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7
Sensitivity analysis for random

measurement error using regression
calibration and

simulation-extrapolation
Sensitivity analysis for random measurement error can be applied in the absence of validation data by
means of regression calibration and simulation-extrapolation. These have not been compared for this
purpose. A simulation study was conducted comparing the performance of regression calibration and
simulation-extrapolation for linear and logistic regression. The performance of the two methods was
evaluated in terms of bias, mean squared error (MSE) and confidence interval coverage, for various
values of reliability of the error-prone measurement (0.05–0.91), sample size (125–4,000), number of
replicates (2–10), and R-squared (0.03–0.75). It was assumed that no validation data were available
about the error-free measures, while correct information about the measurement error variance was
available. Regression calibration was unbiased while simulation-extrapolation was biased: median bias
was 0.8% (interquartile range (IQR): −0.6;1.7%), and −19.0% (IQR: −46.4;−12.4%), respectively. A small
gain in efficiency was observed for simulation-extrapolation (median MSE: 0.005, IQR: 0.004;0.006) versus
regression calibration (median MSE: 0.006, IQR: 0.005;0.009). Confidence interval coverage was at the
nominal level of 95% for regression calibration, and smaller than 95% for simulation-extrapolation (median
coverage: 85%, IQR: 73;93%). The application of regression calibration and simulation-extrapolation for a
sensitivity analysis was illustrated using an example of blood pressure and kidney function. Our results
support the use of regression calibration over simulation-extrapolation for sensitivity analysis for random
measurement error.

This chapter is based on: L. Nab and R.H.H. Groenwold, Sensitivity analysis for random measurement
error using regression calibration and simulation-extrapolation, Global Epidemiology 3 (2021) 100067.
doi:10.1016/j.gloepi.2021.100067
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7.1. Introduction
Measurement error is common in biomedical research but often ignored [1, 2]. When
ignored, measurement error can lead to considerable biases in exposure-outcome
associations [3]. Random measurement error in the exposure variable, also known as
‘classical’ measurement error, occurs when themeasured exposure is distributed around the
true exposure with independent error and, is common in various domains of epidemiology
[4–6]. Random measurement error in an exposure variable introduces bias in the
exposure-outcome association, which is sometimes referred to as attenuation bias [7] or
regression dilution bias [8, 9].

Variousmethods formeasurement error correction are available [10–18], yet application
of these methods is rare in biomedical research [3]. One possible barrier is the necessity of
for instance validation data, which are often unavailable [5]. Validation data can be used
to estimate the measurement error model and its parameters, and subsequently used for
measurement error correction.

In the absence of validation data, regression calibration [19, 20] and
simulation-extrapolation [21], among other, can be applied to correct for random
exposure measurement error. Both methods only require assumptions about the variance
of the random measurement error, for example based on literature or expert knowledge.
Regression calibration in the absence of validation data is available in the R [22] package
mecor for measurement error correction [23], that implements the regression calibration
described by Rosner et al. [24]. Alternatively, simulation-extrapolation is easy to use due
to its implementation in the R package simex [25] and the simex procedure [26] in Stata
[27].

Simulation-extrapolation and regression calibration have been compared in simulation
studies for scenarios where replicate measures of the error-prone exposure were available
[5, 28, 29]. The studies by Perrier et al. [5], Batistatou et al. [28] and Fung et al.
[29] were consistent and showed that, regression calibration and simulation-extrapolation
reduced bias compared to when no measurement error correction was applied or when
the replicate exposure measures were pooled. It was also shown that application of
simulation-extrapolation generally produced more biased effect estimates than regression
calibration, especially when the reliability of the error-prone measure was low.

Perrier et al. [5] and Batistatou et al. [28] studied a univariable linear regression in
a limited number of scenarios, e.g., large sample sizes, and limited range of reliability
of the error-prone measure. Fung et al. [29] studied a multivariable logistic regression
in a limited number of scenarios, e.g., not varying sample size and a limited range of
reliability. Further investigation is needed of the performance of regression calibration
and simulation-extrapolation in more complex settings, as typically found in epidemiologic
research (e.g., multivariable linear and logistic regression, varying sample size and levels
of reliability). Moreover, since the previous simulation studies focused on settings where
replicate measures were available, we aim to research how their results translate to settings
where no replicate measures, but only an estimate of the measurement error variance
is available. The quantification of the performance of the two methods in this broader
range of settings is used as the input for a framework guiding the application of sensitivity
analysis for random measurement error.

This chapter is structured as follows. Section 7.2 reviews and applies regression
calibration and simulation-extrapolation by using two motivating examples of a
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linear regression and logistic regression where the exposure is prone to error. In
section 7.3, a simulation study is described comparing regression calibration and
simulation-extrapolation for linear regression and logistic regression, and results from the
simulation study are shown. Section 7.4 introduces a framework for conducting sensitivity
analysis, also known as quantitative bias analysis [30], for random measurement error
by means of regression calibration and simulation-extrapolation. We conclude with a
discussion of our results and recommendations in section 7.5.

7.2. Review and motivating example
When an exposure variable is measured with random measurement error, the
exposure-outcome association is biased. In a univariable model with a continuous outcome,
under the assumption of random measurement error, the uncorrected effect estimate is
biased by a factor equal to the variance of the true measure divided by the sum of the
variance of the true measure and the measurement error variance. This is sometimes
referred to as the ‘attenuation factor’ because the variance of the true measure plus the
measurement error variance is always greater than the variance of the true measure alone
[7]. For a linear regression, this can be expanded to the multivariable case by conditioning
on the covariates in the multivariable model. For a logistic regression, the bias induced by
random measurement error cannot be quantified exactly [13]. Kuha [31] shows that under
the assumption that the effect of the exposure on the outcome is ‘small to moderate’ and/or
the measurement error is ‘small’, the uncorrected effect estimate in a logistic regression is
biased approximately by the attenuation factor. We refer to Kuha for a detailed discussion.

7.2.1. Review of regression calibration and simulation-extrapolation
In a linear regression or logistic regression, the random measurement error in an exposure
can be corrected by application of regression calibration and simulation-extrapolation.
Regression calibration starts by estimating the uncorrected effect of the error-prone
measure on the outcome (in a multivariable model, given the covariates). Subsequently, the
uncorrected estimate is multiplied by the inverse of the attenuation factor: the estimated
variance of the error-prone exposure (given the covariates), divided by the estimated
variance of the error-prone exposure (given the covariates) minus the measurement error
variance. The measurement error variance can be estimated by using e.g., replicate
measurements, by estimating the within individual variance and averaging over all
individuals. Alternatively, the measurement error variance could be informed by e.g.,
external data or expert knowledge.

Simulation-extrapolation consists of two steps. In the simulation step, extra
measurement error is added to the error-prone exposure. The size of this extra
measurement error is typically 0.5, 1, 1.5 and 2 times themeasurement error variance. Using
these simulated exposure measurements with extra addedmeasurement error, the outcome
model is estimated. This is repeated 100 times for each value of the extrameasurement error
variance and the newly obtained estimates are averaged. Then, in the extrapolation step, a
model (e.g., linear, quadratic) is fitted through the effect estimates for the varying sizes of
the measurement error. The corrected effect estimate is then obtained by extrapolating the
fitted model to the situation where the measurement error is equal to 0. For a visualisation
of simulation-extrapolation, see e.g. Keogh et al. [3].
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7.2.2.Motivating example
Hereafter, regression calibration and simulation-extrapolation to correct for random
measurement error are demonstrated for linear regression and logistic regression, using an
example about the association between systolic blood pressure and kidney function (serum
creatinine) and an example about the association between sodium intake and hypertension,
respectively.

Example 1: Linear regression of blood pressure and kidney function in pregnant women
For the first example, we used data of retrospective records of all women who attended a
tertiary maternity hospital pregnancy day assessment clinic over a 6-month period in 2014
in Australia [32]. Care always included serial, manual blood pressure measurements every
30 min by registered midwives using aneroid sphygmomanometers [32]. Serum creatinine
and demographic data were obtained using routinely collected data. One woman with a
serum creatinine level lower than 10 𝜇mol/L was excluded from the analysis.

First, the association between systolic blood pressure and serum creatinine was
determined by only using the systolic blood pressure measurement obtained after 30
min. The association was adjusted for age. We found that an increase of 10 mmHg in
systolic blood pressure was associated with a 1.18 𝜇mol/L (CI: 0.14 - 2.23) increase in serum
creatinine (Table 7.1). In this analysis, the random measurement error in the single systolic
blood pressure measurement was not taken into account. Using the four consecutive blood
pressure measurements (obtained after 30, 60, 90 and 120 minutes), it was found that the
within individual variance of the systolic blood pressure measures was on average 48.3
mmHg, equal to a reliability of 0.6. The within individual variance of 48.3 mmHg was
subsequently used to correct for the random measurement error in the single systolic blood
pressure measurement using regression calibration and simulation-extrapolation, while
adjusting for age. Using regression calibration, we found that an increase of 10 mmHg
was associated with a 2.04 𝜇mol/L (CI: 0.22;4.23) increase in serum creatinine (Table 7.1).
Using simulation-extrapolation, we found that an increase of 10mmHgwas associated with
a 1.67 𝜇mol/L (CI: 0.15;3.29) increase in serum creatinine (Table 7.1).

Example 2: Logistic regression of sodium intake and hypertension in adults
For the second example, we used data of the 2015-2016 cycle of the National Health
And Nutrition Examination Survey [33]. Given natural variation of sodium intake
within individuals, a single measurement of sodium intake often does not reflect the
true level of sodium intake. In the NHANES, two sodium intake measurements were
taken using a 24-hour recall. The first dietary recall interview was collected in-person
and the second interview was collected by telephone 3 to 10 days later. Participants’
hypertension status was based on a combination of their self-reported history of any
diagnosis of hypertension and self-reported use of prescribed hypertension medication.
Demographic information was collected using the family and sample person demographics
questionnaires in the home, by trained interviewers. Weight and height were measured
by trained health professionals. For this analysis, participants between 18-80 years were
included. Additionally, all participants with a body mass index (BMI) higher than 55 and a
sodium intake of more than 10 gram per day were excluded from the analysis.

First, the association between sodium intake and hypertension was determined by
only using the first sodium intake measurement. The association was adjusted for BMI
and age. It was found that an increase of 1 gram in sodium intake was associated with
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a 1.04 (95% CI: 1.00;1.09) times increase in the odds for hypertension. In the NHANES
data, the within individual variation of sodium intake was on average 1.7 gram, which was
obtained by using the two consecutive sodium intake measures, resulting in a reliability of
0.4. The within individual variance of 1.7 was subsequently used to correct for the random
measurement error in the first sodium intake measure using regression calibration and
simulation-extrapolation, while adjusting for age. Using regression calibration, we found
that an increase of 1 gram in sodium intake was associated with a 1.12 (95% CI: 0.99;1.27)
increase in the odds for hypertension (Table 7.1). Using simulation-extrapolation, we found
that an increase of 1 gram in sodium intake was associated with a 1.07 (95% CI: 1.00;1.16)
increase in the odds for hypertension (Table 7.1).

Table 7.1: Effect estimates (95% confidence intervals) of the association between blood pressure (systolic blood
pressure, per 10 mmHg) and kidney function (serum creatinine, 𝜇mol/L) (linear regression, example 1) and the
association between sodium intake (per gram) and hypertension (odds ratio obtained from a logistic regression,
example 2). The uncorrected effect estimates are obtained by using the first measurement only, the corrected
estimates are obtained by using the three consecutive blood pressure measurements (example 1) and the second
consecutive sodium intake measurement (example 2).

Example Uncorrected Regression Simulation-
Calibration extrapolation

Systolic blood 1.18b(0.14;2.23) 2.04 (0.22;4.23) 1.67 (0.15;3.29)
pressure
and kidney
function
Sodium intake 1.04c(1.00;1.09) 1.12 (0.99;1.27) 1.07 (1.00;1.16)
and
hypertensiona

Estimates were obtained from the pregnancy day and assessment clinic study (systolic blood pressure
and kidney function, reliability of the error-prone blood pressure measurement: 0.6) [32] and the
national health and nutrition examination survey (sodium intake and hypertension, reliability of the
error-prone sodium intake measurement: 0.4) [33]
a Odds ratio
b Estimate is corrected for age, but not for the measurement error in systolic blood pressure
c Estimate is corrected for age and body mass index, but not for the measurement error in sodium
intake

7.3. Simulation study
To investigate the observed difference between the regression calibration corrected and
simulation-extrapolation corrected analysis in our motivating examples above, a simulation
study was conducted to study the relative performance of regression calibration and
simulation-extrapolation in a linear regression model and a logistic regression model. The
relative performance was studied in terms of bias, mean squared error, and confidence
interval coverage of the true effect. Subsection Methods provides a general description
and motivation of the scenarios studied, and an explanation of the specific parameters set
in our simulation study. Subsection Results presents the results of our simulation study.
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Table 7.2: Simulation study settings linear regression

Scenarios Parameters of Data Generating Mechanisma
𝜏2 𝑛 𝑘 𝜙 𝛾

Base 30 500 3 100 0
Reliabilityb 200; 100; 50; 25; 500 3 100 0

20; 15; 10; 5
Sample Size 30 125; 250; 3 100 0

1,000; 10,000
Number of 30 500 2; 5; 10 100 0
R-squaredc 30 500 3 20; 5; 1 0
Covariate 30 500 3 100 1; 4; 8
Dependencyd

a 𝜏 2 : measurement error variance of the error-prone blood pressure measurement; 𝑛: number of observations in
the main study; 𝑘: number of replicate error-prone measurements; 𝜎 2 : residual variance of the outcome model;
𝛾 : association between blood pressure and age. The attenuation in the effect of blood pressure on creatinine due
to random measurement error is equal to 50/(50 + 𝜏 2)
b Reliability is equal to (25𝛾 2 + 50)/(25𝛾 2 + 50 + 𝜏 2)
c R-squared is equal to 1 − 𝜎 2/(0.4 × 50 + 10 + 𝜎 2)
d The effect of blood pressure on creatinine when age is not included in the model (crude model) is equal to 0.2 +
5𝛾/(25𝛾 2 + 50)

7.3.1.Methods
Linear regression. The relative performance of regression calibration versus
simulation-extrapolation for linear regression was studied before by Perrier et al.
[5] and Batistatou et al. [28]. We aimed to extend these two former simulation studies
by investigating the relative performance in scenarios other than those studied before.
Perrier et al. and Batistatou et al. assumed relatively large sample sizes (i.e., 3,000
and 1,000, respectively), only four different values for the reliability of the error-prone
exposure (i.e., 0.2 and 0.6 in the study by Perrier et al. and 0.2, 0.5 and 0.8 in the study
by Batistatou et al.) and a small coefficient of determination for the exposure-outcome
model (i.e., 0.004 and 0.0625, respectively). In addition, Perrier et al. studied the effect of
increasing the number of replicate measures on the performance of regression calibration
and simulation-extrapolation by pooling the replicate measurements. Moreover, Perrier
et al. and Batistatou et al. only examined models with a single independent variable.
Therefore, our simulation study focused on multivariable models, small sample sizes (i.e.,
smaller or equal to 1,000) and relatively large reliability of the error-prone measurement
(i.e., greater or equal to 0.625). In addition, the effect of a change in the coefficient of
determination of the outcome model was tested. Furthermore, increasing the number of
replicate measurements available was studied, without having the advantage of pooling
the replicate measurements in our analysis.

Data generating mechanism linear regression. Inspired by our example of blood pressure
and kidney function in pregnant women [32] described in section Motivating example,
we assumed the following data generating mechanisms for age, blood pressure (BP),
error-prone blood pressure (BP∗) and creatinine:

Age ∼ 𝒩 (32, 25), BP|Age ∼ 𝒩 (120 + 𝛾Age, 50), BP∗|BP ∼ 𝒩 (BP, 𝜏2),
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and Creatinine|BP, Age ∼ 𝒩 (30 + 0.2BP + 0.2Age, 𝜎2).
The above defined data generating mechanism defines that the error-prone blood

pressure (BP∗) has random measurement error with measurement error variance equal to
𝜏2. In our simulation study, a ‘base scenario’ was assumed and in the consecutive scenarios
studied, we changed one of the three parameters in the data generating mechanisms (i.e.,
𝛾 , 𝜏2 or 𝜎2), the number of observations (i.e., 𝑛), or the number of replicate measures (i.e., 𝑘)
(see Table 7.2). For each scenario, 5,000 datasets were generated. The parameters settings
of the base scenario were inspired by our example of blood pressure and kidney function
in pregnant women [32]. In the base scenario, 𝑛 = 500, 𝛾 = 0, 𝜏2 = 30 and 𝜎2 = 100 (Table
7.2). We assumed that three replicate measures of the error-prone blood pressure measure
were obtained in all individuals. From the parameter settings in the base scenario, it follows
that the reliability of the error-prone measure is 0.625. Further, in the base scenario, the
R-squared of the outcome model is 0.03, and the attenuation due to measurement error
of the effect of the error-prone blood pressure on creatinine (given age) is equal to the
reliability, i.e., 0.625.

In each generated data set, the uncorrected effect was estimated using the first replicate
measurement only. Subsequently, the corrected effect was estimated by application
of regression calibration and simulation-extrapolation using the R package mecor [23]
and simex [25], respectively. The measurement error variance was estimated using the
replicate measures. Ninety-five percent CI’s of the corrected effects were constructed using
bootstrap resampling. Performance of the three different analyses were evaluated in terms
of bias, mean squared error (MSE), and the proportion of 95% CIs that contained the true
value of the estimand (coverage). Monte Carlo standard errors (MCSE) were calculated for
all performance measures [34], using the R package rsimsum [35]. All code used for the
simulation study is publicly available via https://github.com/LindaNab/simexvsmecor.

Logistic regression. The relative performance of regression calibration and
simulation-extrapolation for logistic regression was studied before by Fung et al. [29]. Fung
et al. assumed a relatively small sample size (i.e., 500) and relatively high reliability (i.e.,
0.6 and 0.7). In our simulation study, we focus on parameters identical to the parameters
varied in linear regression: reliability, sample size, number of replicates, pseudo R-squared
(Nagelkerke) and covariate dependency.

Data generating mechanism logistic regression. Inspired by our example of sodium intake
and hypertension in adults [33] described in section Motivating example, we assume the
following data generating mechanisms for age, sodium intake (Na), error-prone sodium
intake (Na∗) and hypertension:

Age ∼ 𝒰[18,80], Na|Age ∼ 𝒩 (4 + 𝛾Age, 1), Na∗|Na ∼ 𝒩 (Na, 𝜏2),
and Hypertension|Na, Age ∼ ℬ(1, 1/(1 + 𝑒−𝑝)), where 𝑝 = −7 + 0.1Na + 𝜙Age.
The above defined data generating mechanism defines that the error-prone sodium

intake (Na∗) has random measurement error with measurement error variance equal to 𝜏2.
In our simulation study, a ‘base scenario’ was assumed and in the consecutive scenarios
studied, we changed one of the three parameters in the data generating mechanisms (i.e.,
𝜏2, 𝜙 or 𝛾 ), the number of observations (i.e., 𝑛), or the number of replicate measures (i.e., 𝑘)

https://github.com/LindaNab/simexvsmecor
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Table 7.3: Simulation study settings logistic regression

Scenarios Parameters of Data Generating Mechanisma
𝜏2 𝑛 𝑘 𝜙 𝛾

Base 2 4,000 2 0.1 0
Reliabilityb 20; 10; 4; 1.5; 4,000 2 0.1 0

1; 0.5; 0.25; 0.1
Sample Size 2 500; 1,000; 2 0.1 0

2,000; 10,000
Number of 2 4,000 3; 5; 0.1 0
Replicates 10
Pseudo 2 4,000 2 0.06; 0.08; 0
R-squaredc 0.2
Covariate 2 4,000 2 0.1 0.01; 0.1;
Dependencyd 0.2

a 𝜏 2 : measurement error variance of the error-prone sodium intake measurement; 𝑛: number of observations in
the main study; 𝑘: number of replicate error-prone measurements; 𝜙: association between hypertension and age
(given sodium intake); 𝛾 : association between sodium intake and age. The attenuation in the effect of sodium
intake on hypertension due to random measurement error is equal to 1/(1 + 𝜏 2)
b Reliability is equal to (𝛾 2(1/12)(80 − 18)2 + 1)/(𝛾 2(1/12)(80 − 18)2 + 1 + 𝜏 2)
c Computational calculations show Nagelkerke R-squared is equal to 0.1, 0.3 and 0.7 for 𝜙 equal to 0.06, 0.08 and
0.2, respectively. In the base scenario, Nagelkerke R-squared is equal to 0.4.
d Computational calculations show that the effect of sodium intake on hypertension when age is not included in
the model (crude model) is equal to 0.3, 0.8 and 0.6 for 𝛾 equal to 0.01, 0.1 and 0.2, respectively. In the base scenario,
the effect of sodium intake on hypertension in the crude model is 0.06. Changing 𝛾 affects Nagelkerke R-squared,
for 𝛾 equal to 0.1 and 0.2, Nagelkerke R-squared is 0.5. For 𝛾 equal to 0.01, Nagelkerke R-squared is comparable
to the base scenario (0.4).

(see Table 7.3). For each scenario, 5,000 datasets were generated. The parameters settings
of the base scenario were inspired by our example of sodium intake and hypertension in
adults [33]. In the base scenario, sample size was 4000, 𝜏2 = 2, 𝜙 = 0.1 and 𝛾 = 0 (Table 7.3).
Furthermore, we assumed that two replicate measures of the error-prone sodium intake
measure were obtained in all individuals. From the parameter settings in the base scenario,
it follows that the reliability of the error-pronemeasure is 0.33. Further, in the base scenario,
the Nagelkerke pseudo R-squared of the outcomemodel was 0.4, and the attenuation due to
measurement error of the effect of the error-prone sodium intake measure on hypertension
(given age) was approximately equal to the reliability, i.e., 0.33.

In each generated data set, the uncorrected effect was estimated using the first replicate
measurement only. Subsequently, the corrected effect was estimated by application
of regression calibration and simulation-extrapolation using regression calibration for
logistic regression as described by Rosner et al. [24] and by use of the R package simex
[25], respectively. The measurement error variance was estimated using the replicate
measures. Ninety-five percent CI’s of the corrected effects were constructed using
bootstrap resampling. Performance of the three different analyses were evaluated in terms
of bias, mean squared error (MSE), and the proportion of 95% CIs that contained the true
value of the estimand (coverage). Monte Carlo standard errors (MCSE) were calculated for
all performance measures [34], using the R package rsimsum [35]. All code used for the
simulation study is publicly available via www.github.com/LindaNab/simexvsmecor.
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Figure 7.1: Performance in a linear regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring randommeasurement error for varying values of the reliability of the error-prone
measure in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance
measures, Monte Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the
base scenario where reliability is assumed 0.625.

7.3.2. Results
Linear regression. Figure 7.1 shows the percentage bias, MSE and confidence interval
coverage for varying values of the reliability of the error-prone measure. The uncorrected
analysis was biased for all values of the reliability, and the percentage bias decreased when
reliability increased. Regression calibration provided unbiased results when reliability was
greater or equal to 0.33. Simulation-extrapolation provided biased results when reliability
was smaller than 0.8. MSE was lower for simulation-extrapolation than for the uncorrected
and regression calibration corrected analysis when reliability was equal to 0.2, and similar
to MSE of regression calibration otherwise. Coverage of the 95% confidence intervals
was at the nominal level for the regression calibration corrected analysis, and for the
simulation-extrapolation corrected analysis when reliability was greater than or equal to
0.625.
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Figure 7.2: Performance in a linear regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying sample sizes of the error-prone measure
in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance measures, Monte
Carlo standard errors were < 0.01 in all scenarios. The grey points indicate the base scenario where sample size is
assumed 500.
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Figure 7.2 shows the percentage bias, MSE and confidence interval coverage for varying
samples sizes of the main study. A sample size of 125, and 250 only increased percentage
bias minimally compared to the base scenario were sample size was 500. MSE was greater
for smaller sample sizes, and MSE of the uncorrected analysis with a sample size of 125
was smaller than the regression calibration and simulation-extrapolation corrected analysis
(0.015 vs 0.026 and 0.019, respectively, MCSE < 0.005). Coverage was equal to the nominal
level of 95% for regression calibration for all sample sizes, and the uncorrected analysis
showed coverage levels that were subnominal, ranging between 45% and 91% (MCSE <
0.01). Coverage of the 95% confidence intervals of the simulation-extrapolation corrected
analysis was close to the nominal level of 95% except when sample size was 1,000, in which
case coverage was 90% (MCSE 0.004). A decline in confidence interval coverage for the
simulation-extrapolation corrected analysis for larger sample sizes was confirmed by the
scenario where sample size was 10,000, in which case coverage was 53% (MCSE 0.007)(not
shown in the plots in Figure 7.2).
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Figure 7.3: Performance in a linear regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying number of replicates of the error-prone
measure in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance
measures, Monte Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the
base scenario where the number of replicates is assumed 3.
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Figure 7.4: Performance in a linear regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying R-squared of the outcome model in
terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance measures, Monte
Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the base scenario where
R-squared is assumed 0.03.

Figure 7.3 shows that the number of replicates had no effect on the percentage bias,
MSE and confidence interval coverage for varying number of replicates of the error-prone
measure.
Figure 7.4 shows that R-squared had no effect on percentage bias, and only a minor
decrease in MSE was found for increasing levels of R-squared. In addition, Figure 7.4
shows that 95% confidence interval coverage was around the nominal level for the
regression calibration corrected analysis for all values of the R-squared. However,
for the uncorrected and the simulation-extrapolation corrected analysis, confidence
interval coverage decreased for increasing values of R-squared. For R-squared equal
to 0.75, confidence interval coverage decreased to 15 % and 0 % (MCSE < 0.01) for the
simulation-extrapolation corrected and the uncorrected analysis, respectively.

In the scenarios where a dependency between the covariate age and the exposure
error-free blood pressure was introduced by changing parameter 𝛾 in the data generating
mechanism, the reliability of the error-prone measure was respectively 0.71, 0.94 and 0.98.
However, percentage bias, MSE and confidence interval coverage of the uncorrected and
corrected analyses were equal to the base scenario (the values in the base scenario are
shown in e.g. Figure 7.1). By introducing an effect of age on blood pressure, the total
variance of the error-free blood pressure increased. Consequently, the extra variability
in the error-prone blood pressure measurement due to measurement error was relatively
smaller than in the base scenario. Hence, it seemed as if the error-prone variable was more
reliable, though the attenuation due to random measurement error stayed constant at a
rate of 0.625.

Logistic regression. Figure 7.5 shows the percentage bias, MSE and confidence interval
coverage for varying values of the reliability of the error-prone measure. The uncorrected
analysis was biased for all values of the reliability, and the percentage bias decreased
when reliability increased. Regression calibration provided percentage bias close to null
when reliability was greater or equal to 0.2. Simulation-extrapolation provided biased
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Figure 7.5: Performance in a logistic regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring randommeasurement error for varying values of the reliability of the error-prone
measure in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance
measures, Monte Carlo standard errors were smaller than 0.02 in all scenarios. The grey points indicate the
base scenario where reliability is assumed 0.33. Mean squared error for RC and a reliability of 0.05 not shown
(1.28, Monte Carlo standard error: 0.42).

results when reliability was smaller than 0.8 and bias was close to null otherwise. MSE
was similar for simulation-extrapolation and the uncorrected analysis across the range
of reliability. MSE was greater for regression calibration than for the uncorrected and
simulation-extrapolation analysis when reliability was equal to or smaller than 0.2, and
similar otherwise. Coverage of the 95% confidence intervals was at the nominal level for
the regression calibration corrected analysis across the range of reliability, and for the
simulation-extrapolation corrected analysis when reliability was greater than or equal to
0.66.
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Figure 7.6: Performance in a logistic regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying sample sizes of the error-prone measure
in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance measures, Monte
Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the base scenario where
sample size is assumed 4,000. Mean squared error for RC and a sample size of 500 not shown (0.06, Monte Carlo
standard error: <0.01)
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Figure 7.7: Performance in a logistic regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying number of replicates of the error-prone
measure in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance
measures, Monte Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the
base scenario where the number of replicates is assumed 2.

Figure 7.6 shows the percentage bias, MSE and confidence interval coverage for varying
samples sizes of the main study. Percentage bias was increased for regression calibration
for a sample size of 500 compared to the base scenario where sample size was 4000 (7% vs
-2%, MCSE < 0.01) and was similar otherwise. Percentage bias remained at a high level
for simulation-extrapolation and the uncorrected analysis, ranging between -48% and
-45% (MCSE < 0.01) and -68% and -66% (MCSE < 0.01), respectively. MSE was greater for
smaller sample sizes. For a sample size of 4,000, MSE of regression calibration (ranging
between 0.06 and 0.01, MCSE < 0.01) was greater than for simulation-extrapolation and the
uncorrected analysis, ranging between 0.01 and 0.02, MCSE < 0.01 and 0.01, MCSE < 0.01,
respectively. Coverage was equal to the nominal level of 95% for regression calibration for
all sample sizes. The uncorrected analysis and simulation-extrapolation were undercovered
with coverage levels decreasing for increasing size of the sample size, ranging between
24% and 86% (MCSE < 0.01) and 73% and 89% (MCSE < 0.01), respectively. A decline in
confidence interval coverage for the simulation-extrapolation corrected analysis for larger
sample sizes was confirmed by the scenario where sample size was 10,000, in which case
coverage was 50% (MCSE 0.02) (not shown in the plots in Figure 7.6).
Figure 7.7 shows that the number of replicates had no effect on the percentage bias,
MSE and confidence interval coverage for varying number of replicates of the error-prone
measure.
Figure 7.8 shows that bias remains stable compared to the base scenario for varying values
of Pseudo R-squared, except for Pseudo R-squared equal to 0.12. Mean squared error
was higher for regression calibration than for the uncorrected or simulation-extrapolation
corrected analysis for Pseudo R-squared equal to 0.12, 0.25 and 0.69. Coverage
remained at the nominal level of 95% for regression calibration, and was subnominal
for simulation-extrapolation and the uncorrected analysis with values ranging between
73%-85% and 24%-68%, respectively.
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Figure 7.8: Performance in a logistic regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying R-squared (Nagelkerke) of the outcome
model A) percentage bias; B) mean squared error and C) coverage. For all three performance measures, Monte
Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the base scenario where
R-squared is assumed 0.42

In the scenarios where a dependency between the covariate age and the error-free
exposure sodium intake was introduced by changing parameter 𝛾 in the data generating
mechanism, the reliability of the error-prone measure was respectively 0.34, 0.68, 0.87.
Similar to what was seen for linear regression, percentage bias, MSE and confidence interval
coverage of the uncorrected and corrected analyses were equal to the base scenario (the
values in the base scenario are shown in e.g. Figure 7.5).

7.4. Sensitivity analysis in the absence of validation data
In the first example introduced in section Motivating example, replicate measurements of
the error-prone systolic blood pressure were available. Nevertheless, validation data in the
form of replicate measurements may not always be available. When random measurement
error in a covariate is suspected in the absence of such validation data, a sensitivity
analysis could be conducted using regression calibration or simulation-extrapolation. A
general framework for conducting sensitivity analysis for random measurement error
is described here, where we assume that the input of the sensitivity analysis, i.e., the
measurement error variance and its uncertainty, are obtained from literature or expert
knowledge. Next, a distribution for the measurement error variance is assumed, e.g., a
uniform, triangular, or trapezidiol distribution [30]. Subsequently, regression calibration
or simulation-extrapolation are applied to the data for measurement error correction,
informed by the measurement error variance and its distribution. Finally, the results of the
application of measurement error correction are presented, and conclusions drawn about
the sensitivity of the results to measurement error.

7.4.1. Sensitivity analysis for measurement error in the example of blood
pressure and kidney function in pregnant women

Suppose that in the example of the relation between blood pressure and kidney function
in pregnant women discussed in section Motivating example (example 1), only the first
systolic blood pressure measurement was available. A 10 mmHg increase in systolic blood
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pressure was associated with a 1.18 𝜇mol/L (95% CI 0.14;2.23) increase in serum creatinine.
Random measurement error, however, could have been suspected in the single systolic
blood pressure measurement and suppose the sensitivity of the results to the measurement
error was studied. Suppose it was assumed that the variance of the measurement error
in systolic blood pressure was equal to 48 mmHg, with a minimum of 37 mmHg and a
maximum of 59 mmHg. Additionally, suppose a triangular distribution was assumed for
the measurement error variance, meaning that most weight was put on 48 mmHg, and the
weight was gradually reduced until it reached the assumed minimum and maximum level.
The triangular distribution was sampled in accordance with Lash et al. [30].
Figure 7.9 shows the results of the application of regression calibration and
simulation-extrapolation informed by the triangular distribution. For regression
calibration, a clear pattern was obtained. The corrected effect estimates increased
for larger values of the measurement error variance, with the effect estimates ranging from
1.75 - 2.38, with a median of 2.03. In addition, the associated lower limits of the confidence
intervals consistently suggest an association between blood pressure and creatinine. In
comparison, simulation-extrapolation did not show a clear pattern in the corrected effect
estimates. The corrected effect estimates ranged from 1.43 - 1.88, with a median of 1.70.
Figure 7.9 shows that the sampling variability that is inherent to simulation-extrapolation
causes more variability in the effect estimates compared to the variability due to random
measurement error. Nevertheless, the lower limits of the associated confidence intervals
again consistently suggest an association between blood pressure and creatinine levels.
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Figure 7.9: Sensitivity analysis for the association between blood pressure and kidney function in pregnant women
(example 1, [32]) by application of regression calibration (panel A) and simulation-extrapolation (panel B). The
uncorrected association and 95% confidence interval are depicted with a diamond and a solid black line, the
measurement error corrected associations and 95% confidence intervals are depicted with a square and a solid
gray line. The distribution of the measurement error variance is triangular. For reference, the measurement error
corrected association and 95% confidence interval using the replicates data is depicted with a star and a dashed
black line.

In the sensitivity analysis described here, results were presented graphically, and no
summary estimate was shown. In the presented plots, the variability around the corrected
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estimates was shown graphically. Alternatively, one can incorporate the variability around
the corrected estimates in a so-called probabilistic bias analysis, by repeatedly sampling the
corrected estimate from a distribution. Typically, it is assumed that the corrected estimate
is normally distributed with mean equal to the point estimate and standard deviation equal
to the standard error of the estimate. The sampled values can be presented by plotting the
distribution of corrected estimates. There is a close resemblance between a probabilistic
bias analysis and a Bayesian bias analysis with an uninformative prior for the association
under study. We refer to MacLehose et al. for a thorough discussion of this issue [36].
More information about probabilistic bias analysis can be found in e.g., the book by Lash
et al. [30] and more details about a Bayesian analysis for measurement error can be found
in e.g., the book by Gustafson et al. [16].

7.5. Discussion
This chapter compared regression calibration and simulation-extrapolation for sensitivity
analysis for random measurement error in an exposure variable. A simulation study
showed that with correct assumptions about the measurement error variance, regression
calibration was generally unbiased for linear and logistic regression when the reliability of
the error-prone measurement was greater than 0.2. The bias in the regression calibration
corrected analysis for linear regression for low reliability was unexpected, but may be
explained by the instability of regression calibration when the correction factor is close to
null. The bias in the regression calibration corrected analysis for logistic regression for low
reliability was expected as Kuha showed that regression calibration for logistic regression
is only approximately unbiased when the effect of the exposure on the outcome is ‘small to
moderate’ and/or the measurement error variance ‘small’ [31]. Moreover, the uncorrected
and simulation-extrapolation corrected analysis were generally biased, with higher bias for
lower reliability of the error-prone exposure. Confidence interval coverage for regression
calibration was generally close to the nominal level of 95% for linear and logistic regression.
On the contrary, the confidence interval coverage of the simulation-extrapolation corrected
and uncorrected analysis were subnominal.

The uncorrected analysis was shown more efficient than the corrected analyses for
linear regression in settings where reliability was low (i.e., 0.2) or sample size small (i.e.,
125). This observation is the result of the substantially smaller variance of the uncorrected
analysis compared to the corrected analyses, which outweighs the larger bias for the
uncorrected analysis. This is sometimes referred as the bias–variance trade off, we refer to
chapter 3 of the book by Carroll et al. for a detailed discussion [13]. The same pattern was
obtained for logistic regression. In addition, simulation-extrapolation showed a small gain
in efficiency over regression calibration for linear regression in settings where reliability
was low (i.e., 0.2) or sample size small (i.e., 250 and 125), and similar efficiency otherwise.
The efficiency gain of simulation-extrapolation over regression calibration obtained for
linear regression was not seen in logistic regression because of the large bias in the
simulation-extrapolation analysis in most settings.

The results of our simulation study were in line with the results of three previous
simulation studies: the corrected analyses showed lower percentages bias compared
to the uncorrected analysis and the simulation-extrapolation corrected analysis showed
higher percentage bias compared to regression calibration [5, 28, 29]. However, important
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differences were observed. First, simulation-extrapolation showed a small gain in efficiency
over regression calibration for linear regression in some settings, which was not found in
the previous simulation studies. The sample sizes for which this gain in efficiency for
simulation-extrapolation was observed (i.e., 125, 250 and 500) were smaller than those
assumed by Perrier et al. [5] and Batistatou et al. [28] (i.e., 3,000 and 1,000, respectively),
which may explain the found difference. Second, our simulation showed no effect of the
number of replicates on bias. While the simulation study by Perrier et al. showed that an
increasing number of replicates reduced bias in the corrected analyses [5]. This difference
is explained by the fact that in the study by Perrier et al., the replicate measures were
pooled before applying measurement error correction. By pooling the replicate measures
with random measurement error, the measurement error variance is reduced. Therefore,
bias decreased in the study by Perrier et al. with the availability of more replicate measures.
This effect however is solely due to pooling the replicates measures and not due to a more
precise estimate of the measurement error variance, as was shown by our results. Third, the
simulation study by Fung et al. [29] showed that by increasing the correlation between the
exposure and a covariate, the attenuation in the uncorrected analysis increased toward the
null value. In comparison, our simulation study showed no effect of covariate dependency
on bias in the uncorrected analysis. This is explained by the fact that in our simulation
study, the variance of the exposure given the covariate was kept constant, while the total
variance of the exposure was varied by introducing the covariate dependency (i.e., changing
𝛾 in the data generating mechanism). In comparison, in the simulation study by Fung et
al., the variance of the exposure given the covariate was varied, resulting in an increase in
the attenuation factor.

Our simulation study showed that percentage bias in the uncorrected analysis was
equal to 1 minus the reliability of the error-prone measure times 100, in line with theory
[8, 9]. The reliability of an error-prone measure equals the variance of the error-free
measure divided by the variance of the error-pronemeasure. For example, in Figure 7.1, bias
in the uncorrected analysis was equal to 80% for a reliability equal to 0.2. The uncorrected
effect estimate is equal to 0.2 times the estimand 0.2, i.e., 0.04. From that, it follows that the
bias is equal to 0.2−0.04 = 0.16, which is 80% of 0.2. It is, however, important to note that the
percentage bias is not equal to 1 minus the reliability of the error-prone measure when the
total variance of the error-free measure depends on a covariate that is also included in the
outcome model. For example, in our simulation study, the association between creatinine
and systolic blood pressure given age was estimated. When a dependency between systolic
blood pressure and age was introduced, the reliability increased to a maximum of 0.98
while the percentage bias in the uncorrected analysis was constant at 62.5%. A formula for
the attenuation in the effect estimate due to random measurement error in multivariable
models can be found in e.g. [13].

In our simulation study, the measurement error variance used to correct for the random
measurement error was estimated using replicate measures. However, we assumed that
these replicate measures were solely available to estimate the measurement error variance,
to mimic a setting where such validation data are not available, yet unbiased information
is available about the measurement error variance. In future studies, this work could be
extended to settings where the measurement error is estimated with bias, and to settings
where the measurement error model is misspecified. Also non-random measurement error,
e.g., systematic measurement error and differential measurement error, which was not the
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topic of this study, could be considered in future work. Simulation-extrapolation is not
suited for the correction of measurement other than random measurement error, and for
regression calibration, the full calibration model needs to be specified. We refer to Nab et
al. [23] for a specification of the calibration model in case of systematic measurement error
and what validation data can be used to estimate the calibration model. In addition, in our
simulation study, models with one covariate and normal distributed measurement error
were considered. The results of our study can be extended to settings with more covariates
and measurement error with a skewed or heavy-tailed distribution. The covariate in our
data generating mechanism can be viewed as a summary of a larger set of variables. What
is more, transformations can turn a skewed or heavy-tailed measurement error distribution
into a distribution that is closer to the normal distribution, as proposed by Carrol et al. [13].
Alternatively, adopted versions of regression calibration for heteroscedastic measurement
error could be used [37].

Our study discussed measurement error correction methods for sensitivity analysis
of random measurement error in a continuous exposure. For a categorical exposure,
measurement error will lead to misclassification of the exposure. In this setting, different
measurement error correction methods can be used. For example, the misclassification
simulation-extrapolation [38], available in the R package simex [25]. Or alternatively, the
probabilistic sensitivity analysis of misclassified binary variables described by Fox et al.
[39].

Our study explored the performance of regression calibration and
simulation-extrapolation for the correction of random measurement error in a linear
regression model and a logistic regression model. For a survival model, the effects of
random measurement error cannot be derived exactly as shown in chapter 14 of the
book by Carroll et al. [13]. In particular, regression calibration gives approximately
consistent estimates only in cases of a rare outcome, and for a hazard ratio of ‘small to
moderate’ size or ‘small’ measurement error variance [40]. Xie et al. proposed a more
flexible regression calibration approach for Cox regression that is referred to as ‘risk set
regression calibration’ [41]. Alterations of the simulation-extrapolation method have been
proposed for proportional hazard models [42] and accelerated failure time models [43]. For
Poisson regression, regression calibration only provides estimates that are approximately
unbiased, and usually works well, when the effect of the exposure on the outcome is
‘small to moderate’ or the measurement error variance ‘small’ [13]. Fung et al. compare
regression calibration and simulation-extrapolation for Poisson regression and concluded
that regression calibration performed best in all scenarios considered [44].

The Achilles heel of simulation-extrapolation is the extrapolation step [3]. Our
simulation study uses a quadratic extrapolation. Lockwood et al. demonstrate the use
of a quartic extrapolation, that may reduce bias in the simulation-extrapolation estimator
[45].

In the example presented in section 7.4, the five steps of a sensitivity analysis
for random exposure measurement error were described: 1) quantify the measurement
error variance and its uncertainty; 2) specify the distribution of the measurement error
variance; 3) perform measurement error correction by means of regression calibration or
simulation-extrapolation; 4) visualise the results, and 5) draw conclusions. A sensitivity
analysis using regression calibration showed that the higher the measurement error
variance, the more the corrected effect estimate departs from the null, which is in line
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with the literature [8, 9]. In the sensitivity analysis using simulation-extrapolation, the
variability in the corrected effect estimates due to the sampling variability inherent to
simulation-extrapolation exceeded the variability in the corrected effect estimates due
to the assumed measurement error variance. Our simulation results showed that the
regression calibration estimator is generally unbiased while the simulation-extrapolation
estimator is. In contrast, simulation-extrapolation showed a small efficiency gain over
regression calibration. Despite the efficiency gain for simulation-extrapolation, we
recommend the use of regression calibration for sensitivity analysis. In a sensitivity
analysis, focus is on the quantification of the impact of measurement error on the point
estimate, and the confidence interval width may be of lesser importance.

In conclusion, regression calibration and simulation-extrapolation are suited for
sensitivity analysis for random measurement error. It is difficult to say anything definite
about the behavior of regression calibration and simulation-extrapolation based on a
handful of simulation studies. We have, however, covered many aspects in our simulation
study, i.e., reliability, sample size, number of replicates, explained variance of the outcome
model and covariate dependency. The pattern is so pronounced and in accordance
with findings of former simulation studies [5, 28, 29], that we think it is safe to say
that regression calibration may be preferred over simulation-extrapolation. Nevertheless,
if researchers want to compare simulation-extrapolation with regression calibration in
simulation settings that are closer to their intended field of application, then we provided
our simulation code, which can be modified easily to allow for investigation of such
scenarios.
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