bcl-6 in activated T cells, eventually leading to the 
expression of CTLA-4 and the induction of T cell tolerance (Figure 3) (11), which was 
also confirmed in vivo. Injection of wild-type or MR-deficient DCs, that were previously 
transduced with OVA-expressing adenoviruses, resulted in an upregulation of CLTA-4 and 
impaired cytotoxic activity of antigen-specific T cells after priming by MR-expressing DCs 
(11). Accordingly, MR-deficient mice displayed a higher capacity of clearing an adenoviral 
infection when compared to wild-type mice (11), substantiating a regulatory function of the 
membrane-bound MR in vivo. 
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Figure 3. Membrane-bound MR on antigen presenting cells induces CD8+ T cell tolerance. Upon 
CD8+ T cell activation in the absence of the MR (left), expression of the transcriptional inhibitor 
Bcl-6 is induced. Bcl-6 binds to the CTLA-4 promoter and prevents its expression. During T cell 
activation in the presence of the MR (right), the MR on APCs interacts with CD45 on cytotoxic T 
cells. Such interaction prevents the upregulation of Bcl-6 and induces CTLA-4 expression and CD8+

T cell tolerance. APC, antigen presenting cell; MR, mannose receptor; TCR, T cell receptor. Parts of 
the fi gure were created using templates from Servier Medical Art, which are licensed under a Creative 
Commons Attribution 3.0 Unported License; https://smart.servier.com.

sMR correlates with infl ammatory diseases and induces macrophage activation 

As mentioned above, the MR can be shed by proteolytic cleavage and released into the 
extracellular space. In contrast to the regulatory eff ect of the membrane-bound MR on 
T cell activation, the soluble form of MR has rather been associated with infl ammation, 
as increased sMR serum levels have been observed in patients suff ering from diverse 
infl ammatory diseases.

First evidence for an association between sMR serum levels and disease progression 
came from a study in which increased sMR serum levels were observed in hospitalized 
patients when compared to a healthy control population (52). Th ese diff erences were already 
pronounced in endocrinological and hematological patients, but became obvious in critically 
ill patients with sepsis and severe liver disease. Accordingly, the highest sMR concentrations 
were measured in the serum of patients from the intensive care unit. Similar observations 
were made in patients with liver cirrhosis, alcoholic liver disease and acute-on-chronic liver 
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failure, a condition characterized by acute decompensation and organ failure following an 
extreme inflammatory response. Here, sMR concentrations were demonstrated to correlate 
with disease severity, portal hypertension, gut permeability, bacterial translocation and even 
mortality, displaying increased levels in non-survivors (53-58). Additionally, a modest but 
significant gender-independent correlation of sMR serum levels with age was observed (52).

Increased sMR levels were also observed in patients with a wide variety of inflammatory 
diseases, such as pulmonary tuberculosis (59), pulmonary fibrosis (60), multiple myeloma 
(61, 62), rheumatoid arthritis (63), chronic joint inflammation (64), pneumonia (65, 66), 
interstitial lung disease (67, 68) and gastric cancer (69). Strikingly, in these studies, sMR levels 
positively correlated with disease severity and mortality. As such, the sMR has been proposed 
as a new biomarker for inflammation (56, 57, 69-71). In fact, for several inflammatory 
diseases, including sepsis and pulmonary fibrosis, the sMR has even been suggested to be 
a better biomarker than those previously reported, such as sCD163, C-reactive protein or 
procalcitonin (60, 72). However, in all these studies, a functional role of the sMR in the 
onset of these inflammatory diseases has not been investigated so far. 

The hypothesis of a putative functional role of sMR in inflammatory diseases is further 
supported by observations that MR-deficient mice are protected against inflammation-
mediated renal injury in a mouse model of crescentic glomerulonephritis (CGN) (73). 
Macrophage infiltration in the kidney plays a dominant role in the pathophysiology of 
CGN (74, 75) and their phenotype is shaped by the kidney resident mesangial cells (MCs) 
(76). Interestingly, the protective effect of MR deficiency on CGN was associated with 
reduced macrophage infiltration in the kidney and impaired MC-mediated macrophage 
activation, as demonstrated by a reduction in both TNF secretion and phagocytosis-induced 
reactive oxygen species production. Although the potential contribution of sMR deficiency 
to CGN protection was not considered, these results provided the first evidence that MR 
may regulate proinflammatory activation of macrophages. 

Importantly, a recent study demonstrated that the sMR can actually drive 
proinflammatory macrophage activation (77). sMR induced an inflammatory phenotype of 
both murine and human macrophages, as reflected by increased secretion of proinflammatory 
cytokines (TNF, IL-6, IL-12 and IL-1β) and a shift in cellular metabolism towards increased 
glycolysis (77), a hallmark of proinflammatory macrophage activation (78). In addition, 
RNAseq analyses also supported macrophage reprogramming towards an inflammatory 
phenotype (77), as the transcriptomic signature of sMR-treated macrophages displayed close 
similarities with the one of macrophages treated with TNF, prostaglandin E2 and the TLR2 
ligand Pam3CSK4, a combination of stimuli used in a previous study to mimic a macrophage 
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phenotype associated with chronic inflammation (79). Together, this demonstrates that 
sMR triggers an inflammatory response in macrophages. 

At a mechanistic level, and similar to the effect of membrane-bound MR on T cells, 
sMR binds CD45 on macrophages, leading to an inhibition of CD45 phosphatase activity 
(77). Using specific inhibitors and siRNA-mediated downregulation of CD45, it was 
confirmed that sMR-induced proinflammatory macrophage activation was dependent on 
inhibition of CD45 (Figure 4). A screening for overrepresented transcription factor motifs 
in the promoter regions of all differentially expressed genes and identified NF-κB as the 
major transcription factor involved in sMR-induced macrophage activation. Accordingly, 
sMR treatment resulted in downregulation of IκBa, an inhibitor of NF-κB, and enhanced 
nuclear translocation of both NF-κB subunits p65 and p50 as well as recruitment of p65 
to the TNF promotor. One of the known substrates of CD45 that has been associated with 
activation of NF-κB is Src, a kinase that is inactivated under homeostatic conditions by 
CD45-mediated dephosphorylation (80). Activated Src was shown to phosphorylate Akt 
(81), and both phosphorylated Src and Akt were reported to promote NF-κB activation (82-
85). Using a combination of pharmacological and genetic tools, it was demonstrated that 
sMR-mediated inhibition of CD45 indeed resulted in a Src/Akt/NF-κB-mediated cellular 
reprogramming toward an inflammatory phenotype (Figure 4) (77).

sMR is a novel driver of metaflammation

Proinflammatory macrophage accumulation in metabolic tissues is one of the hallmarks of 
obesity-induced metaflammation, a chronic state of low-grade inflammation that is triggering 
metabolic dysfunctions. Indeed, recruitment of CCR2+ monocytes to visceral white adipose 
tissue (WAT) and the liver promotes tissue inflammation, insulin resistance and impaired 
glucose homeostasis (86-89). This detrimental effect is believed to be mainly driven by 
monocyte differentiation into CD11c-expressing proinflammatory macrophages and 
enhanced production of TNF and IL-1β, leading to inhibition of canonical insulin signaling 
(90-92). Consequently, tissue-specific insulin resistance promotes ectopic lipid deposition 
and the development of hepatic steatosis, together contributing to whole-body insulin 
resistance. In support of this, genetic or pharmacological inhibition of CCR2-dependent 
monocyte recruitment to WAT and liver was shown to mitigate tissue inflammation and 
metabolic dysfunctions in obese mice (87, 88, 93). 
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Figure 4. Th e sMR induces proinfl ammatory activation of macrophages. Under homeostatic 
conditions (left), CD45 in macrophages dephosphorylates Src. At increased sMR concentrations 
(right), binding of sMR to CD45 inhibits its phosphatase activity, leading to phosphorylation and 
activation of Src, which in turn activates an Akt/NF-κB pathway, causing macrophage reprogramming 
towards an infl ammatory phenotype. sMR, soluble mannose receptor. Parts of the fi gure were created 
using templates from Servier Medical Art, which are licensed under a Creative Commons Attribution 
3.0 Unported License; https://smart.servier.com.

In accordance with other infl ammatory diseases discussed above, we recently reported 
that serum sMR levels were increased in high-fat diet (HFD)-fed obese mice and obese humans, 
and positively correlated with adiposity (77). Given that the sMR induces a proinfl ammatory 
phenotype in macrophages as described above and proinfl ammatory macrophages drive insulin 
resistance in metabolic tissues, these observations suggested the possibility that sMR-mediated 
proinfl ammatory macrophage activation in obesity may contribute to metabolic dysfunctions. 
Indeed, HFD-fed MR-defi cient mice exhibited reduced numbers of CD11c-expressing 
obesity-associated macrophages in both WAT and liver, and were protected against hepatic 
steatosis, insulin resistance and glucose intolerance, independent of body weight changes (77) 
(Figure 5A). Of note, acute diphtheria toxin (DT)-mediated depletion of MR-expressing cells 
in obese CD206-DTR mice was also previously reported to improve whole-body glucose 
tolerance and insulin sensitivity when compared to wild-type mice (94), further substantiating 
a role for the MR in regulating metabolic homeostasis. In this study, the authors attributed 
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the improved metabolic phenotype of these MR-deficient mice to increased proliferation and 
differentiation of adipocyte precursors in WAT secondary to downregulation of transforming 
growth factor (TGF)-β signaling pathway. However, since inflammatory macrophages and 
proinflammatory gene markers, especially Tnf, were also significantly reduced in WAT from 
obese MR-depleted mice, at least part of these observations could also be due to impaired MR-
induced activation of macrophages.

More importantly, intraperitoneal administration of recombinant sMR to healthy 
lean mice acutely increased circulating proinflammatory cytokines (77), supporting that 
sMR can also trigger proinflammatory macrophage activation in vivo. As such, chronic 
treatment with sMR increased adipose tissue macrophage numbers, WAT expression of 
proinflammatory cytokines (Figure 5B) and reduced whole-body insulin sensitivity in 
lean mice, a detrimental metabolic effect that was even more pronounced when mice were 
concomitantly fed a HFD (77). These findings unequivocally identified the sMR as novel 
driver of macrophage activation and metaflammation.

Other CLECs in the regulation of metaflammation

The proinflammatory effect of the MR on macrophages and its role in the development of 
obesity-induced metaflammation raises the question whether such properties are unique to 
the MR or rather a general feature of CLECs.

In general, CLECs can play a role in different kinds of immune responses. However, 
there are some striking similarities in the regulation of immune cell function between the 
MR and macrophage galactose-type lectin (MGL), another CLEC member that is also 
highly expressed on alternatively-activated macrophages. Similar to the MR, MGL lacks 
internal signaling motifs, but has been reported to enhance TLR2-mediated signaling (95). 
Additionally, membrane-bound MGL on APCs interacts with CD45 on T cells, inhibiting its 
phosphatase activity (96). Of note, in this study, the underlying molecular mechanisms seem 
to involve reduced T cell receptor signaling, and therefore differ slightly from MR-induced T 
cell tolerance. Nevertheless, MGL-induced inhibition of CD45 prevented effective activation 
of cytotoxic T cells (96). Strikingly, the immunometabolic phenotype of obese MGL-deficient 
mice resembles the phenotype of obese MR-deficient mice (97). Upon HFD feeding, both 
genotypes display reduced body weight gain, exclusively due to lower fat mass accumulation, 
protection against hepatic steatosis, and improved glucose tolerance and insulin sensitivity 
when compared to wild-type mice. Interestingly, these metabolic features were associated with 
reduced numbers of inflammatory macrophages in adipose tissue and a tissue-specific decreased 
in gene expression of Ccl2 (MCP-1) and Tnf (77, 97). Although a potential interaction between 
MGL and CD45 on macrophages has not been investigated yet, it is tempting to speculate that 
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MGL may inhibit CD45 phosphatase activity in macrophages, resulting in proinfl ammatory 
macrophage activation. Th e absence of such an interaction could potentially contribute to the 
protective immunometabolic phenotype of obese MGL-defi cient mice. However, it is worth 
underlining that a soluble form of MGL has not been reported so far, suggesting that MGL-
mediated eff ects, unlike those induced by the sMR, might require direct cell-cell interaction.

Figure 5. Th e sMR in metafl ammation. (A) Wild-type mice on HFD (left) have high serum sMR, 
which is associated with increased hepatic steatosis, CD11c+ KCs and CD11c+ ATMs. Together, 
this is associated with increased insulin resistance and glucose intolerance. MR-defi cient mice on 
HFD (right) have no serum sMR, which is associated with protection against hepatic steatosis, 
lower CD11c+ KCs and ATMs. Together, this is associated with lower insulin resistance and glucose 
intolerance. (B) sMR i.p. injections in mice on chow diet increased serum proinfl ammatory cytokines, 
associated with increased proinfl ammatory macrophages in adipose tissue, both associated with mild 
insulin resistance. sMR i.p. injection in mice on HFD increased insulin resistance. ATMs; adipose 
tissue macrophages; i.p., intraperitoneal; HFD, high-fat diet; KCs, Kupff er cells; sMR, soluble 
mannose receptor. Parts of the fi gure were created using templates from Servier Medical Art, which 
are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.

Another CLEC that has been involved in metafl ammation is Dectin-1. As for MR-defi cient mice, 
Dectin-1-defi cient mice are protected from HFD-induced obesity (98). Dectin-1 expression 
was upregulated in WAT from obese mice and humans, and associated with proinfl ammatory 
adipose tissue macrophages (ATMs). Accordingly, treatment with a Dectin-1 antagonist 
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improved insulin sensitivity in obese mice and reduced adipose tissue CD11c+ obesity-associated 
macrophages, while treatment with a Dectin-1 agonist did the opposite. However, since Dectin-1 
ligation induces cellular signaling that directly leads to activation of NF-κB (99), it is likely that 
Dectin-1 promotes metaflammation through a different molecular mechanism than the MR. 
Nevertheless, increased metalloprotease-mediated MR shedding in response to Candida albicans 
and β-glucan particles was dependent on Dectin-1 and its intracellular signaling pathway (9), 
which offers the possibility that the immunometabolic phenotype of obese Dectin-1-deficient 
mice may in part be explained by reduced sMR production.

Macrophage-inducible C-type lectin (Mincle) has also been associated with a variety 
of inflammatory diseases, such as rheumatoid arthritis, allergic contact dermatitis, hepatitis 
and diet-induced obesity (100-103). Macrophage expression of Mincle was shown to be 
induced by saturated fatty acids and macrophage-adipocyte interactions (103). Accordingly, 
WAT Mincle expression was localized to crown-like structures of macrophages surrounding 
dying adipocytes during obesity (104). Although Mincle-deficient mice display similar 
weight gain compared to wild-type mice upon HFD feeding, obesity-induced crown-like 
structures, hepatic steatosis and whole-body insulin resistance and glucose intolerance are 
significantly mitigated when compared to wild-type mice (104, 105). As Mincle ligation 
induces FcRγ-mediated signaling, eventually resulting in activation of NF-κB in macrophages 
(99), Mincle-mediated macrophage activation is probably occurring via distinct molecular 
pathways, independent of CD45 and the MR.

Of note, there is a variety of other CLECs that were associated with metaflammation or 
chronic inflammatory diseases for which the mechanistic underpinnings are poorly defined. 
For example, expression of the lectin-like oxidatively-modified low-density lipoprotein (Ox-
LDL) receptor (LOX-1) – also named CLEC8A – is increased in visceral WAT of HFD-
fed obese mice (106). Obese LOX-1-deficient mice display reduced HFD-induced CCL2/
MCP-1, macrophage inflammatory protein-1a (MIP-1α) and IL-6 expression in WAT, 
suggesting a role for LOX-1 in regulating adipose tissue inflammation. Interestingly, LOX-
1 is expressed on endothelial cells (107) and human macrophages (108), and similar to 
the MR, it can be proteolytically cleaved to release a soluble form (109, 110). Although 
no functional role has been described for soluble LOX-1 to date, it is known that cleavage 
of LOX-1 is triggered by the proinflammatory factors oxLDL, C-reactive protein, TNF, 
IL-8 and IL-18 and regulated by membrane cholesterol (111-114). Its cleavage is mediated 
via serine proteases that have been shown to be upregulated during obesity, potentially 
increasing bioavailability of soluble LOX-1 in these conditions (115). Interestingly, soluble 
LOX-1 serum levels have been shown to be correlated with the occurrence and severity of a 
variety of inflammatory cardiovascular diseases, including stroke, atherosclerosis and acute 
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coronary syndrome (116-122). Whether soluble LOX-1 is merely a biomarker for these 
diseases, or might be functionally involved in disease progression, remains to be identified.

The Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 
(DC-SIGN) - also termed CD209 or CLEC4L - is increased on monocyte-derived dendritic 
cells (Mo-DCs) from post-menopausal type 2 diabetic obese women, which is thought to 
modulate their adhesion capacity to vascular cell walls and migration to peripheral tissues 
(123). Besides this association with obesity, there is limited data on the putative role of DC-
SIGN in the context of metaflammation. Similar to the MR, DC-SIGN can be detected as 
soluble form (sDC-SIGN) in serum (124) but its functions remain also largely unknown 
and would definitely require dedicated studies.

In contrast to the abovementioned detrimental roles of several CLECs in the context 
of obesity-induced metabolic dysfunctions, in vivo overexpression or administration of 
a soluble form of CLEC2 improved hepatic steatosis, hepatic fatty acid oxidation and 
whole-body glucose tolerance (125, 126). CLEC2 is expressed on platelets, dendritic cells, 
neutrophils and Kupffer cells, and its soluble form induced alternative activation of hepatic 
Kupffer cells, a feature that was postulated to drive the metabolic benefits, although this 
remains to be firmly established. 

In conclusion, the proinflammatory effects of sMR and its role in obesity-induced 
metaflammation are not a general feature of CLECs. However, while the number of studies 
is limited, different CLECs have been linked to metaflammation, with the majority playing 
detrimental roles in the control of insulin sensitivity. Although some homogeneity in 
molecular mechanisms might exist (e.g. immunometabolic phenotypes of MGL-deficient 
and MR-deficient mice), other CLECs likely aggravate metabolic dysfunctions independent 
of interaction with CD45 on macrophages. As the conclusions from these studies were 
mostly drawn using whole-body knockout mice, future studies using conditional knockout 
models are warranted to identify the cellular source and underlying molecular mechanisms 
responsible for CLEC-mediated control of metabolic homeostasis. 

Discussion and further perspectives
Since the MR lacks signaling motifs, it was generally assumed that it functions as a mere 
endocytic receptor, internalizing extracellular material for clearance and antigen presentation. 
Recent advances have made clear that the MR can actively shape immune responses by 
directly regulating immune cell activity (11, 73, 77). Until now, the membrane-bound MR 
has been shown to induce T cell tolerance, whereas the sMR stimulates an inflammatory 
response in macrophages, both via inhibition of CD45. However, it remains unclear whether 
these observed differences are merely due to a distinct cell type-dependent role of CD45 or 
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rather to different effects of the soluble versus membrane-bound MR. As membrane-bound 
MR could cross-link CD45 or alter its composition and clustering in the cell-membrane, 
a different response in terms of immune cell activation compared to its soluble form could 
be possible. First indications suggested that sMR might also promote T cell tolerance (11), 
pointing out that the recipient cell might determine the MR-induced effects rather than the 
form of MR interacting with the cells. Future studies will have to validate this hypothesis 
and show whether interaction of macrophages with membrane-bound MR also results in 
the induction of an inflammatory response. Similarly, the exact role of other soluble CLEC 
receptors, such as LOX-1, needs to be investigated carefully.

Moreover, it remains unclear whether the MR also influences the functionality of other 
immune cells, like CD4+ T cells, DCs and B cells. Since all these cells express CD45, a 
similar regulation by interaction with MR could be possible. Therefore, the identification 
of the CD45 isoforms interacting with the MR needs to be monitored carefully, since these 
isoforms differ substantially depending on the cell type and inflammatory status.

Another important open question regarding increased sMR serum concentrations 
during inflammation is the identification of its source. As mentioned above, the MR is mainly 
expressed by macrophages, DCs and endothelial cells (1, 2). During metaflammation, we 
observed increased MR expression in liver and adipose tissue but not spleen, in particular in 
macrophages and liver sinusoidal endothelial cells (77). As such, it can be expected that these 
cells are responsible for increased sMR production, resulting in enhanced local and systemic 
sMR concentrations and in macrophage-mediated metaflammation. Since the expression of 
the MR is directly regulated by PPARγ (7), and free fatty acid-activated PPARγ signaling is 
upregulated in lipid-associated macrophages during obesity (127), this transcription factor 
could be one of the key players in the regulation of MR expression and shedding. It is thus 
tempting to speculate that increased MR expression and hence sMR serum levels might be 
a result of metaflammation-associated activation of PPARγ in macrophages. In addition, 
MR is constitutively cleaved by yet unidentified metalloproteases (23, 24). Since obesity was 
shown to alter the metalloprotease expression profiles of adipose tissue and liver (128-130), 
it needs to be investigated whether obesity-induced metalloprotease expression in metabolic 
tissues may increase MR shedding.

Additionally, the correlation of sMR serum concentrations with the inflammatory 
status of various human populations should be monitored carefully and in an unbiased 
fashion, using a large and representative cohort not selected for specific inflammatory 
conditions. Naturally, future studies should address whether sMR-mediated activation of 
macrophages plays a functional role in the onset and progression of such conditions. In 
order to experimentally address this putative function of the sMR in different diseases, the 
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availability of reliable methods to quantify sMR serum levels is a prerequisite. For this purpose, 
ELISA-based methods to quantify human and mouse sMR are commercially available. 
Such ELISA kits have been reported manyfold to reliably determine sMR levels in human 
serum (52). However, studies reporting sMR levels in murine sera are rare, which might be 
explained by a lack of reliability of the available products. Indeed, we recently developed 
a method based on immunoprecipitation and fluorimetry to monitor murine sMR serum 
levels in the context of metaflammation (77), as we obtained false positive detection of sMR 
serum levels from MR-deficient mice using a commercially available ELISA kit. However, 
since this technique is elaborate and time-consuming, the establishment of a reliable ELISA 
is of interest to monitor sMR in mouse serum in future investigations.

In conclusion, should the sMR be confirmed to contribute to the induction of 
inflammation in a broad spectrum of diseases, it would definitely constitute a potential 
target for therapeutic intervention. As such, approaches aimed at reducing, eliminating 
or inactivating sMR might reduce macrophage activation and could contribute to 
mitigation of disease. In addition, the molecular mechanisms leading to increased sMR 
serum concentrations are also of great interest, as these could provide additional leads for 
therapeutic interventions. 
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