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S2
Supplementary material Chapter 2

These are the supplementary materials accompanying Chapter 2. The supplementary
materials are structured as follows. In section S2.1 we discuss two more example trials for
illustration of measurement error in an endpoint. In section S2.2 we explain why and under
which assumptions ignoring measurement error will lead to incorrect inference. Section
S2.3 provides an explanation of corrected effect estimators (and why these are consistent)
and explains the methods used for confidence interval estimation. In section S2.4 a proof is
given that measurement error depending on prognostic factors does not introduce bias in
the treatment effect estimator. In section S2.5 an approximation for the bias and variance
of the corrected estimator is derived.

S2.1. Illustrative examples
We introduce here two additional example trials from literature, hypothesize that these
trial could also have used endpoints measured with error to illustrate how the use of an
endpoint that is contaminated with error would affect trial inference. We assume that the
original endpoints used in our example trials are measurement error free.

S2.1.1. Example trial 2: energy expenditure
Poehlman and colleagues [1] studied the effects of endurance and resistance training
on total daily energy expenditure in a randomised trial of young sedentary women.
Participants were randomized to one of three six-month during exercise programmes:
endurance training, resistance training or the control arm. Some controversy regarding
the effect of exercise training on total energy expenditure (TEE) existed at the time of the
start of the trial, partly because of the difficulty to assess daily energy expenditure [1].
Starting 72 hours after completion of the training program, TEE of the participants was
measured by doubly labelled water during a ten day period, which is considered the gold
standard in measuring energy expenditure in humans [2]. In short, the study found no
evidence for an effect of resistance and endurance training (compared to placebo) on total
energy expenditure. Post-trial, measured TEE was higher in the control arm than in the
two intervention arms. Table 1 shows the decrease in TEE of the women exposed to the
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existence training programme versus the placebo arm.

S2.1.2. Example trial 3: rheumatoid arthritis disease activity
The U-Act-Early trial tested the efficacy of a new treatment strategy for rheumatoid
arthritis (RA) in patients with newly diagnosed RA [3] in a three-arm trial: tocilizumab plus
methotrexate versus tocilizumab only versus methotrexate only, all as initial treatment. For
endpoint assessment, this trial used a validated RA disease activity measure (the Disease
Activity Score 28, DAS28) [4]) which is commonly used and recommended to measure
endpoints in RA clinical trials [5, 6]. In short, the trial showed that immediate initiation
of tocilizumab with or without methotrexate is more effective than methotrexate alone to
achieve sustained remission in newly diagnosed RA patients. The difference inmean DAS28
score in the tocilizumab plus methotrexate versus methotrexate only group after 24 weeks
is shown in Table S2.1. The sample size of the former groups reported in Table S2.1 is based
on measurements available at 24 weeks of follow up.

A common alternative approach to measure energy expenditure (example trial 2) is
by a accelerometer, that measures body movement via motion sensors to assess energy
expenditure (e.g. [2]). As compared to double labelled water (example trial 2), the
accelerometer is cheaper, but less accurate [2]. Lastly, instead of endpoint assessment
by DAS28 (example trial 3), where assessment is done by trained medical staff [4], trials
could alternatively use the patient-based RA disease activity score (PDAS), where endpoint
assessment is done by the patient [7].

For the example trial in the paper and each of the aforementioned example trials here, in
Table S2.1 we show to what extent the Type-II of a test for treatment effect changes when a
hypothetical lower standard of endpoint measurement would have been used introducing
classical measurement error. The table clearly shows the anticipated increase in Type-II
error with increasing error at the same sample size.

S2.2.Measurement error structures
Consider a two-arm randomized controlled trial that compares the effects of two treatments
(𝑋 ∈ {0, 1}), where 0 may represent a placebo treatment or an active comparator. Let 𝑌
denote the true (or preferred) trial endpoint and 𝑌 ∗ an error prone operationalisation of 𝑌 .
We will assume that both 𝑌 and 𝑌 ∗ are measured on a continuous scale. Throughout, we
assume that 𝑌 ∗ is measured for all 𝑖 = 1, … , 𝑁 randomly allocated patients in the trial. We
assume that the effect of allocated treatment (𝑋 ∈ {0, 1}) on preferred endpoint 𝑌 is defined
by the linear model

𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀, (S2.1)

where 𝛽𝑌 defines the treatment effect on the endpoint, and 𝜀 has expected mean 0 and
variance 𝜎2. Throughout, we assume that 𝑋 is fixed. Further, we assume that model S2.1
is inestimable from the observed data because the endpoint 𝑌 ∗ instead of 𝑌 was measured.
We will assume that the relation between 𝑌 and 𝑌 ∗ is given by a linear model,

𝑌 ∗ = 𝜃0 + 𝜃1𝑌 + 𝑒, (S2.2)

where 𝑒 is a random variable whose distribution is independent of 𝜀, 𝑌 and 𝑋 . The
parameters 𝜃0 and 𝜃1 define the relation between 𝑌 and 𝑌 ∗, where it is assumed that 𝜃1
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Table S2.1: Impact of classical measurement error on Type-II error in the three
example trials. Effect estimates, standard errors and sample sizes are based on
results in the papers by Makridis et al. [8] (trial 1), Poehlman et al. [1] (trial 2)
and Bijlsma et al. [3] (trial 3)

Example Effect Standard Sample 𝜌a Type-II
Estimate Error Size Errorb

Trial 1 6.9 1.27 393 0 -
2.43 108 0 20%
2.71 108 1/5 29%
2.45 132 1/5 20%

Trial 2 −246.0 369.00 35 0 -
88.70 600 0 20%
109.00 600 1/3 38%
88.70 900 1/3 20%

Trial 3 −1.4 0.08 198 0 -
0.41 8 0 18%
0.50 8 3/7 41%
0.44 12 3/7 18%

a Proportion of observed variance in endpoints due to measurement error.
b Type-II error calculations are based on results provided in section 3.1.

does not equal 0. We assume that both parameters 𝜃0 and 𝜃1 are estimable only in the
external calibration sample comprising individuals not included in the trial (𝑗 = 1, … , 𝐾 ).

Simple OLS regression estimators for 𝛽𝑌 , 𝛼𝑌 and 𝜎2 (the variance of the errors 𝜀) in
(S2.1) are,

̂𝛽𝑌 ∗ = ∑𝑖(𝑋𝑖 − ̄𝑋 )(𝑌 ∗𝑖 − ̄𝑌 ∗)
∑𝑖(𝑋𝑖 − ̄𝑋 )2 , (S2.3)

�̂�𝑌 ∗ = ̄𝑌 ∗ − ̂𝛽𝑌 ∗ ̄𝑋 , (S2.4)

𝜔𝑖 = 𝑌 ∗𝑖 − �̂�𝑌 ∗ − ̂𝛽𝑌 ∗𝑋𝑖 , (S2.5)

𝑠2 = 1
𝑁 − 2 ∑

𝑖
𝜔2𝑖 , (S2.6)

respectively. In a two-arm trial, the interest is in making inferences about 𝛽𝑌 , which cannot
be directly estimated because in the trial the endpoint of interest 𝑌 was replaced by 𝑌 ∗. In
the following we will show: a) that ̂𝛽𝑌 ∗ may be a poor estimator for 𝛽𝑌 (section 3.1-3.4),
and b) how adjustments to ̂𝛽𝑌 ∗ using information from the calibration model described by
(𝑆2.2) can improve inference about the treatment effect (section 4). As a starting point,
in the following section relevant and known properties are defined for the special case
that 𝑌 ∗ = 𝑌 , which is then followed by the properties under different measurement error
structures for 𝑌 ∗ in subsequent sections.
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S2.2.1. No measurement error
Consider the hypothetical case that 𝑌 ∗ is a perfect proxy for 𝑌 , i.e. 𝑌 ∗ = 𝑌 . By using that
𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀, as defined in (S2.1), it follows that:

𝑌 ∗ = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀.

From standard regression theory (e.g. [9]), we know that if the errors 𝜀 satisfy the regular
Gauss-Markov assumptions [9] and their variance is defined by 𝜎2, the OLS estimators ̂𝛽∗𝑌 ,
�̂� ∗𝑌 , and 𝑠2 (defined by S2.3, S2.4, and S2.6, respectively) are Best Linear Unbiased Estimators
(BLUE) for 𝛽𝑌 , 𝛼𝑌 , and 𝜎2, respectively.

Moreover, if the 𝜀 are independently and identically (iid) normally distributed, the
OLS estimators ̂𝛽𝑌 ∗ and �̂�𝑌 ∗ (defined in S2.3 and S2.4, respectively) are the Maximum
Likelihood Estimators (MLE) of 𝛽𝑌 and 𝛼𝑌 , respectively. Note that the errors 𝜀 satisfy the
Gauss-Markov assumptions if we assume that they are iid normally distributed with mean
0 and constant variance 𝜎2.

Hypotheses for the treatment effect 𝛽𝑌 , can be defined by:

𝐻0 ∶ 𝛽𝑌 = 𝛽0,
𝐻𝐴 ∶ 𝛽𝑌 ≠ 𝛽0.

Under normality of the error terms 𝜀, the OLS estimator ̂𝛽∗𝑌 defined in (S2.3) is the MLE for
𝛽𝑌 and 𝑠2 is an unbiased estimator for 𝜎2, the following is known for the Wald test:

𝑇 =
̂𝛽𝑌 ∗ − 𝛽0

√V̂ar( ̂𝛽𝑌 ∗)
∼ 𝑡𝑁−2, (S2.7)

where,

V̂ar( ̂𝛽𝑌 ∗) = 𝑠2
∑𝑖(𝑋𝑖 − ̄𝑋 )2 . (S2.8)

Assuming no measurement error in 𝑌 and 𝑋 , under 𝐻0, 𝑇 follows a Student’s t distribution
with 𝑁 −2 degrees of freedom [9]. Under 𝐻𝐴, 𝑇 follows a Student’s t distribution with 𝑁 −2
degrees of freedom and non-centrality parameter (𝛽𝑌 − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗).

S2.2.2. Classical measurement error
There is classical measurement error in 𝑌 ∗ if 𝑌 ∗ is an unbiased proxy for 𝑌 [10]:

𝑌 ∗ = 𝑌 + 𝑒, (S2.9)

where E[𝑒] = 0 and Var(𝑒) = 𝜏2 and 𝑒 mutually independent of 𝑌 , 𝑋 , 𝜀 (in (S2.1)). By using
that 𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀 from (S2.1), it follows that:

𝑌 ∗ = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀 + 𝑒.

Given the aforementioned assumptions, the sum of 𝑒 and 𝜀, 𝛿1 = 𝑒+𝜀, has varianceVar(𝛿1) =
𝜎2 + 𝜏2. It follows that if the errors 𝛿1 satisfy the Gauss-Markov assumptions, ̂𝛽𝑌 ∗ in (S2.3)
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remains a BLUE estimator for 𝛽𝑌 . Also, �̂�𝑌 ∗ in (S2.4) and 𝑠2 in (S2.6) remain BLUE estimators
for 𝛼𝑌 and the variance of 𝛿1, respectively.

Further, if 𝛿1 is iid normally distributed with mean 0 and variance 𝜎2 + 𝜏2, then �̂�𝑌 ∗
is the MLE for 𝛼𝑌 and ̂𝛽𝑌 ∗ is the MLE for 𝛽𝑌 . Obviously, given that 𝜎2 > 0 and 𝜏2 > 0,
the variance of the OLS regression estimator ̂𝛽𝑌 ∗ is larger if there is classical measurement
error in the outcome compared to the case when there is no measurement error. Under
the null hypothesis, the Wald test-statistic 𝑇 defined in (S2.7) still follows a Student’s 𝑡
distribution with 𝑁 − 2 degrees of freedom. However, under the alternative hypothesis,

the non-centrality parameter of 𝑇 , (𝛽𝑌 − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗), will be smaller in the presence of
classical measurement error.

To summarize, in the presence of only classical measurement error, Type-II error for
detecting any given treatment effect increases, Type-I error is unaffected and the treatment
effect estimator is unbiased MLE under standard regularity conditions.

Heteroscedastic classical measurement error
In the preceding we assumed that the Gauss-Markov assumptions were met. But notably,
in the case that the variance of the errors 𝑒 in (S2.9) varies per treatment arm, the errors
are no longer homoscedastic (as needed to satisfy the Gauss-Markov assumptions) but
heteroscedastic. In the case of this type of heteroscedastic classical measurement error, it
can be shown that the variance of 𝛽𝑌 ∗ will be underestimated by the default estimator of
the variance of ̂𝛽𝑌 ∗ defined by (S2.8), affecting both Type-I and Type-II error.

S2.2.3. Systematic measurement error
There is systematic measurement error in 𝑌 ∗, if 𝑌 ∗ systematically depends on 𝑌 . Assuming
this dependence is linear, the relation between 𝑌 ∗ and 𝑌 can be defined as:

𝑌 ∗ = 𝜃0 + 𝜃1𝑌 + 𝑒, (S2.10)

where E[𝑒] = 0 and Var(𝑒) = 𝜏2. Throughout, we assume systematic measurement error
if 𝜃0 ≠ 0 or 𝜃1 ≠ 1 (and of course, 𝜃1 ≠ 0 in all cases). We assume mutual independence
between 𝑒 and 𝑌 , 𝑋 , 𝜀 ( in S2.1). Naturally, if 𝜃0 = 0 and 𝜃1 = 1 the measurement error is of
the classical form.

By using that 𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀 from (S2.1), it follows that:

𝑌 ∗ = 𝜃0 + 𝜃1𝛼𝑌 + 𝜃1𝛽𝑌𝑋 + 𝜃1𝜀 + 𝑒.
Given the aforementioned assumptions, 𝛿2 = 𝜃1𝜀 + 𝑒 with expected variance 𝜃21𝜎2 + 𝜏2. It
follows that under the Gauss-Markov assumptions, ̂𝛽𝑌 ∗ defined in (S2.3) is BLUE for 𝜃1𝛽𝑌 ,
and �̂�𝑌 ∗ defined in (S2.4) is BLUE for 𝜃0+𝛼𝑌 and 𝑠2 defined in (S2.6) is BLUE for the variance
of 𝛿2 (i.e. 𝜃21 𝜏2 + 𝜎2). Conversely, ̂𝛽𝑌 ∗ is no longer BLUE for 𝛽𝑌 . Note that in this case 𝑠2 is
BLUE for 𝜃21𝜎2 + 𝜏2, that is, depending on 𝜃1, smaller or larger than 𝜎2 (the variance of the
error terms if there is no measurement error).

If we further assume that 𝛿2 is iid normally distributed, we can conclude that �̂�𝑌 ∗ is the
MLE for 𝜃0 + 𝛼𝑌 and ̂𝛽𝑌 ∗ is the MLE for 𝜃1𝛽𝑌 . Conversely, ̂𝛽𝑌 ∗ is no longer the MLE for
𝛽𝑌 , if there is systematic measurement error in 𝑌 ∗. In the absence of a treatment effect, as
𝜃1𝛽𝑌 = 0 if 𝛽𝑌 = 0, 𝑇 defined in (S2.7) still follows a Student’s 𝑡 distribution with 𝑁 − 2



S2

190 Supplementary material Chapter 2

degrees of freedom. In the presence of any given treatment effect, 𝑇 follows a non-central
Student’s 𝑡 distribution with 𝑁 − 2 degrees of freedom and non-centrality parameter

(𝜃1𝛽𝑌 − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗). Depending on the value of 𝜃1, the non-centrality parameter will be
smaller or larger than the non-centrality parameter in the absence of measurement error
(see section 3.2).

In summary, if there is systematic measurement error in the endpoints, the Type-I error
is unaffected under standard regularity conditions and hence testing whether there is no
effect is still valid under the null hypothesis [11]). Type-II, however, is affected (it may
increase or decrease) and the treatment effect estimator is a biased MLE.

S2.2.4. Differential measurement error
There is differential measurement error in 𝑌 ∗ when measurement error varies with 𝑋 .
Assuming a linear model for this variation, formally:

𝑌 ∗ = 𝜃00 + (𝜃01 − 𝜃00)𝑋 + 𝜃10𝑌 + (𝜃11 − 𝜃10)𝑋𝑌 + 𝑒𝑋 , (S2.11)

where E[𝑒𝑋 ] = 0 and Var(𝑒𝑋 ) = 𝜏2𝑋 and 𝑒𝑋 independent of the endpoint of interest 𝑌 , and 𝜀
in (S2.1). From the equations it becomes clear that systematic error (equation (S2.10)) can
be seen as a special case of differential error, where 𝜃00 = 𝜃01 and 𝜃10 = 𝜃11.

By using that 𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀 from (S2.1), it follows from equation (S2.11) that,

𝑌 ∗ = 𝜃00 + 𝜃10𝛼𝑌 + [𝜃01 − 𝜃00 + (𝜃11 − 𝜃10)𝛼𝑌 + 𝜃11𝛽𝑌 ]𝑋 + [𝜃10 + (𝜃11 − 𝜃10)𝑋]𝜀 + 𝑒𝑋 .
Let 𝛿3𝑋 = [𝜃10+(𝜃11−𝜃10)𝑋]𝜀 +𝑒𝑋 , with expected variance [𝜃210+(𝜃211−𝜃210)𝑋]𝜎2+𝜏2𝑋 . Since
the the error term 𝛿3𝑋 is no longer homoscedastic, the OLS estimators defined in (S2.3) and
(S2.4) are no longer BLUE. However, the OLS estimator ̂𝛽𝑌 ∗ in (S2.3) is consistent (although
not efficient) for 𝜃01 − 𝜃00 + (𝜃11 − 𝜃10)𝛼𝑌 + 𝜃11𝛽𝑌 . The OLS estimator �̂�𝑌 ∗ defined in (S2.4)
is consistent (although not efficient) for 𝜃00 + 𝜃10𝛼𝑌 . Nevertheless, the estimator for the
variance of ̂𝛽𝑌 ∗ defined in (S2.8) is no longer valid.

By using the residuals 𝜔𝑖 defined in (S2.6), a heteroscedastic consistent estimator for
the variance of ̂𝛽𝑌 ∗ is:

V̂ar( ̂𝛽𝑌 ∗) = ∑𝑖 [(𝑋𝑖 − ̄𝑋 )2𝜔2𝑖 ]
[∑𝑖 (𝑋𝑖 − ̄𝑋 )2]2 ,

which is known as the White estimator [12]. From standard regression theory, it is
known that using the above defined estimator, 𝑇 defined in (S2.7) is still valid. Yet,
under differential measurement error no longer [𝜃01 − 𝜃00 + (𝜃11 − 𝜃10)𝛼𝑌 + 𝜃11𝛽𝑌 ] = 0
if 𝛽𝑌 = 0. Thus, under the null hypothesis, 𝑇 defined in (S2.7) follows a Student’s 𝑡
distribution with 𝑁 − 2 degrees of freedom and non-centrality parameter ([𝜃01 − 𝜃00 +
𝜃11𝛼𝑌 − 𝜃10𝛼𝑌 + 𝜃11𝛽0] − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗). Consequently, Type-I error changes if there is
differential measurement error in 𝑌 ∗ and test about contrast under the null hypothesis
are invalid [11]. Moreover, under the alternative hypothesis, 𝑇 follows a non-central
Student’s 𝑡 distribution with 𝑁 − 2 degrees of freedom and non-centrality parameter

([𝜃01 − 𝜃00 + (𝜃11 − 𝜃10)𝛼𝑌 + 𝜃11𝛽𝑌 ] − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗). Depending on the values of the 𝜃 ’s and
𝛼𝑌 , the non-centrality parameters will be smaller or larger than 0 and the non-centrality
parameter if there is no measurement error, respectively (see section 3.2). Hence, Type-I
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error and Type-II error could increase or decrease if there is differential measurement error
in 𝑌 ∗.

To summarize, Type-I error is not expected nominal (𝛼) if there is differential
measurement error in 𝑌 ∗ (see also [11]). Also, similar to systematic error in 𝑌 ∗, Type-II
error is affected (may increase or decrease) and the treatment effect estimator is biased.

S2.3. Correction methods for measurement error in a
continuous trial endpoint

To accommodate measurement error correction, we assume that 𝑌 and 𝑌 ∗ are both
measured for a smaller set of different individuals not included in the trial (𝑗 = 1, … , 𝐾, 𝐾 <
𝑁 ), hereinafter referred to as the external calibration sample. In all but one case, it is
assumed that only 𝑌 ∗ and 𝑌 are measured in the external calibration sample. In the case
that the error in 𝑌 ∗ is different for the two treatment groups, it is assumed that the external
calibration sample is in the form of a small pilot study where both treatments are allocated
(i.e., 𝑌 ∗ and 𝑌 are both measured after assignment of 𝑋 ).

S2.3.1. Systematic measurement error
Using an external calibration set and assuming that the errors 𝑒 in (S2.10) are iid normal,
the MLE of the measurement error parameters in (S2.10) are:

̂𝜃1 =
∑𝑗(𝑌 (𝑐)

𝑗 − ̄𝑌 (𝑐))(𝑌 ∗(𝑐)
𝑗 − ̄𝑌 ∗(𝑐))

∑(𝑌 (𝑐)
𝑗 − ̄𝑌 (𝑐))2

, (S2.12)

̂𝜃0 = ̄𝑌 ∗(𝑐) − ̂𝜃1 ̄𝑌 (𝑐),
𝑡2 = 1

𝐾 − 2 ∑
𝑗
(𝑌 ∗(𝑐)

𝑗 − ̂𝜃0 − ̂𝜃1𝑌 (𝑐)
𝑗 )2.

The superscript (c) is used to indicate that the measurement is obtained in the calibration
set. From section 3.4, under systematic measurement error and assuming that 𝜀 in (S2.1)
and 𝑒 in (S2.10) iid normal and independent, the estimator ̂𝛽𝑌 ∗ defined in (S2.3) is the MLE
of 𝜃1𝛽𝑌 and, the estimator �̂�𝑌 ∗ defined in (S2.4) is the MLE of 𝜃0 + 𝜃1𝛼𝑌 . Natural sample
estimators for 𝛼𝑌 and 𝛽𝑌 are then

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃0)/ ̂𝜃1 and ̂𝛽𝑌 = ̂𝛽𝑌 ∗ / ̂𝜃1, (S2.13)

where ̂𝜃0 and ̂𝜃1 are the estimated error parameters from the calibration data set. From
equation (S2.13), it becomes apparent that ̂𝜃1 needs to be assumed bounded away from
zero for finite estimates of �̂�𝑌 and ̂𝛽𝑌 [13].

The first moment of estimators �̂�𝑌 and ̂𝛽𝑌 can be approximated by using multivariate
Taylor expansions and assuming that (�̂�𝑌 ∗ , ̂𝛽𝑌 ∗ , ̂𝜃0, ̂𝜃1) are normally distributed [13],

E[�̂�𝑌 ] ≈ 𝛼𝑌 + [𝛼𝑌 − ̄𝑦∗]𝜏2
𝜃21𝑆(𝑐)𝑦𝑦

and E[ ̂𝛽𝑌 ] ≈ 𝛽𝑌 + 𝛽𝑌 𝜏2
𝜃21𝑆(𝑐)𝑦𝑦

,
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where 𝑆(𝑐)𝑦𝑦 = ∑(𝑌 (𝑐)
𝑗 − ̄𝑌 (𝑐))2, the total sum of squares of 𝑌 (𝑐). In conclusion, the estimators

�̂�𝑌 and ̂𝛽𝑌 are consistent. Formal derivations for the presented formulas are provided in
section S2.5.

In the following we will focus on specifying confidence limits for the treatment effect
estimator ̂𝛽𝑌 defined in (S2.13). Wemake use of the fact that this estimator is a ratio, which
motivates the use of the Delta method, Fieller method and Zero-variance method [14]. We
also present a non-parametric bootstrap method for specifying confidence limits [15].

Delta method
Assuming that ̂𝛽𝑌 ∗ and ̂𝜃1 are both normally distributed and applying the Delta method,
the second moment of ̂𝛽𝑌 can be approximated [11]. Formal derivations of the presented
formulas are provided in section S2.5. The Delta method variance of ̂𝛽𝑌 is given by:

Var( ̂𝛽𝑌 ) ≈
1
𝜃21

[𝜃
21𝜎2 + 𝜏2
𝑆𝑥𝑥

+ 𝛽2𝑌 𝜏2
𝑆(𝑐)𝑦𝑦

],

where 𝑆𝑥𝑥 = ∑𝑖(𝑋𝑖 − ̄𝑋 )2, the total sum of squares of 𝑋 . An approximation of the above
defined variance, denoted by V̂ar( ̂𝛽𝑌 ), is provided by approximating 𝜃1, 𝜃21𝜎2 + 𝜏2, 𝜏2 and
𝛽𝑌 respectively by ̂𝜃1, 𝑠2, 𝑡2 and ̂𝛽𝑌 [11].

An approximate confidence interval for the estimator ̂𝛽𝑌 is then given by

̂𝛽𝑌 ± 𝑡(𝛼/2,𝑛−2)√V̂ar( ̂𝛽𝑌 ). (S2.14)

Fieller method
A secondmethod to construct confidence intervals for the estimator ̂𝛽𝑌 in (S2.13), described
by Buonaccorsi, is the Fieller method [11, 16]. In the case that ̂𝜃1 is significantly different

from zero at a significance level of 𝛼 (that is, ̂𝜃1/√𝑡2/𝑆(𝑐)𝑦𝑦 > 𝑡𝑁−2), the (1 − 𝛼) confidence
intervals of ̂𝛽𝑌 are defined by the Fieller method by:

𝑙𝑢𝑝𝑝𝑒𝑟,𝑙𝑜𝑤𝑒𝑟 =
̂𝛽𝑌 ∗ ̂𝜃1 ± √

̂𝛽2𝑌 ∗ ̂𝜃21 − ( 𝑡2
𝑆(𝑐)𝑦𝑦

𝑡2𝑞 − ̂𝜃21 )( 𝑠2
𝑆𝑥𝑥

𝑡2𝑞 − ̂𝛽2𝑌 ∗)
𝜏 2
𝑆(𝑐)𝑦𝑦

𝑡2𝑞 + ̂𝜃21
. (S2.15)

A formal derivation can be found in section S2.5.

Zero-variance method
The zero-variance method adjusts the observed endpoints 𝑌 ∗𝑖 by

̂𝑌𝑖 = (𝑌 ∗𝑖 − ̂𝜃0)/ ̂𝜃1,
where ̂𝜃0 and ̂𝜃1 are derived from (S2.10). The adjusted endpoints are regressed on the
treatment variable 𝑋 , which yields,

̂𝛽�̂� = ∑𝑖(𝑋𝑖 − ̄𝑋 )(�̂�𝑖 − ̄�̂� )
∑𝑖(𝑋𝑖 − ̄𝑋 )2 = ∑𝑖(𝑋𝑖 − ̄𝑋 )(𝑌 ∗𝑖 − ̄𝑌 ∗)/ ̂𝜃1

∑𝑖(𝑋𝑖 − ̄𝑋 )2 = ̂𝛽𝑌 ∗ / ̂𝜃1,
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�̂��̂� = ̄�̂� − ̂𝛽�̂� ̄𝑋 =
̄𝑌 ∗ − ̂𝛽𝑌 ∗ ̄𝑋 − ̂𝜃0

̂𝜃1
= (�̂�𝑌 ∗ − ̂𝜃0)/ ̂𝜃1,

𝑠2�̂� = 1
𝑁 − 2 ∑

𝑖
(�̂�𝑖 − �̂��̂� − ̂𝛽�̂�𝑋𝑖)2 =

1
̂𝜃21
𝑠2,

with ̂𝛽𝑌 ∗ , �̂�𝑌 ∗ and 𝑠2 as in equations (S2.3, S2.4 and S2.6), respectively. Thus, ̂𝛽�̂� equals ̂𝛽𝑌
and �̂��̂� equals �̂�𝑌 defined in (S2.13).

When the value of ̂𝜃1 (i.e. 𝜃1) is known, the variance of the estimator ̂𝛽�̂� is equal to:

Var( ̂𝛽�̂� ) = Var( ̂𝛽𝑌 ∗)/𝜃21 = 𝜎2 + 𝜏2/𝜃21
∑𝑖 (𝑋𝑖 − ̄𝑋 )2 .

Using the standard OLS regression framework the variance of ̂𝛽�̂� can be estimated by:

V̂ar( ̂𝛽�̂� ) =
𝑠2�̂�

∑𝑖(𝑋𝑖 − ̄𝑋 )2 = 𝑠2/ ̂𝜃21
∑𝑖(𝑋𝑖 − ̄𝑋 )2 . (S2.16)

By replacing ̂𝜃1 by 𝜃1 in the above, the quantity in (S2.16) is in expectation equal to
Var( ̂𝛽�̂� ) (defined above). The quantity in (S2.16) is used in the zero-variance method
to construct confidence intervals for ̂𝛽�̂� , by replacing V̂ar( ̂𝛽�̂� ) for V̂ar( ̂𝛽𝑌 ) in equation
S2.14. In conclusion, this zero-variance approach will provide confidence intervals for the
treatment effect estimator while assuming there is no variance in ̂𝜃1 (giving it its name
zero-variance method). Although the zero-variance approach wins in terms of simplicity,
it may underestimate the variability of the ratio since the variance in ̂𝜃1 is assumed zero.

Bootstrap
An alternative for defining confidence intervals for the corrected treatment effect estimator
̂𝛽𝑌 is by using a non-parametric bootstrap [15]. We propose the following stepwise

procedure:

1. Draw a random sample with replacement of size 𝐾 of the calibration sample
(𝑌 ∗(𝑐), 𝑌 (𝑐)) to estimate ̂𝜃1𝐵 defined in (S2.12).

2. Draw a random sample with replacement of size 𝑁 of the trial data (𝑌 ∗, 𝑋 ) to
calculate the corrected treatment effect estimate by ̂𝛽𝑌𝐵 = 𝛽𝑌 ∗𝐵 / ̂𝜃1𝐵 . Where 𝛽𝑌 ∗𝐵 is
defined in (S2.3).

3. Repeat step 1-2 𝐵 times, with 𝐵 large (e.g. 999 times).

4. Approximate confidence intervals are given by the (𝛼/2, 1 − 𝛼/2) percentile of the
distribution of ̂𝛽𝑌𝐵 .

S2.3.2. Differential measurement error
For corrections for endpoints that suffer from differential measurement error we will here
assume the existence of a pilot trial, which serves as an external calibration set, where both
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treatments are allocated at random that serves as an external calibration set to estimate
the measurement error model in (S2.11). For notational convenience we rewrite the linear
model in equation (S2.11) in matrix form as:

𝑌 ∗ = 𝑋𝜃 + 𝑒, (S2.17)

where E(𝑒) = 0 and E(𝑒𝑒′) = Σ, a positive definite matrix, with 𝜏2𝑋 on its diagonal. Further,
𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4) = (𝜃00, 𝜃01 − 𝜃00, 𝜃10, 𝜃11 − 𝜃10). In the external calibration set, the
measurement error parameters ̂𝜃 can be estimated by,

̂𝜃 = (𝑋 (𝑐)′𝑋 (𝑐))−1𝑋 (𝑐)′𝑌 (𝑐), (S2.18)

with variance,
Var( ̂𝜃) = (𝑋 (𝑐)′𝑋 (𝑐))−1𝑋 (𝑐)′Σ𝑋 (𝑐)(𝑋 (𝑐)′𝑋 (𝑐))−1.

See [12] for a discussion on different estimators for the above defined variance. From
section 2.5 it follows that natural estimators for 𝛼𝑌 and 𝛽𝑌 are,

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃00)/ ̂𝜃10 and ̂𝛽𝑌 = ( ̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01)/ ̂𝜃11 − �̂�𝑌 , (S2.19)

where ̂𝜃00, ̂𝜃10, ̂𝜃01 and ̂𝜃11 are estimated from the external calibration set. Here it is assumed
that both ̂𝜃10 and ̂𝜃11 are bounded away from zero (for reasons similar to those mentioned
in section 3.1).

By multivariate Taylor expansions, the first moments of the estimators �̂�𝑌 and ̂𝛽𝑌
defined in (S2.19) can be approximated [11], in the same way as the estimators for
systematic measurement error (section 4.1),

E[�̂�𝑌 ] ≈ 𝛼𝑌 + 1
𝜃210

[𝛼𝑌Var( ̂𝜃10) + Cov( ̂𝜃00, ̂𝜃10)],

E[ ̂𝛽𝑌 ] ≈ 𝛽𝑌 + 1
𝜃211

[(𝛽𝑌 + 𝛼𝑌 )Var( ̂𝜃11) + Cov( ̂𝜃01, ̂𝜃11)]

− 1
𝜃210

[𝛼𝑌Var( ̂𝜃10) + Cov( ̂𝜃00, ̂𝜃10)].

From this, it is apparent that the estimators �̂�𝑌 and ̂𝛽𝑌 defined in (S2.19) are consistent
(details are found in section S2.5). In the subsequent sections we review the Delta method,
zero-variance and propose a bootstrap for specifying confidence limits for the estimator of
the treatment effect under differential measurement error of the endpoints.

Delta method
The variance of the estimator ̂𝛽𝑌 defined in (S2.19) can be approximated by the Delta
method [11]:

Var( ̂𝛽𝑌 ) ≈
1
𝜃211

[(𝛽𝑌 + 𝛼𝑌 )
2
Var( ̂𝜃11) + Var( ̂𝛽𝑌 ∗) + Var(�̂�𝑌 ∗)+

2Cov(�̂�𝑌 ∗ , ̂𝛽𝑌 ∗) + Var( ̂𝜃01) + 2(𝛽𝑌 + 𝛼𝑌 )Cov( ̂𝜃11, ̂𝜃01)]+
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Var(�̂�𝑌 ),

where Var(�̂�𝑌 ) is approximated by:

Var( �̂�𝑌 ∗ − ̂𝜃00
̂𝜃10

) ≈ 1
𝜃210

[Var(�̂�𝑌 ∗) + 𝛼2𝑌Var( ̂𝜃10) + Var( ̂𝜃00) + 2𝛼𝑌Cov( ̂𝜃00, ̂𝜃10)].

An approximate confidence interval for the estimator ̂𝛽𝑌 in (S2.19) is:

̂𝛽𝑌 ± 𝑡(𝛼/2,𝑛−2)√Var( ̂𝛽𝑌 ). (S2.20)

An approximation of 𝜃11, 𝜃10, 𝜃211𝜎2+𝜏21 , 𝜃210𝜎2+𝜏20 , 𝜏21 , 𝜏20 , 𝛽𝑌 and 𝛼𝑌 in the above is provided
by: ̂𝜃11, ̂𝜃10, 𝑠21 , 𝑠20 , 𝑡21 , 𝑡20 , ̂𝛽𝑌 and �̂�𝑌 [11].

Zero-variance method
The zero-variance method adjusts the observed endpoints 𝑌 ∗𝑖 by

�̂�𝑖𝑥 = (𝑌 ∗𝑖𝑥 − ̂𝜃0𝑥 )/ ̂𝜃1𝑥 ,

for 𝑥 ∈ {0, 1} and ̂𝜃0𝑥 ) and ̂𝜃1𝑥 derived from (S2.18). In the zero-variance method the
above defined adjusted values are regressed on the treatment variable 𝑋 , yielding in
estimators �̂��̂� and ̂𝛽�̂� , which are, respectively, equal to the estimators �̂�𝑌 and ̂𝛽𝑌 defined
in (S2.19). The variance of these estimators can be approximated with a heteroscedastic
consistent covariance estimator (see [12] for an overview). Confidence intervals for ̂𝛽�̂� are
subsequently constructed by using formula S2.20. Similar to what is described in section
4.1.3 discussing the zero-variance method for systematic measurement error, this way of
constructing confidence intervals neglects the variance of the 𝜃 ’s from the calibration data
set, and will thus often yield in confidence intervals that are too narrow.

Bootstrap
We here alternatively propose a non-parametric bootstrap procedure to specify confidence
limits. This entails the following steps:

1. Draw a random sample with replacement of size 𝐾 of the calibration sample and
estimate ̂𝜃 as defined in (S2.18).

2. Draw a random sample (with replacement) of size 𝑁 of the study population and
calculate the effect estimate by �̂�𝑌𝐵 = (𝛼𝑌 ∗𝐵 − ̂𝜃00𝐵 )/ ̂𝜃10𝐵 and ̂𝛽𝑌𝐵 = (𝛽𝑌 ∗𝐵 + 𝛼𝑌 ∗𝐵 −
̂𝜃01𝐵 )/ ̂𝜃11𝐵 − �̂�𝑌𝐵 . Where 𝛽𝑌 ∗𝐵 and 𝛼𝑌 ∗𝐵 are defined in (S2.3) and (S2.4), respectively.

3. Repeat step 1-2 𝐵 times, with 𝐵 large (e.g. 999 times).

4. Approximate confidence intervals are given by the (𝛼/2, 1 − 𝛼/2) percentile of the
distribution of ̂𝛽𝑌𝐵 .
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S2.4.Measurement error depending on prognostic factors
Assume that, E[𝑌 |𝑋 , 𝑆] = 𝛼 + 𝛽𝑋 + 𝛾𝑆, E[𝑌 ∗|𝑌 , 𝑆] = 𝑌 + 𝜁 𝑆, 𝑌 ∗|𝑌 ⊧𝑋 (non-differential
measurement error) and 𝑆 ⊧𝑋 (randomization is well-performed).

Suppose that we want to estimate the effect of 𝑌 on 𝑋 (i.e., 𝛽), but instead of 𝑌 we
have only measured the with measurement error contaminated 𝑌 ∗. If one is aware that
there is a prognostic factor that confounds the relation between 𝑌 ∗ and 𝑌 (and this factor
is measured), one could decide to regress 𝑌 ∗ on 𝑋 and 𝑆. The regression of 𝑌 ∗ on 𝑋 and 𝑆
equals,

E[𝑌 ∗|𝑋 , 𝑆] = E𝑌 |𝑋 ,𝑆{EY∗ |X,S,Y[Y∗|X, S,Y]|X, S}
= E𝑌 |𝑋 ,𝑆{EY∗ |S,Y[Y∗|S,Y]|X, S}
= E𝑌 |𝑋 ,𝑆{Y + �S|X, S}
= 𝛼 + 𝛽𝑋 + (𝛾 + 𝜁 )𝑆.

Thus, using the with measurement error contaminated endpoint 𝑌 ∗ instead of the preferred
endpoint 𝑌 will provide an unbiased estimation of 𝛽 .

However, if one is not aware of the prognostic factor, one might naively regress 𝑌 ∗ on
𝑋 , which equals:

E[𝑌 ∗|𝑋 ] = E𝑆|𝑋 {E𝑌 |𝑋 ,𝑆 {EY∗ |X,S,Y[Y∗|X, S,Y]|X, S}|𝑋 }
= E𝑆|𝑋 {𝛼 + 𝛽𝑋 + (𝛾 + 𝜁 )𝑆|𝑋 }
= 𝛼 + 𝛽𝑋 + (𝛾 + 𝜁 )E[𝑆].

In conclusion, with ignoring the prognostic factor and using the with measurement error
contaminated endpoint 𝑌 ∗ instead of the preferred endpoint 𝑌 , the regression of 𝑌 ∗ on 𝑋
still results in an unbiased estimation of 𝛽 .

S2.5. Approximation of bias and variance in corrected estimator
S2.5.1. Systematic measurement error
Obvious estimators for 𝛼𝑌 and 𝛽𝑌 are:

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃0)/ ̂𝜃1 and ̂𝛽𝑌 = ̂𝛽𝑌 ∗ / ̂𝜃1.

These estimators can be approximated with a second order Taylor expansion by:

̂𝛽𝑌 ∗

̂𝜃1
≈ 𝛽𝑌 ∗

𝜃1
− 𝛽𝑌 ∗

𝜃21
( ̂𝜃1 − 𝜃1) +

1
𝜃1
( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)

+ 1
2! [

2𝛽𝑌 ∗

𝜃31
( ̂𝜃1 − 𝜃1)2 −

2
𝜃21

( ̂𝜃1 − 𝜃1)( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)],
�̂�𝑌 ∗

̂𝜃1
≈ 𝛼𝑌 ∗

𝜃1
− 𝛼𝑌 ∗

𝜃21
( ̂𝜃1 − 𝜃1) +

1
𝜃1
(�̂�𝑌 ∗ − 𝛼𝑌 ∗)

+ 1
2! [

2𝛼𝑌 ∗

𝜃31
( ̂𝜃1 − 𝜃1)2 −

2
𝜃21

( ̂𝜃1 − 𝜃1)(�̂�𝑌 ∗ − 𝛼𝑌 ∗)],
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̂𝜃0
̂𝜃1
≈ 𝜃0
𝜃1

− 𝜃0
𝜃21

( ̂𝜃1 − 𝜃1) +
1
𝜃1
( ̂𝜃0 − 𝜃0)

+ 1
2! [

2𝜃0
𝜃31

( ̂𝜃1 − 𝜃1)2 −
2
𝜃21

( ̂𝜃1 − 𝜃1)( ̂𝜃0 − 𝜃0)].

Simplifying these terms and substraction of the latter two, will lead to the following
approximations for �̂�𝑌 and ̂𝛽𝑌 :

̂𝛽𝑌 ∗

̂𝜃1
≈ 𝛽𝑌 ∗

𝜃1
+ 1
𝜃1
[ − 𝛽𝑌 ∗

𝜃1
( ̂𝜃1 − 𝜃1) + ( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)]

+ 1
𝜃21

[𝛽𝑌 ∗

𝜃1
( ̂𝜃1 − 𝜃1)2 − ( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)( ̂𝜃1 − 𝜃1)],

�̂�𝑌 ∗ − ̂𝜃0
̂𝜃1

≈ 𝛼𝑌 ∗ − 𝜃0
𝜃1

+ 1
𝜃1
[ − 𝛼𝑌 ∗ − 𝜃0

𝜃1
( ̂𝜃1 − 𝜃1) + (�̂�𝑌 ∗ − 𝛼𝑌 ∗) − ( ̂𝜃0 − 𝜃0)]

+ 1
𝜃21

[𝛼𝑌 ∗ − 𝜃0
𝜃1

( ̂𝜃1 − 𝜃1)2 − (�̂�𝑌 ∗ − 𝛼𝑌 ∗)( ̂𝜃1 − 𝜃1) + ( ̂𝜃0 − 𝜃0)( ̂𝜃1 − 𝜃1)].

Since E[ ̂𝜃1 − 𝜃1] = 0, E[ ̂𝜃0 − 𝜃0] = 0, E[�̂�𝑌 ∗ − 𝛼𝑌 ∗] = 0 and E[ ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗] = 0 an approximation
of the expected value of the estimator �̂�𝑌 is given by:

E[ �̂�𝑌 ∗ − ̂𝜃0
̂𝜃1

] ≈ 𝛼𝑌 ∗ − 𝜃0
𝜃1

+ 1
𝜃21

[𝛼𝑌 ∗ − 𝜃0
𝜃1

E[( ̂𝜃1 − 𝜃1)2]

− E[(�̂�𝑌 ∗ − 𝛼𝑌 ∗)( ̂𝜃1 − 𝜃1)] + E[( ̂𝜃0 − 𝜃0)( ̂𝜃1 − 𝜃1)]] =

= 𝛼𝑌 ∗ − 𝜃0
𝜃1

+ 1
𝜃21

[𝛼𝑌 ∗ − 𝜃0
𝜃1

Var( ̂𝜃1) − Cov(�̂�𝑌 ∗ , ̂𝜃1) + Cov( ̂𝜃0, ̂𝜃1)] =

= 𝛼𝑌 + 1
𝜃21

[ 𝜏2[𝛼𝑌 − ̄𝑌 (𝑐)]
∑(𝑌 (𝑐)

𝑗 − ̄𝑌 (𝑐))2
].

Congruently, an approximation of the expected value of the estimator ̂𝛽𝑌 is given by:

E[
̂𝛽𝑌 ∗

̂𝜃1
] ≈ 𝛽𝑌 ∗

𝜃1
+ 1
𝜃21

[𝛽𝑌 ∗

𝜃1
E[( ̂𝜃1 − 𝜃1)2] − E[( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)( ̂𝜃1 − 𝜃1)]] =

= 𝛽𝑌 ∗

𝜃1
+ 1
𝜃21

[𝛽𝑌 ∗

𝜃1
Var( ̂𝜃1)] =

= 𝛽𝑌 + 1
𝜃21

[ 𝜏2𝛽𝑌
∑(𝑌 (𝑐)

𝑗 − ̄𝑌 (𝑐))2
].

Only using the first order Taylor expansion of the estimators, approximations of the
variance of �̂�𝑌 and ̂𝛽𝑌 are respectively:

Var( �̂�𝑌 ∗ − ̂𝜃0
̂𝜃1

) ≈ 1
𝜃21

[𝛼2𝑌Var( ̂𝜃1) + Var(�̂�𝑌 ∗ − ̂𝜃0) − 2𝛼𝑌Cov( ̂𝜃1, �̂�𝑌 ∗ − ̂𝜃0)] =
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= 1
𝜃21

[𝛼2𝑌Var( ̂𝜃1) + Var(�̂�𝑌 ∗) + Var( ̂𝜃0) − 2Cov(�̂�𝑌 ∗ , ̂𝜃0)

− 2𝛼𝑌Cov( ̂𝜃1, �̂�𝑌 ∗) + 2𝛼𝑌Cov( ̂𝜃1, ̂𝜃0)] =

= 1
𝜃21

[ (𝜃
21𝜎2 + 𝜏2)∑𝑋 2𝑖
𝑁 ∑(𝑋𝑖 − ̄𝑋 )2 + 𝛼2𝑌

𝜏2
∑(𝑌 (𝑐)

𝑗 − ̄𝑌 (𝑐))2

+ 𝜏2∑(𝑌 (𝑐)
𝑗 )2

𝐾 ∑(𝑌 (𝑐)
𝑗 − ̄𝑌 (𝑐))2

+ 2𝛼𝑌
−𝜏2 ̄𝑌 (𝑐)

∑(𝑌 (𝑐)
𝑗 − ̄𝑌 (𝑐))2

] =

= 1
𝜃21

[ (𝜃
21𝜎2 + 𝜏2)∑𝑋 2𝑖
𝑁 ∑(𝑋𝑖 − ̄𝑥)2 + 𝛼2𝑌

𝜏2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2

+ 𝜏2(∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 + 𝐾( ̄𝑦(𝑐))2)
𝐾 ∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2

− 2𝛼𝑌
𝜏2 ̄𝑦(𝑐)

∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2
] =

= 1
𝜃21

[ (𝜃
21𝜎2 + 𝜏2)∑ 𝑥2𝑖
𝑁 ∑(𝑥𝑖 − ̄𝑥)2 + 𝜏2( 1𝐾 + ( ̄𝑦(𝑐) − 𝛼𝑌 )2

∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2
)],

Var(
̂𝛽𝑌 ∗

̂𝜃1
) ≈ 1

𝜃21
[ 𝜃21𝜎2 + 𝜏2
∑(𝑥𝑖 − ̄𝑥)2 + 𝛽2𝑌 𝜏2

∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2
].

Fieller method

Assume that ̂𝛽𝑌 ∗ and ̂𝜃1 are normally distributed (note that this assumption is satisfied
with large study samples (𝑁 ) and large calibration samples (𝐾 )). The sum of two normally
distributed variables is normally distributed, hence, ̂𝛽𝑌 ∗ − 𝛽𝑌 ̂𝜃1 is normally distributed.
Furthermore, we have,

Var( ̂𝛽𝑌 ∗ − 𝛽𝑌 ̂𝜃1) = Var( ̂𝛽𝑌 ∗) + 𝛽2𝑌Var( ̂𝜃1).

Where,

Var( ̂𝛽𝑌 ∗) = 𝜃21𝜎2 + 𝜏2
∑(𝑥𝑖 − ̄𝑥)2

Var( ̂𝜃1) = 𝜏2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2
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If we now divide the term ̂𝛽𝑌 ∗ − 𝛽𝑌 ̂𝜃1 by its standard deviation, we get:

𝑇0 =
̂𝛽𝑌 ∗ − 𝛽𝑌 ̂𝜃1

√
𝜃21𝜎2+𝜏 2
∑(𝑥𝑖− ̄𝑥)2 +

𝜏 2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 𝛽

2𝑌
(S2.21)

We are interested to find the set of 𝛽𝑌 values for which the corresponding 𝑇0 values lie
within the (1 − 𝛼) quantiles of the 𝑡-distribution with 𝑁 − 2 degrees of freedom (this only
holds approximately, see for details [14]). Let us denote these values by 𝑡𝑞 , from (S2.21) we
have,

( 𝜏2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2

𝑡2𝑞 − ̂𝜃21 )𝛽2𝑌 + 2 ̂𝛽𝑌 ∗ ̂𝜃1𝛽𝑌 + ( 𝜃
21𝜎2 + 𝜏2

∑(𝑥𝑖 − ̄𝑥)2 𝑡
2𝑞 − ̂𝛽2𝑌 ∗) = 0.

In the case that ̂𝜃1 is significantly different from zero at a significance level of 𝛼 (that is,

̂𝜃1/√
𝜏 2

∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 > 𝑡𝑞), solving this for 𝛽𝑌 results in the following (1−𝛼) confidence intervals:

𝛽𝑌 =
− ̂𝛽𝑌 ∗ ̂𝜃1 ± √

̂𝛽2𝑌 ∗ ̂𝜃21 − ( 𝜏 2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 𝑡

2𝑞 − ̂𝜃21 )( 𝜃21𝜎2+𝜏 2
∑(𝑥𝑖− ̄𝑥)2 𝑡2𝑞 − ̂𝛽2𝑌 ∗)

𝜏 2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 𝑡

2𝑞 − ̂𝜃21
.

In the other case, the confidence intervals are unbounded, see for more details [14].

S2.5.2. Differential measurement error
Obvious estimators for 𝛼𝑌 and 𝛽𝑌 are:

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃00)/ ̂𝜃10 and ̂𝛽𝑌 = ( ̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01)/ ̂𝜃11 − �̂�𝑌 .
These estimators can be approximated with a second order Taylor expansion by:

�̂�𝑌 ∗ − ̂𝜃00
̂𝜃10

≈ 𝛼𝑌 ∗ − 𝜃00
𝜃10

+ 1
𝜃10

[ − 𝛼𝑌 ∗ − 𝜃00
𝜃10

( ̂𝜃10 − 𝜃10) + (�̂�𝑌 ∗ − 𝛼𝑌 ∗) − ( ̂𝜃00 − 𝜃00)]

+ 1
𝜃211

[𝛼𝑌 ∗ − 𝜃00
𝜃10

( ̂𝜃10 − 𝜃10)2 − (�̂�𝑌 ∗ − 𝛼𝑌 ∗)( ̂𝜃10 − 𝜃10)

+ ( ̂𝜃00 − 𝜃00)( ̂𝜃10 − 𝜃10)],
̂𝛽𝑌 ∗ − ̂𝜃01

̂𝜃11
≈ 𝛽𝑌 ∗ − 𝜃01

𝜃11
+ 1
𝜃11

[ − 𝛽𝑌 ∗ − 𝜃01
𝜃11

( ̂𝜃11 − 𝜃11) + ( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗) − ( ̂𝜃01 − 𝜃01)]

+ 1
𝜃211

[𝛽𝑌 ∗ − 𝜃01
𝜃11

( ̂𝜃11 − 𝜃11)2 − ( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)( ̂𝜃11 − 𝜃11)

+ ( ̂𝜃01 − 𝜃01)( ̂𝜃11 − 𝜃11)],
�̂�𝑌 ∗

̂𝜃11
≈ 𝛼𝑌 ∗

𝜃11
+ 1
𝜃11

[ − 𝛼𝑌 ∗

𝜃11
( ̂𝜃11 − 𝜃11) + (�̂�𝑌 ∗ − 𝛼𝑌 ∗))]
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+ 1
𝜃211

[𝛼𝑌 ∗

𝜃11
( ̂𝜃11 − 𝜃11)2 − (�̂�𝑌 ∗ − 𝛼𝑌 ∗)( ̂𝜃11 − 𝜃11)].

Congruent to the results for the estimators under systematic measurement error, we can
conclude:

E[ �̂�𝑌 ∗ − ̂𝜃00
̂𝜃10

] ≈ 𝛼𝑌 + 1
𝜃210

[𝛼𝑌Var( ̂𝜃10) + Cov( ̂𝜃00, ̂𝜃10)].

Congruently, an approximation of the expected value of the estimator ̂𝛽𝑌 is given by:

E[
̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01

̂𝜃11
− �̂�𝑌 ] ≈ 𝛽𝑌 + 1

𝜃211
[(𝛽𝑌 + 𝛼𝑌 )Var( ̂𝜃11) + Cov( ̂𝜃01, ̂𝜃11)]

− 1
𝜃210

[𝛼𝑌Var( ̂𝜃10) + Cov( ̂𝜃00, ̂𝜃10)].

And the variance of the estimators is approximated by:

Var( �̂�𝑌 ∗ − ̂𝜃00
̂𝜃10

) ≈ 1
𝜃210

[Var(�̂�𝑌 ∗)

+ 𝛼2𝑌Var( ̂𝜃10) + Var( ̂𝜃00) + 2𝛼𝑌Cov( ̂𝜃00, ̂𝜃10)],

Var(
̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01

̂𝜃11
− �̂�𝑌 ) ≈

1
𝜃211

[(𝛽𝑌 + 𝛼𝑌 )
2
Var( ̂𝜃11) + Var( ̂𝛽𝑌 ∗) + Var(�̂�𝑌 ∗)

+ 2Cov(�̂�𝑌 ∗ , ̂𝛽𝑌 ∗) + Var( ̂𝜃01)
+ 2(𝛽𝑌 + 𝛼𝑌 )Cov( ̂𝜃11, ̂𝜃01)]
+ Var(�̂�𝑌 ).

Note that in the case of differential measurement error, we assume that Cov( ̂𝜃11, ̂𝜃00) = 0,
Cov( ̂𝜃11, ̂𝜃10) = 0, Cov( ̂𝜃01, ̂𝜃00) = 0 and Cov( ̂𝜃01, ̂𝜃10) = 0.
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Supplementary material Chapter 3

These are the supplementary materials accompanying Chapter 3. The supplementary
materials are structured as follows. In section S3.1, the variance of the regression calibration
estimator is derived. In section S3.2, the variance of the maximum likelihood estimator for
replicates study is derived.

S3.1. Variance estimation: standard regression calibration
Covariate measurement error. The variance–covariance matrix for the standard
regression estimator ̂𝛽RC can be approximated by using the multivariate delta method as
described by [1], given by

Σ̂𝛽RC(𝑗1, 𝑗2) = (�̂�′Σ̂𝛽∗�̂�)𝑗1,𝑗2 + ̂𝛽∗Σ̂𝐴,𝑗1,𝑗2 ̂𝛽∗′, 𝑗1, 𝑗2 = 1, … , (𝑘 + 2), (S3.1)

where �̂� is the inverse of the calibration model matrix Λ̂. Further, Σ̂𝛽∗ is the
variance–covariance matrix obtained from the naive regression defined in equation (3.2) in
the main chapter and Σ̂𝐴,𝑗1,𝑗2 is the (𝑘 +2)× (𝑘 +2)matrix relating the 𝑗1th and 𝑗2th column
of 𝐴 (we refer to Appendix of [1] for a derivation). Additionally, the so-called zero-variance
variance–covariance matrix for ̂𝛽 can be estimated by �̂�′Σ𝛽∗�̂� (i.e., by omitting the variance
in the calibration model matrix).

A 100(1 − 𝛼) percent confidence interval for the 𝑗th element of ̂𝛽RC is then

̂𝛽RC𝑗 ± √Var( ̂𝛽RC𝑗), (S3.2)

where Var( ̂𝛽RC𝑗) is the jth element on the diagonal of Σ̂𝛽RC . The variance–covariancematrix

Σ̂𝛽RC can be obtained by either using the delta variance–covariance matrix or zero-variance
variance–covariance matrix. In general, the zero-variance variance–covariance matrix will
underestimate the true variance–covariance matrix and thus lead to too narrow confidence
intervals.

Other methods to construct confidence intervals include stratified bootstrap [2] and
the Fieller method [3–6]. In case of covariate measurement error, the Fieller method can
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only be applied to construct a 100(1 − 𝛼) percent confidence interval for the first element
of ̂𝛽RC, i.e., ̂𝜙RC. From [6] we obtain:

{𝑓1 ± √𝑓 21 − 𝑓0𝑓2/𝑓2}, (S3.3)

where 𝑓0 = 𝑧2𝛼/2Var( ̂𝜙∗) − ̂𝜙∗, 𝑓1 = 𝑧2𝛼/2Cov( ̂𝜙∗, �̂�1) − ̂𝜙∗�̂�1, 𝑓2 = 𝑧2𝛼/2Var(�̂�1) − �̂�21 . Where it
is assumed that Cov( ̂𝜙∗, �̂�1) is null. If the (1 − 𝛼) × 100% confidence interval of �̂�1 includes
0, the Fieller method does not lead to bounded confidence intervals. Bootstrap confidence
intervals are obtained by sampling the people in the validation set separately from the
people not included in the validation set [2] and taking the (100 − 𝛼) percentiles of the
obtained distribution.

Outcome measurement error. The variance–covariance matrix for the standard
regression estimator ( ̂𝛽RC, 1) can be approximated by applying the multivariate delta
method similar to the variance obtained for the corrected estimator for covariate
maesurement error,

Σ̂(𝛽RC,1)(𝑗1, 𝑗2) = (𝐵′Σ̂(𝛽∗,1)𝐵)𝑗1,𝑗2 + ( ̂𝛽∗, 1)Σ̂𝐵,𝑗1,𝑗2( ̂𝛽∗, 1)′, 𝑗1, 𝑗2 = 1, … , (𝑘 + 3),

where �̂� is the inverse of the measurement error model matrix Θ̂. Σ̂(𝛽∗,1) is a (𝑘 + 3) × (𝑘 + 3)
matrix where the upper (𝑘 +2)× (𝑘 +2) comprises the variance–covariance matrix obtained
from the uncorrected regression defined bymodel (3.6) and the last row and column contain
zeros. Further, Σ̂𝐵,𝑗1,𝑗2 is the (𝑘 + 3) × (𝑘 + 3) matrix relating the 𝑗1th and 𝑗2th column
of 𝐵 (similar to [1]). The so-called zero-variance variance–covariance matrix for ̂𝛽 can be
estimated by 𝐵′Σ̂(𝛽∗,1)𝐵.

A 100(1 − 𝛼) percent confidence interval can be obtained from equation (S3.2). Further,
100(1 − 𝛼) percent confidence intervals for ̂𝜙 and ̂𝛾 can be approximated by the Fieller
method as defined in model S3.3, where 𝑓0 = ̂𝜙∗−𝑧2𝛼/2Var( ̂𝜙∗), 𝑓1 = ̂𝜙∗/ ̂𝜃1−𝑧2𝛼/2Cov( ̂𝜙∗, 1/ ̂𝜃1),
𝑓2 = 1/�̂�21 − 𝑧2𝛼/2Var(1/�̂�1) and idem for ̂𝛾 . Additionally, bootstrap can be used to construct
confidence intervals for ̂𝛽RC. Bootstrap confidence intervals are obtained by sampling the
individuals in the internal adjustment set separately from the individuals not included in
the internal adjustment set and taking the (100−𝛼) percentiles of the obtained distribution.

Differential outcome measurement error in univariable analyses. The
varia-nce–covariance matrix for the standard regression estimator ( ̂𝛽RC, 1) can be
estimated similar to non-differential outcome measurement error defined above (by using
the measurement error matrices for differential outcome measurement error). Confidence
intervals can then be obtained from equation (S3.2). Bootstrap confidence intervals are
obtained by sampling the individuals in the internal adjustment set separately from the
individuals not included in the internal adjustment set and taking the (100 − 𝛼) percentiles
of the obtained distribution.
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S3.2. Variance estimation: maximum likelihood for replicates
studies

The variance–covariance matrix for the maximum likelihood estimator ̂𝛽MLE can be
approximated by the multivariate delta method [7]. Denote
𝜁 ∗ = (𝛿0, 𝛿𝑍 , 𝜎2𝑌 |𝑍 , 𝜅0, 𝜅𝑌 , 𝜅𝑍 , 𝜎2𝑋 |𝑌 ,𝑍 ), leaving the 𝜏2 from 𝜁 in the main chapter (see
section 3.3.3) out as this parameter is not needed for the estimation of 𝛽 = (𝛼, 𝜙, 𝛾 ). A
standard result from linear mixed models is that the estimators of fixed parameters are
asymptotically uncorrelated with the estimators of the variance component parameters
[7]. If one further assumes that the estimators from the linear model of 𝑌 given 𝑍 are
uncorrelated with the parameters estimated in the linear mixed model, it follows for large
samples that ̂𝜁 ∗ is multivariate normal with mean 𝜁 and variance covariance matrix Var( ̂𝜁 )
equal to:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Var( ̂𝛿0) Cov( ̂𝛿0 , ̂𝛿𝑍 ) 0 0 0 0 0
Cov( ̂𝛿𝑍 , ̂𝛿0) Var( ̂𝛿𝑍 ) 0 0 0 0 0

0 0 Var(�̂�2
𝑌 |𝑍 ) 0 0 0 0

0 0 0 Var(�̂�0) Cov(�̂�0 , �̂�𝑌 ) Cov(�̂�0 , �̂�𝑍 ) 0
0 0 0 Cov(�̂�𝑌 , �̂�0) Var(�̂�𝑌 ) Cov(�̂�𝑌 , �̂�𝑍 ) 0
0 0 0 Cov(�̂�𝑍 , �̂�0) Cov(�̂�𝑍 , �̂�𝑌 ) Var(�̂�𝑍 ) 0
0 0 0 0 0 0 Var(�̂�2

𝑋 |𝑌 ,𝑍 )

⎞
⎟
⎟
⎟
⎟
⎟
⎠

If 𝑔 ∶ ℝ5+2𝑘 → ℝ2+𝑘 is the function that transforms 𝜁 ∗ to 𝛽ML = (𝛼ML, 𝜙ML, 𝛾ML), as
defined in the main chapter, then by the multivariate delta method it follows that in large
samples:

̂𝛽ML ∼ 𝑁 (𝛽ML, 𝐽 𝑔Var( ̂𝜁 )(𝐽 𝑔)′),
Where 𝐽 is the Jacobian matrix of 𝑔:

𝐽 𝑔 =
⎛
⎜
⎜
⎜
⎝

𝜕𝜙
𝜕𝛿0

𝜕𝜙
𝜕𝛿𝑍

𝜕𝜙
𝜕𝜎2

𝑌 |𝑍
… 𝜕𝜙

𝜕𝜎2
𝑋 |𝑌 ,𝑍𝜕𝛼

𝜕𝛿0
𝜕𝛼
𝜕𝛿𝑍

𝜕𝛼
𝜕𝜎2

𝑌 |𝑍
… 𝜕𝛼

𝜕𝜎2
𝑋 |𝑌 ,𝑍𝜕𝛾

𝜕𝛿0
𝜕𝛾
𝜕𝛿𝑍

𝜕𝛾
𝜕𝜎2

𝑌 |𝑍
… 𝜕𝛾

𝜕𝜎2
𝑋 |𝑌 ,𝑍

⎞
⎟
⎟
⎟
⎠

.

Confidence intervals can then be obtained from equation (S3.2). Bootstrap confidence
intervals are obtained by sampling the individuals in the internal adjustment set separately
from the individuals not included in the internal adjustment set and taking the (100 − 𝛼)
percentiles of the obtained distribution.
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These are the supplementary materials accompanying Chapter 5. The supplementary
materials are structured as follows. In section S5.1 we introduce notation, describe the
implications of exposure measurement error and describe the different analyses used in
the main chapter. In section S5.2 the parameters of the simulation study from the main
chapter are presented. Section S5.3 contains the additional results from the simulation
study in the main chapter that were left out for brevity there.

S5.1. Notation, impact of measurement error and different
analysis strategies

Throughout the main paper, our interest is the causal effect of the exposure VAT on the
outcome insulin resistance IR, adjusted for a predefined set of 𝑘 confounders, jointly written
as 𝑍 (e.g., age, sex and total body fat). We assume a linear model for the outcome without
interaction between exposure and covariates:

IR = intercept + 𝛽VAT + 𝛾 ′𝑍 + 𝜀. (S5.1)

Here, we assume that the residuals errors 𝜀 are independent of VAT and confounders 𝑍 , with
mean 0 and variance 𝜎2. Additionally, 𝛾 is assumed a 𝑘 ×1 vector of regression coefficients.
The parameter 𝛽 in equation (S5.1) is the parameter of interest. We consider the setting
that instead of the exposure of interest, VAT, WC is measured. The variable WC is the
error-prone substitute measure for VAT, where we assume that WC = 𝜃1VAT + 𝑈 , where
𝑈 is a random variable, with mean 0 and variance 𝜏2, and 𝑈 is assumed independent of
VAT. The factor 𝜃 is a scalar, used to scale VAT to the same scale as WC. We also assume
non-differential measurement error, i.e., WC|VAT ⊧𝑌 . This form of measurement error is
referred to as random (or sometimes classical) measurement error if 𝜃 = 1 and systematic
(or sometimes linear) measurement error otherwise [1, 2]. Since the substitute measure is
often measured on a different scale than the true measure, measurement error will often
be of the systematic form. Using WC instead of VAT in the linear model yields:

E[IR|WC, 𝑍 ] = intercept∗ + 𝛽∗WC + 𝛾 ∗′𝑍. (S5.2)
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Under this model, by the law of total expectation, we have E[IR|WC, 𝑍 ] = intercept +
𝛽 × E[VAT|WC, 𝑍 ] + 𝛾 ∗𝑍 , which relies on the assumption that the measurement error is
non-differential [3]. It follows that,

𝛽∗ = 𝛼𝛽 with 𝛼 = Var(WC,VAT|𝑍 )
Var(WC|𝑍 ) . (S5.3)

In conclusion, the ordinary least squared estimator for 𝛽∗ is biased for 𝛽 by a factor 𝛼 . This
factor is sometimes referred to as the attenuation factor in case of random measurement
error, because in that case Var(WC,VAT|𝑍 ) < Var(WC|𝑍 ) and hence, 𝛼 < 1.

S5.1.1.The different analyses with internal validation samples
When a study contains an internal validation sample for which information is available
on both WC and VAT, different analyses can be conducted. Five different estimators
are explained below. The variance of these estimators can be obtained from standard
output of statistical software when no further details on variance estimation are provided
below. The internal validation sample restricted analysis relies on the assumption
that the VAT measures in the main study are completely missing at random and the
regression calibration methods rely on the assumption that measurement error in WC is
non-differential.

Uncorrected analysis. The measurement error is ignored and the relation between
VAT and IR is estimated using the error-prone substitute measure WC. Under the
assumptions in section S5.1, as shown in equation (S5.3), this estimator is biased by a factor
𝛼 .

Internal validation sample restricted analysis. The association between VAT and
IR is determined using only the data from the internal validation sample (in which a direct
measure of VAT is available). This approach will naturally yield unbiased estimates if
measures of VAT are missing completely at random in the main study, but power of the
study will substantially decrease as only a part of the data available in the main study is
used.

Standard regression calibration. The basis of regression calibration is the
replacement ofWCby a corrected version ofWC, based on the regression of VAT onWCand
the confounders 𝑍 . In this way, the induced measurement error in the uncorrected analysis
is corrected by regressing the outcome IR on the confounders 𝑍 and E[VAT|WC, 𝑍 ] instead
of WC (i.e., by using the predicted values from regressing VAT on WC and 𝑍 , instead of
WC). This method is identical to dividing the least squares estimator 𝛽∗ in equation (S5.2)
by the correction factor 𝛼 defined in equation (S5.3) [2]. The variance of this estimator can
be estimated by applying the Delta method described by Rosner et al. [4].

Efficient regression calibration. This analysis pools the estimator of the internal
validation sample restricted analysis with the regression calibration estimator, by using
weights equal to the inverse of the variance of the two estimates, and was described by
Spiegelman et al. [5]. This approach is called efficient regression calibration since it makes
use of the fact that in the individuals included in the internal validation sample, VAT is
actually known and does not neglect this information. The variance of this estimator can
be estimated by taking the inverse of: the sum of the inverse of the variance of the internal
validation sample restricted estimator and the inverse of the variance of the regression
calibration estimator, as described by Spiegelman et al. [5].
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Validation regression calibration. This analysis uses the predicted values from
regressing VAT on WC and 𝑍 for individuals outside the internal validation sample and
VAT otherwise. We call this approach validation regression calibration approach since this
is the standard regression calibration approach in internal validation studies [1]. Validation
regression calibration treats the predicted values as if they were known and therefore
neglects their uncertainty.

S5.2. Simulation study parameters
In the simulation study presented in the main chapter, the measurement error variance 𝜏
and the parameter 𝜆 in the gamma distribution of the residual errors of VAT were varied
according to the R-squared of the measurement error model and skewness of the residuals
errors, respectively. The corresponding values for 𝜏 and 𝜆 in the data generatingmechanism
found in the main chapter can be found in Table S5.1.

Table S5.1: Values of the parameters R-squared and skewness varied in the simulation study in a full factorial
design.The values for 𝜏 and 𝜆 present the values for that parameter in the data generating mechanism that
corresponds to the given R-squared and skewness, respectively.

(a) R-squared and corresponding 𝜏
R-Squared 𝜏

0.2 1.8
0.4 1.1
0.6 0.7
0.8 0.4
0.9 0.3

(b) Skewness and corresponding 𝜆
Skewness 𝜆

0.1 65.6
1.0 0.7
1.5 0.3
3.0 0.1

S5.3. Simulation study results
The results of the simulation study that were left out themain chapter for brevity are shown
in the following subsections. Full results of the simulation study can also be found on
the online repository at https://github.com/LindaNab/me_neo. Specifically, Rds summary
files are available at https://github.com/LindaNab/me_neo/results/summaries. These
summary files contain more detailed information on e.g. model based standard errors,
empirical standard errors and Monte Carlo standard errors. Additionally, output of each
single run of the simulation study can be found at https://github.com/LindaNab/me_neo/
data/output and subsequent folders.

S5.3.1. Internal validation restricted analysis
The main results of the internal validation restricted analysis were shown in the main
chapter. Panels A and B in Figure S5.1 show the mean squared error of the association
between visceral adipose tissue and insulin resistance using an internal validation sample
of 25% of the main study’s sample size. Table S5.2 shows the mean squared error of the
association under study in the scenarios where R-squared was equal to 0.9 or skewness was
equal to 1.0, that were left out the main chapter for brevity. Tables S5.3 and S5.4 show the
percentage bias and coverage, respectively, of the association under study in the scenarios

https://github.com/LindaNab/me_neo
https://github.com/LindaNab/me_neo/results/summaries
https://github.com/LindaNab/me_neo/data/output
https://github.com/LindaNab/me_neo/data/output


S5

210 Supplementary material Chapter 5

where R-squared was equal to 0.9 or skewness was equal to 1.0.

S5.3.2. Validation regression calibration
The main results of validation regression calibration were shown in the main chapter.
Panels C and D in Figure S5.1 show the mean squared error of the association between
visceral adipose tissue and insulin resistance using an internal validation sample of 25% of
the main study’s sample size. Table S5.5 shows the mean squared error of the association
under study in the scenarios where R-squared was equal to 0.9 or skewness was equal to 1.0,
that were left out the main chapter for brevity. Tables S5.6 and S5.7 show the percentage
bias and coverage, respectively, show the percentage bias and coverage of the association
under study in the scenarios where R-squared was equal to 0.9 or skewness was equal to
1.0.

S5.3.3. Efficient regression calibration
The results of the application of efficient regression calibration for measurement error
correction were as follows. Figure S5.2 shows the mean squared error of the association
between visceral adipose tissue and insulin resistance using an internal validation sample
of 10%, or 40% of the main study’s sample size. Figure S5.3 shows the mean squared error
of the association between visceral adipose tissue and insulin resistance using an internal
validation sample of 25% of the main study’s sample size. Table S5.8 shows the mean
squared error of the association under study in the scenarios where R-squared was equal to
0.9 or skewness was equal to 1.0, that were left out Figure S5.2 and S5.3 for comparability
with Figure 5.5 and 5.6 in the main chapter. Table S5.9 and S5.10 show the percentage
bias in the association between visceral adipose tissue and insulin resistance using an
internal validation sample of 10%, 25% or 40% of the main study’s sample size for a linear
and non-linear measurement error model, respectively. Table S5.11 and S5.12 show the
coverage of the association between visceral adipose tissue and insulin resistance using an
internal validation sample of 10%, 25% or 40% of the main study’s sample size for a linear
and non-linear measurement error model, respectively.

S5.3.4. Standard regression calibration
The results of the application of standard regression calibration for measurement error
correction were as follows. Table S5.13 and S5.14 show the mean squared error of
the association between visceral adipose tissue and insulin resistance using an internal
validation sample of 10%, 25% or 40% of the main study’s sample size for a linear
and non-linear measurement error model, respectively. Table S5.15 and S5.16 show the
percentage bias in the association between visceral adipose tissue and insulin resistance
using an internal validation sample of 10%, 25% or 40% of the main study’s sample size for
a linear and non-linear measurement error model, respectively. Table S5.17 and S5.18 show
the coverage of the association between visceral adipose tissue and insulin resistance using
an internal validation sample of 10%, 25% or 40% of the main study’s sample size for a linear
and non-linear measurement error model, respectively.
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Figure S5.1: Nested loop plot of the mean squared errors in the analysis restricted to the internal validation sample
(panels A and B) and the validation regression analysis (panels C and D) for the three different sampling strategies.
A and C) Linear measurement error model and an internal validation sample of 25% of the main study; and B and
D) Non-linear measurement error model and an internal validation sample of 25% of the main study. Order
from outer to inner loops: Skewness of the residual errors of the gold standard measure (S, 3 levels, increasing);
R-squared of the measurement error model (𝑅2, 4 levels, increasing).
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Figure S5.2: Nested loop plot of the mean squared errors in the analysis using efficient regression calibration
to correct for the measurement error for the three different sampling strategies. A) Linear measurement error
model and an internal validation sample of 40% of the main study; B) Non-linear measurement error model and an
internal validation sample of 40% of themain study; C) Linear measurement error model and an internal validation
sample of 10% of the main study; and D) Non-linear measurement error model and an internal validation sample
of 10% of the main study. Order from outer to inner loops: Skewness of the residual errors of the gold standard
measure (S, 3 levels, increasing); R-squared of the measurement error model (𝑅2, 4 levels, increasing).
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Figure S5.3: Nested loop plot of the mean squared errors in the analysis using efficient regression calibration to
correct for the measurement error for the three different sampling strategies. A) Linear measurement error model
and an internal validation sample of 25% of the main study; and B) Non-linear measurement error model and an
internal validation sample of 25% of the main study. Order from outer to inner loops: Skewness of the residual
errors of the gold standard measure (S, 3 levels, increasing); R-squared of the measurement error model (𝑅2, 4
levels, increasing).
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.5

94
.4

94
.6

92
.4

92
.3

92
.7

0.9
94
.5

94
.5

94
.3

93
.9

94
.5

94
.1

92
.7

93
.4

93
.5

1.5
0.9

95
.3

94
.6

94
.7

94
.6

94
.2

94
.4

92
.9

91
.9

92
.4

3.0
0.9

94
.5

93
.2

92
.4

93
.4
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.8
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.2
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.2

86
.4
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N
o

0.1
0.9

94
.8
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.7

95
.3
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.1

94
.4
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.8

92
.3

93
.0

92
.3

1.0
0.2

95
.3

95
.7

94
.8

94
.6

95
.4

95
.5

92
.3

94
.5

94
.8

0.4
94
.9

94
.9

95
.2

94
.6

94
.9

94
.9

91
.0

93
.1

93
.5

0.6
94
.7

95
.2

94
.8

94
.2

94
.8

94
.6

91
.2

92
.5

93
.4

0.8
94
.7

94
.5

94
.2

94
.1

94
.3

94
.1

90
.2

91
.8

93
.2

0.9
95
.0

94
.1

94
.5

94
.4

93
.4

94
.9

91
.3

90
.9

92
.9

1.5
0.9

94
.1

92
.9

93
.8

93
.7

91
.3

93
.7

90
.6

86
.5

91
.1

3.0
0.9

93
.1

87
.4

89
.7

91
.6

81
.4

87
.4

84
.6

64
.2

76
.9
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Table
S5.8:M

ean
squared

error
ofthe

estim
ated

association
betw

een
visceraladipose

tissue
and

insulin
resistance

in
the

eff
icient

regression
calibration

analysis

Scenario
IV

S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
M
ean

Squared
Errorb

M
ean

Squared
Errorb

M
ean

Squared
Errorb

ness
R

SR
E

R
SR

E
R

SR
E

Yes
0.1

0.9
0.0012

0.0012
0.0012

0.0013
0.0013

0.0013
0.0014

0.0014
0.0014

1.0
0.2

0.0023
0.0022

0.0022
0.0033

0.0032
0.0032

0.0072
0.0059

0.0060
0.4

0.0020
0.0019

0.0019
0.0026

0.0025
0.0025

0.0049
0.0038

0.0038
0.6

0.0018
0.0016

0.0016
0.0022

0.0019
0.0019

0.0033
0.0026

0.0026
0.8

0.0014
0.0013

0.0012
0.0015

0.0014
0.0014

0.0020
0.0017

0.0016
0 .9

0 .0012
0 .0012

0 .0012
0 .0013

0 .0012
0 .0012

0 .0015
0 .0013

0 .0014
1.5

0.9
0.0012

0.0011
0.0011

0.0013
0.0012

0.0012
0.0015

0.0013
0.0013

3.0
0.9

0.0013
0.0011

0.0011
0.0014

0.0012
0.0012

0.0021
0.0014

0.0013
N
o

0 .1
0 .9

0 .0015
0 .0014

0 .0014
0 .0017

0 .0017
0 .0017

0 .0022
0 .0021

0 .0024
1.0

0.2
0.0023

0.0022
0.0022

0.0035
0.0033

0.0033
0.0082

0.0073
0.0069

0.4
0.0022

0.0021
0.0020

0.0031
0.0029

0.0029
0.0064

0.0053
0.0050

0.6
0.0019

0.0018
0.0018

0.0025
0.0023

0.0023
0.0043

0.0037
0.0034

0.8
0.0017

0.0015
0.0015

0.0020
0.0018

0.0018
0.0030

0.0024
0.0024

0.9
0.0014

0.0013
0.0013

0.0017
0.0015

0.0015
0.0022

0.0018
0.0019

1.5
0.9

0.0015
0.0013

0.0013
0.0017

0.0014
0.0014

0.0023
0.0019

0.0017
3.0

0.9
0.0016

0.0014
0.0013

0.0000
0.0016

0.0015
0.0037

0.0025
0.0020

aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
es
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Ta
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e
S5
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:
Pe

rc
en

ta
ge

bi
as

in
th

e
es

ti
m
at

ed
as

so
ci
at

io
n
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su

lin
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an
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th
e
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ie
nt

re
gr

es
si
on

ca
lib

ra
ti
on

an
al
ys

is
fo

r
a
lin

ea
r

m
ea

su
re
m
en

t
er
ro

r
m
od

el

Sc
en

ar
io

IV
S
40

%
of

M
ai
n
St
ud

ya
IV

S
25

%
of

M
ai
n
St
ud

ya
IV

S
10

%
of

M
ai
n
St
ud

ya
Li
ne

ar
Sk

ew
-

𝑅2
Pe

rc
en

ta
ge

B
ia
s
(%
)b

Pe
rc
en

ta
ge

B
ia
s
(%
)b

Pe
rc
en

ta
ge

B
ia
s
(%
)b

ne
ss

R
SR

E
R

SR
E

R
SR

E
Ye

s
0.1

0.2
−1

.2
−0

.3
−0

.4
−2

.2
−0

.6
−0

.7
−6

.3
−2

.5
−2

.3
0.4

−0
.6

0.0
−0

.1
−0

.9
−0

.2
−0

.3
−1

.9
0.0

0.0
0.6

0.6
0.8

0.5
0.6

0.9
0.7

1.4
1.3

1.2
0.8

0.0
0.1

0.2
0.0

0.1
0.4

0.8
0.3

0.7
0.9

−0
.1

0.0
0.1

−0
.1

−0
.1

0.2
0.2

0.2
0.3

1.0
0.2

−0
.6

−0
.8

−0
.5

−1
.9

−1
.7

−1
.1

−5
.8

−4
.5

−3
.1

0.4
−0

.5
−1

.5
−1

.2
−0

.6
−2

.4
−2

.2
−1

.7
−4

.5
−4

.2
0.6

−0
.2

−1
.6

−1
.9

−0
.3

−3
.0

−2
.7

0.7
−5

.3
−5

.6
0.8

0.1
−1

.6
−1

.6
0.1

−2
.6

−2
.2

1.0
−4

.7
−3

.9
0.9

−0
.1

−1
.1

−1
.1

0.0
−1

.7
−1

.4
0.6

−3
.1

−2
.3

1.5
0.2

−1
.1

−1
.1

−0
.7

−2
.2

−2
.0

−1
.7

−5
.8

−5
.6

−4
.7

0.4
−0

.2
−1

.5
−1

.6
−0

.4
−3

.1
−2

.7
−1

.3
−7

.4
−7

.4
0.6

0.3
−2

.4
−2

.4
0.7

−4
.5

−3
.9

2.1
−8

.9
−8

.9
0.8

0.3
−2

.4
−2

.9
0.4

−4
.3

−3
.9

1.9
−7

.9
−7

.0
0.9

−0
.2

−2
.2

−2
.3

−0
.2

−3
.4

−3
.1

0.6
−5

.5
−4

.4
3.0

0.2
−1

.0
−1

.4
−1

.5
−2

.1
−3

.2
−2

.6
−5

.4
−9

.5
−8

.0
0.4

0.2
−3

.3
−3

.7
0.4

−7
.1

−5
.9

0.8
−1

6.2
−1

6.0
0.6

0.7
−5

.3
−6

.5
1.5

−9
.9

−9
.7

5.3
−1

9.2
−1

9.2
0.8

0.9
−5

.1
−6

.4
1.8

−8
.4

−8
.9

6.2
−1

4.3
−1

3.3
0.9

0.6
−3

.6
−4

.4
1.3

−5
.5

−5
.7

4.0
−8

.9
−7

.5
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Table
S5.10:

Percentage
bias

in
the

estim
ated

association
betw

een
visceral

adipose
tissue

and
insulin

resistance
in

the
eff

icient
regression

calibration
analysis

for
a

non-linear
m
easurem

ent
error

m
odel

Scenario
IV

S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
ness

R
SR

E
R

SR
E

R
SR

E
N
o

0.1
0.2

−0.9
−0.4

−0.3
−2.0

−1.2
−0.7

−7.9
−4.8

−2.8
0.4

−0.3
−0.3

−0.7
−0.9

−0.6
−1.4

−4.2
−1.9

−3.4
0.6

−0.3
−0.7

−1.2
−0.4

−0.4
−2.5

−2.2
0.3

−3.0
0.8

0.2
−0.1

0.3
0.4

0.6
1.0

0.7
2.7

4.9
0 .9

− 0. 2
− 1. 5

− 0. 1
− 0. 2

− 1. 3
1 .3

0 .3
− 0. 3

4 .5
1.0

0.2
−1.1

−0.4
−0.6

−2.8
−1.4

−1.6
−6.9

−4.2
−4.5

0.4
−1.4

−1.2
−1.2

−2.3
−1.9

−2.9
−5.4

−4.1
−6.8

0.6
0.2

−0.9
−1.7

−0.1
−1.4

−3.8
−0.7

−1.9
−5.9

0.8
0.3

−2.2
−2.1

0.3
−2.6

−2.5
1.0

−3.0
−0.9

0.9
0.3

−3.4
−1.4

0.5
−4.1

−1.2
1.4

−5.4
−0.5

1.5
0.2

−1.3
−0.6

−0.9
−2.3

−1.6
−1.6

−7.3
−4.8

−4.5
0.4

−1.4
−1.5

−1.8
−2.1

−2.5
−3.5

−5.5
−5.0

−9.0
0.6

−0.1
−1.9

−2.6
−0.2

−3.2
−5.5

−0.4
−5.5

−10.0
0.8

−0.1
−4.0

−3.7
0.2

−5.3
−5.1

1.5
−7.3

−5.6
0.9

0.0
−4.9

−3.1
0.4

−6.5
−3.4

1.9
−9.5

−4.3
3.0

0.2
−1.3

−0.8
−0.7

−2.7
−1.6

−1.5
−8.1

−4.6
−5.6

0.4
−0.9

−2.5
−2.7

−1.7
−4.4

−5.0
−4.2

−9.5
−12.8

0.6
−0.2

−4.4
−4.8

−0.1
−7.5

−9.3
1.1

−13.3
−18.0

0.8
0.8

−6.6
−6.4

1.4
−9.8

−9.5
5.3

−15.8
−13.7

0.9
0.6

−8.0
−6.8

1.6
−11.3

−8.6
5.6

−17.6
−12.8

aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
es
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ya
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ud
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C
ov
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ag

e
(%
)b

C
ov

er
ag

e
(%
)b

C
ov

er
ag
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(%
)b

ne
ss

R
SR

E
R

SR
E

R
SR

E
Ye

s
0.1

0.2
93
.4

92
.7

92
.6

93
.9

93
.0

92
.4

92
.9

93
.2

92
.2

0.4
92
.1

91
.2

90
.3

93
.4

90
.8

91
.1

93
.6

92
.0

91
.5

0.6
90
.9

89
.7

88
.7

92
.7

90
.4

89
.6

93
.8

92
.3

91
.5

0.8
89
.6

88
.8

88
.5

91
.9

89
.5

89
.6

94
.2

92
.6

91
.5

0.9
88
.5
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.1
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.0

90
.6

89
.0

88
.1

93
.2

91
.4

91
.1

1.0
0.2
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.5

92
.3

91
.9

93
.5

92
.1

91
.2

92
.3

91
.9

91
.1

0.4
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.0

90
.2

90
.0

92
.9

90
.7

89
.7

92
.3

91
.5

90
.2

0.6
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.0

89
.0

88
.5

91
.6

89
.7

89
.4

93
.4

89
.6

88
.7

0.8
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.5
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.8
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.7

91
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89
.6
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.2

93
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90
.2

0.9
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.7
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88
.5
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.1

1.5
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.5
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Table
S5.12:

C
overage

of
the

estim
ated

association
betw

een
visceraladipose

tissue
and

insulin
resistance

in
the

eff
icient

regression
calibration

analysis
for

a
non-linear

m
easurem

ent
error

m
odelScenario

IV
S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
C
overage

(%)b
C
overage

(%)b
C
overage

(%)b
ness

R
SR

E
R

SR
E

R
SR

E
N
o

0.1
0.2

94.2
93.7

93.4
93.6

93.3
92.7

93.0
92.7

92.9
0.4

93.6
91.8

91.4
93

92.2
91.6

93.2
92.7

90.8
0.6

92.2
91.3

90.0
92.5

91.6
89.8

93.2
92.5

90.7
0.8

91.3
89.4

89.6
92.4

90.5
90.3

93.8
92.6

92.2
0 .9

90 .4
89 .1

88 .7
91 .3

89 .6
89 .1

93 .7
92 .2

92 .3
1.0

0.2
94.3

93.8
92.8

93.6
93.4

93.1
92.0

93.2
92.6

0.4
93.3

92.2
91.7

93.7
91.9

91.1
92.1

91.8
89.9

0.6
92.1

90.7
89.9

92.9
91.1

89.3
93.3

91.5
89.5

0.8
90.3

88.5
88.0

91.8
89.4

89.2
93.0

91.0
90.8

0.9
90.0

88.1
87.7

91.3
88.4

89.1
93.2

90.1
91.0

1.5
0.2

94.1
93.5

93.6
94.3

93.9
93.3

92.4
92.9

92.3
0.4

93.1
91.9

91.5
93.0

91.7
91.2

92.5
91.1

88.8
0.6

92.7
91.4

90.6
93.5

90.9
89.1

93.3
91.1

87.3
0.8

90.6
87.3

87.0
91.4

88.1
87.2

91.9
88.9

88.2
0.9

89.7
86.5

86.9
90.8

87.0
87.7

92.8
85.5

88.9
3.0

0.2
93.5

92.7
92.8

93.7
93.0

92.9
91.8

92.1
92.2

0.4
92.6

91.1
90.9

92.5
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varying
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strategies
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,SR

:stratified
random
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Table
S5.14:

M
ean

squared
error

of
the

estim
ated

association
betw

een
visceraladipose

tissue
and

insulin
resistance

in
the

standard
regression

calibration
analysis

for
a

non
linear

m
easurem

ent
error

m
odel

Scenario
IV

S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
M
ean

Squared
Errorb

M
ean

Squared
Errorb

M
ean

Squared
Errorb

ness
R

SR
E

R
SR

E
R

SR
E

N
o

0.1
0.2

0.167
0.025

0.023
0.355

0.030
0.025

6.808
0.247

0.045
0.4

0.010
0.009

0.008
0.012

0.009
0.009

0.143
0.014

0.010
0.6

0.005
0.005

0.004
0.005

0.005
0.004

0.011
0.007

0.005
0.8

0.003
0.002

0.002
0.003

0.003
0.003

0.004
0.003

0.004
0 .9

0 .002
0 .002

0 .002
0 .002

0 .002
0 .002

0 .002
0 .002

0 .003
1.0

0.2
0.036

0.020
0.019

46.762
0.023

0.021
19.508

8.612
1.576

0.4
0.009

0.008
0.007

0.012
0.008

0.008
1.074

0.012
0.008

0.6
0.004

0.004
0.004

0.005
0.004

0.004
0.014

0.005
0.004

0.8
0.002

0.002
0.002

0.003
0.002

0.002
0.004

0.003
0.003

0.9
0.002

0.002
0.002

0.002
0.002

0.002
0.002

0.002
0.002

1.5
0.2

0.244
0.021

0.020
1.050

0.023
0.021

106.246
9.679

0.116
0.4

0.009
0.008

0.007
0.011

0.008
0.007

10.060
0.012

0.008
0.6

0.004
0.004

0.004
0.005

0.004
0.004

0.012
0.005

0.004
0.8

0.003
0.002

0.002
0.003

0.002
0.002

0.005
0.003

0.003
0.9

0.002
0.002

0.002
0.002

0.002
0.002

0.003
0.002

0.002
3.0

0.2
0.036

0.022
0.020

0.402
0.029

0.022
66.440

0.601
0.085

0.4
0.011

0.007
0.007

0.019
0.008

0.007
2.702

0.021
0.008

0.6
0.006

0.004
0.004

0.007
0.004

0.005
0.082

0.006
0.006

0.8
0.003

0.003
0.003

0.004
0.003

0.003
0.012

0.004
0.003

0.9
0.002

0.002
0.002

0.002
0.003

0.002
0.005

0.004
0.003

aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
es



S5

227

Ta
bl
e
S5

.1
5:

Pe
rc
en

ta
ge

bi
as

in
th

e
es

ti
m
at

ed
as

so
ci
at

io
n
be

tw
ee

n
vi
sc

er
al

ad
ip
os

e
ti
ss
ue

an
d
in
su

lin
re
si
st
an

ce
in

th
e
st
an

da
rd

re
gr

es
si
on

ca
lib

ra
ti
on

an
al
ys

is
fo

r
a
lin

ea
r

m
ea

su
re
m
en

t
er
ro

r
m
od

el

Sc
en

ar
io

IV
S
40

%
of

M
ai
n
St
ud

ya
IV

S
25

%
of

M
ai
n
St
ud

ya
IV

S
10

%
of

M
ai
n
St
ud

ya
Li
ne

ar
Sk

ew
-

𝑅2
Pe

rc
en

ta
ge

B
ia
s
(%
)b

Pe
rc
en

ta
ge

B
ia
s
(%
)b

Pe
rc
en

ta
ge

B
ia
s
(%
)b

ne
ss

R
SR

E
R

SR
E

R
SR

E
Ye

s
0.1

0.2
3.5

1.2
0.9

7.4
2.1

1.6
26
.9

7.3
4.4

0.4
0.7

0.4
0.2

1.8
0.8

0.7
6.9

3.4
2.5

0.6
1.5

1.4
1.3

2.0
1.8

1.6
4.3

2.8
2.6

0.8
0.3

0.2
0.3

0.4
0.3

0.5
1.2

0.6
1.1

0.9
0.1

0.0
0.0

0.1
0.1

0.1
0.4

0.3
0.3

1.0
0.2

3.4
−0

.2
−0

.7
9.1

−0
.1

0.1
10
.6

2.9
1.9

0.4
1.0

−2
.2

−2
.4

2.3
−3

.2
−2

.5
9.2

−3
.5

−3
.6

0.6
0.1

−3
.3

−3
.6

0.7
−4

.8
−4

.3
3.5

−6
.7

−7
.1

0.8
−0

.1
−2

.7
−3

.0
0.2

−4
.0

−3
.5

1.5
−5

.8
−5

.2
0.9

0.0
−1

.7
−1

.8
0.1

−2
.5

−2
.1

0.7
−3

.7
−2

.9
1.5

0.2
2.2

−2
.2

−2
.3

6.7
−2

.6
−1

.9
30
.8

1.2
−2

.5
0.4

1.7
−4

.4
−4

.5
3.5

−6
.8

−5
.3

20
.5

−9
.6

−9
.8

0.6
1.4

−4
.9

−5
.5

2.3
−7

.8
−6

.9
6.8

−1
2.0

−1
2.3

0.8
0.5

−4
.4

−5
.0

1.1
−6

.7
−6

.1
2.9

−1
0.2

−9
.3

0.9
−0

.1
−3

.4
−3

.7
0.1

−4
.8

−4
.3

1.0
−7

.0
−5

.8
3.0

0.2
6.4

−5
.6

−6
.0

14
.1

−9
.2

−5
.3

10
8.3

−2
2.6

−1
2.2

0.4
4.1

−9
.8

−1
1.4

8.6
−1

6.4
−1

3.2
51
.9

−2
5.6

−2
5.6

0.6
2.6

−1
1.6

−1
4.2

5.2
−1

8.1
−1

7.3
15
.4

−2
7.5

−2
7.7

0.8
1.6

−9
.5

−1
1.7

2.8
−1

3.9
−1

4.0
8.6

−2
0.0

−1
9.0

0.9
0.7

−6
.1

−7
.5

1.4
−8

.7
−8

.8
4.2

−1
2.1

−1
0.9

aI
nt

er
na

lv
al
id
at

io
n
sa

m
pl
e

bF
or

va
ry

in
g
sa

m
pl
in
g
st
ra

te
gi
es

of
th

e
in
te
rn

al
va

lid
at

io
n
sa

m
pl
e,

R
:r

an
do

m
,S

R
:s

tr
at

if
ie
d
ra

nd
om

,E
:e

xt
re
m
es



S5

228 Supplementary material Chapter 5

Table
S5.16:

Percentage
bias

in
the

estim
ated

association
betw

een
visceral

adipose
tissue

and
insulin

resistance
in

the
standard

regression
calibration

analysis
for

a
non-linear

m
easurem

ent
error

m
odel

Scenario
IV

S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
ness

R
SR

E
R

SR
E

R
SR

E
N
o

0.1
0.2

5.6
1.9

0.0
16.4

4.1
1.3

45.8
16.7

7.1
0.4

3.0
1.2

−0.4
5.3

2.1
−0.9

16.4
6.7

−0.4
0.6

0.3
−0.2

−2.1
1.3

1.0
−3.3

6.5
5.2

−1.1
0.8

0.9
0.3

0.5
1.5

1.9
2.2

3.2
5.2

8.9
0 .9

0 .1
− 2. 0

0 .4
0 .2

− 1. 2
2 .9

1 .1
0 .3

7 .3
1.0

0.2
7.9

0.7
−0.3

−29.6
2.3

0.6
2.3

−5.5
−4.9

0.4
1.0

−2.8
−4.2

3.4
−2.9

−5.8
21.2

0.7
−7.9

0.6
1.9

−2.4
−3.9

2.9
−2.8

−6.8
9.0

−0.6
−7.3

0.8
0.8

−4.7
−4.0

1.5
−4.5

−4.0
3.7

−3.2
−0.2

0.9
0.6

−6.0
−2.7

0.8
−6.3

−1.5
2.1

−6.9
−0.5

1.5
0.2

9.8
0.3

−0.5
14.3

1.9
0.4

−79.8
39.5

4.5
0.4

1.0
−4.4

−5.4
3.7

−5.1
−7.8

−16.0
−3.0

−11.3
0.6

1.2
−5.7

−7.2
2.4

−7.1
−10.9

9.5
−6.9

−13.5
0.8

0.2
−8.3

−7.5
1.2

−9.1
−8.5

4.4
−9.5

−7.3
0.9

0.5
−8.8

−5.6
0.9

−10.0
−5.3

2.9
−11.9

−6.1
3.0

0.2
8.9

−1.5
−2.9

26.9
−0.5

−2.9
115.6

1.6
−1.5

0.4
3.3

−9.1
−9.2

8.8
−12.6

−13.4
29.2

−13.6
−22.0

0.6
2.3

−13.1
−13.9

5.1
−17.6

−20.0
20.1

−21.1
−28.0

0.8
1.9

−14.8
−14.1

3.7
−18.6

−17.5
12.3

−22.8
−21.2

0.9
1.0

−14.9
−12.7

2.3
−18.5

−14.1
7.6

−23.7
−19.0

aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
es
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.0
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.1
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.9
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.3
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.4

97
.0
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.0
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.6
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.5

0.4
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.2
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.8
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.2

96
.2
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.1
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.7

94
.6
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.5
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.1

0.6
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.1
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.6

93
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Supplementary material Chapter 8

These are the supplementary materials accompanying Chapter 8. The supplementary
materials are structured as follows. In section S8.1, the bias formulas of a conditional model
and marginal structural model estimated using inverse probability weighting are derived.
Section S8.2 illustrates the application of the bias formulas in a quantitative bias analysis.

S8.1. Quantification of bias due to classification error in a
confounding variable

S8.1.1. Conditional model
Under the assumptions and notation described in section 8.2 of the main chapter and by
the law of total expectation, the expected value of the outcome 𝑌 given the covariates 𝐴
and 𝐿∗ is,

E[𝑌 |𝐴, 𝐿∗] = E𝐿|𝐴,𝐿∗[E[𝑌 |𝐴, 𝐿∗, 𝐿]] = E𝐿|𝐴,𝐿∗[𝛼 + 𝛽𝐴 + 𝛾𝐿]
= 𝛼 + 𝛽𝐴 + 𝛾E[𝐿|𝐴, 𝐿∗]
= 𝛼 + 𝛽𝐴 + 𝛾𝜙𝑎𝐿∗
= {𝛼 + 𝛾𝜙00} + {𝛽 + 𝛾(𝜙10 − 𝜙00)}𝐴
+ {𝛾(𝜙01 − 𝜙00)}𝐿∗
+ 𝛾(𝜙11 − 𝜙10 − 𝜙01 + 𝜙00)𝐴𝐿∗,

which relies on the assumption that 𝐿∗ is non-differentially misclassified with respect to
the outcome (i.e., 𝐿∗ ⊧𝑌 |𝐿) and includes an interaction between 𝐴 and 𝐿∗. Further, 𝜙𝑎𝑙∗ is
the probability that confounding variable 𝐿 is one, given that treatment 𝐴 is 𝑎 and that
misclassified confounding variable 𝐿∗ is 𝑙∗, or,

𝜙𝑎𝑙∗ = 𝑃(𝐿 = 1|𝐴 = 𝑎, 𝐿∗ = 𝑙∗)
= 𝑃(𝐴|𝐿 = 1, 𝐿∗ = 𝑙∗)𝑃(𝐿 = 1|𝐿∗ = 𝑙∗)

𝑃(𝐴 = 𝑎|𝐿∗ = 𝑙∗)

233
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= 𝑃(𝐴 = 𝑎|𝐿 = 1)𝑃(𝐿 = 1|𝐿∗ = 𝑙∗)
𝑃(𝐴 = 𝑎|𝐿∗ = 𝑙∗)

=
𝑃(𝐴 = 𝑎|𝐿 = 1) 𝑃(𝐿

∗=𝑙∗ |𝐿=1)𝑃(𝐿=1)
𝑃(𝐿∗=𝑙∗)

𝑃(𝐴 = 𝑎|𝐿∗ = 𝑙∗)
= 𝑃(𝐴 = 𝑎|𝐿 = 1)𝑃(𝐿∗ = 𝑙∗|𝐿 = 1)𝑃(𝐿 = 1)

𝑃(𝐴 = 𝑎|𝐿∗ = 𝑙∗)𝑃(𝐿∗ = 𝑙∗)

= 𝜆(1 − 𝜋1)(1−𝑎)𝜋𝑎1 (1 − 𝑝1)(1−𝑙∗)𝑝𝑙
∗
1

(1 − 𝜋 ∗𝑙∗)(1−𝑎)𝜋 ∗𝑙∗𝑎(1 − ℓ)(1−𝑙∗)ℓ𝑙∗ .

Here ℓ = 𝑃(𝐿∗ = 𝑙∗) = 𝑝0(1−𝜆)+𝑝1𝜆 and 𝜋 ∗𝑙∗ is the probability of receiving treatment 𝐴 given
that the misclassified confounding variable 𝐿∗ = 𝑙∗. Note that the above is only defined if
0 < ℓ < 1 and 0 < 𝜋 ∗𝑙∗ < 1. To satisfy that 0 < ℓ < 1, we use our assumption that 0 < 𝜆 < 1,
and additionally, we assume that if 𝑝0 = 1 then 𝑝1 ≠ 1, and if 𝑝0 = 0 then 𝑝1 ≠ 0 (and vice
versa). Under the assumption that 0 < ℓ < 1, it follows that,

𝜋 ∗𝑙∗ = 𝑃(𝐴 = 1|𝐿∗ = 𝑙∗)
= Σ𝑙𝑃(𝐴 = 1|𝐿∗ = 𝑙∗, 𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 𝑙∗)
= Σ𝑙𝑃(𝐴 = 1|𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 𝑙∗)
= Σ𝑙𝑃(𝐴 = 1|𝐿 = 𝑙)𝑃(𝐿

∗ = 𝑙∗|𝐿 = 𝑙)𝑃(𝐿 = 𝑙)
𝑃(𝐿∗ = 𝑙∗)

= Σ𝑙𝜋𝑙
(1 − 𝑝𝑙)(1−𝑙∗)𝑝𝑙

∗
𝑙 (1 − 𝜆)1−𝑙𝜆𝑙

(1 − ℓ)1−𝑙∗ℓ𝑙∗ ,

we find that 0 < 𝜋 ∗𝑙∗ < 1, if, again, 0 < 𝜆 < 1, and if 𝑝0 = 1 then 𝑝1 ≠ 1, and if 𝑝0 = 0 then
𝑝1 ≠ 0 (and vice versa) and 0 < 𝜋𝑙 < 1 (positivity assumption).

The bias in the regression based estimator of the effect of 𝐴 is 𝛾(𝜙10 − 𝜙00) if the
interaction between 𝐴 and 𝐿∗ is included in the model. However, in this model, the
coefficient for 𝐴 now represents the treatment effect given that 𝐿∗ is null. Typically, only
main effects of 𝐴 and 𝐿∗ are included in a regression model of 𝑌 conditional on 𝐴 and 𝐿∗:

E𝐴𝐿∗ |𝐴,𝐿∗ {E[𝑌 |𝐴, 𝐿∗]} = {𝛼 + 𝛾𝜙00} + {𝛽 + 𝛾(𝜙10 − 𝜙00)}𝐴 + {𝛾(𝜙01 − 𝜙00)}𝐿∗
+ 𝛾(𝜙11 − 𝜙10 − 𝜙01 + 𝜙00)E[𝐴𝐿∗|𝐴, 𝐿]
= {𝛼 + 𝛾𝜙00 + 𝛿𝑢0} + {𝛽 + 𝛾(𝜙10 − 𝜙00) + 𝛿𝑢𝐴}𝐴
+ {𝛾(𝜙01 − 𝜙00) + 𝛿𝑢𝐿∗ }𝐿∗,

where 𝑢0, 𝑢𝐴, and 𝑢𝐿∗ are the coefficients of the linear model E[𝐴𝐿∗|𝐴, 𝐿∗] = 𝑢0 +𝑢𝐴𝐴+𝑢𝐿∗𝐿∗
and 𝛿 = 𝛾(𝜙11 − 𝜙10 − 𝜙01 + 𝜙00). Here,

𝑢𝐴 = Var(𝐿∗)Cov(𝐴, 𝐴𝐿∗) − Cov(𝐴, 𝐿∗)Cov(𝐿∗, 𝐴𝐿∗)
Var(𝐿∗)Var(𝐴) − Cov(𝐴, 𝐿∗)2 ,

𝑢𝐿∗ = Var(𝐴)Cov(𝐿∗, 𝐴𝐿∗) − Cov(𝐴, 𝐿∗)Cov(𝐴, 𝐴𝐿∗)
Var(𝐿∗)Var(𝐴) − Cov(𝐴, 𝐿∗)2 ,

𝑢0 = 𝐴𝐿∗ − 𝑢𝐴𝐴 − 𝑢𝐿∗𝐿∗,
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where 𝐴𝐿∗, 𝐴, and 𝐿∗ denote the mean of 𝐴 times 𝐿∗, 𝐴, and 𝐿∗, respectively.
If we want to express 𝑢𝐴 and 𝑢𝐿∗ in terms of 𝜆, 𝜋0, 𝜋1, 𝑝0, and 𝑝1, we can write a linear

model for 𝐴 conditional on 𝐿∗ denoting that 𝑃(𝐴 = 1|𝐿∗ = 𝑙∗) = 𝜋 ∗𝑙∗ and using standard
regression theory to get an expression for Cov(𝐴, 𝐿∗):

E[𝐴|𝐿∗] = 𝜋 ∗0 + (𝜋 ∗1 − 𝜋 ∗0)𝐿∗, 𝜋 ∗1 − 𝜋 ∗0 =
Cov(𝐴, 𝐿∗)
Var(𝐿∗) ,

thus Cov(𝐴, 𝐿∗) = (𝜋 ∗1 − 𝜋 ∗0)Var(𝐿∗),
where Var(𝐿∗) = ℓ(1 − ℓ). Since E[𝐴𝐿∗|𝐿∗ = 0] = 0 and E[𝐴𝐿∗|𝐿∗ = 1] = E[𝐴|𝐿∗ = 1] = 𝜋 ∗1, it
follows,

E[𝐴𝐿∗|𝐿∗] = 𝜋 ∗1𝐿∗, 𝜋 ∗1 =
Cov(𝐴𝐿∗, 𝐿∗)

Var(𝐿∗) , thus Cov(𝐴𝐿∗, 𝐿∗) = 𝜋 ∗1Var(𝐿∗).

Equivalently, since E[𝐴𝐿∗|𝐴 = 0] = 0 and E[𝐴𝐿∗|𝐴 = 1] = E[𝐿∗|𝐴 = 1], it follows that,

E[𝐴𝐿∗|𝐴] = E[𝐿∗|𝐴 = 1]𝐴 = 𝑃(𝐴 = 1|𝐿∗ = 1)𝑃(𝐿∗ = 1)
𝑃(𝐴 = 1) 𝐴,

E[𝐿∗|𝐴 = 1] = 𝜋 ∗1ℓ
𝜔 , 𝜋 ∗1ℓ

𝑎 = Cov(𝐴𝐿∗, 𝐴)
Var(𝐴) , thus Cov(𝐴𝐿∗, 𝐴) = 𝜋 ∗1ℓ

𝜔 Var(𝐴).

Here, Var(𝐴) = 𝜔(1−𝜔), and Var(𝐿∗) = ℓ(1−ℓ). Denoting that 𝜔 = 𝑃(𝐴 = 1) = 𝜋 ∗0(1−ℓ)+𝜋 ∗1ℓ.
Combining the different expressions gives,

𝑢𝐴 = 𝜋 ∗1ℓ/𝜔Var(𝐴)Var(𝐿∗) − 𝜋 ∗1(𝜋 ∗1 − 𝜋 ∗0)Var(𝐿∗)2
Var(𝐴)Var(𝐿∗) − (𝜋1 − 𝜋0)2Var(𝐿∗)2

= 𝜋 ∗1ℓ/𝜔Var(𝐴) − 𝜋 ∗1(𝜋 ∗1 − 𝜋 ∗0)Var(𝐿∗)
Var(𝐴) − (𝜋1 − 𝜋0)2Var(𝐿∗)

= ℓ × 𝜋 ∗1(1 − 𝜔) − 𝜋 ∗1(𝜋 ∗1 − 𝜋 ∗0)(1 − ℓ)
𝜔(1 − 𝜔) − (𝜋 ∗1 − 𝜋 ∗0)2ℓ(1 − ℓ)

= ℓ × 𝜋 ∗1 − 𝜋 ∗21
(𝜋 ∗1 − 𝜋 ∗21 )ℓ + (𝜋 ∗0 − 𝜋 ∗20 )(1 − ℓ) ,

𝑢𝐿∗ = 𝜋 ∗1Var(𝐴)Var(𝐿∗) − 𝜋 ∗1ℓ/𝜔(𝜋 ∗1 − 𝜋 ∗0)Var(𝐴)Var(𝐿∗)
Var(𝐿∗)Var(𝐴) − ((𝜋 ∗1 − 𝜋 ∗0)Var(𝐿∗))2

= 𝜋 ∗1𝜔 − 𝜋 ∗1ℓ(𝜋 ∗1 − 𝜋 ∗0)
𝜔 − (𝜋 ∗1 − 𝜋 ∗0)2Var(𝐿∗)/(1 − 𝜔)

= 𝜋 ∗1𝜋 ∗0(1 − 𝜋 ∗21 )ℓ + 𝜋 ∗1𝜋 ∗0(1 − 𝜋 ∗20 )(1 − ℓ)
(𝜋 ∗1 − 𝜋 ∗21 )ℓ + (𝜋 ∗0 − 𝜋 ∗20 )(1 − ℓ) ,

𝑢0 = 𝐴𝐿∗ − 𝑢𝐴𝐴 − 𝑢𝐿∗𝐿∗.
The intercept, the coefficient for 𝐴 and the coefficient for 𝐿∗ of the conditional regression
model for 𝑌 given 𝐴 and 𝐿∗ which includes only main effects of 𝐴 and 𝐿∗ are, respectively:

𝛼 + 𝛾𝜙00 + 𝛿𝑢0,
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𝛽 + 𝛾(𝜙10 − 𝜙00)(1 − ℓ × { 𝜋 ∗1 − 𝜋 ∗21
(𝜋 ∗1 − 𝜋 ∗21 )ℓ + (𝜋 ∗0 − 𝜋 ∗20 )(1 − ℓ) })

+𝛾(𝜙11 − 𝜙01)(ℓ × { 𝜋 ∗1 − 𝜋 ∗21
(𝜋 ∗1 − 𝜋 ∗21 )ℓ + (𝜋 ∗0 − 𝜋 ∗20 )(1 − ℓ) }),

and 𝛾(𝜙01 − 𝜙00) + 𝛿𝑢𝐿∗ .

S8.1.2.Marginal structural model estimated using inverse probability
weighting

Under the assumptions described in section 8.2 of the main chapter, an MSM-IPW under
model (8.2) is estimated by fitting a linear regression model for 𝐴 on 𝑌 , where each
subject 𝑖 is weighted by 1 over the probability of that subject’s observed exposure given
the misclassified confounding variable 𝐿∗. Hence, an MSM-IPW proceeds by solving the
weighted regression model,

𝑛
∑
𝑖=1

1
𝑃(𝐴𝑖 |𝐿∗𝑖)

(𝑌𝑖 − 𝛼msm − 𝛽𝐴𝑖) = 0 and
𝑛
∑
𝑖=1

𝐴𝑖
𝑃(𝐴𝑖 |𝐿∗𝑖)

(𝑌𝑖 − 𝛼msm − 𝛽𝐴𝑖) = 0.

Solving these equations for 𝛼msm and 𝛽 result in the following estimators:

�̂�msm = 𝑌𝑤∗ − ̂𝛽msm𝐴𝑤∗ and ̂𝛽 =
∑𝑛

𝑖=1
1

𝑃(𝐴𝑖 |𝐿𝑖)
(𝑌𝑖 − 𝑌𝑤∗)(𝐴𝑖 − 𝐴𝑤∗)

∑𝑛
𝑖=1

1
𝑃(𝐴𝑖 |𝐿𝑖)

(𝐴𝑖 − 𝐴𝑤∗)2
,

where,

𝑌𝑤∗ = ∑𝑛
𝑖=1 𝑌𝑖/𝑃(𝐴𝑖 |𝐿∗𝑖)

∑𝑛
𝑖=1 1/𝑃(𝐴𝑖 |𝐿∗𝑖)

and 𝐴𝑤∗ = ∑𝑛
𝑖=1 𝐴𝑖/𝑃(𝐴𝑖 |𝐿∗𝑖)

∑𝑛
𝑖=1 1/𝑃(𝐴𝑖 |𝐿∗𝑖)

.

Let 𝑛∗𝑎𝑙 be the number of subjects with 𝐴 = 𝑎 and 𝐿∗ = 𝑙∗ and 𝑛𝑎𝑙 be the number of subjects
with 𝐴 = 𝑎 and 𝐿 = 𝑙. In a population of 𝑛 subjects,

𝑛∗00 = 𝑛𝑃(𝐴 = 0, 𝐿∗ = 0) = 𝑛𝑃(𝐴 = 0|𝐿∗ = 0)𝑃(𝐿∗ = 0)

= 𝑛
𝑙
∑𝑃(𝐴 = 0|𝐿 = 𝑙, 𝐿∗ = 0)𝑃(𝐿 = 𝑙|𝐿∗ = 0)𝑃(𝐿∗ = 0)

= 𝑛
𝑙
∑𝑃(𝐴 = 0|𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)𝑃(𝐿∗ = 0)

= 𝑛
𝑙
∑𝑃(𝐴 = 0|𝐿 = 𝑙)𝑃(𝐿 = 𝑙)𝑃(𝐿∗ = 0|𝐿 = 𝑙)

= 𝑛00(1 − 𝑝0) + 𝑛01(1 − 𝑝1),
which relies on the assumption that 𝐿∗ is non-differentially misclassified with respect tot
the exposure (i.e., 𝐿∗ ⊧𝐴|𝐿). Equivalently,

𝑛∗01 = 𝑛00𝑝0 + 𝑛01𝑝1, 𝑛∗10 = 𝑛10(1 − 𝑝0) + 𝑛11(1 − 𝑝1),
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and 𝑛∗11 = 𝑛10𝑝0 + 𝑛11𝑝1.
Hence,

𝑛
∑
𝑖=1

1/𝑃(𝐴𝑖 |𝐿∗𝑖) =
𝑛
∑
𝑖=1

1
∑𝑙[𝑃(𝐴𝑖 |𝐿∗𝑖 , 𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗𝑖)]

=
𝑛
∑
𝑖=1

1
∑𝑙[𝑃(𝐴𝑖 |𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗𝑖)]

=
𝑛∗00
∑ 1

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗01
∑ 1

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

+
𝑛∗10
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗11
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)] .

Here,

𝑛∗00
∑ 1

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)] =
𝑛00(1 − 𝑝0) + 𝑛01(1 − 𝑝1)

(1 − 𝜋0)𝑃(𝐿 = 0|𝐿∗ = 0) + (1 − 𝜋1)𝑃(𝐿 = 1|𝐿∗ = 0) =
𝑛00(1 − 𝑝0) + 𝑛01(1 − 𝑝1)

(1 − 𝜋0) 𝑃(𝐿
∗=0|𝐿=0)(1−𝜆)
𝑃(𝐿∗=0) + (1 − 𝜋1) 𝑃(𝐿

∗=0|𝐿=1)𝜆
𝑃(𝐿∗=0)

=

𝑛00(1 − 𝑝0) + 𝑛01(1 − 𝑝1)
𝑛00

𝑛𝑃(𝐿∗=0) (1 − 𝑝0) + 𝑛01
𝑛𝑃(𝐿∗=0) (1 − 𝑝1)

=

1
1/(𝑛𝑃(𝐿∗ = 0)) =

𝑛𝑃(𝐿∗ = 0) = 𝑛(1 − ℓ),
𝑛∗01
∑ 1

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)] =
𝑛𝑃(𝐿∗ = 1) = 𝑛ℓ,

𝑛∗10
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)] =
𝑛𝑃(𝐿∗ = 0) = 𝑛(1 − ℓ),

𝑛∗11
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)] =
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𝑛𝑃(𝐿∗ = 1) = 𝑛ℓ.
From these expressions it follows that,

𝑛
∑
𝑖=1

1/𝑃(𝐴𝑖 |𝐿∗𝑖) = 2𝑛(1 − ℓ) + 2𝑛ℓ = 2𝑛.

Further,

𝑛
∑
𝑖=1

E[𝑌𝑖]/𝑃(𝐴𝑖 |𝐿∗𝑖) =
𝑛∗00
∑ E[𝑌𝑖]

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗01
∑ E[𝑌𝑖]

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

+
𝑛∗10
∑ E[𝑌𝑖]

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗11
∑ E[𝑌𝑖]

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

=
𝑛∗00
∑ 𝛼 + 𝛾𝑃(𝐿 = 1|𝐴 = 0, 𝐿∗ = 0)

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗01
∑ 𝛼 + 𝛾𝑃(𝐿 = 1|𝐴 = 0, 𝐿∗ = 1)

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

+
𝑛∗10
∑ 𝛼 + 𝛽 + 𝛾𝑃(𝐿 = 1|𝐴 = 1, 𝐿∗ = 0)

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗11
∑ 𝛼 + 𝛽 + 𝛾𝑃(𝐿 = 1|𝐴 = 1, 𝐿∗ = 1)

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)]
= 𝑛𝛼(1 − ℓ) + 𝑛𝛾(1 − ℓ)𝜙00 + 𝑛𝛼ℓ + 𝑛𝛾𝜙01
+ 𝑛(𝛼 + 𝛽)(1 − ℓ) + 𝑛𝛾(1 − ℓ)𝜙10
+ 𝑛(𝛼 + 𝛽)ℓ + 𝑛𝛾𝜙11
= 2𝑛𝛼 + 𝑛𝛽 + 𝑛𝛾(1 − ℓ)(𝜙00 + 𝜙10) + 𝑛𝛾ℓ(𝜙01 + 𝜙11),

and,

𝑛
∑
𝑖=1

𝐴𝑖/𝑃(𝐴𝑖 |𝐿𝑖) =
𝑛∗10
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)] +
𝑛∗11
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)]
= 𝑛(1 − 𝑝0)(1 − 𝜆) + 𝑛(1 − 𝑝1)𝜆 + 𝑛𝑝0(1 − 𝜆) + 𝑛𝑝1𝜆 = 𝑛.

Combining these expressions leads to,

E[𝑌𝑤∗] = 𝛼 + 𝛽/2 + 𝛾/2(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/2ℓ(𝜙01 + 𝜙11)
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and 𝐴𝑤∗ = 𝑛/2𝑛 = 1/2, and

𝑛
∑
𝑖=1

(𝐴𝑖 − 𝐴𝑤∗)2
𝑃(𝐴𝑖 |𝐿∗𝑖)

=
𝑛∗00
∑ (−1/2)2

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗01
∑ (−1/2)2

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

+
𝑛∗10
∑ (1 − 1/2)2

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗11
∑ (1 − 1/2)2

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

= 1/4 ×
𝑛
∑
𝑖=1

1/𝑃(𝐴𝑖 |𝐿∗𝑖) = 𝑛/2.

Further,

𝑛
∑
𝑖=1

E[(𝑌𝑖 − 𝑌𝑤∗)](𝐴𝑖 − 𝐴�̃�)
𝑃(𝐴𝑖 |𝐿∗𝑖)

=

𝑛∗00
∑ 𝛽/4 − 𝛾/2𝜙00 + 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/4ℓ(𝜙01 + 𝜙11)

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)] +
𝑛∗01
∑ 𝛽/4 − 𝛾/2𝜙01 + 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/4ℓ(𝜙01 + 𝜙11)

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)] +
𝑛∗10
∑ 𝛽/4 + 𝛾/2𝜙10 − 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) − 𝛾/4ℓ(𝜙01 + 𝜙11)

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)] +
𝑛∗11
∑ 𝛽/4 + 𝛾/2𝜙11 − 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) − 𝛾/4ℓ(𝜙01 + 𝜙11)

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)] =
𝑛(1 − ℓ)(𝛽/4 − 𝛾/2𝜙00 + 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/4ℓ(𝜙01 + 𝜙11)) +

𝑛ℓ(𝛽/4 − 𝛾/2𝜙01 + 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/4ℓ(𝜙01 + 𝜙11)) +
𝑛(1 − ℓ)(𝛽/4 + 𝛾/2𝜙10 − 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) − 𝛾/4ℓ(𝜙01 + 𝜙11)) +

𝑛ℓ(𝛽/4 + 𝛾/2𝜙11 − 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) − 𝛾/4ℓ(𝜙01 + 𝜙11)) =
𝑛/2(𝛽(1 − ℓ) + 𝛽ℓ − 𝛾(1 − ℓ)𝜙00 − 𝛾ℓ𝜙01 + 𝛾(1 − ℓ)𝜙10 + 𝛾ℓ𝜙11) =

𝑛/2(𝛽 + 𝛾(1 − ℓ)(𝜙10 − 𝜙00) + 𝛾ℓ(𝜙11 − 𝜙01).
The above mentioned leads to the following expression for the expected estimated value of
the effect of 𝐴, based on the MSM-IPW,

E[ ̂𝛽] = 𝛽 + 𝛾(𝜙10 − 𝜙00)(1 − ℓ) + 𝛾(𝜙11 − 𝜙01)ℓ and

E[�̂�msm] = 𝛼 + 𝛾/2 × [2(1 − ℓ)𝜙00 + 2ℓ𝜙01)] = 𝛼 + 𝛾𝜙00(1 − ℓ) + 𝛾𝜙01ℓ.
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S8.2. Illustration: quantitative bias analysis
Using an example study of blood pressure lowering therapy, we illustrate how the bias
expressions in section 8.3 of the main chapter can be used to perform a quantitative bias
analysis for misclassification of a confounding variable. For our illustration we use data of
the National Health And Nutritional Examination Survey (NHANES) [1, 2]. Specifically, we
study the average treatment effect of diuretic use (𝐴 = 1) in comparison to beta blocker
use (𝐴 = 0) on systolic blood pressure (𝑌 ) using two approaches: by inverse weighting with
the propensity for diuretic or beta blocker use given self-reported categorical body mass
index (BMI) (𝐿∗), and using a conditional linear regression with adjustment for self-reported
categorical BMI. This supplement comprises background material that complements the
motivating example in the main chapter. Additionally, equations are derived to inform the
quantitative bias analysis.

NHANES. The NHANES survey consists of questionnaires, followed by a standardized
health examination in specially equipped mobile examination centers. In the 2011-2014
sample 19,151 participants were physically examined. Of the 19,151 physically examined
people, 12,185 participants aged over 16 were asked to fill out a questionnaire, including
questions on self-reported weight and height, used to calculate self-reported BMI. For this
illustration, we used complete data on 585 users of diuretics and 824 users of beta blockers
(excluding non-users and people using both).

Parameters estimated in NHANES. In the NHANES data, it was found that the
prevalence of self-reported overweight/obese was 0.77 (ℓ), the probability of receiving
treatment given that one self-reports to be underweight/normal weight is 0.32 (𝜋 ∗0), the
probability of receiving treatment given that one self-reports to be overweight/obese is 0.44
(𝜋 ∗1). Finally, the association between 𝐿∗ and 𝑌 , given that 𝐴 = 0 estimated in a conditional
regression model including an interaction between A and L* was -6.63.

BMI measured by trained technicians. In the NHANES, anthropometric measures
were also taken by trained health technicians. By using these measures to calculate BMI
category, we found that the specificity of self-reported BMI category was 0.94 (𝑝1), and the
sensitivity was 0.92 (𝑝0 = 0.08). The average treatment effect (95 % CI) of diuretics use in
comparison to beta blocker use on mean blood pressure was -3.59 (-5.84; -1.35) estimated
using MSM-IPW (by inverse weighting with the propensity for diuretic or beta blocker use
given categorical BMI). Given that a subject is not overweight/obese, the fitted weights
were 1.48 and 3.09 for beta blocker and diuretics use, respectively. Given that a subject
is overweight/obese, the fitted weights were 1.77 and 2.30, respectively. In comparison, if
self-reported categorical BMI was used, the fitted weights slightly differed: 1.46, 3.17, 1.79
and 2.26, respectively. Consequently, estimates of the average treatment effect differed,
depending on the BMI measure that was used to calculate the inverse probability weights
(-3.59 using categorical BMI versus -3.52 using categorical self-reported BMI (Table 8.3, main
chapter)).

Performing a quantitative bias analysis. To inform a quantitative bias analysis, one
needs to specify the bias parameters for sensitivity (𝑝1) and specificity (1−𝑝0) using external
validation data, internal validation data, or an educated guess. From the data, one can
estimate the prevalence of misclassified confounding variable 𝐿∗ (i.e., ℓ), the probability of
receiving treatment given that 𝐿∗ is null (i.e., 𝜋 ∗0) and the probability of receiving treatment
given that 𝐿∗ is one (i.e., 𝜋 ∗1). We calculate the probability of receiving treatment given that
𝐿 is null or one (i..e, 𝜋0, and 𝜋1, respectively) using the data and the assumed values of 𝑝0
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and 𝑝1. Since,

𝜋 ∗0 =
𝜋0(1 − 𝑝0)(1 − 𝜆) + 𝜋1(1 − 𝑝1)𝜆

(1 − ℓ) , and 𝜋 ∗1 =
𝜋0𝑝0(1 − 𝜆) + 𝜋1𝑝1𝜆

ℓ ,

it follows that if 𝑝0 = 1, 𝜋1 = 𝜋 ∗0 and if 𝑝1 = 0, 𝜋0 = 𝜋 ∗1 (using that 0 < ℓ < 1, as used in S8.1
section S8.1.1). Further, if 𝑝0 = 1 and 0 < 𝑝1 < 1, we obtain,

𝜋1 = 𝜋 ∗0, and 𝜋0 =
𝜋 ∗0𝑝1𝜆 − 𝜋 ∗1ℓ
(1 − 𝜆) .

Additionally, if 𝑝1 = 0 and 0 < 𝑝0 < 1, we obtain

𝜋0 = 𝜋 ∗1, and 𝜋1 =
𝜋 ∗0(1 − ℓ) − 𝜋 ∗1(1 − 𝑝0)(1 − 𝜆)

𝜆 .

If we assume that 𝑝0 ≠ 1 and 𝑝1 ≠ 0 and use our assumption that 0 < 𝜆 < 1, it follows that,

𝜋0 =
𝜋 ∗0(1 − ℓ) − 𝜋1(1 − 𝑝1)𝜆

(1 − 𝑝0)(1 − 𝜆) , 𝜋1 =
𝜋 ∗1ℓ − 𝜋0𝑝0(1 − 𝜆)

𝑝1𝜆
. (S8.1)

By rewriting the expression for 𝜋1 using the expression for 𝜋0, it follows that,

𝜋1 = 𝜋 ∗1ℓ − 𝜋0𝑝0(1 − 𝜆)
𝑝1𝜆

=
𝜋 ∗1ℓ − 𝜋 ∗0(1−ℓ)−𝜋1(1−𝑝1)𝜆

(1−𝑝0)(1−𝜆)
𝑝0(1 − 𝜆)

𝑝1𝜆

=
𝜋 ∗1ℓ − (𝜋 ∗0(1 − ℓ) − 𝜋1(1 − 𝑝1)𝜆) 𝑝0

(1−𝑝0)
𝑝1𝜆

=
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
+ (1−𝑝1)𝑝0

(1−𝑝0)
𝜆𝜋1

𝑝1𝜆

=
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

+ (1 − 𝑝1)𝑝0
(1 − 𝑝0)𝑝1

𝜋1

=
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

+ (1 − 𝑝1)𝑝0
(1 − 𝑝0)𝑝1

𝜋1.

Consequently,

(1 − (1 − 𝑝1)𝑝0
(1 − 𝑝0)𝑝1

)𝜋1 =
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

,

𝜋1 =
𝜋 ∗1ℓ−𝜋 ∗0(1−ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

(1−𝑝0)𝑝1−(1−𝑝1)𝑝0
(1−𝑝0)𝑝1
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=
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

× (1 − 𝑝0)𝑝1
(1 − 𝑝0)𝑝1 − (1 − 𝑝1)𝑝0

. (S8.2)

From expression (S8.2) we now obtain a value for 𝜋1, which we use to obtain a value for 𝜋0
from expression (S8.1). We calculate the prevalence of 𝐿 (i.e., 𝜆) by,

𝜆 = 𝑝0, if 𝑝0 = 𝑝1 and 𝜆 = ℓ − 𝑝0
𝑝1 − 𝑝0

otherwise.

Subsequently, the expressions for 𝜋0, 𝜋1 and 𝜆 can be used to obtain estimates for 𝜙𝑎𝑙∗
using the expression in section Conditional model. Lastly, an estimate for 𝛾 can be obtained
by fitting a conditional regression model on 𝑌 given 𝐴 and 𝐿∗, including an interaction
between 𝐴 and 𝐿∗. The coefficient for 𝐿∗ from this model is then divided by (𝜙01 − 𝜙00) to
get an estimate for 𝛾 , holding that 𝜙01 ≠ 𝜙00. The inequality 𝜙01 ≠ 𝜙00 holds if 𝑝0 ≠ 𝑝1, in
the case that 𝑝0 = 𝑝1, 𝛾 is not identifiable from the data (and thus, bias is not identifiable).
The bias expressions (8.3) and (8.4) in the main chapter of the article can subsequently be
used to calculate bias in the average treatment effect estimator.
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