
Correction methods for measurement error in
epidemiologic research
Nab, L.

Citation
Nab, L. (2023, January 26). Correction methods for measurement error in
epidemiologic research. Retrieved from https://hdl.handle.net/1887/3513286
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3513286
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3513286


8
Quantitative bias analysis for a

misclassified confounder in
marginal structural models

Observational data are increasingly used with the aim of estimating causal effects of treatments, through
careful control for confounding. Marginal structural models estimated using inverse probability weighting
(MSMs-IPW), like other methods to control for confounding, assume that confounding variables are
measured without error. The average treatment effect estimator in a MSM-IPW may however be biased
when a confounding variable is error-prone. Using the potential outcome framework, we derive expressions
for the bias due to confounder misclassification in analyses that aim to estimate the average treatment
effect using a MSM-IPW. We compare this bias with the bias due to confounder misclassification in
analyses based on a conditional regression model. Focus is on a point-treatment study with a continuous
outcome. Compared to bias in the average treatment effect estimator from a conditional model, the bias
in MSM-IPW can be different in magnitude, but is equal in sign. Also, we use a simulation study to
investigate the finite sample performance of MSM-IPW and conditional models when a confounding
variable is misclassified. Simulation results indicate that confidence intervals of the treatment effect
obtained from MSM-IPW are generally wider and coverage of the true treatment effect is higher
compared to a conditional model, ranging from over-coverage if there is no confounder misclassification
to under-coverage when there is confounder misclassification. We illustrate in a study of blood pressure
lowering therapy, how the bias expressions can be used to inform a quantitative bias analysis to study the
impact of confounder misclassification, supported by an online tool.

This chapter is based on: L. Nab, R.H.H. Groenwold, M. van Smeden and R.H. Keogh, Quantitative bias analysis for
a misclassified confounder: A comparison between marginal structural models and conditional models for point
treatments, Epidemiology, 31 (6) (2020) 796–805. doi:10.1097/EDE.0000000000001239
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8.1. Introduction

The aim of many observational epidemiologic studies is to estimate a causal relation
between an exposure and an outcome, through careful control for confounding. In the
case of a point-treatment, that is estimating the effect of a treatment at a single time point
on a subsequent outcome, many methods exist that aim to estimate average treatment
effects. These include traditional conditional regression analysis as well as marginal
structural models estimated using inverse probability weighting (MSMs-IPW) [1, 2]. Unlike
conditional regression, MSMs extend to estimation of joint treatment effects over multiple
time points in longitudinal settings with time-dependent confounding [1, 3].

To obtain valid inference, MSMs-IPW, like other methods to control for confounding,
assume that confounding variables are measured without error, an assumption hardly
ever warranted in observational epidemiologic research [4–7]. A type of measurement
error is classification error, which occurs when categorical variables are misclassified. For
instance, smoking status (smoker vs non-smoker) is prone to classification error, but has
been used as a confounding variable in studies investigating dialysis on mortality [8] and
iron supplement use during pregnancy on anemia at delivery [9]. Another example of the
use of a potentially misclassified confounding variable is alcohol use during pregnancy (yes
vs no) in studies investigating associations between exposure to triptans during fetal life
and risk of externalizing and internalizing behaviors in children [10]. In all aforementioned
examples, MSMswere used to estimate the exposure–outcome relation, but the assumption
of error-free confounding variables is possibly violated andmay lead to bias in the treatment
effect estimator.

There is a substantial literature on bias due to measurement error in confounding
variables in conditional regression analyses [11–15], but the impact of measurement error
in confounding variables in causal inference methods, such as MSMs-IPW, has not received
much attention. One exception is a study by Regier et al. that showed by means
of a simulation study that measurement error in continuous confounding variables can
introduce bias in the ATE in a point-treatment study [16]. McCaffrey et al. proposed a
weighting method to restore the treatment effect estimator when covariates are measured
with error [17].

We provide a discussion of measurement error in a confounding variable. In
addition, we derive expressions that quantify the bias in the average treatment effect if
a dichotomous confounding variable is misclassified, focusing on a point-treatment study
with a continuous outcome. These expressions allow us 1) to quantify the bias due to
classification error in a confounding variable in MSMs-IPW, and to compare this with
the bias from a conditional regression analysis and 2) to inform quantitative bias analyses
[18–20]. We use simulation results to study the finite sample performance of a MSM-IPW
compared to that of conditional regression models if classification error in a confounding
variable is present. We illustrate our quantitative bias analysis in a study of the effect of
blood pressure lowering drugs on blood pressure.



8

155

8.2. Settings and impact of measurement error, notation and
assumptions

Let 𝐴 denote the treatment indicator and 𝑌 the outcome. Let there be a variable 𝐿 that
confounds the association between treatment and outcome and suppose that, instead of
confounding variable 𝐿, the error-prone confounding variable 𝐿∗ is observed. We consider
two settings in which measurement error in confounding variables may occur and discuss
the impact of measurement error in both settings.

Settings and impact of measurement error. The directed acyclic graph (DAG)
in Figure 8.1a illustrates setting 1. In this setting, treatment initiation is based on
the error-prone confounding variable. Consider for example a study investigating the
relation between the use of antidepressant drugs (𝐴) and the risk of a hip fracture (𝑌 )
[21]. Benzodiazepine use may be a confounding variable, but is prone to classification
error since only prescription information may be available and over-the-counter use is
often unknown. The clinician initiating the antidepressant drugs might not know their
patient’s over-the-counter use and initiates treatment based on the observed error-prone
benzodiazepine use (𝐿∗) instead of actual use (𝐿), as depicted in Figure 8.1a. Here,
conditioning on the error-prone 𝐿∗ will block the backdoor path from treatment 𝐴 to
outcome 𝑌 . Thus, it is sufficient to control for the error-prone confounding variable to
estimate the causal effect of treatment on outcome. This means that measurement error
in a confounding variable will not always lead to bias.

𝐿

𝐿∗𝜀

𝐴 𝑌
(a) Setting 1: treatment 𝐴 is initiated based
on the error-prone confounding variable 𝐿∗

𝐿

𝐿∗𝜀

𝐴 𝑌
(b) Setting 2: treatment 𝐴 is initiated based
on confounding variable 𝐿

Figure 8.1: Two settings of measurement error 𝜀 in variable 𝐿 that confounds the association between treatment
𝐴 and outcome 𝑌 illustrated in directed acyclic graphs

The DAG in Figure 8.1b illustrates setting 2, in which treatment initiation is based on 𝐿,
but only a proxy of 𝐿 is observed (𝐿∗). An example here might be a study investigating the
effect of influenza vaccination (𝐴) on mortality (𝑌 ) in the elderly population [22]. Frailty
(𝐿) possibly confounds the association between influenza vaccination andmortality. Frailty
is observed by a clinician, but only a proxy of frailty (𝐿∗) may be available in electronic
health records, as depicted in Figure 8.1b. Here, conditioning on 𝐿∗ will not fully adjust for
confounding by 𝐿, because conditioning on 𝐿∗ does not block the backdoor path from 𝐴 to
𝑌 via 𝐿.
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Notation and assumptions. We will now continue investigating the impact of
classification error in setting 2, by focusing on the setting where 𝐿 is a dichotomous
confounding variable and 𝑌 a continuous outcome. We use the potential outcomes
framework [23, 24]. Let 𝑌 𝑎=0 denote the outcome that an individual would have had if
treatment 𝐴 was set to 𝑎 = 0, and let 𝑌 𝑎=1 denote the outcome if treatment 𝐴 was set to
𝑎 = 1. We assume that 𝐿∗ is non-differentially misclassified with respect to the outcome
(𝐿∗ ⊧𝑌 |𝐿) and to the treatment (𝐿∗ ⊧𝐴|𝐿). Let 𝑝1 denote the sensitivity of 𝐿∗ and 1 − 𝑝0 the
specificity of 𝐿∗ (i.e., 𝑃(𝐿∗|𝐿 = 𝑙) = 𝑝𝑙 ). We also denote the probability of treatment given the
level of 𝐿 by 𝑃(𝐴 = 1|𝐿 = 𝑙) = 𝜋𝑙 and the prevalence of 𝐿 by 𝑃(𝐿 = 1) = 𝜆. Here, we assume
that 0 < 𝜆 < 1 since we are not interested in populations where 𝐿 is present or absent in
everyone. Finally, we assume no measurement error in exposure and outcome.

We also assume that the following causal assumptions are satisfied to recover the causal
effect of treatment on the outcome. Under the consistency assumption, we require that we
observe 𝑌 = 𝑌 𝑎=0 if the individual is not exposed, or 𝑌 = 𝑌 𝑎=1 if the individual is exposed
[25]. Further, we assume that the potential outcome 𝑌 𝑎 for an individual does not depend
on treatments received by other individuals and that there are not multiple versions of
treatment, also referred to as Stable-Unit-Treatment-Value-Assumption [26]. Additionally,
we assume conditional exchangeability, i.e., given any level of 𝐿, if the untreated group had
in fact received treatment, then their expected outcome would have been the same as that
in the treated, and vice versa [25]. In notation, 𝐴 ⊧𝑌 𝑎 |𝐿, for 𝑎 = 0, 1. Finally, we assume
𝜋𝐿 > 0 for 𝐿 = 0, 1 (positivity) [27].

For causal contrasts, we compare expected potential outcomes (i.e., counterfactual
outcomes) under the two different treatments. The average causal effect of the treatment
on the outcome is 𝛽 = E[𝑌 𝑎=1] − E[𝑌 𝑎=0]. Under the above defined assumptions, the
conditional effect of treatment 𝐴 on outcome 𝑌 can be defined through the following linear
model:

E[𝑌 𝑎 |𝐿] = E[𝑌 |𝐴 = 𝑎, 𝐿] = 𝛼 + 𝛽𝑎 + 𝛾𝐿. (8.1)

Estimates for 𝛽 in the abovemodel can be obtained by fitting a conditional regressionmodel.
Alternatively, the effect of treatment 𝐴 on outcome 𝑌 may be estimated by fitting a MSM:

E[𝑌 𝑎] = 𝛼msm + 𝛽𝑎, where 𝛼msm = 𝛼 + 𝛾E[𝐿]. (8.2)

Estimates for 𝛽 in the above model can be obtained by IPW estimation: by fitting a linear
regression model for 𝑌 on 𝐴 where the contribution of each individual is weighted by 1
over the probability of that individual’s observed treatment given 𝐿 [28], estimating the
marginal treatment effect. Since our focus is on linear models and we make the simplifying
assumption that the effect of 𝐴 on 𝑌 does not vary between strata of 𝐿, the conditional and
marginal treatment effects, denoted by 𝛽 in model (8.1) and (8.2), respectively, are equal.
This is not generally true for non-linear models due to non-collapsibility [28]. We assume
that the effect of 𝐴 on 𝑌 does not vary between strata of 𝐿, to derive bias expressions that
are easier to use in practice and require fewer parameters [29].

8.3. Quantification of bias due to classification error in a
confounding variable

Our aim is to study the effect of using the misclassified confounding variable 𝐿∗ in place
of the confounding variable 𝐿 in the conditional regression model or in the model for the
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weights used to fit the MSM on the average treatment effect estimator in the setting where
𝐿, not 𝐿∗, influences treatment initiation (setting 2 above).

Conditionalmodel. By the law of total expectation, the expected value of the outcome
𝑌 given treatment 𝐴 and 𝐿∗ is (see S8.1 section Conditional model for further detail),

E[𝑌 |𝐴 = 𝑎, 𝐿∗] = E𝐿|𝐴=𝑎,𝐿∗[E[𝑌 |𝐴 = 𝑎, 𝐿∗, 𝐿]] = {𝛼 + 𝛾𝜙00 + 𝛿𝑢0}
+ {𝛽 + 𝛾(𝜙10 − 𝜙00) + 𝛿𝑢𝐴}𝑎
+ {𝛾(𝜙01 − 𝜙00) + 𝛿𝑢𝐿∗ }𝐿∗,

where 𝜙𝑎𝑙∗ = 𝑃(𝐿 = 1|𝐴 = 𝑎, 𝐿∗ = 𝑙∗), 𝛿 = E[𝑌 |𝐴 = 1, 𝐿∗ = 1] = 𝛾(𝜙11 − 𝜙10 − 𝜙01 + 𝜙00) and
𝑢0, 𝑢𝐴, 𝑢𝐿∗ represent the coefficients of the linear model E[𝐴𝐿∗|𝐴, 𝐿∗] = 𝑢0 + 𝑢𝐴𝐴 + 𝑢𝐿∗𝐿∗,
modelling the mean of 𝐴 times 𝐿∗ (i.e., 𝐴𝐿∗) given 𝐴 and 𝐿∗ (see next paragraph for an
explanation of why these appear). The coefficient for treatment 𝐴 in the above model is
𝛽 + 𝛾(𝜙10 − 𝜙00) + 𝛿𝑢𝐴, and is therefore biased for the parameter of interest (i.e., 𝛽). By
rewriting 𝑢𝐴 in terms of 𝜆, 𝜋0, 𝜋1, 𝑝0 and 𝑝1 (see S8.1 section Conditional model), we find
that the bias due to classification error in 𝐿∗ in the average treatment effect in a conditional
regression model is,

Biascm(𝛽) = 𝛾(𝜙10 − 𝜙00) (1 − ℓ × { 𝜋 ∗1(1 − 𝜋 ∗1)
𝜋 ∗1(1 − 𝜋 ∗1)ℓ + 𝜋 ∗0(1 − 𝜋 ∗0)(1 − ℓ) })

+𝛾(𝜙11 − 𝜙01) (ℓ × { 𝜋 ∗1(1 − 𝜋 ∗1)
𝜋 ∗1(1 − 𝜋 ∗1)ℓ + 𝜋 ∗0(1 − 𝜋 ∗0)(1 − ℓ) }) , (8.3)

where 𝜋 ∗𝑙∗ = 𝑃(𝐴 = 1|𝐿∗ = 𝑙∗), ℓ = 𝑃(𝐿∗ = 1) (see S8.1 section Conditional model for a
derivation).

We focused on a model for 𝑌 conditional on 𝐴 and 𝐿∗ which includes only main effects
of 𝐴 and 𝐿∗, as this is typically done in practice when replacing 𝐿 with 𝐿∗. In fact, it can be
shown that when the model for 𝑌 given 𝐴 and 𝐿 includes only main effects of 𝐴 and 𝐿, the
implied correctly specified model for 𝑌 given 𝐴 and 𝐿∗ also includes an interaction between
𝐴 and 𝐿∗, explaining the appearance of 𝑢0, 𝑢𝐴 and 𝑢𝐿 in the above since the interaction
is not modeled. See S8.1 section Conditional model for the bias in case an interaction is
modelled.

MSM-IPW. A MSM-IPW proceeds by fitting a linear regression for outcome 𝑌 on
treatment 𝐴where the contribution of each individual is weighted by 1 over the probability
of that individual’s observed treatment given misclassified 𝐿∗ [28]. An estimator for the
average treatment effect 𝛽 is,

̂𝛽 =
∑𝑛

𝑖=1
1

𝑃(𝐴𝑖 |𝐿∗𝑖 )
(𝑌𝑖 − 𝑌𝑤)(𝐴𝑖 − 𝐴𝑤)

∑𝑛
𝑖=1

1
𝑃(𝐴𝑖 |𝐿∗𝑖 )

(𝐴𝑖 − 𝐴𝑤)2
where, 𝑌𝑤 = ∑𝑛

𝑖=1 𝑌𝑖/𝑃(𝐴𝑖 |𝐿∗𝑖)
∑𝑛

𝑖=1 1/𝑃(𝐴𝑖 |𝐿∗𝑖)

and, 𝐴𝑤 = ∑𝑛
𝑖=1 𝐴𝑖/𝑃(𝐴𝑖 |𝐿∗𝑖)

∑𝑛
𝑖=1 1/𝑃(𝐴𝑖 |𝐿∗𝑖)

.

It can be shown that E[ ̂𝛽] = 𝛽 + 𝛾(𝜙10 − 𝜙00)(1 − ℓ) + 𝛾(𝜙11 − 𝜙01)ℓ. Consequently, the bias
in the average treatment effect 𝛽 in a MSM-IPW is,

Biasmsm(𝛽) = 𝛾(𝜙10 − 𝜙00)(1 − ℓ) + 𝛾(𝜙11 − 𝜙01)ℓ. (8.4)
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We refer to S8.1 section Marginal structural model estimated using inverse probability
weighting for a derivation of the above formula.

8.3.1. Exploration of bias
To study the bias due to misclassification from the conditional model and MSM-IPW, we
explore bias expressions (8.3) and (8.4).

Null-bias. To confirm the derived bias expressions, we consider three trivial conditions
where bias in the average treatment effect is expected to be null, in line with general
understanding of causal inference [30]. (1) If there is no classification error in 𝐿∗, i.e.,
specificity is 1 (𝑝0 = 0) and sensitivity is 1 (𝑝1 = 1), it follows that 𝐿 corresponds to 𝐿∗,
irrespective of treatment level (i.e., 𝜙10 = 0, 𝜙00 = 0, 𝜙11 = 1 and 𝜙01 = 1). (2) If the true
relation between 𝐿 and 𝑌 is null (i.e., 𝛾 is zero, thus there is no arrow from 𝐿 to 𝑌 in Figure
(8.1b)). (3) If 𝐿 does not affect the probability of receiving treatment (i.e., 𝜋0 = 𝜋1, thus there
is no arrow from 𝐿 to 𝐴 in Figure (8.1b)), the probability that 𝐿 is 1 depends on the value
of 𝐿∗ but no longer on 𝐴 (i.e., 𝜙00 = 𝜙10 and 𝜙01 = 𝜙11). Bias is null under these conditions
for both models (MSM-IPW and conditional model). Since the bias expressions are strictly
monotonic, the bias in a MSM-IPW cannot be negative if the bias in the conditional model
is positive and vice versa (i.e., the bias will be in the same direction for both models).

Equal biases. The bias in the average treatment effect from the conditional regression
analysis is equal to that from the MSM-IPW if bias in both models is null (see above). We
also see that bias expressions (8.3) and (8.4) show that bias for the two methods is equal if
the term between curly brackets in equation (8.3) is equal to 1, which is the case if: (i) ℓ = 1;
(ii) 𝜋 ∗0 = 𝜋 ∗1; (iii) 𝜋 ∗0 = 1 − 𝜋 ∗1. If conditions i and/or ii are met, there is no bias in a MSM-IPW
nor in a conditional model. Under condition iii, bias is generally non-null (except if for
example 𝛾 = 0, see null-bias).

Sign and magnitude of bias. Figures 8.2-8.4 illustrate the contributions to bias in
the average treatment effect estimator due to misclassification components (sensitivity
and specificity) and due to confounding components (prevalence of confounding variable,
strength of association between confounding variable and treatment and outcome) in a
conditional model and a MSM-IPW, obtained by using the bias expressions.

Figure 8.2 shows that: (1) the bias is positive if both the association between 𝐿 and
treatment and, 𝐿 and outcome are positive (i.e., 𝜋1 > 𝜋0 and 𝛾 = 2, respectively), and (2)
the bias is greater if the difference between 𝜋1 and 𝜋0 is greater (i.e., if the strength of the
association between 𝐿 and treatment is greater). In contrast, the bias is negative if 𝜋1 < 𝜋0,
while 𝛾 is positive. In case 𝛾 = −2, Figure 8.2 is mirrored in 𝑦 = 0 and consequently, bias is
negative if 𝜋1 > 𝜋0 and positive if 𝜋1 < 𝜋0. An increment in 𝛾 will result in greater bias and
steeper curves in Figure 8.2. Figure 8.3 shows that the magnitude of the bias depends on the
prevalence of 𝐿. Further, it shows that bias is greater if the strength of association between 𝐿
and treatment is greater. Figure 8.4 shows that, generally, the bias is greater if 𝐿∗ has lower
specificity and sensitivity. Moreover, for a fixed sensitivity, bias is minimal if specificity
equals 1 and is maximal if 1 minus specificity equals sensitivity; by fixing specificity, bias
is minimal if sensitivity equals 1 and is maximal if sensitivity equals 1 minus specificity.
Figure 8.4 shows that the bias is greater if the strength of the association between 𝐿 and
treatment is greater. An increment in 𝛾 will result in greater bias and steeper curves in
Figure 8.4. An online application can be used to obtain bias plots for other combinations of
the parameters available at: https://lindanab.shinyapps.io/SensitivityAnalysis.

https://lindanab.shinyapps.io/SensitivityAnalysis
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Figure 8.2: Visualisation of the direction and magnitude of the bias in the average treatment effect in relation
to the prevalence of treatment among individuals with the confounding variable present. In this visualisation,
the confounding variable 𝐿 is misclassified with a sensitivity of 0.9 and specificity of 0.95. Consequently, the
average treatment effect estimated in a MSM-IPW or conditional regression model is biased, independent of
true average treatment effect. The prevalence of 𝐿 is 50% (i.e., 𝑃(𝐿 = 1) = 0.5). The direction and magnitude
of the bias depend on: (1) the strength and direction of the association between 𝐿 and treatment (denoted by
𝜋1 = 𝑃(treatment = 1|𝐿 = 1) and 𝜋0 = 𝑃(treatment = 1|𝐿 = 0), here set at 𝜋0 = 0.5 in the left-hand-side plot
and 𝜋0 = 0.8 in the right-hand-side plot); and (2) the strength and direction of the association between 𝐿 and the
outcome (denoted by 𝛾 in the text and here set at 𝛾 = 2). Larger values of 𝛾 will result in steeper curves; 𝛾 = −2
will mirror the graph in 𝑦 = 0.
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Figure 8.3: Visualisation of the magnitude of the bias in the average treatment effect in relation to the prevalence
of a confounding variable. In this visualisation, the confounding variable 𝐿 is misclassified with a sensitivity of
0.9 and specificity of 0.95. Consequently, the average treatment effect estimated in a MSM-IPW or conditional
regression model is biased, independent of true average treatment effect. The confounding variable is positively
associated with treatment (i.e., here 𝜋1 > 𝜋0, where 𝜋1 = 𝑃(treatment = 1|𝐿 = 1) and 𝜋0 = 𝑃(treatment = 1|𝐿 = 0)),
and outcome (denoted by 𝛾 in the text and here set at 𝛾 = 2). The magnitude of the bias depends on the prevalence
of the confounding variable (i.e., 𝑃(𝐿 = 1)). Larger values of 𝛾 will result in steeper curves.
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Figure 8.4: Visualisation of the magnitude of the bias in the average treatment effect in relation to specificity and
sensitivity of a misclassified confounding variable. In this visualisation, the prevalence of the confounding variable
𝐿 is 50% (i.e., 𝑃(𝐿 = 1) = 0.5), the association between 𝐿 and treatment (denoted by 𝜋1 = 𝑃(treatment = 1|𝐿 = 1)
and 𝜋0 = 𝑃(treatment = 1|𝐿 = 0)) and outcome is positive (denoted by 𝛾 in the text and here set at 𝛾 = 2).
Given these values, if 𝐿 is misclassified, the average treatment effect estimated in a MSM-IPW or conditional
regression model is biased, independent of true average treatment effect. The magnitude of the bias depends on
the specificity and sensitivity of 𝐿 and is maximal if sensitivity equals 1 minus specificity. The strength of the
association between 𝐿 and treatment is greater in the right-hand-side plot (𝜋0 = 0.25, 𝜋1 = 0.75) compared to the
left-hand-side plot (𝜋0 = 0.5, 𝜋1 = 0.75) and consequently, bias is greater. Larger values of 𝛾 will result in steeper
curves.
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8.3.2. Simulation study
We conducted a simulation study to study the finite sample properties of MSMs-IPW and
conditionalmodels if there is classification error in the confounding variable. Five-thousand
data sets were generated with sample sizes of 1,000 and 100, using the following data
generating mechanisms:

𝐿 ∼ Bern (𝜆) , 𝐴|𝐿 ∼ Bern (𝜋 (1−𝐿)0 𝜋𝐿1 ) ,
𝐿∗|𝐿 ∼ Bern (𝑝(1−𝐿)0 𝑝𝐿1) and, 𝑌 |𝐴, 𝐿 ∼ N(1 + 𝛽𝐴 + 𝛾𝐿, 1).

We studied five different scenarios, of which the parameters values can be found in Table
8.1. In all scenarios, the average treatment effect 𝛽 (estimand) is 1 and the association
between the confounding variable 𝐿 and outcome 𝑌 is 2 (i.e., 𝛾 = 2). In scenario 0, we
assume no classification error. In scenarios 1-4, we assume that 𝐿∗ has a specificity of 0.95
(i.e., 𝑝0 = 0.05) and a sensitivity of 0.90 (i.e., 𝑝1 = 0.9). In scenario 1, bias in the average
treatment effect 𝛽 is expected to be negative since the probability of receiving treatment
given that 𝐿 is not present is greater than receiving treatment given that 𝐿 is present, and
the association between 𝐿 and 𝑌 is positive (i.e., 𝜋0 > 𝜋1 and 𝛾 = 2). In contrast, in scenario
2 and 3, bias in the average treatment effect is expected to be positive, since 𝜋0 < 𝜋1 and
𝛾 = 2. Further, after investigation of Figure 8.3, we expect that bias in the average treatment
effect estimated in a conditional model is greater than that in a MSM-IPW in scenario 2
and 3. Finally, in scenario 4, we expect that bias in the average treatment effect from the
conditional model is equal to that in a MSM-IPW.

Model estimation and performance measures. We obtained the average treatment
effect 𝛽 (estimand) by fitting a conditional model using conditional regression and by
fitting a MSM-IPW, both using the misclassified 𝐿∗ instead of 𝐿 from the data generating
mechanism. For the MSM-IPW analysis we used the R package ipw [31] [32]. Performance
of both models was evaluated in terms of the bias, the mean squared error of the estimated
treatment effect (MSE), the percentages of 95% confidence intervals that contain the
true value of the estimand (coverage), the empirical standard deviation of the estimated
treatment effects (empSE) andmeanmodel based standard error of the estimated treatment
effect. We estimated robust model based standard errors of the average treatment effect
in a MSM-IPW using the R package survey [33]. We calculated Monte Carlo standard
errors for all performance measures [34], using the R package rsimsum [35]. Additionally,
we calculated the theoretical bias of the average treatment effect in both methods based
on the bias expressions (8.3) and (8.4).

Table 8.1: Values of the parameters in the five different simulation scenarios

Scenario Parameters
Number 𝑝0 𝑝1 𝜆 𝜋0 𝜋1 𝛽 𝛾
0 0 1 0.50 0.50 0.75 1 2
1 0.05 0.90 0.50 0.90 0.45 1 2
2 0.05 0.90 0.80 0.25 0.75 1 2
3 0.05 0.90 0.80 0.50 0.75 1 2
4 0.05 0.90 0.45 0.50 0.75 1 2
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Results. Table 8.2 shows the results of the simulation study. Bias found in the
simulation study corresponds to the theoretical bias derived from the bias expressions.
The empirical standard deviation of the average treatment effect estimates (empSE) from
the MSM-IPW is equal to or greater than that from the conditional model. Yet, in the
scenarios where bias in the average treatment effect in theMSM-IPWwas smaller than bias
in the conditional model (scenarios 2 and 3), empSE of both methods was equal, and hence,
MSE is smaller for one method if also bias is smaller. Furthermore, the (robust) model
based standard errors of the average treatment effect in a MSM-IPW are conservative
and greater than the empirical standard errors, since the uncertainty in estimating the
treatment weights is not taken into account. Allowing for the estimation of the weights
will shrink the standard errors [2, 28]. We chose not to use a less conservative standard
error estimation for MSM-IPW, such as bootstrapping, since our goal was to frame this
simulation as investigating the properties of the commonly used MSM-IPW estimation
procedure. Consequently, confidence intervals of the treatment effect obtained in a
MSM-IPW are generally wider and coverage of the true treatment effect is higher compared
to a conditional model, ranging from over coverage if there is no classification error to
smaller under coverage when there is classification error.

8.4. Illustration: quantitative bias analysis
Quantitative bias analysis provides a tool to incorporate uncertainty in study results due
to systematic errors [18, 20]. Using an example study of blood pressure lowering therapy,
we illustrate how the bias expressions (8.3) and (8.4) can be used to perform a quantitative
bias analysis for misclassification of a confounding variable.

Application. For our illustration we use data of the National Health And Nutritional
Examination Survey (NHANES) [36, 37], more details can be found in the supplementary
material section S8.2. Specifically, we study the effect of diuretic use (𝐴 = 1) in
comparison to beta blocker use (𝐴 = 0) on systolic blood pressure (𝑌 ) using two
approaches: by inverse weighting with the propensity for diuretic or beta blocker use
given self-reported categorical body mass index (BMI) (𝐿∗), and using a conditional linear
regression with adjustment for self-reported categorical BMI. For this illustration, we
categorize self-reported BMI into two distinct categories: underweight/normal weight (BMI
< 25 (𝐿∗ = 0)) and overweight/obese (BMI ≥ 25 (𝐿∗ = 1)). However, we stress that one should
preferably not categorise BMI in most practical applications [38]. Moreover, we assume
that dichotomizing self-reported BMI does not introduce differential misclassification [7].

We assume that blood pressure lowering therapy is initiated based on the true BMI
(𝐿) instead of the observed self-reported BMI (setting 2, Figure 8.1b). Further, we consider
BMI the only confounding variable, and treatment and outcome to be measured without
error, which is a simplification of reality. Additionally, we assume that the classification
error in self-reported BMI category is non-differential for the subject’s treatment or blood
pressure (given true BMI category). Expert knowledge is needed to inform this assumption.
To quantify how large the bias in the average treatment effect is expected to be due to
classification error in self-reported BMI category, we perform a quantitative bias analysis
using the bias expressions (8.3) and (8.4).

Average treatment effect. Table 8.3 shows the average treatment effect of diuretics
use in comparison to beta blocker use on mean systolic blood pressure. In a MSM-IPW,
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Table 8.3: Average treatment effect of diuretics use compared to beta blocker use on mean systolic blood pressure
in NHANES [36, 37]. CI indicates confidence interval.

Model Effect Size (95% CI)
Unadjusted −4.03(−6.30; −1.76)
Marginal Structural Modela −3.52(−5.74; −1.21)
Conditional Modelb −3.48(−5.76; −1.27)
a Estimated in a marginal structural model, by inverse weighting with the
propensity for diuretic or beta blocker use given self-reported categorised
body mass index (BMI).
b Estimated in a conditional regression model with adjustment for
self-reported categorical BMI.

we estimated an average treatment effect (95 % CI) of −3.52 (−1.21; −5.74). In a conditional
regressionmodel, we estimated an average treatment effect (95 %CI) of −3.48 (−1.27; −5.76).

Quantitative bias analysis. To inform the quantitative bias analysis, we need to
make assumptions on the sensitivity and specificity of the self-reported BMI as well as
that classification errors are non-differential with respect to blood pressure and treatment.
For the purpose of this illustration, we speculate ranges for the sensitivity and specificity of
self-reported BMI category of 0.90 to 0.98. In practice, these parameters should be informed
by reports in the literature and/or a researcher’s expert experience. Researchers may also
decide to investigate how extreme the misclassification (measured using sensitivity and
specificity) would need to be to change the conclusions of their study. We refer to the Shiny
application (introduced in the subsequent section) for other choices for the sensitivity and
specificity of self-reported BMI category.

By uniformly sampling from the range of plausible values of 𝑝0 and 𝑝1 and using the bias
expressions (8.3) and (8.4), a distribution of possible biases is obtained (see supplementary
material section S8.2 for further details). The solid line in Figure 8.5 shows the distribution
of bias in a MSM-IPW. Mean bias is -0.31 and median bias is -0.30 (interquartile range -0.40
to -0.20). We also considered sampling 𝑝0 and 𝑝1 from a trapezoidal (with modes at one
third and two thirds between the minimum and maximum) or a symmetrical triangular
distribution. Sampling from these distributions results in mean bias approximately equal
to when uniform sampling is applied, but with less spread (panels B and C in Figure 8.5).
This result suggests that the results in Table 8.3 are not affected much by the classification
error in self-reported BMI category. In the NHANES, anthropometric measures were also
taken by trained technicians. See S8.2 for the average treatment effect when BMI measures
taken by trained technicians were used instead of self-reported BMI measures.

8.5. Shiny application: an online tool
We developed an online tool for creating bias plots (Figure 8.2-8.4) and performing
quantitative bias analyses (illustrated in the previous section), available at
https://lindanab.shinyapps.io/SensitivityAnalysis. The bias plots can be used to
predict the implications of classification error in a confounding variable in specific
study settings by varying: the strength of association between the confounding variable
and treatment and between the confounding variable and outcome; prevalence of the
confounding variable; specificity and sensitivity of the misclassified confounding variable.
The quantitative bias analysis can be used for studying the impact of classification error

https://lindanab.shinyapps.io/SensitivityAnalysis
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Figure 8.5: Density of predicted bias due to classification error in self-reported BMI category in NHANES [37].
Bias in the average treatment effect of diuretics use compared to beta blocker use on mean systolic blood pressure
by inverse weighting with the propensity for diuretic or beta blocker use given self-reported categorical BMI
(MSM-IPW), and using a conditional linear regression with adjustment for self-reported categorical BMI. The
specificity and sensitivity of self-reported BMI category range from 0.90 to 0.98 and are sampled from a uniform
distribution, trapezoidal (with modes on one-third and two-third), and symmetrical triangular distribution.

in a confounding variable at the analysis stage of a study, and to investigate how sensitive
conclusions are to the assumption of no classification error. These bias plots can also be
used to inform decisions about measurement methods or choice of variables to be extracted
in the planning stage of studies.

8.6. Discussion
Inverse probability weighting and conditional models are both important and frequently
used tools to adjust for confounding variables in observational studies. In this article,
we derived expressions for the bias in the average treatment effect in a MSM-IPW and
a conditional model. These expressions can inform quantitative bias analyses for bias due
to a misclassified confounding variable.

Quantitative bias analysis of misclassified confounding variables is one example of
quantitative bias analyses for observational epidemiologic studies. Several approaches exist
to assess sensitivity of causal conclusions to unmeasured confounding [29, 39, 40]. These
aim to quantify the impact of violations of the assumption of no unmeasured confounding,
while our approach aims to quantify the impact of violations of the assumption that all
confounding variables are measured without error.

Several methods have been proposed to adjust for measurement error in covariates
in MSMs-IPW. Pearl developed a general framework for causal inference in the presence
of error-prone covariates, which yields weighted estimators in the case of a dichotomous
confounding variable measured with error [41]. The framework relies on a joint distribution
of the outcome and the confounding variable. Conversely, the weighting method proposed
by McCaffrey et al. does not require a model for the outcome [17]. Additionally, regression
calibration [42], simulation-extrapolation [43, 44] and multiple imputation [45] have been
proposed for correcting for measurement error in covariates of MSMs. These methods
assume that the measurement error model is known, which may often be unrealistic. In
this context it is also important to mention previous studies of the impact of measurement
error in the exposure or the endpoint in MSMs, which has been studied by Babanezhad et
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al. [46] and Shu et al. [47], respectively.
If treatment is allocated based on an error-prone confounding variable, the treatment

effect will not be biased (see DAG in Figure 8.1a). However, investigators should be careful
in concluding that covariate measurement error will not affect their analysis. Suppose
that there is an unmeasured variable 𝑈 that acts as a confounding variable between the
error-prone covariate 𝐿∗ and treatment𝐴. Conditioning on 𝐿∗ will then open a path between
𝐴 and 𝐿 via 𝑈 and thus confound the relation between 𝐴 and 𝑌 .

This article considered classification error in a dichotomous confounding variable
in a point-treatment study with a continuous outcome. The same principles apply to
measurement error in a categorical or continuous confounding variable or when multiple
confounding variables are considered, although more elaborate assumptions should then
be made [48]. Moreover, we assumed that the relation between exposure and outcome does
not vary between strata of the confounding variable, i.e. that there is no treatment effect
modification. Future research could extend our bias expressions by relaxing this simplifying
assumption, therefore extending our results to more general settings.

MSMs-IPW are increasingly applied to longitudinal data to estimate the joint effects
of treatment at multiple time points on a subsequent outcome, including time-dependent
outcomes, addressing the problem of time-dependent confounding [1, 3]. There has
been little work to understand or correct for the impact of misclassified or mismeasured
confounding variables in this more complex setting. Our results extend directly to the
time-dependent setting when the aim is to estimate the effect of a current treatment on
a time-dependent outcome measured at the next time point [49]. An area for future work
is to extend our results to the setting in which the aim is to estimate the joint effects of
treatment at multiple time points. and to the time-dependent setting with time varying
treatments and confounding variables. An additional factor to consider in the time-varying
setting is the impact of stabilized vs unstabilized weights on the bias if both numerator and
denominator of the stabilized weights involve conditioning on an error-prone covariate.

The bias expressions derived in this paper can be used to assess bias due to classification
error in a dichotomous confounding variable. If classification error in confounding variables
is suspected, a quantitative bias analysis provides an opportunity to quantitatively inform
readers on the possible impact of such errors on causal conclusions.
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