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Abstract
Antibody glycosylation has received considerable attention in coronavirus disease 2019 (COVID-19) infections and recently 
also in vaccination. Antibody glycosylation and in particular immunoglobulin G1 fucosylation levels influence effector func-
tions and are therefore key parameters for assessing the efficacy and safety of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) directed immune responses. This review article summarizes and interprets recent research into antibody 
glycosylation in COVID-19. Experimental approaches for analyzing the glycosylation of SARS-CoV-2-directed antibody 
responses are evaluated. The pronounced dynamics, effector functions, clinical utility, and regulation of antibody glycosyla-
tion in COVID-19 are assessed. Future research on the role of antibody glycosylation in COVID may cover the glycosylation 
of other antibody classes beyond immunoglobulin G, the regulation of antibody glycosylation, and the role of non-canonical 
antibody receptors in determining effector functions.
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Introduction

Antibodies are abundant soluble glycoproteins in the circula-
tion, various biofluids and mucosal layers playing essential 
roles in the adaptive immune response [1]. Beyond antigen 
binding and neutralization via the fragment antigen-binding 
(Fab) portion, their immune-regulatory role lays in steer-
ing diverse effector functions via their fragment crystalliz-
able (Fc) portion [1–3]. With their wide-spanning functions 
including antigen binding and neutralization, opsonization, 
mediating complement-dependent cytotoxicity (CDC) as 
well as antibody-dependent cellular cytotoxicity and phago-
cytosis (ADCC and ADCP, respectively), antibodies are 
front-line elements in host defense against infectious agents 
[3]. Immunoglobulin G (IgG) is the most abundant antibody 
in plasma and is comprised of four isotypes [4]. The Fc tails 
of IgG are co- and post-translationally modified by glyco-
sylation. The resulting N-glycan is an important structural 

component that fine-tunes effector functions [2]. Notably, 
adaptive diversification of this Fc-linked N-glycan may elicit 
qualitatively different immune responses by varying their 
potential to activate complement and by altering their bind-
ing to Fc receptors present on a range of immune cells [5].

During homeostasis hardly any intra-individual variation 
is observed in the composition of the plasma-derived total 
(or bulk) IgG glycome [5–7]. With various physiological 
and pathological changes, such as aging, pregnancy, hormo-
nal adjustments, and inflammatory and metabolic diseases, 
the IgG glycome is changing. Likewise, IgG glycosylation 
associates with body mass index (BMI) and smoking. In 
addition, IgG glycosylation is influenced by genetic and epi-
genetic determinants [5, 8].

Substantial alterations of IgG glycosylation are con-
comitant with various infectious diseases and vaccinations 
against those [5, 9–11]. These glycosylation alterations have 
mostly been studied on circulatory total IgG manifesting 
themselves systemically in an acute or chronic manner. 
However, these total IgG glycosylation changes may also 
partially be driven by buildup of skewed glycosylation of 
antigen-specific IgG [5, 8–14]. Fucose-deficient pathogen-
specific IgG has recently been identified as a general initial 
glyco-phenotypic response characteristic of viral infec-
tions such as human immunodeficiency virus (HIV), Den-
gue, and severe acute respiratory syndrome coronavirus 
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2 (SARS-CoV-2) – all being enveloped viruses that bud 
through cell membranes [15–18]. Similar afucosylated IgG 
has also been seen in antigen-specific responses to other for-
eign membrane antigens such as platelet and red blood cell 
alloantigens in pregnancy [19–21] and Plasmodium falci-
parium antigens on red blood cells [16]. Antibody fucosyla-
tion is of paramount importance, because the lack of core 
fucose amplifies affinity of IgG to its cognate Fcγ receptors 
(FcγR) thereby escalating ADCC [2, 22].

Recent studies have pointed towards associations between 
IgG1 glycosylation – especially fucosylation – and corona-
virus disease 2019 (COVID-19) severity, but study results 
are not directly comparable due to differences in cohorts, 
disease phases and methodologies. This encouraged us to 
concisely review the available evidence in order to identify 
commonalities and address discrepancies in methodologies 
and patient cohorts. Eventually, we provide a broader out-
look on IgG glycosylation patterns in SARS-CoV-2 mes-
senger ribonucleic acid (mRNA) vaccination and provide 
perspectives on the utility of antigen-specific IgG glycosyla-
tion analysis as a factor in assessing efficacy and safety of 
both pathogen- and vaccine-induced immune responses.

Antibodies and COVID‑19

SARS-CoV-2 infections show largely diverse disease 
courses, and it became evident during the ongoing pan-
demic, that an evoked robust anti-SARS-CoV-2 immune 
response, commonly considered as protective, can in fact 
lead to aggravated immunopathologies [23, 24]. Disease 
worsening in COVID-19 has been observed to be concurrent 
with seroconversion and activity of the adaptive immune 
system with IgG playing a major role [24, 25]. For this 
adverse reaction excessive FcγR activation by IgG antibod-
ies seems to be instrumental [15, 26–28]. Interestingly, since 
the early stages of the COVID-19 pandemic, it has been rec-
ognized that while some individuals develop life-threatening 
conditions, others control the infection with relatively mild 
symptoms [24]. Demographic factors and comorbidities are 
two of the predisposing factors of disease course [29], still, 
there is an urgent need for additional determinants and early 
biomarkers with higher specificity in predicting outcomes.

Methods for the assessment of antibody 
glycosylation in COVID‑19

An early study by Petrovic et al. applied ultrahigh-performance 
liquid chromatography with fluorescence detection (UPLC-
FLD) for analyzing total N-glycans of IgG, covering both Fc 
and Fab glycans alike of all IgG subclasses. This method may 
be considered the gold standard for antibody glycosylation 

analysis and features a particularly high precision. Petrovic 
et al. focused on total IgG glycosylation analysis, and no anal-
ysis of SARS-CoV-2 spike protein (S) specific antibodies or 
anti-SARS-CoV-2 receptor binding domain (RBD) antibodies 
was pursued [30].

In the studies of Larsen et al., Hoepel et al., Bye et al. and 
Pongracz et al., a common, liquid chromatography – mass 
spectrometry (LC–MS)-based method was employed to 
characterize total, anti-S, and to a limited extent anti-SARS-
CoV-2 nucleocapsid (N) IgG glycosylation following their 
affinity purification [15, 26, 27, 31]. This approach builds 
on microtitration plate-based adsorption of antibodies to 
viral proteins using a modification of enzyme-linked immu-
nosorbent assay (ELISA) antibody detection methods. Tryp-
tic Fc glycopeptide analysis is achieved using an LC–MS 
high-throughput bottom-up proteomics workflow followed 
by targeted data extraction and label-free quantification. The 
major advantage of this method besides its robustness is 
that it gives site-specific information, thereby providing a 
focus on Fc glycosylation while readily distinguishing IgG 
subclasses (Fig. 1) [32].

Similarly to the afore approach, Chakraborty et al. used 
LC–MS for the bottom-up analysis of IgG Fc glycosyla-
tion, albeit using multiple-reaction monitoring (MRM; 
on a triple quadrupole MS) for the target detection and 
quantification of pre-selected glycopeptides [28]. Farkash 
et al. detected glycopeptides by parallel reaction monitor-
ing (PRM) on Orbitrap MS [33].

An alternative MS-based method potentially useful for 
the assessment of IgG Fc glycosylation in COVID-19 is 
middle-up antibody analysis, as presented for anti-RBD 
IgG in a study by Melani et al. Even though this method 
is promising, the observed high complexity due to multi-
ple different amino acid sequences and glycan structural 
heterogeneity complicates Fc glycosylation analysis using 
this approach [34].

Conversely to MS-based methods, Ankerhold et al. used 
a lectin-based assay to characterize anti-S and anti-N IgG 
fucosylation. The principle of this method lies in the pref-
erential binding of the lectin Aleuria aurantia to α1,6-
fucose linked to N-acetylglucosamine, which has been 
exploited to quantify corresponding fucosylation levels in 
an ELISA-setting [35].

The comparability of the results of the various assays 
has for a big part not been established. In particular, it 
would be of interest to see how the results of the MRM- 
based and PRM-based MS methods relate to established 
UPLC-FLD and LC–MS high-throughput glycomics 
approaches. For the latter two methods, very good com-
parability has been demonstrated for applications in a bio-
medical setting, providing a basis for the integration of 
data obtained with these methods [36].
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Dynamics and potential clinical utility of IgG 
Fc glycosylation in COVID‑19

High-throughput technological advances allowed to rou-
tinely analyze the IgG glycomes in large clinical cohorts, 
which contributed to our understanding on how IgG glyco-
sylation signatures associated with changes in health and 
disease [5, 37]. Recently, multiple related findings suggested 
that altered S protein-specific or receptor binding domain 
(RBD)-specific IgG1 Fc glycosylation is a promising can-
didate severity marker in COVID-19 (Table 1) [15, 26, 28, 
31, 35].

IgG1 Fc fucosylation is in the spotlight of most these 
studies, and high levels of afucosylated anti-S or anti-RBD 
IgG1 have been construed as a motif associated with exacer-
bated immunopathologies in COVID-19 [15, 26, 28, 31, 35]. 
Larsen et al. [15] and Chakraborty et al. [28] demonstrated 

proinflammatory, low-fucosylation signatures of anti-S and 
anti-RBD IgG1 in patients with severe respiratory compli-
cations, respectively. Intensive care unit (ICU)-admitted 
patients who developed acute respiratory distress syndrome 
(ARDS) were found to show lower anti-S IgG1 fucosyla-
tion as compared to outpatients with mild symptoms [15]. 
Chakraborty et al. looked at inpatients at both the ICU and 
non-ICU as well as outpatients and asymptomatic pediat-
rics, and found anti-RBD IgG1 fucosylation to be lower in 
the hospitalized groups as compared to the outpatients and 
pediatrics [28], which is largely in-line with the findings of 
Larsen et al. [15].

Of note, anti-S IgG1 fucosylation could not further dis-
criminate between the various hospitalized groups [28], 
which is in line with observations of Ankerhold et al. [35] 
and Pongracz et al. [31]. Specifically, the latter study found 
no differences in anti-S IgG1 fucosylation levels in patients 

Fig. 1  Representative MS spectra of anti-S (left) and total (right) 
IgG1 glycopeptides of a hospitalized COVID-19 patient at an early 
(top) and a late (bottom) timepoint. The early timepoint illustrates the 
glycosylation pattern at 14 days after symptom onset (around the time 
of seroconversion), while the late timepoint illustrates the glycosyla-

tion pattern 14 days later. Dotted lines indicate fucosylated (red line) 
and afucosylated (black line) glycoforms. All annotated glycopep-
tide species are triple protonated. Structural annotations are based on 
manual spectral interpretation and literature [5]
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stratified for different disease severities or ICU admission. 
Ankerhold et al. argue that circulating multimeric immune 
complexes – not monomeric IgG – potentially enriched in 
low-fucosylated IgG drive immunopathology in COVID-19 
[35]. The study was performed a lectin-based assay to quan-
tify anti-S, anti-RBD and anti-N IgG fucosylation levels, 
in contrast to the LC–MS based methods used by the other 
groups (Table 1), with the lectin assay not differentiating 
IgG isotypes. Also, the antigen-specificity of the IgGs in the 
immune complexes remained undetermined, therefore the 
suggested involvement of low-fucosylated anti-S IgG in the 
described immune complex formation would need further 
confirmation [35].

Next to fucosylation, also galactosylation, sialylation 
and bisection of anti-S IgG1 showed pronounced dynamics 
in COVID-19, with initially high levels of galactosylation 
and sialylation as well as low levels of bisection [31]. After 
hospitalization, anti-S IgG1 galactosylation, sialylation and 
bisection became more similar to total IgG1 glycosylation, 
with galactosylation and sialylation dropping, whilst bisec-
tion was increasing [31]. Anti-S IgG1 bisection, galactosyla-
tion and sialylation correlated with disease severity as well 
as a broad range of inflammatory and clinical parameters 
[31].

Bisection of IgG was found to be low in severe COVID-
19, as shown both for total IgG [30] and anti-S IgG1 [15]. 
Another study likewise showed low anti-S bisection rela-
tive to total IgG1, but intriguingly, bisection was positively 
associated with ICU admission, disease severity and survival 
[31], unlike in a similar study, where bisection on anti-RBD 
IgG1 did not show discriminative potential between ICU 
and non-ICU patients [28]. Remarkably, a pronounced skew-
ing of bisection, galactosylation and sialylation of anti-S 
IgG1 as compared to bulk IgG1 glycosylation was observed 
for COVID-19 patients that did not need to be admitted to 
ICU [31]. Conversely, a very limited skewing of these IgG1 
glycosylation traits characterized the ICU patients. Of note, 
these glycosylation differences were already apparent with 
hospitalization, evincing their potential as promising sever-
ity marker in COVID-19. Further studies are needed, also 
assessing anti-S IgG1 glycosylation in patients prior to hos-
pitalization to establish the prognostic value of these signa-
tures regarding the development of disease severity and the 
need of different treatment regimens [31].

Some of the above studies found remarkably dynamic gly-
cosylation patterns as exemplified for one patient in Fig. 1. 
Intriguingly, the pronounced dynamics characterizing anti-
S fucosylation [15, 31] were found to be extremely stable 
in previous studies assessing fucosylation levels to various 
antigens in alloimmune and infectious diseases, persist-
ing over a decade [16, 20, 38, 39]. Transient dynamics of 
the anti-S glycosylation were likewise found with respect 
to bisection, galactosylation and sialylation. Although the 

observed dynamics in these studies were also found for total 
IgG1 – albeit to a lesser extent – it is unknown whether 
total IgG1 glycosylation changes are largely caused by anti-
S and other SARS-CoV-2-specific antibody neo-production 
with skewed glycosylation – or whether antibodies of other 
specificities are contributing [15, 31]. On the contrary, in 
the study of Chakraborty et al. a long-lasting, unchanged 
glycosylation pattern was observed for anti-RBD antibodies, 
which may be due to later sampling [28], as the afucosylated 
IgG was only observed in the first week after seroconver-
sion [15]. Of note, the comparability of anti-S and anti-RBD 
glycosylation profiles has not been demonstrated yet, and 
antigen-specific differences in the IgG1 fucosylation patterns 
could therefore explain part of the different dynamics. Inter-
estingly, anti-S and anti-RBD antibodies showed differential 
performance in in vitro functional assays [40], providing an 
incentive to sort out possible differential Fc modification 
and receptor engagement of these SARS-CoV-2-directed 
antibody subpopulations.

Regulation of IgG Fc glycosylation

IgG glycosylation is influenced by demographic factors 
such as age and sex [5]. Furthermore, IgG glycosylation is 
influenced by (epi)genetic factors, pregnancy, hormones, 
menopause, lifestyle factors such as smoking and BMI, and 
environmental factors [5]. On the cellular level, IgG glyco-
sylation is considered to be largely determined during bio-
synthesis in plasma cells, with key factors being the expres-
sion levels of glycosyltransferases, Golgi topology and pH, 
availability of monosaccharides, protein production kinetics 
and transport mechanisms [8]. Infectious disease-associated 
shifts occurring on pathogen-specific antibodies have been 
broadly described, suggesting a controlled modulation of the 
immune response by adjusted IgG glycosylation, as sum-
marized elsewhere [5, 8, 11].

In SARS-CoV-2, it has been hypothesized that the antigen 
context gives rise to IgG afucosylation, with host membrane-
associated antigen presentation as a pre-requisite for the 
induction of low-fucose responses. This led to the postula-
tion of a signal at the viral protein-displaying host plasma 
membrane that would trigger afucosylated IgG responses 
in B cells, yet the nature of this signal remains elusive [15]. 
Furthermore, age and sex have been associated not only 
with total, but also with anti-S and anti-RBD IgG1 bisec-
tion, galactosylation and sialylation, and it has therefore 
been suggested to account for demographic besides tempo-
ral confounders more mindfully in future studies [28, 31]. 
Overall, the dynamics of anti-S IgG1 glycosylation early on 
in infection and vaccination may be due to a rapid increase in 
antibody production, which is paralleled by a rapid increase 
in antibody concentrations during a phase when a rapid 
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expansion of clonal B cells and formation of new plasma 
blasts and plasma cells is occurring [15]. An early, largely 
afucosylated IgG1 response with still relatively low antibody 
concentrations may within a few days or weeks be followed 
by a much higher production of largely fucosylated IgG1. 
While all available evidence suggest that IgG glycosylation 
is governed by the secretion machinery in B cells, in par-
ticular for fucosylation which can be vastly different from 
the bulk IgG, it has to be stressed that further research is 
needed to investigate possible post-secretion glycosylation 
processing. It will be important to identify and character-
ize SARS-CoV-2 specific B cell populations and their loca-
tion in lymphoid tissues for developing an understanding 
of the pronounced dynamics of antibody glycosylation in 
COVID-19.

Functional consequences of altered Fc 
glycosylation

Altered pathogen-specific antibody glycosylation has been 
reported to impact their inflammatory potential and function-
ality [3, 5, 11, 41]. For example, persistent accumulation of 
agalactosylated gp120-specific IgG has been reported in HIV 
independently from disease state [42]. Similarly, pathogen-
directed antibodies in the active phase of Mycobacterium 
tuberculosis infection showed largely agalactosylated gly-
cosylation patterns, unlike in latent tuberculosis [43]. IgG 
sialylation has been linked to anti-inflammatory activity 
[44], with the underlying molecular mechanisms remaining 
obscure. The most well-characterized and understood gly-
can modification appears to be afucosylation, which directly 
enhances antibody functionality with increased FcγRIII affin-
ity and elevated ADCC [2, 22]. For example, afucosylated 
non-neutralizing IgG antibodies were found in Dengue infec-
tion showing enhanced binding to FcγRIIIa in vitro and trig-
gered platelet reduction in vivo. These afucosylated IgG1 
were postulated to contribute to the immunopathology via 
antibody-dependent enhancement (ADE) [17].

Larsen et  al. used an in vitro cytokine release assay 
to demonstrate that glycoengineered monoclonal anti-S 
IgG1 carrying afucosylated glycans – when incorporated 
in immune complexes with recombinantly expressed spike 
protein – induced elevated interleukin (IL)-6 release in 
monocyte-derived macrophages (expressing FcγRIIIa), as 
compared to its normally fucosylated counterpart. However, 
it is worth to note that fucosylation levels of the used glyco-
engineered anti-S IgG1 were way below those observed in 
patients. Accordingly, the onset of low-fucosylated anti-S 
IgG1 in critically ill patients was accompanied by a rise in 
IL-6 (together with C-reactive protein and D-dimer) upon 
longitudinal sampling [15].

Consistent with these observations, Chakraborty et al. 
showed that the affinity and dissociation constant of patient 
sera, and of both isolated patient-derived and glycoengi-
neered anti-RBD IgG1 for recombinant FcγRIIIa was pro-
portional to the degree of IgG1 afucosylation. Additionally, 
the same study used in vitro stimulation assays to quantify 
NK cell degranulation as well as cytokine production by 
primary monocytes. Using both of these assays employing 
immune complexes formed with patient-derived IgG1 or 
glycoengineered anti-RBD IgG1 immune complexes, they 
found that low-fucosylated anti-RBD IgG1 indeed impacted 
ADCC as exemplified by increased IL-6, tumor necrosis fac-
tor and IL-1β production, when compared to normally fuco-
sylated alternatives [28].

Hoepel et al. identified the combination of high titers and 
low fucosylation of anti-S IgG1 as the potential predisposing 
factor of severe COVID-19. Using an array of techniques, 
they likewise found increased cytokine release, a pro-
inflammatory ribonucleic acid sequencing profile as well as 
disrupted endothelial barrier function and platelet adhesion 
associating with anti-S IgG1 afucosylation. Using the same 
glycoengineered anti-S IgG1 as Larsen et al., they found 
the proinflammatory cytokine production by macrophages 
(including IL-6) was blocked by FcγRIIIa-blocking antibod-
ies (but curiously also with FcγRIIa-blocking antibodies, 
perhaps suggesting synergism in signaling between these 
redundant receptor pairs). In addition, this was also inhib-
ited by small molecule drug fostamatinib to counteract afu-
cosylated anti-S IgG1-induced inflammatory responses in 
vitro by blocking ADCC-associated, which is of therapeutic 
interest in COVID-19 [26].

Bye et al. reported on the association of anti-S IgG1 afu-
cosylation with prothrombotic platelet activation using in 
vitro models and highlighted the role of a platelet-specific 
Fc receptor FcγRIIa [27]. This finding is remarkable, as 
the FcγRIIa is not known to prefer afucosylated IgGs [2], 
and molecular insights as to how afucosylation contributes 
to prothrombotic platelet activation are lacking. Further 
research is needed to evaluate the potential contribution of 
afucosylated IgG responses to thrombotic complication in 
COVID-19.

Using a cell-based reporter system, Ankerhold et  al. 
showed that serum pools originating from COVID-19 
patients right upon hospitalization were potent in FcγRIIIa 
activation, after normalizing to antigen-specific IgG titers, 
although the findings were independent of clinical manifes-
tation and could not be used for the differentiation between 
severe and critical cases [35].

Together, these findings consistently revealed a marked, 
proinflammatory fucosylation signature on plasma-
derived anti-S IgG1 originating from severely ill, SARS-
CoV-2 infected inpatients [15, 26, 28, 31, 35]. Most stud-
ies additionally provide convincing multi-angle in vitro 
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functional evidence associating anti-S IgG1 afucosylation 
with enhanced immune cell activation [15, 26, 28, 35] or 
blood clotting abnormalities [27]. Interestingly however, 
the observed low-fucosylation signatures in hospitalized 
patients did not show the same associations with cytokines, 
chemokines and acute phase proteins as shown in in vitro 
assays [31].

Vaccination

By vaccination with foreign antigens representing parts or 
even whole attenuated or killed infectious agents, immune 
responses are evoked, including induction of pathogen-
specific neutralizing antibody and long-lived memory B 
cell production, that are jointly capable of alleviating and/
or eliminating the infections during a later encounter. Vac-
cination provides a highly interesting setting where in vivo 
Fc glycosylation and dynamics thereof can be followed in a 
relatively well controlled model, given that for example the 
time between a primer and a booster shot is largely compa-
rable between vaccinees [11]. Hitherto, limited efforts have 
been made to monitor the pathogen-specific antibody gly-
cosylation repertoire in human [10, 45], even though a well-
defined glyco-phenotype has been suggested to be important 
for vaccine efficacy and safety [11, 41].

A recent study by Farkash et al. investigated anti-RBD 
antibody glycosylation patterns longitudinally, as elicited by 
the mRNA vaccine BNT162b2. Dynamic Fc compositions 
and immune receptor engagement were found, different from 
those in the setting of a natural infection or in convalescents. 
These antibodies were characterized by high fucosylation 
and low bisection [33]. While this study provides interesting 
insights into vaccine-induced IgG glycosylation responses, it 
featured relatively low sample numbers and in particular low 
time resolution (2 weeks between booster and sampling), 
and further studies are needed to unravel antibody glycosyla-
tion dynamics for commonly used mRNA and vector-based 
COVID-19 vaccines in antigen-naive persons versus those 
with a (previous) COVID-19 infection.

Conclusions and future perspectives

Initiation of the adaptive immune response against SARS-
CoV-2 is indispensable to fight the infection. It appears that 
IgG antibodies are key components in protection against 
COVID-19 with an important role for glycosylation and 
resulting Fc-mediated effector functions. Recent studies 
have collectively indicated that a distinct, pro-inflammatory, 
low-fucosylation glycosylation phenotype marks circula-
tory IgG produced against the SARS-CoV-2 spike protein 
in hospitalized patients. This response has been suggested to 

characterize IgG responses against host-membrane embed-
ded antigens, albeit the underlying mechanisms revealing 
this await further elucidation. While anti-S IgG1 afucosyla-
tion marks high COVID-19 disease severity and associ-
ates with numerous inflammatory markers in vitro, other 
glycosylation features including bisection, galactosylation 
and sialylation show promising associations with disease 
severity pointing towards their clinical biomarker potential. 
The regulation of antibody glycosylation is poorly under-
stood, and further research is needed to provide a mecha-
nistic understanding of antibody glycosylation at the cel-
lular and systemic level, to design intervention strategies 
targeting antibody glycosylation in COVID-19 as well as 
other diseases.

While the role of IgG1 afucosylation in steering effector 
functions via FcγRIII interaction is receiving due attention, 
the role of other glycosylation features such as galactosyla-
tion, sialylation and bisection is poorly understood. For  
anti-SARS-CoV-2 antibody galactosylation and sialylation, 
further research is needed on its role in effector functions 
and complement activation [46] and possible contribution 
to disease pathology. Likewise, antibody glycosylation-
dependent effects such as FcγRIIa-mediated prothrom-
botic platelet activation [27] must be investigated further 
to comprehend the glycosylation-dependent interaction of 
antibodies with receptors. In addition, future studies should 
investigate glycosylation of other clinically relevant immu-
noglobulin classes such as IgA as well as tissue-specific  
antibody glycosylation patterns that may reflect the inflam-
matory state during the disease course more accurately.

In view of the observed glycosylation signatures in 
COVID-19, we believe that pathogen-specific antibody 
glycosylation is an important determinant of effector func-
tions, that could be a promising severity marker for infec-
tion induced as well as efficacy marker for vaccine induced 
antibodies in the future.
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