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Common and rare variant associations with 
clonal haematopoiesis phenotypes

    
Michael D. Kessler1, Amy Damask1, Sean O’Keeffe1, Nilanjana Banerjee1, Dadong Li1, 
Kyoko Watanabe1, Anthony Marketta1, Michael Van Meter2, Stefan Semrau2, Julie Horowitz1, 
Jing Tang1, Jack A. Kosmicki1, Veera M. Rajagopal1, Yuxin Zou1, Yariv Houvras2, 
Arkopravo Ghosh1, Christopher Gillies1, Joelle Mbatchou1, Ryan R. White2, Niek Verweij1, 
Jonas Bovijn1, Neelroop N. Parikshak1, Michelle G. LeBlanc1, Marcus Jones1,  
Regeneron Genetics Center*,**, GHS-RGC DiscovEHR Collaboration*,**, David J. Glass2, 
Luca A. Lotta1, Michael N. Cantor1, Gurinder S. Atwal2, Adam E. Locke1, Manuel A. R. Ferreira1, 
Raquel Deering2, Charles Paulding1, Alan R. Shuldiner1, Gavin Thurston2, Adolfo A. Ferrando1, 
Will Salerno1, Jeffrey G. Reid1, John D. Overton1, Jonathan Marchini1, Hyun M. Kang1, 
Aris Baras1, Gonçalo R. Abecasis1 & Eric Jorgenson1 ✉

Clonal haematopoiesis involves the expansion of certain blood cell lineages and has 
been associated with ageing and adverse health outcomes1–5. Here we use exome 
sequence data on 628,388 individuals to identify 40,208 carriers of clonal 
haematopoiesis of indeterminate potential (CHIP). Using genome-wide and 
exome-wide association analyses, we identify 24 loci (21 of which are novel) where 
germline genetic variation influences predisposition to CHIP, including missense 
variants in the lymphocytic antigen coding gene LY75, which are associated with 
reduced incidence of CHIP. We also identify novel rare variant associations with clonal 
haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK 
Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes, 
cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection 
and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed 
that CHIP is associated with solid cancers, including non-melanoma skin cancer and 
lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent 
development of myeloid but not lymphoid leukaemias. Additionally, contrary to 
previous findings from the initial 50,000 UKB exomes6, our results in the full sample 
do not support a role for IL-6 inhibition in reducing the risk of cardiovascular disease 
among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of 
heterogeneous phenotypes with shared and unique germline genetic causes and 
varied clinical implications.

As humans age, somatic alterations accrue in the DNA of haematopoi-
etic stem cells (HSCs) due to mitotic errors and DNA damage. Altera-
tions that confer a selective growth advantage can lead to the expansion 
of particular cell lineages, a phenomenon called clonal haematopoiesis. 
The presence of clonal haematopoiesis has been associated with an 
increased risk of haematological neoplasms, cytopaenias, cardiovas-
cular disease (CVD), infection and all-cause mortality1–5. For this reason, 
identifying germline causes of clonal haematopoiesis has the potential 
to improve our understanding of initiating events in the development 
of these common diseases.

Large-scale studies of the germline causes of clonal haematopoiesis 
have used samples from the UKB and other large cohorts, but those 
studies have been limited mostly to clonal haematopoiesis phenotypes 
that can be assessed using single nucleotide polymorphism (SNP) array 
genotype data, such as mosaic chromosomal alternations (mCA) and 

mosaic loss of sex chromosomes4,7,8 (mLOX and mLOY). Identifying 
individuals with CHIP, which is defined by somatic protein-altering 
mutations in genes that are recurrently mutated in clonal haemat-
opoiesis, requires sequencing of blood1,2. Once a clone has expanded 
sufficiently, the somatic variants from this clone can be captured along 
with germline variants by exome sequencing. Since exome sequencing 
captures protein-altering variants, its large-scale application enables 
the detection of readily interpretable rare variant association signals, 
and can elucidate critical genes and pathways and potential therapeutic 
targeting9,10. So far, the largest genetic association study of CHIP has 
included 3,831 CHIP mutation carriers in a sample of 65,405 individuals 
and has identified four common variant loci11.

Here, we use exome sequencing data to characterize CHIP status 
in 454,803 UKB10 and 173,585 Geisinger MyCode Community Health 
Initiative (GHS) participants. We then conduct a common variant 
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genome-wide association study (GWAS) and rare variant and gene bur-
den exome-wide association study (ExWAS) of CHIP by leveraging 27,331 
CHIP mutation carriers from the UKB. We perform a replication analysis 
using 12,877 CHIP mutation carriers from the GHS cohort. To identify 
germline predictors of specific clonal haematopoiesis driver mutations, 
we also conduct GWAS and ExWAS in carriers of CHIP mutations from 
individual CHIP genes. We then compare genetic association findings 
for CHIP to those from analyses of other clonal haematopoiesis pheno-
types determined from somatic alterations in the blood, including mCA, 
mLOX, mLOY and telomere length. Although GWAS of these non-CHIP 
clonal haematopoiesis phenotypes have been conducted4,7,12, none 
have evaluated the effect of rare variation. The ExWAS we perform here 
represents the first systematic large-scale exploration of the effect of 
rare variants on the genetic susceptibility of these phenotypes. Finally, 
we examine the clinical consequences of somatic CHIP mutations and 
germline predictors of CHIP in several ways. We first conduct a PheWAS13 
of germline predictors of CHIP to understand their biological functions, 
and test cross-sectional phenotype associations of CHIP carrier status 
across 5,194 traits in the UKB. We then test the risk of incident cancer, 
CVD and all-cause mortality among specific CHIP gene mutation car-
riers and use Mendelian randomization to test for evidence of causal 
associations between CHIP and phenotypes of interest.

Calling CHIP
We used exome sequencing data from 454,803 and 173,585 individuals 
from the UKB and GHS cohorts, respectively, to generate large callsets of  
CHIP carrier status (Methods). In brief, we called somatic mutations 
using Mutect2 in a pipeline that included custom QC filtering (Extended 
Data Fig. 1a), and ultimately restricted our analysis to 23 well defined and  
recurrent CHIP-associated genes. This focused analysis identified 
29,669 variants across 27,331 individuals in the UKB (6%), and 14,766 
variants across 12,877 individuals in the GHS (7.4%). DNMT3A, TET2, 
ASXL1, PPM1D and TP53 were the most commonly mutated genes in 
both cohorts (Extended Data Fig. 2a). Although the GHS cohort had a 
wider age range, and therefore a larger number of older individuals, 
the prevalence by age was similar across cohorts, and reached approxi-
mately 15% by 75 years of age (Extended Data Fig. 1b,c). Prevalence of 
CHIP gene-specific mutations was consistent with recurrence patterns, 
with mutations in the most commonly mutated CHIP genes beginning 
to increase in prevalence at younger ages (Extended Data Fig. 1d,e and 
Supplementary Note 1). Somatic mutations within the IDH2 and SRSF2 
genes co-occurred significantly more frequently than expected in both 
the UKB and GHS cohorts, whereas DNMT3A mutations co-occurred 
less frequently with other mutations than expected (Extended Data 
Fig. 2b,c and Supplementary Table 1). Among individuals with multiple 
CHIP mutations (Supplementary Note 2 and Supplementary Fig. 1), 
JAK2 mutations consistently had the highest variant allele fraction 
(VAF) (Supplementary Fig. 1b).

CHIP demographics
Compared with controls, CHIP carriers in both the UKB and GHS cohorts  
were older and more likely to be heavy smokers, consistent with  
previous studies11 (Table 1). Although our cohorts were predomi-
nantly comprised of European ancestry individuals, the prevalence 
of CHIP was similar across all ancestries (Supplementary Fig. 2).  
In multivariate logistic regression models, each additional year of age 
was strongly associated with an increased risk of CHIP in the UKB (odds 
ratio [range] = 1.08 [1.077–1.082], P < 10−300) and GHS (odds ratio = 1.06 
[1.057–1.063], P < 10−300), and heavy smoking was strongly associated 
with CHIP carrier status in both UKB (odds ratio = 1.17 [1.14–1.21], 
P = 7.32 × 10−24) and GHS (odds ratio = 1.24 [1.10–1.41], P = 6.3 × 10−4). 
Overall, our results suggest that the prevalence of CHIP doubles every 
9–12 years of life. These associations with age and smoking were 

stronger when restricting to high-VAF (≥0.1) CHIP carriers. In our mul-
tivariate modelling, women were significantly more likely to be CHIP 
mutation carriers than men in the UKB (odds ratio = 1.08 [1.05–1.11], 
P = 6.01 × 10−7), but not in the GHS (odds ratio = 1.01 [0.93–1.11, P = 0.77]). 
These associations were consistent when restricting to high-VAF CHIP 
carriers, although the risk of high-VAF CHIP was not significantly greater 
in women in the UKB (odds ratio = 1.035 [0.99–1.08], P = 0.126).

Genetic association with CHIP carrier status
We first conducted genetic association analyses in the UKB cohort to 
identify germline loci associated with the risk of developing CHIP. In the 
common variant (minor allele frequency (MAF) > 0.5%) GWAS, which 
included 25,657 cases and 342,869 controls with European ancestry, we 
identified 24 loci (21 novel loci) harbouring 57 independently associated 
variants (Fig. 1 and Supplementary Table 2). To confirm these signals, 
we conducted a replication analysis in 9,523 CHIP cases and 105,502 
controls of European ancestry from the GHS cohort. We estimated 
that we had sufficient statistical power in the GHS to detect 19.99 true 
and directionally consistent associations across lead SNPs from the 
24 loci we identified in the UKB and achieved nominally significant 
(P < 0.05) replication for 15 SNPs (Supplementary Table 2). We used 
conditional analysis and statistical fine-mapping to further evaluate 
the independence of our genome-wide associations and found results 
to be consistent across methods (Extended Data Fig. 3, Supplementary 
Note 3, Supplementary Tables 3–6 and Supplementary Fig. 3).

We next sought to identify rare germline variants associated with 
CHIP. Since the CHIP phenotype is based on the presence of rare somatic 
variants in recurrently mutated genes, rare germline variants poten-
tially misclassified as somatic can lead to false association signals. 
To address potential misclassification, we evaluated median VAF and 
association with age for each rare germline variant or gene burden 
associated with CHIP. We also conditioned these rare variant analyses 
on independent common variant signals to address confounding due 
to linkage disequilibrium (LD) (Supplementary Note 4). Ultimately, 
we identified a single rare germline frameshift variant in the CHEK2 
gene that was significantly associated with CHIP (odds ratio = 2.22 
[1.89–2.61], P = 8.04 × 10−22; Supplementary Table 7), remained so after 
conditioning on common variant signals (odds ratio = 2.90 [1.93–4.34], 
P = 2.40 × 10−7), and replicated in the GHS (odds ratio = 1.56 [1.19–2.04], 
P = 1.22 × 10−3). The two cancer-associated genes ATM and CHEK2 were 
associated with an increased risk of CHIP via rare variant gene bur-
den testing (Supplementary Table 8), and we also found a significant 
gene burden association between rare loss of function (and missense) 
variants in the telomere maintenance and DNA replication associated 
gene CTC1 and an increased risk of CHIP (odds ratio = 1.55 [1.32–1.81], 
P = 5.24 × 10−8). Of these three gene burden associations, the ATM and 
CHEK2 signals were replicated in the GHS (P = 8.22 × 10−5 and P = 0.03, 
respectively), and VAF and age-association calculations suggested that 
all three of these gene burden signals were driven by germline variation. 
We also performed genome-wide association analyses in individuals 
of non-European ancestral background (Supplementary Note 5 and 
Supplementary Table 9).

For each germline variant associated with CHIP and prioritized by 
clumping and thresholding, conditional analysis or fine-mapping 
(see Methods), we queried its associations across 937 binary and 
quantitative health traits from the UKB for which we have previously 
performed genetic association analysis10 (Supplementary Table 10). 
Overall, the traits with significant associations consisted predominantly 
of blood measures (that is, cells counts and biomarker levels), anthro-
pometric measures related to body size, autoimmune phenotypes 
and respiratory measures. SNPs with the largest number of significant 
phenotypic associations included those at the HLA, TP53, ZFP36L2 and 
THADA, CD164 and MYB loci (Extended Data Fig. 4). Whereas associa-
tions with blood cell counts and biomarker levels are probably the direct 
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result of expansion of individual cell lineages in blood, association with 
autoimmune phenotypes could reflect the consequences of disrupted 
immune system differentiation related to clonal haematopoiesis.

Analyses of individual CHIP gene mutations
To identify CHIP subtype-specific risk variants, we defined gene-specific 
CHIP phenotypes for each of the eight most commonly mutated CHIP 
genes. For each subtype, we selected individuals with mutations in one 
of the eight genes and no mutations in any of the other genes used to 
define CHIP. We then conducted genetic association analyses compar-
ing these single CHIP gene carriers to CHIP-free controls, with replica-
tion in the GHS, and observed shared, unique, and opposing effects of 
associated loci on CHIP subtypes, including 8 genome-wide significant 
loci that were not significant in our overall analysis of CHIP (Fig. 2a, 
Extended Data Fig. 5 and Supplementary Tables 11–19).

DNMT3A, which was the most commonly mutated gene in the overall 
CHIP phenotype, had the largest number of significantly associated loci 
(n = 23), most of which overlapped with the overall CHIP association 
signals. Six loci achieved genome-wide significance in our DNMT3A 
CHIP analysis that were not significant in our overall analysis (RABIF, 
TSC22D2, ABCC5, MYB, FLT3 and TCL1A; Extended Data Fig. 5). Although 
most loci harboured variants that increased CHIP risk, two excep-
tions are noteworthy (Fig. 2b). At the PARP1 locus on chromosome 1, 
a tightly linked block of around 30 variants (29 in the 95% credible set 
from fine-mapping; Supplementary Table 6) with an alternate allele 

frequency (AAF) of 0.15 was associated with reduced risk of DNMT3A 
CHIP (odds ratio = 0.87 [0.84–0.90], P = 2.70 × 10−17). PARP1 has a role in 
DNA damage repair, and many variants in this block have been identi-
fied across multiple transcriptomic studies of blood as PARP1 expres-
sion quantitative trait loci (eQTLs) that associate with reduced PARP1 
gene expression14–17. Furthermore, a missense variant (rs1136410-G, 
V762A) that is predicted as likely to be damaging (combined annotation 
dependent depletion (CADD) score = 27.9) is a part of this LD block, 
and has recently been reported to associate with improved prognosis 
and survival in myelodysplastic syndromes18 (MDS). At a locus on chro-
mosome 2, rs78446341 (P1247L in LY75) was associated with reduced 
risk of DNMT3A CHIP (odds ratio = 0.78 [0.72–0.84], P = 3.70 × 10−10), 
and was prioritized by fine-mapping (Extended Data Fig. 3). LY75 fea-
tures lymphocyte-specific expression (Supplementary Fig. 4a), and is 
thought to be involved in antigen presentation and lymphocyte pro-
liferation19. We also identified a second rare (AAF = 0.002) missense 
variant (rs147820690-T, G525E) that associated with reduced risk of 
DNMT3A CHIP at close to genome-wide significance (odds ratio = 0.48 
[0.36–0.63], P = 1.15 × 10−7). This variant was predicted as likely to be 
damaging (CADD = 23.6) and remains associated (odds ratio = 0.63 
[0.51–0.77], P = 4.80 × 10−6) when conditioning on common variant 
signal in this locus (that is, this rare variant signal is independent of 
the common variant signal in this locus). This variant was also prior-
itized by fine-mapping (Extended Data Fig. 3 and Methods for jointly 
fine-mapping common and rare variants). Finally, these signals in PARP1 
and LY75 replicated in the GHS (Fig. 2b).

Table 1 | Descriptive statistics for CHIP mutation carriers

Age 
(median)

Sex (% 
female)

Heavy 
smoking (%)

Previous blood 
cancer (%)

Any blood 
cancer (%)

Any cancer (−
NMSC, %)

Severe 
COVID-19 
(%)

Ancestry (European, 
African, South Asian, other 
(%))

UKB CHIP 62 54.0 33.9 2.18 6.49 26.6 0.52 96 1.4 1.8 0.73

No CHIP 57 54.3 27.5 0.60 2.19 17.8 0.31 95 2.0 2.3 0.94

GHS CHIP 73 55.2 13.7 1.59 12.7 41.7 0.45 98 1.4 0.1 0.65

No CHIP 57 61.6 9.57 0.63 3.22 19.7 0.18 94 3.2 0.3 1.9
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Fig. 1 | GWAS of CHIP. Manhattan plot showing results from a genome-wide 
association analysis of CHIP. Twenty-four loci reach genome-wide significance 
(P ≤ 5 × 10−8, dashed line), and top-associated variants per locus are labelled 
with biologically relevant genes. Three of these loci have been previously 
identified (black), whereas 21 represent novel associations (red). Loci with 

suggestive signal (P ≤ 5 × 10−7) are labelled in grey. Association models were run 
with age, age2, sex and age × sex, and 10 ancestry-informative principal 
components as covariates. P-values are uncorrected and are from two-sided 
tests performed using approximate Firth logistic regression.
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Among loci associated with multiple CHIP subtypes (Supplementary 
Note 6), we observed genome-wide significant association signals at 
the TCL1A locus that were not present in the overall CHIP analysis. This 
locus is notable because it exhibited genome-wide significant effects 
in opposing directions across CHIP subtypes (Extended Data Figs. 2a 
and 5 and Supplementary Table 20), with lead SNPs (for example, 
rs2887399-T, rs11846938-G and rs2296311-A) at the locus associated 
with an increased risk of DNMT3A CHIP (odds ratio = 1.14 [1.11–1.17], 
P = 2.13 × 10−20) but a reduced risk of TET2 CHIP (odds ratio = 0.75 [0.71–
0.80], P = 9.14 × 10−22) and ASXL1 CHIP (odds ratio = 0.70 [0.65–0.76], 
P = 8.59 × 10−18). Effect estimates from the other five CHIP gene-specific 

association analyses were also consistent with protective effects. This 
is consistent with findings from a recent genetic association study of 
CHIP in the TOPMed cohort11, which identified a genome-wide signifi-
cant positive association of the TCL1A locus and DNMT3A CHIP as well 
as a nominally significant opposing signal for TET2 CHIP. Additionally, 
the DNMT3A CHIP-increasing allele has been found to reduce the risk 
of mLOY in a recent GWAS7. This observation suggests that DNMT3A 
CHIP is distinct among clonal haematopoietic subtypes with regard to 
the genetic influence of the TCL1A locus, which may relate to the fact 
that TCL1A has been reported to directly interact with and inactivate 
DNMT3A20.
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Fig. 2 | Germline effect size comparisons across CHIP and Forest plots of 
PARP1 and LY75 missense variants. a, Using results from CHIP gene-specific 
association analyses, effect sizes of index SNPs are compared across CHIP 
subtypes. SNPs were chosen as those that were independent on the basis of 
clumping and thresholding (with some refinement based on our conditionally 
independent variant list) and genome-wide significant in at least one 
association with CHIP or a CHIP subtype. Certain loci showed notably different 
effects across CHIP subtypes, as seen at the CD164 locus, which was associated 
with DNMT3A CHIP and ASXL1 CHIP but not TET2 CHIP, and the TCL1A locus, 
which was associated with increased risk of DNMT3A CHIP but reduced risk of 

other CHIP subtypes (blue rectangles). b, Forest plots are shown reflecting the 
protective associations of a PARP1 missense variant (rs1136410-G) and two LY75 
missense variants (rs78446341-A, rs147820690-T) with our DNMT3A CHIP 
phenotype in the UKB and GHS cohorts. Centre points represent odds ratios  
as estimated by approximate Firth logistic regression, with errors bars 
representing 95% confidence intervals. P-values are uncorrected and reflect 
two-sided tests. Numbers below the cases and controls columns represent 
counts of individuals with homozygote reference, heterozygote and 
homozygous alternative genotypes, respectively.
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CHIP and mosaic chromosomal alterations
To evaluate the relationship between CHIP and other forms of somatic 
alterations of the blood, we used phenotype information on other types 
of clonal haematopoiesis that are available for UKB participants4,7,8,12. 
We first evaluated the phenotypic overlap between CHIP and mLOY, 
mLOX and autosomal mosaic chromosomal alterations (mCAaut). 
CHIP is distinct from mCA phenotypes (mCAaut, mLOX and mLOY), 
with more than 80% of CHIP carriers having no identified mCAs (Sup-
plementary Fig. 4b). Furthermore, having an mCA is not significantly 
associated with being a CHIP carrier after adjusting for age, sex and 
smoking status (odds ratio = 1.02, P = 0.27). Carriers of only a single 
clonal haematopoiesis driver (that is, CHIP, mLOY, mLOX or mCAaut) 
were younger on average than those with multiple clonal haematopoie-
sis lesions, and mCAaut and CHIP carriers were youngest among single 
clonal haematopoiesis phenotype carriers (Supplementary Fig. 4c).

We then conducted GWAS and ExWAS analyses of these somatic alter-
ation phenotypes and evaluated the germline genetic contributions 
shared between CHIP and these traits (Supplementary Fig. 5 and Sup-
plementary Tables 21–27). Genome-wide genetic correlation (rg)21,22 was 
nominally significant between CHIP and mLOY (rg = 0.27, P = 0.014 (uncor-
rected); Supplementary Table 21). Notably, variants at 4 loci (marked by 
the genes ATM, LY75, CD164 and GSDMC) showed similar associations 
with both CHIP and mLOY, whereas variants at the SETBP1 locus were 
negatively associated with CHIP and positively associated with mLOY. 
These comparisons suggest that despite being distinct clonal haemat-
opoietic phenotypes, CHIP and mLOY share multiple germline genetic 
risk factors. Although the common variant association analyses of these 
other somatic alteration phenotypes were undertaken for the purpose of 
comparing to CHIP, and our results are consistent with recent published 
associations for these non-CHIP UKB somatic alteration phenotypes4,7,8, 
we also identified novel rare variant and gene burden associations via 
ExWAS analyses (Supplementary Note 7, Supplementary Tables 22–27 
and Supplementary Fig. 6). We also extended our ExWAS analysis to 
telomere length and identified multiple novel rare variant associations 
(Supplementary Note 8 and Supplementary Tables 28–30).

Phenotypic associations with CHIP
Clonal haematopoiesis has been associated with an increased risk of 
haematologic malignancy and CVD, as well as other health outcomes 
including all-cause mortality and susceptibility to infection3,4,23,24. To 
test for expected as well as potentially novel associations, we performed 
cross-sectional association analyses across 5,041 traits (2,640 binary 
and 2,401 quantitative traits) from the UKB, curated as part of our 
efforts for the UKB Exome Sequencing Consortium. We performed 
Firth penalized logistic regression using CHIP gene mutation carrier 
status (that is, whether an individual had a mutation in our callset within 
a specific CHIP gene) as the binary outcome for 22 of the 23 CHIP genes 
in our callset (counts were too low for CSF3R; Methods), with age, sex 
and ten genetic principal components as covariates. Our results are 
consistent with previous findings, with the majority of associated 
phenotypes deriving from cardiovascular, haematologic, neoplastic, 
infectious, renal and/or smoking-related causes (Fig. 3, Supplementary 
Fig. 7 and Supplementary Table 31).

ASXL1 CHIP was associated with the largest number and widest 
range of traits, and many of these associations traced to correlates of 
smoking. SUZ12 CHIP showed a distinct association profile amongst 
CHIP genes, with a larger proportion of associations in endocrine and 
ophthalmologic traits than other CHIP genes. Many traits showed 
associations with DNMT3A CHIP and TET2 CHIP that were in opposing 
directions, including white blood cell count, platelet count and neu-
trophil count, which were all positively associated with DNMT3A CHIP 
and negatively associated with TET2 CHIP. These results are consist-
ent with functional differences in the haematopoietic phenotypes of 

DNMT3A- and TET2-knockout mice25. Notably, body mass index (BMI) 
and fat percentage were negatively associated with DNMT3A CHIP and  
other leukaemogenic CHIP mutations (for example, JAK2, CALR and 
MPL), but are positively associated with other CHIP subtypes (for 
example, TET2 and ASXL1). We also observed significant associations 
between JAK2 mutations and gout, which may reflect the increased 
uric acid production that can accompany haematopoiesis26 and/or 
renal disease27, or even uric acid-independent associations identified 
between anaemia and gout28.

Given recent reports that clonal haematopoiesis is associated with 
an increased risk of COVID-19 and other infections4,29, we also tested 
for an association between CHIP and COVID-19 infection in the UKB 
cohort30. When restricting to CHIP carriers with VAF ≥ 10% (Supple-
mentary Note 9), we found that CHIP carrier status was significantly 
associated with COVID-19 hospitalization (odds ratio = 1.26 [1.07–
1.47], P = 4.5 × 10−3) and severe COVID-19 infection (odds ratio = 1.55 
[1.19–1.99], P = 8.5 × 10−4) in logistic regression models that excluded 
individuals with any previous blood cancers and that adjusted for age, 
sex, smoking, BMI, type 2 diabetes, active malignancy, and five genetic 
principal components. Analyses at the CHIP subtype level suggested 
that PPM1D carriers may be at elevated risk of severe COVID-19 (odds 
ratio = 5.42 [1.89–12.2], P = 2.8 × 10−4; Supplementary Note 9).

Longitudinal disease risk among CHIP carriers
Given the confounding that can bias cross-sectional association analy-
ses, we performed survival analyses to evaluate whether individuals 
with CHIP at the time of enrolment and blood sampling in the UKB were 
at an increased risk of subsequent CVD, cancer and all-cause mortality. 
To do this, we generated aggregate longitudinal phenotypes of CVD, 
lymphoid cancer, myeloid cancer, lung cancer, breast cancer, prostate 
cancer, colon cancer and overall survival (that is, any death). Because 
prior longitudinal studies of CHIP and the risk of many of these out-
comes have focused on high-VAF CHIP, we focused on CHIP carriers 
with VAF ≥ 0.10 for these analyses. To complement these longitudinal 
analyses, we used Mendelian randomization to evaluate the relation-
ship between CHIP and subsequent disease (Extended Data Fig. 6a, 
Supplementary Note 10 and Supplementary Table 32).

We observed a significantly increased risk of CVD in CHIP carriers 
(hazard ratio = 1.11 [1.03–1.19], P = 4.2 × 10−3), which was driven by TET2 
CHIP (hazard ratio = 1.31 [1.14–1.51], P = 1.3 × 10−4; Supplementary 
Fig. 8a). However, this risk estimate is lower than the hazard ratio of 
1.59 recently reported by Bick et al.6 in an analysis of CHIP from the first 
50,000 UKB participants (hereafter referred to as the 50k UKB subset) 
with exome sequencing data available. Therefore, we restricted our 
analysis to the 50,000 individuals from the previous study and found 
that the estimated hazard ratio is indeed higher in this subset (hazard 
ratio = 1.30 [1.06–1.59], P = 0.013; Supplementary Fig. 8b). Bick et al. 
also observed a cardio-protective effect of IL6R rs2228145-C (a genetic 
proxy for IL-6 receptor inhibition) among CHIP carriers in the 50k UKB 
subset, so we repeated that analysis in both the 50k UKB subset and the 
full UKB cohort (n = 430,924 in these analyses). We observed the same 
CHIP-specific protective IL6R effect in the 50k UKB subset as previously 
reported (hazard ratio = 0.60 [0.40–0.89], P = 0.012), however we did 
not find any IL6R effect in the full cohort (hazard ratio = 0.99 [0.91–1.07], 
P = 0.784, n = 430,924; Extended Data Fig. 7a–d). These results were 
consistent when varying which CHIP mutations we used to define CHIP 
case status, as well as when using different VAF thresholds and a variety 
of CVD endpoint composites (Methods). We did not find any association 
between CHIP and CVD, nor a CHIP-specific protective IL6R effect, when 
repeating this analysis in the GHS cohort (Supplementary Figs. 8d and 
9a, b). Furthermore, we did not find evidence for a casual association 
between CHIP and CVD when using a two-sample Mendelian randomi-
zation approach (Supplementary Note 10, Supplementary Fig. 10 and 
Supplementary Table 32).
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We next tested whether CHIP carriers are at an increased risk of 
haematologic and solid cancers, and whether risk differed by CHIP 
mutational subtype for the three most common CHIP genes (that is, 
DNMT3A, TET2 and ASXL1; Extended Data Figs. 7–9 and Supplementary 
Figs. 11–14). To control for the possibility that toxic chemotherapeutic 
treatment for previous cancers might drive the development of CHIP 
mutations31 and/or otherwise confound association analyses, we per-
formed all analyses after excluding individuals with any diagnoses of 
cancer prior to DNA collection. As expected, we found CHIP carriers 
with VAF ≥ 0.10 to be at a significantly elevated risk of developing any 
blood cancer (hazard ratio = 3.88 [3.46–4.36], P = 9.10 × 10−117; Sup-
plementary Fig. 11a), and we identified similarly elevated risk when 
replicating these analyses in the GHS (Supplementary Fig. 11d). We also 
estimated the risk of CHIP on neoplastic myeloid subtypes, including 
acute myeloid leukaemia (AML), MDS and myeloproliferative neo-
plasms (MPN), and found that high-VAF CHIP carriers have more than 
23-fold increased risk of acquiring an MPN (hazard ratio = 23.11 [17.63–
30.29], P = 1.60 × 10−114) (Extended Data Fig. 8). As expected, we identi-
fied a significant association between myeloid leukaemia and CHIP by 
Mendelian randomization (Supplementary Note 10, Supplementary 
Fig. 12 and Supplementary Table 32).

We then tested whether CHIP carriers had an increased risk of devel-
oping solid tumours, and found that high-VAF carriers are at signifi-
cantly increased risk of developing lung cancer (hazard ratio = 1.64 

[1.42–1.90], P = 1.10 × 10−11), and more modest increased risk of develop-
ing prostate cancer (hazard ratio = 1.18 [1.05–1.32], P = 5.30 × 10−3) and 
non-melanoma skin cancer (hazard ratio = 1.14 [1.04–1.24], P = 4.7 × 10−3; 
Fig. 4 and Supplementary Fig. 13). We also observed a non-significant 
increased risk of developing breast cancer (hazard ratio = 1.14 [0.99–
1.31], P = 0.062) and no increase in risk for the development of colon 
cancer (hazard ratio = 0.95 [0.78–1.15], P = 0.59; Supplementary Fig. 13). 
Models estimating event risk on the basis of CHIP mutational subtype 
(for example, DNMT3A CHIP) suggest that these associations with pros-
tate and breast cancer are driven primarily by DNMT3A mutations. Only 
the association with lung cancer was replicated in the GHS (Fig. 13e), 
although sample sizes were limited for the analyses in the GHS owing 
to how the biobank data were ascertained (Methods).

Given the strong associations between CHIP and both blood and lung 
cancers, and the associations between smoking and both CHIP and 
lung cancer, we performed additional analyses stratified by smoking 
status to test whether these associations were driven by smoking and 
merely marked by CHIP mutations. Although smoking status is difficult 
to ascertain, we used an inclusive ‘ever smoker’ definition to minimize 
the likelihood that individuals labelled as non-smokers had engaged 
in any smoking (Methods). High-VAF CHIP carriers had an increased 
risk of developing blood cancers in both smokers (hazard ratio = 3.95 
[3.25–4.78], P = 2.80 × 10−44) and non-smokers (hazard ratio = 3.97 [3.43–
4.58], P = 1.10 × 10−77; Supplementary Fig. 14a, b). Notably, lung cancer 
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Fig. 3 | Phenome association profiles per CHIP subtype. Profiles are shown 
for each CHIP gene subtype reflecting phenome-wide association results.  
The y-axis (concentric circles) represents the proportion of phenotypes within 
a trait category that were nominally associated (P ≤ 0.05) with carrier status of 
the CHIP gene. A CHIP gene had to have at least one disease category with the 
proportion of associated phenotypes ≥ 0.2 to be included in the figure. As 
expected, haematological traits show the largest proportion of phenotypic 

trait associations overall. The largest number of cancer associations are seen 
for DNMT3A CHIP, whereas JAK2 CHIP shows the highest proportion of 
cardiovascular associations. Respiratory associations are most pronounced 
for ASXL1 CHIP. SUZ12 CHIP shows a unique profile across CHIP subtypes,  
with a higher proportion of ophthalmological and endocrine associations. 
Association models were run with age, age2, sex and age × sex, and ten 
ancestry-informative principal components as covariates.
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risk for high-VAF CHIP carriers was significantly elevated among both 
smokers (hazard ratio = 1.67 [1.41–1.97], P = 1.5 × 10−9) and non-smokers 
(hazard ratio = 2.02 [1.53–2.67], P = 8.30 × 10−7 ; Extended Data Fig. 9a,b). 
These associations were driven by DNMT3A and ASXL1 CHIP carriers, 
with both estimated to have elevated lung cancer risk in both smokers 
and non-smokers. We replicated the association between CHIP carrier 
status and lung cancer in both smokers and non-smokers in the GHS 
(Extended Data Fig. 9c,d). Overall, these models suggest that CHIP 
mutation carriers are at an elevated risk of both blood cancer and lung 
cancer, independent of smoking status.

We also found support for a causal association between CHIP and 
lung cancer (inverse variance weighted odds ratio (ORIVW) = 1.55 [1.34–
1.80], P = 8.90 × 10−9; Fig. 4 and Extended Data Table 1), as well as more 
modest support for causal associations between CHIP and melanoma 
(ORIVW = 1.39 [1.13–1.1.71], P = 0.0021), CHIP and non-melanoma skin can-
cer (ORIVW = 1.26 [1.13–1.41], P = 5.30 × 10−5), CHIP and prostate cancer  
(ORIVW = 1.20 [1.03–1.1.39], P = 0.017), and CHIP and breast cancer (1.17 
[1.04–1.31], P = 0.01), when performing Mendelian randomization 

(Extended Data Fig. 6a, Supplementary Note 10 and Supplementary 
Table 32). Although there is a concern that variants predisposing to 
CHIP via cancer-associated pathways (for example, telomere biology, 
DNA damage repair and cell cycle regulation) may confound these asso-
ciations via horizontal pleiotropy, Egger-based Mendelian randomiza-
tion methods that account for this bias by fitting a non-zero intercept 
provided additional support for these associations. Finally, the risk 
of death from any cause was significantly elevated among high-VAF 
CHIP carriers (hazard ratio = 1.27 [1.18–1.36], P = 2.70 × 10−11), and was 
similar across DNMT3A, TET2 and ASXL1 CHIP subtypes (Extended 
Data Fig. 6b).

In this study, we present the largest assessment to date of individuals 
with CHIP mutation carrier information, as well as the use of these calls 
to identify novel common and rare variant loci associated with CHIP 
and CHIP subtypes. These loci, which have shared, unique and oppos-
ing effects on the risk of developing different types of CHIP and other 
somatic alterations of the blood, highlight the fact that germline vari-
ants can predispose to clonal expansions, and that CHIP encapsulates 
a complex set of heterogeneous phenotypes. We further show that the 
genetic aetiology of CHIP is reflected in its clinical consequences, as 
the risk of various clinical conditions is differentially associated across 
CHIP gene mutations.

The new loci identified in this study provide a foundation on which to 
investigate the biological mechanisms that lead to specific features of 
CHIP. For example, among CHIP-associated loci, variants in the TCL1A 
locus that are associated with an increase in the risk of DNMT3A CHIP 
have the opposite effect on the risk of all other CHIP and clonal hae-
matopoiesis subtypes. Coupled with recent findings that link the role 
of TCL1A in mLOY to lymphocytes7 (for example, B cells), our results 
further suggest TCL1A as a critical mediator of clonal haematopoiesis 
as well as clonal haematopoiesis subtype-specific differences.

Several novel loci associated with DNMT3A CHIP harbour genes 
that are potential targets for the development of new treatments to 
prevent or slow the expansion of CHIP clones. Both PARP1 and LY75 
contain missense variants associated with reduced risk of CHIP and of 
DNMT3A CHIP specifically. The variants in the PARP1 locus are signifi-
cantly associated with reduced PARP1 gene expression in whole blood32 
(P ≤ 1 × 10−13), and the V762A missense variant (rs1136410-G) has been 
recently reported to associate with improved prognosis and survival 
in MDS18. Given the well-established role of PARP1 in DNA repair33, and 
that a recent CRISPR screen study in zebrafish identified PARP1 inhibi-
tion as a selective killer of TET2 mutant haematopoietic stem cells34, it 
seems plausible that a therapeutic strategy that inhibits PARP1 might be 
viable for the antagonization of CHIP clone expansion. Furthermore, 
PARP1-inhibiting drugs are already approved for use in the treatment of 
BRCA-mutant cancers35. Conversely, PARP1 inhibition is known to cause 
haematologic toxicity and to increase the risk of treatment related 
haematologic malignancy36. Therefore, further research is needed to 
test whether PARP1 inhibition may be appropriate for use in antago-
nizing the expansion of CHIP clones, and whether any effect is clonal 
haematopoiesis subtype-specific.

The more common LY75 missense variant (rs78446341-A, P1247L) 
is located in the extracellular domain of lymphocytic antigen 75 
(also known as DEC-205 or CD205), and has a role in antigenic cap-
ture, processing and presentation37. The rarer LY75 missense vari-
ant (rs147820690-T, G525E) is located in a C-type lectin domain 
and reported to interact directly with this receptor’s ligand. LY75 is 
expressed predominantly in haematopoietic-derived cells37,38 (and 
particularly dendritic cells), and its ablation impairs T cell prolifera-
tion and response to antigen challenge19. The protective associations 
with this variant that we identified appear to be most pronounced for 
DNMT3A CHIP and mLOY, and highlight LY75 as a potential therapeu-
tic target for the antagonization of clonal haematopoiesis in general.

Although most of the phenotypic associations we observe in our 
cross-sectional analyses are expected associations with haematologic 
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Fig. 4 | Increased risk of lung cancer among CHIP carriers. a, Forest plot and 
table featuring hazard ratio estimates from Cox proportional hazard models  
of the risk lung cancer among CHIP carriers. Error bars represent a 95% 
confidence interval. Associations are similar across common CHIP subtypes, as 
well as among CHIP carriers with lower VAF (≥2%). Models are adjusted for sex, 
low density lipoprotein, high density lipoprotein, smoking status, pack years, 
BMI, essential primary hypertension, type 2 diabetes mellitus, and 10 genetic 
principal components specific to a European ancestral background. HR, 
hazard ratio. UKB 450K, the 450,00-participant full UKB dataset. DNMT3A+ 
represents subjects with DNMT3A CHIP and at least one other type of CHIP 
mutation. b, Estimated associations via four Mendelian randomization 
methods between CHIP and lung cancer. Each point represents one of 29 
instrumental variables (that is, conditionally independent SNPs) that were 
identified in the UKB cohort as associated with CHIP. The x-axis shows the 
effect estimate (beta) of the SNP on CHIP in the UKB cohort, and the y-axis 
shows the effect estimate (beta) of the SNP on lung cancer in the GHS cohort. 
The slope of each regression line represents the effect size estimated by 
respective methods. IVW, inverse variance weighted.
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and oncologic traits, the associations we identify with obesity and body 
mass traits are of particular interest. This relationship between body 
mass and CHIP may relate to inflammatory or hormonal signalling, and 
directions of effect that we estimate are consistent with recent find-
ings that DNMT3A CHIP reduces bone mineral density via increases in 
macrophage-mediated IL-20 signalling39. The fact that the association 
we report between obesity and body mass and CHIP are in opposing 
directions across CHIP subtypes (for example, negative in DNMT3A 
CHIP and positive in TET2 CHIP and ASXL1 CHIP) suggests that the rela-
tionship between CHIP and adiposity is complex and requires further 
investigation.

Perhaps most unexpectedly, we found associations between CHIP 
and CVD to be more modest than previously reported1–3. DNMT3A muta-
tions do not associate with CVD, which is consistent with the absence 
of any association between CHIP and CVD when applying Mendelian 
randomization. However, this pattern is not seen across CHIP associa-
tions with solid tumours, which we found to be driven by DNMT3A, 
and to be supported by Mendelian randomization. Overall, our results 
further clarify the role of CHIP mutational subtypes in the development 
of cancer and CVD and emphasize the importance of viewing (and 
potentially treating) different CHIP subtypes as distinct haematologic 
preconditions.

Whereas Bick et al. 6. found statistical support for reduced CVD inci-
dence among CHIP carriers with an IL6R coding mutation (rs2228145-C) 
serving as a genetic proxy for IL-6 inhibition, we do not find any sup-
port for this association when extending their analysis from the first 
50,000 exomes in the UKB to the full cohort of 450,000 exomes, nor 
when repeating this analysis in 175,000 exomes from the GHS cohort. 
The signal identified across the first 50,000 exomes may result from 
a chance ascertainment bias40. Alternatively, whereas the rs2228145-C 
variant is thought to mimic IL-6 inhibition, and therefore confer pro-
tection from heart disease41, neither our analysis nor Bick et al. found 
evidence that rs2228145 carriers are protected from CVD in subjects 
without CHIP. Therefore, it is possible that this mutation is a poor proxy 
for IL-6 inhibition, and that direct pharmacological inhibition of IL-6 
may still antagonize the interplay between CHIP clone expansion and 
the onset of CVD.

This study benefits from its biobank-scale size, which we leverage 
to further resolve clonal haematopoiesis subtypes and broadly assess 
clinical phenotypes associated with CHIP. However, limitations include 
the potential inclusion in our CHIP callset of a small number of ger-
mline variants, a lack of serial sampling, and a lack of experimental data 
to characterize the mechanisms underpinning the novel associations 
that we identify. Although we have taken many steps to ensure the 
quality of our callset and analysis (Supplementary Notes 11 and 12 and 
Supplementary Figs. 15–18), the misclassification of somatic variants 
with high VAF as germline variants, and/or the misclassification of 
true germline variants as somatic clonal haematopoiesis variants (for 
example, germline variants at genomic positions identified as clonal 
haematopoiesis hotspots) remain challenges inherent to calling and 
analysing CHIP and clonal haematopoiesis when using population 
scale genomic data. Serial sampling would enable the evaluation of 
changes to CHIP clones over time, and future studies that focus on 
such serial analysis at large scale will be able to better estimate CHIP 
subtype-specific clonal changes and clinical risk. Such increased data 
assets would also likely facilitate the identification of additional genes 
that show recurrent mutation during clonal haematopoiesis, as well 
as how such mutations relate to one another (that is, in dependency, 
mutual exclusivity and temporal order). Nonetheless, we identify 
many novel common and rare variant associations with CHIP and other 
clonal haematopoiesis phenotypes, which help to set the stage for 
future functional, mechanistic and therapeutic studies. On the whole, 
our analyses emphasize that CHIP is really a composite of somatic 
mutation-driven subtypes, with shared genetic aetiology and distinct 
risk profiles.
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Methods

Study approval
UKB study: ethical approval for the UKB study was previously obtained 
from the North West Centre for Research Ethics Committee (11/
NW/0382). The work described herein was approved by UKB under 
application number 26041. GHS study: approval for DiscovEHR analy-
ses was provided by the Geisinger Health System Institutional Review 
Board under project number 2006-0258.

Exome sequencing and variant calling
Sample preparation and sequencing were done at the Regeneron 
Genetics Center as previously described10,40. In brief, sequencing 
libraries were prepared using genomic DNA samples from the UKB, 
followed by multiplexed exome capture and sequencing. Sequencing 
was performed on the Illumina NovaSeq 6000 platform using S2 (first 
50,000 samples) or S4 (all other samples) flow cells. Read mapping, 
variant calling and quality control were done according to the Seal 
Point Balinese (SPB) protocol40, which included the mapping of reads 
to the hg38 reference genome with BWA MEM, the identification of 
small variants with WeCall, and the use of GLnexus to aggregate these 
files into joint-genotyped, multi-sample VCF files. While certain UKB 
exome analysis efforts have used calls generated with the OQFE pipe-
line42, this pipeline has only been used to a limited degree for disease 
association analysis. Therefore, we chose to use calls from the SBP 
pipeline, which have been used very extensively for disease association 
analysis, including the largest set of association analyses done with 
UKB exome data10. Depth and allelic valance filters were then applied, 
and samples were filtered out if they showed disagreement between 
genetically determined and reported sex, high rates of heterozygosity 
or contamination (estimated with the VerifyBamId tool as a FREEMIX 
score > 5%), low sequence coverage, or genetically determined sample 
duplication.

Calling CHIP
To call CHIP carrier status, we first used the Mutect2 (GATK v4.1.4.0) 
somatic caller43 to generate a raw callset of somatic mutations across 
all individuals. This software aims to use mapping quality measures as  
well as allele frequency information to identify somatic mutations 
against a background of germline mutations and sequencing errors. 
We used data generated from gnomAD v2 as the reference source for 
germline allele frequency44. We generated a cohort-specific panel of 
normals, which Mutect2 uses to estimate per-site beta distribution 
parameters for use in refining somatic likelihood assignment. Since 
CHIP is strongly associated with age, we chose 100 random UKB sam-
ples from 40 year olds and 622 samples from individuals less than  
18 years of age in GHS to build these cohort-specific panels of normals. 
By evaluating the degree to which default Mutect2 filtering excluded 
known CHIP hotspot mutations, we noted that the default Mutect2 
pass/fail filters were too stringent. Therefore, we initially considered all 
Mutect2 variants (that is, even those that did not pass default Mutect2 
filtering), and proceeded to perform our own QC and somatic muta-
tion call refinement. As an initial refinement step, we selected variants 
occurring within genes that have been recurrently associated with 
CHIP according to recent reports from the Broad2, the TOPMed Con-
sortium11, and the Integrative Cancer Genomics (IntOGen) project45.  
We then filtered putative somatic mutations using the outlined 
functional criteria2. Next, we performed additional QC steps, 
which consisted of (1) removing multi-allelic somatic calls, (2) 
applying sequencing depth filters (total depth (DP) ≥ 20; alternate 
allele depth (AD) ≥ 3, F1R2 and F2R1 read pair depth ≥ 1), (3) remov-
ing sites flagged as panel of normals by Mutect2 (unless previously 
reported), (4) removing indels flagged by the Mutect2 position filter, 
(5) removing sites within homopolymer runs (a sequence of ≥5 identical 
bases) if AD < 10 or VAF < 0.08, (6), removing missense mutations in 

CBL or TET2 inconsistent with somaticism (that is, P-value > 0.001 in a 
binomial test of VAF = 0.5), (7) removing novel (not previously reported) 
variants that exhibited characteristics consistent with germline variants 
or sequencing errors. That is, we excluded variants that had a median 
VAF ≥ 0.35, since approximately 97% of previously reported variants 
(that is, from a recent study of CHIP by the TOPMed consortium11) had 
a median VAF < 0.35. Beyond this, we evaluated the frequency distri-
butions of known variants (stratified by effect—that is, missense or 
non-missense) to discern thresholds for newly identified variants (that 
is, AF (allele frequency) of novel variants ≤ AF of previously reported 
variants). Additionally, novel G>T or C>A SNV calls were evaluated for 
oxidation artifacts46. Specifically, variants with a maximum alternate 
allelic depth < 6 (across all samples) and < 2 supportive reads from F1R2 
(C>A) or F2R1 (G>T) mate pairs were removed, respectively.

Given that > 90% of mutations belonged to 23 recurrent CHIP- 
associated genes, we restricted to variants occurring within these 
genes as a final step to maximize the specificity of our callset. These 
genes consisted of the 8 most frequent mutated CHIP genes (DNMT3A, 
TET2, ASXL1, PPM1D, TP53, JAK2, SRSF2 and SF3B1), a collection of 
CHIP-associated genes containing SNV hotspots (BRAF, CSF3R, 
ETNK1, GNAS, KRAS, GNB1, IDH2, MPL, NRAS, PHF6 and PRPF8), and 
CHIP-associated genes of haematological interest (CBL, CALR, RUNX1 
and SUZ12). Our final CHIP set of CHIP mutation carriers consisted of 
29,669 CHIP mutations across 27,331 unique individuals from UKB, 
and 14,766 CHIP mutations across 12,877 unique individuals from GHS. 
Variant allele fraction (VAF) was calculated using AD/(reference allele 
depth (RD) + AD).

Defining CHIP and mosaic phenotypes
CHIP phenotypes were derived based on our mutation callset, whereas 
mosaic chromosomal alteration (mCA) phenotypes were derived based 
on previously published mCA calls from the UKB4,7,8. First, we used 
International Classification of Diseases (ICD) codes to exclude 3,596 
samples from UKB and 1,222 samples from GHS that had a diagnosis 
of blood cancer prior to sample collection. We also excluded 13,004 
individuals from GHS whose DNA samples were collected from saliva as 
opposed to blood. For all of the phenotypes we generated and analysed 
in this study, we used a combination of cancer registry data, hospital 
inpatient (HESIN) data, and data from general practitioner records to 
ascertain ICD10 codes. The majority of our cancer data came from the 
cancer registry, which we supplemented with the other sources. We 
then defined multiple CHIP and mosaic phenotypes based on whether 
carriers did (inclusive) or did not (exclusive) have other somatic pheno-
types. For example, individuals with at least one CHIP mutation in our 
callset were defined as carriers for a CHIP_inclusive phenotype, whereas 
anyone with a CHIP mutation as well as an identified mCA was removed 
from this inclusive phenotype in order to define a CHIP_exclusive phe-
notype (20,606 cases and 342,869 controls). Our association analysis 
with CHIP used this CHIP_inclusive phenotype, which included 25,657 
cases and 342,869 controls of European ancestry in UKB, and 11,821 
cases and 135,106 controls of European ancestry in GHS. These counts 
reflect the samples with European ancestral origin that remain in each 
cohort after removing those with non-CHIP clonal haematopoiesis 
(60,991 in UKB and 0 in GHS, as we did not call mosaic chromosomal 
alterations in GHS), and those with missing meta data (348 in UKB and 
4,893 in GHS). We defined mLOY carriers as male individuals with a Y 
chromosome mCA in the UKB mCA callset that had copy change status  
of loss or unknown, mLOX as individuals with an X chromosome mCA 
in the UKB mCA callset that had copy change status of loss or unknown, 
and mCAaut carriers as individuals with autosomal mCAs. We then 
refined these inclusive phenotypes to define exclusive versions, with 
mLOY_exclusive consisting of carriers with no X chromosome or 
autosomal mCAs (36,187 cases and 151,161 controls), mLOX_exclu-
sive consisting of carriers with no Y chromosome or autosomal mCAs 
(10,743 cases and 364,072 controls), and mCAaut_exclusive consisting 



of carriers with no Y or X chromosomal alterations of any kind (11,154 
cases and 364,072 controls). These exclusive phenotypes were used for 
all analyses comparing CHIP with mosaic phenotypes, as this approach 
facilitated the generation of four non-overlapping phenotypes (that 
is, CHIP, mLOY, mLOX, and mCAaut) that could be compared. We also 
defined CHIP gene-specific phenotypes by choosing carriers as those 
with mutations in our callset from a specific gene and no mutations in 
any other of the 23 CHIP genes defining our callset. For example, CHIP 
DNMT3A carriers were those with ≥ 1 somatic mutations in our callset 
within the DNMT3A gene, and no mutations in our callset in any of the 
other 23 CHIP genes we used for our final callset definition. The set 
of 364,072 controls used in UKB that had no evidence of any clonal 
haematopoiesis (that is, no CHIP or mCAs) was considered as our set of 
healthy controls, and was used across all association analyses in UKB.

Genetic association analyses
To perform genetic association analyses, we used the genome-wide 
regression approach implemented in REGENIE47, as described10. In brief, 
regressions were run separately for data derived from exome sequenc-
ing as well as data derived from genetic imputation using TOPMed48, 
and results were combined across these data sources for downstream 
analysis. Step 1 of REGENIE uses genetic data to predict individual values 
for the trait of interest (that is, a polygenic risk score), which is then 
used as a covariate in step 2 to adjust for population structure and 
other potential confounding. For step 1, we used variants from array 
data with a MAF > 1%, < 10% missingness, Hardy–Weinberg equilibrium 
test P-value > 10−15 and LD pruning (1,000 variant windows, 100 vari-
ant sliding windows and r2 < 0.9), and excluded any variants with high 
inter-chromosomal LD, in the major histocompatibility region, or in 
regions of low complexity. For association analyses in step 2 of REG-
ENIE, we used age, age2, sex and age × sex, and 10 ancestry-informative 
principal components as covariates. For analyses involving exome 
data, we also included as covariates an indicator variable representing 
exome sequencing batch, and 20 principal components derived from 
the analysis of rare exomic variants (MAF between 2.6 × 10−5 and 0.01). 
Significance cutoffs and rare variant burden testing were set accord-
ing to the power calculations and logic outlined by Backman et al.10. 
In brief, we used P ≤ 5 × 10−8, P ≤ 7.14 × 10−10, P ≤ 3.6 × 10−7, for common, 
rare and burden associations, respectively. Results were visualized 
and processed using an in-house version of the FUMA software49. Asso-
ciation analyses were performed separately for different continental 
ancestries defined based on the array data, as described10.

Replication of associations signals in the GHS cohort
To calculate the power to achieve replication in the GHS cohort, we first 
adjusted for the effects of ‘winner’s curse’, which are expected when 
choosing significant associations signals on the basis of a genome-wide 
threshold50. To do this, we used the conditional likelihood approach 
described by Ghosh et al.51 as implemented in the winnerscurse R 
package (version 0.1.1), which adjusts the estimated betas from 
genome-wide significant associations signals. These adjusted effect 
estimates are provided in Supplementary Table 2 (column Effect_adj). 
We then used these adjusted effect estimates to calculate the expected 
power to detect each lead signal in the GHS replication phase using the 
GHS sample size, allele frequencies, CHIP prevalence, and an alpha 
level of 0.05. To summarize our expected power across the replication 
phase, we summed the power across all lead variants and reported 
the number of SNPs that replicated at P < 0.05 as a proportion of the 
cumulative power to detect those variants.

Identifying independent signals from association results
We used three different approaches to identify independent signals 
across loci that associated with CHIP. First, we used a clumping and 
thresholding approach (C&T)52 in which index SNPs at each significantly 
associated locus were defined greedily as those with the lowest P-value. 

Clumping was then done by extending linkage blocks laterally to include 
all SNPs that have P < 1 × 10−5 and r2 > 0.1 with the index SNP. Any SNP 
within a clump was then removed from further analysis. This process 
was repeated as long as there was ≥ 1 additional SNP in the locus with 
P ≤ 5 × 10−8. After all clumps were made, we merged any clumps (that is, 
LD blocks) with overlapping genomic ranges. Since this approach did 
not feature any iterative conditioning nor model variant effects jointly, 
we also used conditional joint analysis as implemented in GCTA COJO53 
and statistical fine-mapping as implemented in FINEMAP54 to identify 
independent/causal signals. COJO was run with a subset of 10,000 
unrelated European ancestry samples from UKB as an LD references, 
and with a COJO adjusted P-value threshold of 5 × 10−6, an info score 
threshold of 0.3, and a MAF cutoff of 0.01. FINEMAP was run with the 
shotgun stochastic search algorithm using a maximum of 30 causal 
variants. We included variants in the FINEMAP analysis that had P < 0.1 
in inverse variance weighted meta-analysis, and MAF > 0.001. The LD 
matrices used for the FINEMAP analysis were constructed as weighted 
meta LD matrices derived from the LD matrices from UKB and GHS. The 
LD matrices from UKB and GHS were computed independently using 
the same sets of samples included in each GWAS.

Fine-mapping variants at the LY75 locus
To further evaluate whether the rare variant association at the LY75 locus 
(rs147820690-T) was independent of other common and rare variant 
signals, we performed joint fine-mapping (with FINEMAP) on common 
and rare variants at this locus while including rarer variants then used 
in our genome-wide fine-mapping. In contrast to the genome-wide 
fine-mapping described above, this fine-mapping sensitivity analysis 
was done only in the UKB, was focused on the LY75 locus, and included 
all variants in our dataset. That is, the fine-mapping analysis was run 
as described above, but with a MAF > 0.0000000001. While FINEMAP 
suggests 3 credible sets are most parsimonious at this locus (poste-
rior probability = 0.8), which is consistent with the results we report 
when preforming genome-wide fine-mapping, the fourth credible 
set (posterior probability = 0.11) identifies rs147820690-T as the top 
signal (PIP = 0.133) among 9,417 variants in the 95% credible set. This 
fine-mapping approach also prioritizes rs78446341-A (CPIP = 0.92, 
CS = 2). Furthermore, the median pairwise LD between SNPs in this 
fourth credible set is very low (6.7 × 10−4, compared with 0.995, 0.962, 
and 0.831 for the first three credible sets, respectively). Therefore, 
these fine-mapping results provide additional support for both LY75 
missense variants, as well as the fact that the rs147820690-T rare variant 
signal is not driven by the tagging of other rare variants.

PheWAS across CHIP-associated variants
Using 937 traits from the UKB, we queried association results for 171 
SNPs from our GWAS of CHIP. These SNPs represent the union of those 
identified by clumping and thresholding, conditional analysis with 
GCTA COJO, and fine-mapping with FINEMAP (fine-mapped SNPs were 
chosen if they had one of the highest two posterior inclusion prob-
abilities—that is, PIPs—in any credible set). While this group of SNPs 
does include signals with P < 5 × 10−8 in our CHIP GWAS, these SNPs 
represent signals prioritized as conditionally independent and/or likely 
to be causal, and we therefore deemed them worthy of exploration via 
PheWAS. Some of these subthreshold signals featured many significant 
PheWAS associations (P < 5 × 10−8 in the PheWAS), and likely merit fur-
ther evaluation (for example, ZFP36L2/THADA locus on chromosome 2, 
and THRB locus on chromosome 3). The traits used in this PheWAS rep-
resent the subset of the 5,041 traits used in our cross-sectional analyses 
of phenotypic association with CHIP mutations carrier status for which 
we have previously reported common variant associations10. In brief, 
for ICD10-based phenotypes, cases were required to have one or more 
records of diagnosis in the electronic health records, death registry data 
implicating the disease, or two or more diagnosis in outpatient data 
mapped to ICD10. For non-ICD10 phenotypes (quantitative measures, 
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clinical outcomes, survey and touchscreen responses, and imaging 
derived phenotypes), data were derived from the UKB Showcase. Par-
ticipants who did not meet the case definition for a given ICD10-based 
phenotype were removed from the analysis if they had one diagnosis 
code in the outpatient data, and included as controls if they had no 
diagnosis in the outpatient data. Supplementary Table 10 includes 
ICD10 codes as well as trait names and descriptions.

Genetic comparisons between CHIP subtypes
For pairwise comparisons between CHIP gene mutation subtypes, 
we used the union set of index SNPs (that is, independent signals in 
genome-wide significant loci) from all of our CHIP and CHIP gene 
subtype associations. This resulted in 93 variants, which we used to 
compare effect sizes estimates between CHIP subtype pairs. Genetic 
correlations were calculated using LDSC version 1.0.1 with annotation 
input version 2.222.

Defining smoking phenotypes
We derived smoking phenotypes from the lifestyle and environment 
questionnaire in the UKB and from the electronic health records in the 
GHS. Since smoking is difficult to ascertain and control for, we used 
a variety of data to code multiple smoking phenotypes for various 
analyses. These smoking phenotypes consisted of (1) pack years, (2) 
number of cigarettes smoked per day, (3) age started/stopped smoking 
(UKB only), (4) former/current smoker, (5) ever smoker and (6) heavy 
smoker (smoked ≥ 10 cigarettes a day). The ever smoker phenotype 
was maximally inclusive, and coded as cases all individuals with any 
evidence of prior smoking across the aforementioned phenotypes. 
For our longitudinal analyses in UKB, we used the ‘current smoker’ and 
‘pack years’ (which captures the cumulative effect of smoking over one’s 
lifetime) as covariates in all models that did not stratify for smoking 
status. In the smoking stratified models, we stratified smokers based 
on the ‘ever smoker’ phenotype and further adjusted for pack years 
within the smokers subgroup. For our longitudinal analyses in GHS, we 
used the ‘ever smoker’ and ‘pack years’ phenotypes as covariates in all 
models that did not stratify for smoking status, and stratified smokers 
in the same manner as we did in the UKB analyses. For linear models 
that evaluated the overall relationship between age, sex, and smoking, 
we used the ‘heavy smoker’ coding. Otherwise, all other analyses used 
the aforementioned ‘ever smoker’ phenotype as a covariate.

Phenotypic associations with CHIP
To test for known as well as potentially novel associations, we used 
REGENIE47 to perform Firth-corrected tests for association between 
our CHIP gene-specific phenotypes and 5,041 traits (2,640 binary traits 
and 2,401 quantitative traits) from the UKB (version 5). To do this, we 
coded each CHIP gene-specific phenotype as 1 if an individual had any 
somatic CHIP mutation in the gene and 0 otherwise and formatted 
these binary codings as pseudo-genotypes to analyse with REGENIE. 
Regression models were run as described previously, with age, sex, 
and genetic principal components as covariates10. After filtering out 
association tests where the total number of somatic carriers was <5, we 
were left with 83,779 total association tests (Supplementary Table 31). 
Only 22 out of 23 CHIP gene subtypes were tested for association across 
phenotypes as we did not have enough carriers of CSF3R mutations 
to meet our minimum threshold of 5 somatic carriers that were also 
disease cases. Quantitative traits were transformed using a reverse 
inverse normalized transformation (RINT); effect size estimates from 
these associations are in units of standard deviation. Traits used in this 
analysis did not exclude any samples on the basis of having a diagnosed 
haematological disease or malignancy prior to sequencing date. To visu-
alize high-level phenotypic patterns across these CHIP gene-specific 
phenotypes (Fig. 3), we categorized phenotypes by disease group10, 
and calculated the proportion of phenotypes per disease group per 
gene that were associated at a P ≤ 0.05 alpha level (uncorrected). To 

visualize the most significant of these associations, we plotted effect 
sizes (Supplementary Fig. 7) by disease category for all associations 
with P ≤ 1 × 10−5.

Risk modelling among CHIP carriers
We performed longitudinal survival analyses using cox proportional 
hazard models (coxph function) as implemented in the survival R pack-
age. Given that CHIP is strongly correlated with age, models used age 
as the time scale with interval censoring with age at first assessment 
and age at event or censoring. This allows for an implicit adjustment 
for age within the proportional hazard models. In UKB, individuals with 
follow-up time in excess of 13.5 years (3% of the dataset) were censored 
due to departures from the proportional hazards model. Analyses 
were performed on individuals of European ancestral background. All 
models included 10 genetically determined European-specific princi-
pal components as covariates, and all analyses excluded individuals 
genetically determined to be third-degree relatives or closer. In GHS, 
we had limited sample size with which to perform these longitudinal 
analyses. This was because GHS samples were collected at later ages 
(due to the nature of the biobank and the timing of our partnership) 
and fewer patients had disease onset dates subsequent to sample col-
lection (that is, the time period where the onset of CHIP can be evalu-
ated). Furthermore, in GHS, we could not derive an all-cause mortality 
phenotype due to the nature of the EHR data available to us. This incom-
plete ascertainment may also explain why our odds ratio estimates 
for risk of haematologic malignancy among CHIP carriers are lower 
in the GHS cohort.

We used a variety of CHIP codings as variables in our models to test for 
potential differences between high/low VAF CHIP and/or CHIP subtypes. 
First, we subset CHIP carrier status by gene (DNMT3A, TET2, ASXL1, 
DNMT3A or TET2) and/or VAF (≥0.1) to test for potential differences 
between degree of clonal expansion (that is, high/low VAF CHIP) and/
or CHIP subtypes. Additional analyses were run restricting CHIP muta-
tion calls to previously reported variants (for example, Jaiswal et al.2),  
as well as restricting to carriers of DNMT3A mutations with at least 
one mutation in another CHIP gene. Controls were defined with two 
approaches: (1) any individual without CHIP mutations (the coding 
used in the results we report) and (2) those without any genetic evi-
dence of clonal haematopoiesis (that is, healthy controls, as defined 
above, which did not change our results). The CHIP gene-specific coding 
described above varies from the phenotypic coding definitions used 
in our GWAS/ExWAS, which required carriers to have mutations only 
in the specified CHIP gene and no mutations in any other CHIP genes. 
Since mutational exclusivity becomes less common as VAF increases 
(that is, carrying a single mutation with VAF ≥ 0.1 and no other muta-
tions), and substantially lowers sample size, we chose this adjusted 
definition for these longitudinal analyses of disease incidence. For the 
composite phenotypes described below, we relied heavily on ICD10 
codes from cancer registry data, hospital records and general practi-
tioner records, and supplemented these with self-reported data and 
procedure codes (OPCS4). We defined prevalent disease on the basis of 
event codes occurring before sample collection and used this definition 
to exclude samples from longitudinal analysis of incident disease. For 
these main analyses, we did not use any minimum number of days to 
diagnosis from sample collection as an additional filtering criterion 
(see Supplementary Note 12 for more details).

In UKB, cardiovascular disease was defined with the following ICD10 
codes obtained from primary care, HES (hospital episode statistics), 
or death registry data: I21, I22, I23, I252, I256, Z951, Z955, I248, I249, 
I241, I251, I255, I258, I259, I630, I631, I632, I633, I634, I635, I637, I638, 
I639, I651, ICD9 codes: 410, 412, and OPCS codes: K40, K41, K44, K45, 
K46, K49, K502, K75 and K471. ICD9/ICD10/OPCS diagnoses or pro-
cedures recorded prior to enrolment date and self-report codes 1075 
(heart attack/myocardial infarction), 1095 (cabg), 1523 (heart bypass), 
1070 (coronary angioplasty or stent), 1583 (ischaemic stroke), 1083 



(stroke) were used to identify prevalent CVD cases. These were chosen  
to best reflect the coding use by Bick et al. in their study of CHIP6. 
In GHS, we used ICD10 codes I20–I25 and I60–I69, CPT codes from 
33510–33523 (CABG, not continuous), 33533–33536, 35500, 35572, 
35600, and 92920–92975 (PCI, not continuous). We also adjusted the 
CVD coding in GHS to exclude cerebrovascular events (that is, excluded 
I60–I69); association results were similar. The CVD coding we used 
for our Mendelian randomization analysis was comparable to these 
definitions but did not include ICD10 codes for cerebrovascular events.

For the CVD models, we included sex, LDL, HDL, pack years, smok-
ing status (current vs former, determined by self-reported data), BMI, 
essential primary hypertension, and type 2 diabetes mellitus as covari-
ates. The results we reported used a composite of myocardial infarction 
(MI), coronary artery bypass graft (CABG), percutaneous coronary 
intervention (PCI), and coronary artery disease (CAD), based on the 
coding described above, and also included death from any of these 
events. Results were similar when our composite included ischaemic 
stroke (ISCH.TR), as well as when we repeated analyses with a subset of 
recurrent CHIP mutations derived from Jaiswal et al.2 or restricting car-
rier calls to variants in DNMT3A or TET2. We also excluded samples with 
any diagnosis of malignant blood cancer prior to sequencing (n = 3,596). 
Missing LDL and HDL values were median imputed, and individuals on 
cholesterol medication had their raw LDL values increased by a factor 
of 1/0.68, similar to Bick et al.6. IL6R missense variant (rs2228145-C) 
genotypes were modelled dominantly (coded as 1 for carriers of any 
allele and 0 otherwise), and we modelled the effect of this allele in CHIP 
-stratified proportional hazard models, and also tested for IL6R × CHIP 
interaction in a full (non-stratified) model. Models considering only 
the initial 50k UKB individuals restricted to intersection between our 
unrelated UKB sample set and the samples reported by Bick et al. 6. For 
visualization, Kaplan–Meier estimates were generated with the survfit 
function in the aforementioned survival package (version 3.2.13) and 
plotted using the ggsurvplot function from the survminer package 
(version 0.4.9).

For models of cancers and overall survival risk tested using all CHIP 
carriers, high-VAF (VAF ≥ 0.1) CHIP carriers, and carriers of specific 
CHIP gene mutations, we used unrelated European samples that did 
not have any cancer diagnoses prior to sample collection (N = 360, 051 
after the removal of 33,816 samples with a prior diagnosis of cancer). 
Results were qualitatively the same when repeating these analyses 
without excluding samples that had a diagnosis of any malignant cancer 
prior to sample collection date. Cancer phenotype definitions were 
derived from medical records indicating the following ICD10 codes: 
C81–C96, D46, D47.1, D47.3, D47.4 for blood cancers, C81–C86, C91  
for lymphoid cancers, C92, C94.4, C94.6, D45, D46, D47.1, D47.3, D47.4 for  
myeloid cancers, C50 for breast cancers, C34 for lung cancers, C61 
for prostate cancers, C44 for non-melanoma skin cancers (NMSC), 
and C18 for colon cancers (five total solid cancers). Myeloid subtypes 
were defined as follow: AML (C92), MDS (D46), MPN (D47.1, D47.3, 
D47.4). Given the rareness and/or non-specificity of myeloid codings 
C93–95, and that the majority of these codings overlapped with those 
that we used for the myeloid composite described above (that is, we 
already captured these samples using the previously described cod-
ings), we did not include these codings in our composite. However, we 
performed sensitivity analyses that used a myeloid definition that did 
include C93–C95, with findings equivalent to those described in our 
main results (Supplementary Note 12). For our lymphoid composite, 
we decided to combine lymphoma with lymphoid leukaemia for mul-
tiple reasons. First, in some clinical diagnostic situations (for example, 
T cell lymphoblastic lymphoma and T cell lymphoblastic leukaemia; 
Burkitt lymphoma and mature B cell ALL), the distinction between 
‘leukaemia’ and ‘lymphoma’ is made on the basis of blast percentage 
in bone marrow (that is, > 20% blasts diagnosed as leukaemia), and 
may not reflect meaningful biological differences. Consistently, 22% of 
C91 codings are already captured in our C81–C86 codings. Moreover, 

the majority of cases across these codings correspond to tumours 
derived from mature B cells, namely chronic lymphocytic leukaemia 
(CLL) and mature non-Hodgkin lymphoma. Given data supporting that 
mature T cell lymphomas and also some mature non-Hodgkin B cell 
tumours may arise from hematopoietic stem and progenitor cells55–57, 
we considered the relationship between a composite of mature lym-
phoid tumours and CHIP. For blood cancers, we also included cases 
that self-reported leukaemia, lymphoma, or multiple myeloma. These 
models included the same covariates as described for CVD (with the 
exception that we did not adjust cholesterol level based on medication 
usage). Additionally, models estimating risk for sex-specific cancers 
(that is, prostate and breast) restricted to individuals of the relevant 
sex and did not adjust for sex as a covariate. For smoking stratified 
modelling of blood and lung cancer, we used our stricter definition of 
smoking (ever vs never) and included pack years as a covariate in models  
testing risk among smokers. To test a more conservative cutoff for 
excluding patients with a diagnosis of haematologic malignancy prior 
to sequencing (that is, exclude individuals with a diagnosis prior to 90 
days after DNA collection date rather than prior to the DNA collection 
date itself), we conducted sensitivity analyses for the longitudinal 
modelling of the risk among CHIP carriers of acquiring blood cancers 
(for example, blood cancer, myeloid, lymphoid, AML, MDS and MPN). 
These results were the same as those reported in our main results (Sup-
plementary Note 12).

Polygenic risk scores
Polygenic risk scores were calculated with Plink58 as a weighted sum of 
the effects across all conditionally independent variants we identified 
with GCTA COJO (74 variants, P ≤ 5 × 10−6) We performed association 
tests using logistic regression, with binary phenotypes of interest (that 
is, our CHIP subtype phenotypes—for example, TET2 CHIP, and so on) 
as the dependent variable, this polygenic risk score as the independent 
variable of interest, and age, sex, smoking status (ever vs never), and 
10 genetic principal components as covariates.

Software
The code is publicly available and can be found at https://github.com/
rgcgithub/regenie. The REGENIE software for whole-genome regres-
sion, which was used to perform all genetic association analysis, is avail-
able at https://github.com/rgcgithub/regenie. GCTA v1.91.7 was used for 
approximate conditional analysis. SHAPEIT4.2.0 was used for phasing 
of SNP array data. Imputation was completed with IMPUTE5. Somatic 
calling was done with Mutect2 (GATK v4.1.4.0). We use Plink1.9/2.0 for 
genotypic analysis as well as for constructing polygenic risk scores. 
FINEMAP was used for fine-mapping, and genetic correlations were 
calculated using LDSC version 1.0.1 with annotation input version 2.2. 
Beyond standard R packages, visualization tools, and data process-
ing libraries (for example, dplyr, ggplot2 and data.table), we used the 
survival (version 3.2.13) and survminer (version 0.4.9) packages for 
survival analyses, the MendelianRandomization package for Mendelian 
randomization (version 0.6.0), and the winnerscurse package (version 
0.1.1; https://amandaforde.github.io/winnerscurse/) to adjust GWAS 
effect size estimates for the effects of Winner’s Curse.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Individual-level sequence data, CHIP calls and polygenic scores 
have been deposited with UK Biobank and are freely available to 
approved researchers, as done with other genetic datasets to date10. 
Individual-level phenotype data are already available to approved 
researchers for the surveys and health record datasets from which 
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https://github.com/rgcgithub/regenie
https://github.com/rgcgithub/regenie
https://amandaforde.github.io/winnerscurse/
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all our traits are derived. Instructions for access to UK Biobank data 
is available at https://www.ukbiobank.ac.uk/enable-your-research. 
Summary statistics from UKB trait are available in the GWAS catalogue 
(accession IDs are listed in Supplementary Table 33). As described10, the 
HapMap3 reference panel was downloaded from ftp://ftp.ncbi.nlm.nih.
gov/hapmap/, GnomAD v3.1 VCFs were obtained from https://gnomad.
broadinstitute.org/downloads, and VCFs for TOPMED Freeze 8 were 
obtained from dbGaP as described in https://topmed.nhlbi.nih.gov/
topmed-whole-genome-sequencing-methods-freeze-8. Data used for 
replication, such as DiscovEHR exome sequencing and genotyping data, 
and derived CHIP calls, can be made available to qualified, academic, 
non-commercial researchers upon request via a Data Transfer Agree-
ment with Geisinger Health System (contact person: Lance Adams, 
ljadams@geisinger.com).
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Extended Data Fig. 1 | Workflow to Identify CHIP and Prevalence Estimates 
For Carriers of CHIP Mutations. A. Graphic depicting at a high-level the 
workflow used to collect and sequence the exomes of multiple large cohorts 
and to then identify CHIP mutations from this data. B-C. CHIP prevalence 
increases with age of donor at time of DNA collection in both the UKB  
(B, n = 484,629 individuals; one-sided F-test, P < 10−16) and GHS (C, n = 157,724 

individuals; one-sided F-test, P < 10−16) cohorts, with the centre line representing 
the general additive model spline and the shaded region representing the 95% 
confidence interval. D-E. Similar to B-C, the prevalence of CHIP mutations per 
CHIP gene for each of the top 8 most common CHIP genes increase with age in 
the UKB (D, n = 484,629 individuals; one-sided F-test, P < 10−16) and in GHS  
(E, n = 157,724 individuals; one-sided F-test, P < 10−16).
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Extended Data Fig. 2 | Count Distribution and Pairwise Enrichments of 
Clonal Hematopoiesis of Indeterminate Potential (CHIP) Gene Mutations. 
A. Total number of individuals with mutations (y axis, log10 scale) in each of the 
23 genes that were used to determine CHIP status across the UKB (blue) and 
GHS (red) CHIP callsets. B-C. Pairwise mutation counts across the UKB (B) and 
DiscoverEHR (C) callsets across individuals with at least two identified CHIP 

mutations. The color scale reflects the significance of the p-value for 
association between mutated CHIP gene pairs as determined by logistic 
regression. Per CHIP gene pair, these models included CHIP gene 1 mutation 
carrier status as the outcome, CHIP gene 2 mutation carrier status as the 
predictor, and age, sex, and smoking status (ever vs never) as covariates.  
P values are log10 transformed (see Table S1 for complete enrichment results).



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Finemapping results at the LY75 locus on 
chromosome 2. A. Fine-mapping the summary statistics from our association 
analysis of CHIP prioritizes the P1247L missense variant (rs78446341-A, 
AAF = 0.02) as highly likely to be the causal variant driving one of three causal 
signals at this locus (CPIP = 0.913). At the top of the panel, a locus zoom plot 
shows marginal association results after inverse variance weighted meta 
analysis across UKB and GHS (p-values are uncorrected and derive from two-
sided tests performed using approximate Firth logistic regression and subsequent 
meta analysis). Top common variants, including those prioritized by clumping 
and thresholding and COJO from UKB associations are highlighted with black 
circles. The rs78446341-A missense variant is highlighted as well and is in low 
linkage disequilibrium (LD) with the other SNPs. FINEMAP estimated 3 signals 

were most parsimonious here (PP = 0.55). B. Fine-mapping the summary 
statistics from our association analysis of DNMT3A-CHIP prioritizes the P1247L 
missense variant (rs78446341-A, MAF = 0.02, CPIP = 0.20, CS = 4) and the rarer 
G525E missense variant (rs147820690-T, AAF = 0.002 CPIP = 0.60, CS = 2) as 
likely to be the causal variants driving the signal at two out of four causal signals 
at this locus. Here, FINEMAP estimated 3 signals (PP = 0.57) or 4 signals 
(PP = 0.41) were likely; we report results for K = 3 in Table S6 and show results 
from K = 4 here. The other prioritized signals are those identified by clumping 
and thresholding and COJO: rs12472767-C (2-159925824-T-C, CPIP = 0.99, CS = 1) 
and rs12472767-C (2-159821048-C-T, CPIP = 0.28, CS = 3). CS: Credible Set, PP: 
Posterior Probability, PIP: Posterior Inclusions Probability, CPIP: Conditional 
Posterior Inclusion Probability.



Extended Data Fig. 4 | Results from a phenome-wide association analysis. 
Results from a phenome-wide association analysis are shown for the thirty 
SNPs from our GWAS that had the largest number of significant associations 
(P < 5 x 10−8). Associations are most common among hematological, body mass, 
and auto-immune traits (seen across the ‘dermatology’, ‘gastroenterology’, and 

‘other’ phenotypic categories). For visualization, associations with –log10(P) < 50 
were set to 50. Association models were run with age, age2, sex, and age-by-sex, 
and 10 ancestry-informative principal components (PCs) as covariates. P-values 
are uncorrected and derive from two-sided tests performed using approximate 
Firth logistic regression. See Table S10 for full associations results.
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Extended Data Fig. 5 | GWAS of CHIP Subtypes. Manhattan plot showing 
results from a genome-wide association analysis of CHIP subtypes. While we 
ran CHIP subtype analysis for each of the 8 most recurrently mutated CHIP 
genes (Tables S11–S19), we show Manhattan plots for the 5 CHIP subtypes that 
had at least 1 genome-wide significant common variant association. These 
included DNMT3A-CHIP (23 significant loci), TET2-CHIP (6 significant loci), 
ASXL1-CHIP (2 significant loci), TP53-CHIP (1 significant locus), and JAK2-CHIP 

(1 significant locus). Novel biologically relevant genes are labeled at each locus, 
with red denoting novel loci, black identifying previously identified loci and 
grey identifying loci with suggestive signal (P < 5 x 10−7). Association models 
were run with age, age2, sex, and age-by-sex, and 10 ancestry-informative 
principal components (PCs) as covariates. P-values are uncorrected and are 
from two-sided tests performed using approximate Firth logistic regression.



Extended Data Fig. 6 | Results from Mendelian Randomization models and 
incident risk of death among CHIP carriers. A. Forest plot of results from Two 
Sample Mendelian Randomization (MR) modeling of the effect of CHIP on 20 
traits of interest (including the two quantitative traits BMI and ALT). Reported 
p-values are uncorrected, and reflect two-sided Z-tests derived from an inverse 
variance weighted (IVW) MR procedure. Significant causal association between 
CHIP and breast cancer, prostate cancer, non-melanoma skin cancer, melanoma, 
myeloid leukemia, and lung cancer are supported by these models. As expected, 

estimates of germline effect on CHIP from UKB and GHS are strongly correlated 
(odds ratio = 1.94 [1.76–2.13], P = 3.2 x 10−42). B. CHIP and its most common 
subtypes are significantly associated with death from any cause across UKB. 
Hazard ratio (HR) estimates from cox-proportional hazard models are shown, 
with error bars that represent a 95% confidence interval. P-values are uncorrected 
and derive from two-sided Wald tests. Models are adjusted for sex, LDL, HDL, 
pack years, smoking status, BMI, essential primary hypertension, type 2 
diabetes mellitus, and 10 European specific genetic PCs.
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Extended Data Fig. 7 | CVD Incidence in IL6R Mutation Carriers with and 
without CHIP. A-B. Survival curves are drawn showing that IL6R p.Asp358Ala 
mutation carriers (green) are not an elevated risk of CVD incidence (y-axis) 
compared with individuals without CHIP (blue) in either the first 50K individuals 
from UKB (A) or the full 450K cohort (B). C-D. In contrast, IL6R p.Asp358Ala 
mutation carriers are estimated to be at a reduced risk of CVD events  

(C) (HR = 0.60), but only in the first 50K samples from UKB (D). Models are 
adjusted for sex, LDL, HDL, pack years, smoking status, BMI, essential primary 
hypertension, type 2 diabetes mellitus, and 10 European specific genetic PCs. 
Hazard ratios (HR) were estimated using cox-proportional hazard modeling, 
with p-values uncorrected and derived from two-sided Wald tests.



Extended Data Fig. 8 | Incident risk of myeloid cancer subtypes among 
CHIP carriers from the UKB. A-C. Forest plots and tables featuring hazard 
ratio (HR) estimates from cox-proportional hazard models are shown, with 
error bars that represent a 95% confidence interval. CHIP and its most common 
subtypes are significantly associated with acute myeloid leukemia (AML)  
(A), Myelodysplastic Syndromes (MDS) (B), and myeloproliferative neoplasm 
(MPN) (C). Here, results are depicted from analyses in which we removed 

samples that had a diagnosis of malignant cancer prior to sequencing collection. 
Models are adjusted for sex, LDL, HDL, pack years, smoking status, BMI, 
essential primary hypertension, type 2 diabetes mellitus, and 10 European 
specific genetic PCs. Hazard ratios (HR) were estimated using cox-proportional 
hazard modeling, with p-values uncorrected and derived from two-sided Wald 
tests.
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Extended Data Fig. 9 | Incident risk of lung cancer among CHIP carriers 
from the UKB and GHS cohorts. A-D. Forest plots and tables featuring hazard 
ratio (HR) estimates from cox-proportional hazard models are shown, with 
error bars that represent a 95% confidence interval. CHIP and its most common 
subtypes are significantly associated with lung cancer in both smokers and 
non-smokers across UKB (A-B) and GHS (C-D). Here, results are depicted from 

analyses in which we removed samples that had a diagnosis of malignant cancer 
prior to DNA collection. Models are adjusted for sex, LDL, HDL, pack years, 
smoking status, BMI, essential primary hypertension, type 2 diabetes mellitus, 
and 10 European specific genetic PCs. Hazard ratios (HR) were estimated using 
cox-proportional hazard modeling, with p-values uncorrected and derived 
from two-sided Wald tests.



Extended Data Table 1 | Results from Mendelian Randomization analysis of CHIP exposure on lung cancer risk

Statistical results are shown from seven MR methods with differing sensitivities to outliers and/or violations of the MR assumptions. P-values are reported uncorrected. The estimated intercept 
values are shown for the two MR-Egger-based methods that estimate these terms. All models provided support for a casual association between CHIP and lung cancer. Models were significant 
when run without variants at the TERT locus as instrumental variables, which provides support for a causal association above and beyond any pleiotropic effects at the TERT locus (grey text).
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