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9
Summary and general discussion

9.1. Summary
Measurement error is common in epidemiologic research and may affect the validity of
research results. It is therefore important to scrutinise the effects of measurement error
in epidemiologic research. Even simple forms of measurement error, for instance random
measurement error in an exposure, can introduce bias in exposure-outcome associations.
And even though there are situations in which measurement error does not introduce
bias in the exposure-outcome association, for instance in case of random measurement
error in a continuous outcome, it nearly always affects the precision and power of a
study. In addition, other forms of measurement error, for example systematic measurement
error or differential measurement error in an exposure, covariate or outcome, can affect
exposure-outcome associations in complex ways that may not easily be anticipated.
Adjusting for measurement error using measurement error correction methods may thus
be necessary to obtain reliable estimates of exposure-outcome associations.

To facilitate measurement error correction, information about the underlying
measurement error mechanism (i.e., model) and its parameters is needed. The
measurement error model can sometimes be estimated from internal or external validation
data, replicates data or calibration data. Collection and the use of such measurement error
mechanism data will likely improve the quality of epidemiologic analyses in the presence
of measurement error. This can be done through the application of measurement error
correction methods, which adjust the analyses taking into account the information from
themeasurement error mechanism. Alternatively, in the absence of concrete data about the
mechanisms or the parameters of measurement error, sensitivity analysis for measurement
error can be used, in which the impact on the epidemiologic analyses of one or a range of
hypothesized measurement error mechanisms or their parameters can be investigated.

The studies described in the thesis were set out to improve the understanding of
the impact of measurement error, to facilitate the application of measurement error
correction methods, to improve the design of epidemiologic studies when measurement
error in a variable is suspected and, to develop tools to quantitatively assess the impact of
measurement error in epidemiologic research.
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InChapter 2, consequenceswere studied ofmeasurement error in a continuous outcome
in a randomized trial. Using an example of the efficacy of a low-dose iron supplement
on haemoglobin levels in pregnant women, different forms of measurement error were
discussed (i.e., random, systematic and differential measurement error). Using the example
trial, it was shown that random measurement error in a trial outcome does not lead to
bias in the effect estimator but can lead to a reduced precision and power. It was shown
that systematic measurement error and differential measurement error in an outcome can
lead to bias in the effect estimator and consequently, a null-hypothesis significance test
for the treatment effect can deviate substantially from the nominal level. Subsequently,
a regression calibration-like method was proposed to reduce bias in the treatment effect
estimator and obtain confidence intervals with nominal coverage and tested in a Monte
Carlo simulation study. The proposed method made use of external validation data to
estimate the measurement error model and its parameters and four different methods for
confidence interval construction were proposed. Different parameters for themeasurement
error model (i.e., systematic and differential measurement error) and explained variance of
the measurement error model were tested. In our simulation study, it was shown that
the regression calibration-like method was effective in improving trial inferences when an
external validation dataset with at least 15 subjects was available.

In Chapter 3 the R package mecor for measurement error correction was introduced.
The package facilitates measurement error correction in linear models with a continuous
outcome if there is measurement error in the outcome or in a continuous covariate. The
package accommodates measurement error correction methodology for a wide range of
data structures: internal and external validation studies, replicates studies, and calibration
studies. Various measurement error correction methods were implemented in the package:
regression calibration, method of moments and correction based on maximum likelihood
estimation. For standard error estimation and construction of confidence intervals,
the delta method and bootstrap were implemented for all methods. The package also
facilitates sensitivity analysis, when no data are available to estimate the parameters of the
measurement error model. The package contains synthetic data based on examples from
epidemiology following the structure of internal validation data, replicates data, calibration
data and external validation data.

In Chapter 4 settings were studied in which application of regression calibration for
exposure measurement error correction may not be appropriate. This was illustrated in
a study of the association between active energy expenditure and lean body mass. A
simulation study, based on the case study, showed that particularly in small samples
the regression calibration estimator may be less efficient in terms of mean squared error
than an estimator not correcting for the exposure measurement error. This phenomenon
is an example of the commonly known bias–variance trade off. Particularly, when the
measurement error is relatively large and sample sizes small, the simulation study showed
that the performance of regression calibration was poor, indicated by biased estimates,
large mean squared errors and large empirical standard errors in these settings.

In Chapter 5 three internal validation sampling strategies (i.e., random, stratified
random and extremes sampling) were investigated in conjunction with regression
calibration to correct for measurement error in a continuous covariate. This was illustrated
in an example study of the investigation of the association between visceral adipose tissue
and insulin resistance. The exposure measure visceral adipose tissue was only available in
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40% of the population. Waist circumference was measured in all individuals and assumed
an error-prone substitute measure of the reference measure visceral adipose tissue. In a
setting where the reference measure is obtained in only 40% of the whole study, it was
studied which individuals should be included in that subset and which not by means of
Monte Carlo simulation. The simulation study showed a small efficiency gain in terms of
mean squared error of stratified random and extremes sampling over a random sampling
strategy for the internal validation restricted and regression calibration analyses, but only
when measurement error was non-differential. For regression calibration, this gain in
efficiencywas at the cost of higher percentages bias and lower confidence interval coverage.
It was therefore recommended that, in general, regression calibration using randomly
sampled validation samples are preferred over stratified or extremes sampled samples.

The study described in Chapter 6 showed that studies on venous thromboembolism
(VTE) incidence in Coronavirus disease 2019 (COVID-19) patients report highly
heterogeneous results. Different sources of the observed heterogeneity were identified,
notably, clinical and methodological sources, and illustrated using various examples.
Clinical sources included the characteristics of study participants and testing for VTE.
Methodological sources included inclusion types of the VTE endpoint, data quality and data
analysis. Careful description was recommended of the elements that potentially affect VTE
incidence and thus may cause heterogeneity in future VTE incidence studies and guidance
was provided in the form of a list with reporting recommendations.

In Chapter 7 regression calibration and simulation-extrapolation were compared for
sensitivity analysis for random measurement error in an exposure variable. These two
random exposure measurement error correction methods were illustrated in two example
studies. The first example study investigated the relation between the exposure blood
pressure and , and the second example study investigated the relation between the exposure
sodium intake and hypertension. These relations were modelled using linear and logistic
regression, respectively. In both example studies the exposure variable was an error-prone
version of an error-free exposure variable. Based on these two examples, a simulation
study was conducted to study the relative performance of regression calibration and
simulation-extrapolation in linear and logistic regression models. The simulation study
showed that without extra data, but with correct assumptions about the variance of the
measurement error, regression calibration was generally unbiased for linear and logistic
regression, while simulation-extrapolation was biased. A small gain in efficiency in terms
of mean squared error was seen for simulation-extrapolation in linear regression but not
for logistic regression. The use of regression calibration for sensitivity analysis for random
exposuremeasurement error was recommended and its use illustrated in the example study
of the association between blood pressure and kidney function.

Inverse probabilityweighting and conditionalmodels are both important and frequently
used tools to adjust for confounding variables in observational studies. In Chapter 8,
expressions were derived for the bias in the average treatment effect in amarginal structural
model estimated using inverse probability weighting and a conditional model when a
confounding variable is measured with error. Compared to bias in the average treatment
effect estimator from a conditional model, the bias in amarginal structural model estimated
using inverse probability weighting can be different in magnitude but is equal in sign. The
derived bias expressions informed a quantitative bias analysis for bias due to amisclassified
confounding variable. The use of a quantitative bias analysis was demonstrated in an
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example study of the effect of using diuretics versus beta-blockers on blood pressure
adjusted for the error-prone confounding variable self-reported body mass index category.

9.2. Discussion
This thesis provides an overview of correction methods for measurement error in
epidemiologic research. The studies described in the thesis were set out to improve the
understanding of the impact of measurement error and to facilitate the application of
measurement error correction methods in epidemiologic studies. Guidance was provided
to improve the design of epidemiologic studies when measurement error is suspected,
and reporting guidelines proposed. All methods were demonstrated in case studies using
empirical data (for an overview of case studies, see Table 9.1). Special attention was
paid to sensitivity analysis for measurement error in settings where measurement error
is suspected, but data about measurement error structure and its parameters, essential
for measurement error correction methods, were not available. Here, we discuss the
contribution of our work to this field and set out directions for future research.

9.2.1. Impact of measurement error in epidemiologic studies
The impact of measurement error often goes beyond the simple heuristic of ‘attenuation to
the null’ [1]. This heuristic wrongfully suggests that estimates of effects in epidemiologic
studies will only become smaller due to the measurement error. Unfortunately, this myth
remains persistent despite a vast body of literature arguing against it [2–5]. Particularly,
depending on the target of the analysis and the type of measurement error, the effects
of measurement error can go in either direction and are therefore often unpredictable, as
shown by Keogh et al. [6].

This thesis aimed at improving the understanding of the impact of measurement error
in epidemiologic research. To evaluate the impact of measurement error in a specific study,
four considerations are; i) what statistical model is used; ii) which of the variable(s) of the
model is (are) error-prone and what is their role in the model; iii) what is the structure
of the measurement error model; and iv) what are the parameters of the measurement
error model (see Figure 9.1). All these components may affect if an epidemiologic study
is affected by measurement error and if so, how an epidemiologic study is affected by
measurement error. For example, random exposure measurement error introduces bias
in the effect estimator of a linear regression model [4], and a logistic regression model
[7] and leads to a so-called ‘induced hazard function’ for a Cox regression model [8]. In
contrast, random measurement error in a continuous outcome does not introduce bias
but reduces precision and power at a chosen sample size, and systematic and differential
measurement error in such outcomes introduce bias in the effect estimator of a linear
regression model that can go in either direction (Chapter 2). When exposure measurement
error is suspected, restricting the analysis to the subset of individuals for whom the
error-free exposure measurement is obtained, does not lead to biased inference. Yet,
when that subset is sampled using information about an error-prone substitute exposure
(e.g., when for all individuals exceeding a specific threshold of the substitute exposure,
the error-free exposure is obtained), bias is introduced in the complete case analysis if
the error in the substitute exposure is differential, but not if the error in the substitute
exposure is non-differential (Chapter 5). When a confounding variable is misclassified,
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marginal structural models estimated using inverse probability weighting were shown to be
biased but affected differently than conditional models (Chapter 8). There are innumerable
combinations of the considerations displayed in Figure 9.1 and, therefore, measurement
error can affect estimated exposure-outcome associations in complex ways that may not
easily be anticipated and need to be evaluated from one setting to another.

9.2.2. Measurement error correction methods in epidemiologic studies
There is an abundance of texts on measurement error correction methods [2–5].
Yet, correction methods remain seldomly applied in epidemiologic research [9–11].
Methods for measurement error corrections include, regression calibration [12, 13],
simulation-extrapolation [14], moment reconstruction [15], non-parametric maximum
likelihood estimation [16], imputation-based methods [17, 18] and Bayesian methods
[5, 19]. Regression calibration is among themost commonly usedmethods in epidemiologic
research [10, 11].

This thesis facilitated the application of measurement error correction in epidemiologic
research with the development of the software package mecor for measurement error
correction in linear models with a continuous outcome. In this software package
for R, regression calibration [20], validation regression calibration, efficient regression
calibration [21], method of moments [2] and maximum likelihood-based methods [22]
were implemented for a wide range of validation data structures (Table 9.1). Notably,
different methods for variance estimation of the corrected estimators were implemented
in mecor. An informed choice for the variance estimation of the measurement error
corrected estimators is important as was shown that the Zero Variance, Delta, Fieller
and bootstrap methods had different performance in terms of coverage and average
confidence interval width (Chapter 2 and 4). The methods implemented in mecor are
consistent but not necessarily more statistically efficient than the uncorrected estimator
nor unbiased. Particularly in small samples, the estimator not correcting for measurement
error may be more efficient in terms of mean squared error compared to the regression
calibration estimator (Chapter 4). A phenomenon referred to as the bias–variance trade
off. Particularly when measurement error is relatively large, the performance of regression
calibration can be poor in small samples, as was shown by high percentages bias and large
mean squared errors in these settings. However, compared to regression calibration, the
simulation-extrapolation estimator was even more prone to bias (Chapter 7). Regression
calibration relies on the assumption of non-differential measurement error, and large biases
can occur in the estimator if this assumption is not warranted, as was shown in Chapter 5.
In conclusion, measurement error correction methods can correct for measurement error
when extra data are available to estimate the measurement error model and its parameters
provided sufficiently large sample size of the validation set and measurement error that is
not extremely large. What constitutes ‘sufficiently large’ and ‘not extremely large’ will be
study specific and can be informed by statistical simulation studies, as presented in Chapter
4.

9.2.3. Design of epidemiologic studies affected by measurement error
For measurement error correction, validation data are needed to estimate themeasurement
errormodel and its parameters. Collection of such data should preferably be included in the
design of an epidemiologic study. Considerations include the data structure, size and the
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sampling strategy of the validation data. For such considerations, the different components
shown in Figure 9.1 needed to evaluate the impact of measurement error need to be
taken into account. Particularly, certain structures of validation data (internal, external,
replicates data or calibration data) are not suited for certain measurement error structures
(e.g., replicates data can only be used if random measurement error is suspected). After
making assumptions about the measurement error model structure and its parameters
and deciding what type of validation data is suited, Monte Carlo simulation can be used
to inform sample size and sampling strategy of the validation data. An example of a
Monte Carlo simulation study to examine the optimal sampling strategy of an internal
validation data set in the Netherlands Epidemiology of Obesity study [24] was described
in Chapter 5. Here, sampling the extremes or stratified randomly showed a small gain in
efficiency, but at the cost of bias and confidence interval coverage and should only be used
when measurement error is strictly non-differential. A difficulty here is, however, that in
studies like the Netherlands Epidemiology of Obesity study, the first two components that
influence the impact of measurement error (described in first two columns in Figure 9.1)
may differ across studies. Specifically, a variable can be an outcome in one study and an
exposure in another study.

9.2.4. Sensitivity analysis for measurement error in epidemiologic studies
In epidemiologic research, it is commonly assumed (often implicitly) that all variables are
measured without error; an assumption that is often not justified. Yet, when measurement
error is suspected or anticipated, methods to correct for the measurement error rely on the
availability of data on the measurement error mechanisms and parameters. Such data may
not be available, maybe incomplete or be itself unreliable, in which case sensitivity analysis
for measurement error can help to assess the sensitivity of research results to measurement
error. In epidemiology, a sensitivity analysis may alternatively be referred to as quantitative
bias analysis [25].

Sensitivity analysis for measurement error should be included in study protocols and
valued independent of the outcome of the sensitivity analysis (i.e., results should not only be
shown if the sensitivity analysis shows research results are not sensitive to the assumption
of no measurement error). Sensitivity analysis can be informed by expert knowledge about
the structure of the measurement error model and its parameters. Distributions of these
parameters can be used to put more weight on the assumed most plausible values [25].

The sensitivity of research results to random exposure measurement error can be
checked using regression calibration or simulation-extrapolation, of which regression
calibration was shown most suited in Chapter 7. Graphical presentation of the results of a
sensitivity analysis allows readers to judge the sensitivity of research results for the whole
distribution of assumed parameters of the measurement error model, and may be preferred
over a single summary number (see for example Figure 7.9 in Chapter 7). Alternatively,
interactive tools may be designed to allow readers to test the sensitivity of research results
to their own assumed parameters of the measurement error model, as was facilitated by
the Shiny application demonstrated in Chapter 8.

9.2.5. Future research
The studies presented in the thesis aimed to improve the (application of) methods to
limit the impact of measurement error in epidemiologic research. The application of
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measurement error correction methods was facilitated through the development of the
R package mecor. To aid the application of measurement error correction methods in
epidemiology, numerous methods were illustrated in empirical data (Table 9.1). Extensive
Monte Carlo studies were set up to study the performance of measurement error correction
methods in epidemiologic studies based on the empirical data and have been made
publicly available. The simulation code can easily be adapted by researchers to settings of
intended use to improve the design and statistical analysis of epidemiologic studies when
measurement error is suspected. However, we are not there yet. There are several topics
that require future research to further develop the field of measurement error methodology.

First, the main focus of this thesis was on linear models with a continuous outcome and
measurement error in one of the continuous variables of those models. In epidemiologic
studies, measurement error may, however, be anticipated in more than one variable. In
addition, other statistical models (e.g., logistic and survival analysis) are commonly used
in epidemiologic research. For models with binary outcomes, the impact of covariate
measurement error and classification error in the binary outcome has been studied by
Carroll et al. in [7] and [26], respectively. Also, correction methods have been proposed
for situations where one or multiple variables in a logistic regression model are measured
with error [20]. For survival outcomes, the impact of covariate measurement error has been
studied by Prentice et al. [8] and an investigation of measurement errors in the failure time
outcome and correction methods for this setting were examined by Oh et al. [27]. Yet,
the implications of a combination of complex forms of outcome measurement error and
covariate measurement error need further study.

Second, this thesis only investigated the use of parametric measurement error models
and it was generally assumed that the measurement error model was well specified. Future
research may examine methods to test for the structure of the measurement error model in
empirical data and study the impact of misspecification of the measurement error model
structure on measurement error correction methods.

Third, the validation data structures discussed in the thesis that aid measurement error
correction methods rely on certain assumptions. For an external data set, it is assumed
that the measurement error model and its parameters are transportable from the main
study to the external study. For a replicates study, it is assumed that measurement error
in the subsequent replicate measurements is independent. Investigations are needed if
information about the reliability of e.g., biomarkers can be transported to studies where
these biomarkers are used and if the assumption of independent measurement error in
such biomarkers is warranted.

Fourth, this thesis presents measurement error correction methods for measures of
which a clear concept about the ‘true’ measure of a variable is needed and is in most
instances assumed observable (except when random measurement is assumed in which
case repeated measures of the error-prone measure are adequate). This assumption might
be reasonable and applicable for measures such as an individual’s weight in kilo grams or
blood pressure, but may be difficult or even impossible to establish for constructs such
as patient well-being or pain [28]. Future research may pay specific attention to the
applicability of latent class analysis for the analysis of error-prone epidemiologic data,
which does not rely on the assumption of observable ‘true’ measures. Instead, it is assumed
that the true variable can be estimated by combining multiple imperfect measurements of
the variable. These methods are widespread in psychology and the social sciences [29],
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but received relatively little attention in epidemiologic research (exceptions include e.g.,
[30, 31]).

9.2.6. Conclusion
Measurement error in epidemiologic research is not uncommon and can hamper the validity
of research results if ignored. The old saying “to prevent is better than to cure” also applies
here, and therefore actions to improve the overall quality of measurement in epidemiologic
analyses are likely to have a larger effect on the validity of epidemiologic studies than
widespread application of measurement error correction methods. However, in settings
where measurement error cannot be avoided, measurement error correction methods and
sensitivity analysis for measurement error provide tools to correct for or quantitatively
assess the impact ofmeasurement error. In combinationwith reliable information about the
measurement error model and its parameters, these methods can help to estimate relevant
epidemiologic parameters that are more reliable than what would be obtained if estimated
without taking account of possible measurement error.
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