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By Vedran Dunjko

I
n the early 1980s, American physicist 
Richard Feynman proposed that ma-
chines can exploit quantum phenomena 
to perform otherwise intractable com-
putations. The kind of computation he 
envisioned was broadly about simulating 

the properties of a quantum system given 
its classical description. In the decades that 
followed, researchers have identified numer-
ous other problems that in theory can only 
be solved within a reasonable time frame by 
using such a quantum computer. However, 
a quantum computer that can exercise this 
advantage over a classical computer does 
not exist yet. A recent hope is that near-term 

quantum computers may be used as a new 
type of machine learning device that offers 
an edge in analyzing data from quantum ex-
periments. On page 1182 of this issue, Huang 
et al. (1) present an experimental realization 
of a quantum learning algorithm that has 
a provable advantage over its conventional 
counterpart while being within the reach of 
today’s quantum computers.  

The signature capacity of a quantum com-
puter is the ability to predict the behavior of 
a many-particle quantum system when given 
its initial condition. With the development 
of machine learning methods, even more 
complex questions can be asked. Machine 
learning can enable such prediction even 
without full knowledge of the system, but 
with merely having access to previous ex-
perimental data. The task can be thought 
of as a two-stage process. The computer is 
fed a dataset that stems from some previ-

ous experiments over a quantum system. 
Then, the classical or quantum computer 
will have to predict the future of the system 
under slightly different settings. Intuitively, 
such data analysis may inherit the so-called 
quantum-classical performance gap, as de-
scribed by Feynman: that the computation 
of the future state of the system, given its 
full description, is intractable for classical 
but feasible for quantum computers. 

However, unexpectedly, the inclusion of 
training data could close this gap. Classical 
machine learning can sometimes predict 
properties of complex quantum systems (2), 
so it is unclear whether quantum comput-
ers hold an edge in this setup. Huang et al. 
propose an approach that will give quantum 
computers a decisive edge: by leveraging 
the quantum computer’s ability to process 
“quantum data,” raw quantum states that 
result from a quantum experiment and not 
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mere classical information. The quantum 
data can be used by the quantum computer 
to predict future results while requiring far 
fewer experiments.

One cannot input quantum data into 
a classical computer. Intuitively, one may 
think that this would give the quantum 
device a straightforward advantage. But 
the actual scenario is more nuanced. For 
a classical setup, the quantum state of an 
experiment can be measured and used as 
input, with each measurement freely cho-
sen by the classical learning algorithm. 
Because the classical computer can arbi-
trarily choose when to measure each of the 
experiments, then at least in principle, all 
the information encoded in quantum states 
can be accessible. For a quantum setup, the 
quantum computer provides a minimal but 
key additional capacity: a small quantum 
memory that enables joint measurements 
on two copies of quantum data. 

So in both cases, all the quantum data 
are converted to classical information be-
fore calculation, but in slightly different 
manners. Joint measurements—used in the 
quantum-enhanced scenario—unravel cor-
related properties of two separate quantum 
systems. This fundamentally exploits quan-
tum entanglement (when the quantum states 
of two or more objects are intertwined with 
each other) and cannot be substituted by 
pairs of individual measurements. Since the 
early days of quantum information theory, 
it has been known that joint measurements 
can help distinguish quantum states, even 
when the states are uncorrelated (3). But 
until recently, it was not clear just how large 
an advantage this exploit can give quantum 
computers over their classical counterparts. 

Building from the research line on so-
called shadow tomography (4–6), Huang et 
al. argued that joint measurements lead to 
substantial advantages for learning about 
quantum systems. Namely, the quantum-
enhanced strategy is exponentially more 
economical in terms of the number of quan-
tum experiments needed for predicting the 
outcomes of just two measurements (6). 
The authors demonstrated the advantages 
of a quantum learning experiment using 
the Google Sycamore processor. The natural 
scenario of quantum data learning involves 
a “transducer” that transports the quantum 
state of results from an experiment into the 
quantum computer. Their experiment was 
simulated in the same quantum processor 
that analyzes the data, in a lab-on-a-chip set-
ting. Once the quantum state is prepared, 

it is analyzed with classical and quantum-
enhanced methods. 

For the optimal predictions, the exact 
joint measurements may be known, at least 
in idealized settings. However, in the real 
experiment, the state preparation is im-
perfect, as is the measurement performed. 
To counteract this, the quantum process-
ing is supplemented with classical machine 
learning to extract the strongest signals in 
the presence of experimental errors. This 
classical-quantum hybrid approach demon-
strates advantages in our capacity to learn 
various fundamental properties of quantum 
systems—for example, predicting whether 
an unknown quantum process satisfies time-
reversal symmetry. Their tests show that 
quantum computers can maintain their ad-
vantages in solving certain problems, even 
when errors specific to quantum computers 
are taken into account. 

The work of Huang et al. intertwines the 
ability to characterize quantum systems (4–
6) with machine learning, with implications 
for near-term quantum computers and per-
haps even quantum sensing. The introduced 
generalization of classical machine learning 
to allow quantum data as inputs allows for 
certain benefits; namely, difficult proofs of 
advantages of quantum computers become 
easier. However, because of the hardware 
required to transfer quantum data in its un-
perturbed state from an experiment into the 
quantum computer, this method may be dif-
ficult to implement in certain settings, such 
as the high-energy physics experiments at 
the Large Hadron Collider. In smaller-scale 
experiments, however, transduction may 
be reasonable—for example, in quantum-
optical experiments with nitrogen-vacancy 
centers in diamonds (7), which are often de-
signed with transporting quantum informa-
tion in mind. In a related vein, this work also 
opens a frontier for quantum sensing that 
involves quantum states and may lead to 
better advantages (8). Huang et al. proved in 
detail that for the data-driven prediction of 
properties of quantum experiments, no clas-
sical computer will ever pose a challenge to 
quantum ones—and that quantum comput-
ers may soon help expand human knowledge 
into new echelons.        j
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Solving a 
puzzle with 
atomic qubits
A quantum com puter makes 
light work of the maximum 
independent set problem

By Monika Schleier-Smith

I
magine that you are asked to color a 
map of the world.  Starting with your 
favorite color, you endeavor to fill in 
as many countries as possible with-
out giving any neighboring countries 
the same color. This puzzle, despite its 

straightforward premise, is notorious for its 
computational complexity. On page 1209 of 
this issue, Ebadi et al. (1) report a quantum 
algorithm for solving the puzzle—known 
as the maximum independent set (MIS) 
problem—using individual atoms trapped 
in optical tweezers to represent the coun-
tries on the map. The demonstration is an 
important milestone in the broad effort to 
understand which computational problems 
stand to benefit from quantum computers. 

To date, only a few quantum algorithms 
have been proven to offer clear advantages 
over classical computers. Moreover, even in 
cases where quantum computers theoreti-
cally provide a benefit—such as for factor-
ing large numbers—practical applications 
will require major advances in quantum 
hardware beyond the current state of the 
art. By contrast, the coloring puzzle pre-
sented by Ebadi et al. belongs to a large 
class of optimization problems (2) that are 
potentially easier to solve using near-term 
quantum devices (3) but for which the at-
tainable quantum speedup remains largely 
an open question (4–6). Such optimization 
problems, with technological relevance in 
areas such as supply chain logistics, can ge-
nerically be framed as minimizing what is 
known as a cost function. The solution can 
be calculated by tasking the quantum com-
puter to minimize the energy of a system 
of interacting particles or qubits, where the 
specific problem is encoded in the structure 
of the interactions.

To generate the structure of interactions 
required to represent MIS problems, Ebadi 
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By harnessing the power of the Google Sycamore 
processor (pictured here), Huang et al. showcase the 
exponential advantages offered by quantum computers 
for analyzing data from quantum experiments.
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