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Sampling strategies for internal
validation samples for exposure
measurement error correction

Statistical correction for measurement error in epidemiologic studies is possible, provided that information
about the measurement error model and its parameters are available. Such information is commonly
obtained from a randomly sampled internal validation sample. It is however unknown whether randomly
sampling the internal validation sample is the optimal sampling strategy. We conducted a simulation
study to investigate various internal validation sampling strategies in conjunction with regression
calibration. Our simulation study showed that for an internal validation study sample of 40% of the main
study’s sample size, stratified random and extremes sampling had a small efficiency gain over random
sampling (10% and 12% decrease on average over all scenarios, respectively). The efficiency gain was
more pronounced in smaller validation samples of 10% of the main study’s sample size, i.e., a 31% and
36% decrease on average over all scenarios, for stratified random and extremes sampling, respectively.
To mitigate the bias due to measurement error in epidemiologic studies, small efficiency gains can be
achieved for internal validation sampling strategies other than random, but only when measurement
error is non-differential. For regression calibration, the gain in efficiency is, however, at the cost of a
higher percentage bias and lower coverage.

This chapter is based on: L. Nab, M. van Smeden, R. de Mutsert, F.R. Rosendaal and R.H.H. Groenwold, Sampling
strategies for internal validation samples for exposure measurement–error correction: A study of visceral adipose
tissue measures replaced by waist circumference measures, American Journal of Epidemiology 190 (9) (2021)
1935–1947. doi:10.1093/aje/kwab114
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5.1. Introduction

Preferred (or gold standard) measurements in large epidemiologic studies can be expensive,
time consuming, invasive, or burdensome. These measures therefore are often replaced
by simpler measures (less invasive, cheaper, faster), which are then assumed to highly
correlate with the preferred measure. For example, consider studies of visceral adipose
tissue (VAT), e.g. studies showing that higher values of VAT are associated with higher
values of insulin resistance [1, 2]. Measurement of VAT involves magnetic resonance
imaging (MRI) scans. Alternatively, measurement of waist circumference (WC), which
requires only a measuring tape, can provide a proxy measure of VAT [3]. Nevertheless,
the substitute measurements (e.g., WC) are not perfectly correlated with the gold standard
(e.g., VAT) and, consequently, the substitute measurement can be viewed as an error-prone
substitute for the gold standard.

Several methods have been developed to adjust for the bias in estimators of
exposure-outcome associations when an exposure is measured with error [4–12]. Despite
the abundance of literature on measurement error correction methodology, application of
measurement error correction is still rare [13, 14]. Of the measurement error correction
methods that are used, regression calibration is among the most commonly used in
epidemiologic research [15], possibly because of its relative simplicity and the possibility
to implement it in many situations [4, 7, 16, 17]. Regression calibration relies on
information about the relation between the error-prone and the preferred (or gold standard)
measurement, i.e., the measurement error model and its parameters. This relation can
be estimated using an internal validation sample, a subset of the main study including
individuals for whom both the error-prone substitute and gold standard measurement are
available.

Several regression calibration methods have been proposed. In linear models, examples
include standard and validation regression calibration (see e.g. [7]) as well as efficient
regression calibration by Spiegelman et al. [18]. The efficiency of these different regression
calibration methods has been compared in simulation studies (e.g., see [19]). Nonetheless,
no studies have been conducted to investigate what internal validation sampling strategy
(e.g., random, stratified random or extremes sampling) in conjunction with regression
calibration provides the most efficient estimate of the corrected exposure-outcome
association. The efficiency of regression calibration depends on the efficiency of the
estimation of the calibration model, which may hypothetically be improved by sampling
e.g. the extremes, assuming linear calibration models.

In the present study, we aim to compare different sampling strategies for the internal
validation sample in combination with different regression calibration methods to correct
for the bias in exposure-outcome associations caused by measurement error. First, we
introduce the Netherlands Epidemiology of Obesity (NEO) study and illustrate three
different internal validation sample sampling strategies. We then present a simulation
study contrasting the finite sample properties of different sampling strategies of the
internal validation sample in conjunction with regression calibration, motivated by the
analysis of the NEO data. We conclude with a discussion of our results.
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5.2. Case study: visceral adipose tissue measures as
replacement for waist circumference measures

The NEO study is a large prospective observational cohort designed to investigate the
pathways that lead to obesity-related diseases and conditions [20]. Men and women aged
between 45 and 65 years with a self-reported body mass index of 27 or higher, living in the
greater area of Leiden (in the West of the Netherlands) were eligible to participate in the
NEO study. In addition, all inhabitants aged between 45 and 65 years from onemunicipality
(Leiderdorp) were invited, irrespective of their body mass index, to represent the general
population.

A cross-sectional analysis of the association between VAT and insulin resistance was
conducted in the subset of individuals that originated from the Leiderdorp subcohort of the
NEO study comprising of 1,670 individuals. VAT depots were quantified bymeans of MRI in
a subsample of 668 (40%) individuals. These 668 individuals were randomly selected among
the individuals who had no contraindication to undergo anMRI.WCwasmeasuredmidway
between the border of the lower costal margin and the iliac crest in all individuals. In this
illustrative example we make two simplifying assumptions, 1) we consider WC measures as
the error-prone substitute measure of the exposure of interest (i.e., VAT) and 2) we assume
thatWC is independent of insulin resistance givenVAT and the confounding variables Z (i.e.,
non-differential measurement error). These two assumptions are summarized in the causal
diagram in Figure 5.1. Violation of the non-differential measurement error assumption
can lead to bias in both the regression calibration and internal validation analyses, under
the circumstances explained in the ‘Results’ section below. For the assessment of insulin
resistance, the homeostatic model assessment of insulin resistance was used as fasting
glucose (in mmol/L) × fasting insulin (in mU/L)/22.5. Of the 668 selected individuals, 19
were excluded from analysis because they used glucose lowering therapy and, additionally,
one patient was excluded because of a very low fasting glucose blood concentration.
This resulted in including 648 individuals in our analysis. There were 22 missings in
the selected variables for analysis, which were imputed once (single imputation), using
multivariate imputation through chained equations by the package mice version 3.8.0
[21] with standard settings from the statistical software R [22]. The association between
VAT and insulin resistance was adjusted for the potential confounding variables age, sex,
ethnicity, educational level, smoking state, alcohol consumption, total body fat, physical
activity, and additionally for hormonal use and menopausal state in women. We refer to
[2] for further details on the assessment of all variables used in this study. Measures of
VAT, WC and total body fat were standardized and measures of insulin resistance were log
transformed. The effect sizes were derived from a linear regression analysis and expressed
as percentages difference in outcome per standard deviation (SD) VAT.

After adjustment for confounding, insulin resistance was 27% higher (95% confidence
interval (CI): 19%-35%) per SDVAT (54 cm²). Alternatively, insulin resistance was 30% higher
(95%CI: 18%-43%) per SD WC (12 cm), with adjustment for the same potential confounders
as the association between VAT and insulin resistance. Under the assumptions depicted in
Figure 5.1, the difference in these two estimates can be explained by the measurement error
in WC as a measure of VAT.
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𝑍 VAT Insulin Resistance

WC

Measurement Error

Figure 5.1: Assumptions of our motivating example. Error-prone waist circumference (WC) measures used as a
substitute measurement to estimate the association between (VAT) and insulin resistance, confounded by 𝑍 (e.g.,
age, sex, total body fat).

5.2.1. Testing sampling strategies in a resampling study
To illustrate sampling strategies for an internal validation sample in combination with
regression calibration to correct for measurement error, a resampling study was performed
using data of the 648 individuals from the Leiderdorp cohort of whom both VAT and WC
measures were taken. Five hundred new data sets were created by sampling from the
648 individuals with replacement. In each of the 500 resampled data sets, the association
between VAT and insulin resistance was estimated (referred to as the reference analysis). In
addition, WC measurements were considered as a proxy for VAT, and used to estimate the
association between VAT and insulin resistance (referred to as the uncorrected analysis).
Both analyses were adjusted for the same confounders as the original analysis presented
above.

Next, 260 individuals (approximately 40% of 648) were included in the internal validation
sample. This 40%was chosen to resemble the percentage of individuals of whomVAT depots
were quantified of the whole Leiderdorp subcohort of the NEO study (i.e., in 668 individuals
of the 1,670 individuals). The internal validation sample was sampled by using one of the
following three sampling strategies: 1) random, 2) extremes or 3) stratified random (see
next subsection). The VAT measures of all individuals who were not selected in the internal
validation sample were removed. In each of these data sets, the association between VAT
and insulin resistance was estimated by using only the information of the 40% of individuals
included in the internal validation sample (internal validation sample restricted). Next, the
VAT measurements available in the internal validation sample were used to correct for the
measurement error in the association between WC and insulin resistance in three ways: 1)
standard regression calibration, 2) validation regression calibration or 3) efficient regression
calibration (see next subsection).

For each sampling strategy and each regression calibrationmethod, the mean of the 500
effect estimates was calculated and corresponding 95% CIs were constructed based on the
empirical standard errors. All analyses were adjusted for the above-mentioned potential
confounders.

Sampling strategies and regression calibration methods. Figure 5.2 shows a
visualisation of the three sampling strategies used in this study. The internal validation
sample was sampled 1) randomly, 2) the 130 individuals with the lowest and 130 with
the highest measured WC values were selected (extremes sampling) or 3) by grouping
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Figure 5.2: Visualisation of different internal validation sample sampling strategies in the Leiderdorp cohort of
the Netherlands Epidemiology of Obesity. A) Visceral adipose tissue (VAT) measures are obtained at random
(independent of waist circumference (WC)); B) VATmeasures are obtained stratified randomly (stratified for strata
of WC); and C) VAT measures are obtained in the individuals with the lowest and highest WC measures. The
black points indicate the individuals included in the internal validation sample and the grey points the excluded
individuals. The VAT measures and WC measures are standardized.

individuals according to tenths of the range of the measured WC values and sampling
26 individuals from each stratum (stratified random sampling). For stratified random
sampling, when one of the strata contained less than 26 individuals, all individuals of
this stratum were included in the internal validation sample. Subsequently, more than 26
individuals were sampled from the remaining strata, by equally distributing the shortage
of individuals in the strata with less individuals among the strata with more individuals.
We hypothesized that by sampling the extremes or by stratified random sampling, a linear
relation betweenWC and VAT could be estimated more efficiently in the internal validation
set. By increasing the efficiency of the estimation of the linear relation between WC and
VAT, the efficiency of regression calibration was expected to increase simultaneously.

Three regression calibration methods were applied: 1) standard regression calibration,
2) validation regression calibration and 3) efficient regression calibration. Standard
regression calibration and validation regression calibration are linear regressions where
insulin resistance is regressed on a corrected version of the error-prone WC measures,
and the confounding variables. Standard regression calibration replaces the error-prone
WC measures with the predicted mean of VAT given WC and the confounding variables.
Validation regression calibration replaces the error-prone WC measures with the predicted
mean of VAT given WC and confounding variables for individuals not included in the
internal validation sample. For the individuals included in the internal validation sample,
the error-prone WC measurements are replaced by their VAT measurements. Efficient
regression calibration takes the inverse variance weighted mean of the effect estimate of
the internal validation sample restricted analysis (see above) and the standard regression
calibration analysis. Further technical details (including standard error estimation) can be
found in the supplementary material section S5.1.

Results. The results of the resampling study are shown in Table 5.1. In the uncorrected
analysis, where WC was used to estimate the association between VAT and insulin
resistance, the association between VAT and insulin resistancewas overestimated compared
with the reference analysis (30% vs 27%). When the internal validation sample was
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Table 5.1: Estimated association between visceral adipose tissue and insulin resistance in the Leiderdorp cohort
of the NEO study using different methods to correct for the measurement error when visceral adipose tissue
measures were replaced by waist circumference measures

Method Random Stratified Random Extremes
Effect 95% CI Effect 95% CI Effect 95% CI
Size (%)a Size (%)a Size (%)a

IVS Restricted 26 14;40 20 9;33 18 7;31
Standard RC 67 24;126 60 25;105 59 24;104
Efficient RC 31 20;44 26 15;38 25 14;37
Validation RC 32 20;45 25 14;38 22 11;34

Abbreviations: CI = confidence interval; IVS = internal validation sample; and RC = regression calibration
a derived from 𝛽 coefficients from linear regression analyses and expressed as percentages difference in outcome measure
per standard deviation VAT; the effect size found in the reference analysis was 27% (95% CI 19%, 35%), the effect size
found in the uncorrected analysis was 30% (18%,43%)

sampled randomly, the internal validation sample restricted analysis concurred with the
reference analysis (26% vs 27%). However, the standard regression calibration approach
overestimated the association between VAT and insulin resistance severely in comparison
with the reference analysis (67% vs 27%). When the internal validation sample was sampled
stratified randomly or by sampling the extremes, the internal validation restricted analysis
underestimated the association between VAT and insulin resistance in comparison with
the reference analysis (20% and 18%, respectively vs 27%). In comparison, the standard
regression calibration analysis, again, severely overestimated the association between
VAT and insulin resistance (60% and 59%, for stratified random and extremes sampling,
respectively, vs 27%). Further, our results suggest that stratified random and extremes
sampling improve the estimates of efficient regression calibration and validation regression
calibration, since they appear to be closer to the reference analysis in comparison to random
sampling, but this may be a chance finding due to cancellation of effects. Efficient and
validation regression calibration are pooled averages of the underestimated association
in the internal validation restricted analysis and the overestimated association in the
standard regression calibration analysis. Specifically, the results of the standard regression
calibration analysis are clearly biased for all sampling strategies, and we therefore expect
the results of the efficient and validation regression calibration analyses to be biased as
well.

The results of our empirical example seem to indicate that only the internal validation
restricted analysis with a random sampling strategy concurs with the reference analysis.
These results were not expected and can be explained by the fact that the measurement
error in WC may depend on insulin resistance, since WC measures also provide a proxy for
subcutaneous fat, which in turn is associated with insulin resistance. Consequently, the
assumption of non-differential measurement error is violated. Particularly, to unbiasedly
recover the exposure-outcome association under study, regression calibration relies on the
assumption that the measurement error is non-differential. Furthermore, the internal
validation sample restricted analysis is biased when the internal validation sample is
obtained by sampling stratified randomly or extremes. In this case, sampling stratified
randomly or the extremes introduced collider stratification bias, since inclusion in the
internal validation sample is dependent on WC (depicted in the directed acyclic graph in
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Figure 5.3). Consequently, the relation between VAT and insulin resistance is expected to
be biased. Although sampling the internal validation sample other than randomly provides
results that do not concur with the reference analysis here, general conclusions based on
this empirical example are not warranted, which motivated our simulation study.

𝑍 VAT Insulin Resistance

WC

Measurement Error

𝑆

Figure 5.3: Collider stratification bias due to differential measurement error. Introduction of collider stratification
bias when the data are observed (𝑆) depending on the error-prone waist circumference (WC) measures with
differential measurement error in a study estimating the association between (VAT) and insulin resistance,
confounded by 𝑍 (e.g., age, sex, total body fat).

5.3. Simulation study
A simulation study was conducted to evaluate the finite-sample properties of the different
internal validation sample sampling strategies combined with regression calibration. The
sample size and the values of the parameters of the data generating mechanisms were
similar to those estimated in the NEO subcohort mentioned in the previous section.

Generating data. Data sets were generated with a sample size of 650. The following
data generating mechanisms were used to generate data on sex, age, total body fat (TBF),
VAT, WC and insulin resistance (IR):

sex ∼ Bern(0.5), age ∼ Unif(45, 65), TBF|sex, age ∼ N(−2 + sex + 0.01×age, 0.5),

VAT = 0.4 − 2×sex + 0.01×age + 0.9×TBF − (6𝜆×√
0.5
6𝜆 ) + 𝜀, 𝜀 ∼ Gamma(6𝜆,√

0.5
6𝜆 ),

WC|VAT ∼ N(0.8×VAT, 𝜏 2), and,

IR|VAT, sex, age, TBF ∼ N(0.5 + 𝛽×VAT − 0.5×sex + 0.01×age + 0.3×TBF, 0.3).

The estimand of this simulation study is the conditional effect of VAT on insulin
resistance (i.e, 𝛽) and was set to 0.2. The parameters 𝜏 and 𝜆 were varied in different data
generation scenarios of our simulation study. The variance of the measurement error (i.e.,
𝜏2) was varied according to the explained variance ofWC given VAT (hereafter referred to as
R-squared). Values for R-squared were set to: 0.2, 0.4, 0.6, 0.8 and 0.9, corresponding values
for 𝜏 can be found in Table S5.1a in the supplementary material section S5.2. For reference,
the R-squared of the linear model of VAT and WC was approximately 0.6 in the NEO data.
The above data generating mechanism for VAT allowed to change the skewness of the
residual errors while keeping the mean and variance of the marginal distribution constant.
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The skewness of the residual errors of VAT, 𝜀, (hereafter referred to as skewness) were varied
by changing 𝜆. Values for the skewness were set to: 0.1, 1, 1.5 and 3, corresponding values
for 𝜆 can be found in Table S5.1b in the supplementary material section S5.2. Additionally,
we changed the distribution of WC|VAT by using the square root of VAT instead of VAT
to generate WC, in what was called the non-linear scenario. R-squared, the skewness and
linearity were varied in a full-factorial design (i.e., 5×4×2 = 40 scenarios). For each scenario,
5000 datasets were generated.

Model estimation and performance measures. In each generated data set, we
applied the three sampling strategies (i.e., random, extremes and stratified random
sampling) and the five analyses (i.e., uncorrected, internal validation sample restricted
and the three regression calibration analyses). Standard errors were calculated using
standard software or by using the multivariate delta method, see for details supplementary
material section S5.1. Subsequently, Wald based confidence intervals were constructed.
Performance of the different analytical methods was evaluated in terms of the bias, mean
squared error (MSE), the proportion of 95% CIs that contain the true value of the estimand
(coverage), the empirical standard deviation of the estimated treatment effects and square
root ofmeanmodel based variance of the estimated treatment effect. Monte Carlo standard
errors (MCSE) were calculated for all performance measures [23], using the R package
rsimsum version 0.9.0 [24]. All code used for the simulation study is publicly available at
https://github.com/LindaNab/me_neo.

Sensitivity analyses. Two sensitivity analyses were conducted. First, to assess the
sensitivity of our results to the size of the internal validation sample, we changed the
percentage of individuals included to 10% and 25%. Second, in our empirical example in
section 5.2, it was seen that the performance of the three regression calibration analyses
was generally poor. We hypothesised that this is possibly due to differential measurement
error in the WC measures. Differential measurement error occurs when WC depends on
the outcome insulin resistance, conditional on VAT and the confounding variables (we
refer to supplementary material section S5.1 for further details). To evaluate the impact
of differential measurement error, one scenario was added by replacing the conditional
distributions of WC and insulin resistance by:

WC|VAT ∼ N(𝜃×VAT + 𝜏×𝑈 , 𝜏 2) and,

IR|VAT, sex, age, TBF ∼ N(0.5 + 𝛽×VAT − 0.5×sex + 0.01×age + 0.3×TBF + √0.3×𝑈 , 0.3),
where 𝑈 is a random variable with a Bernoulli distribution with mean 0.5. This scenario
is an example of differential measurement error, since the distribution of the error-prone
WC is dependent of the outcome insulin resistance via a third variable 𝑈 , considered
unmeasured. Here, 𝜏 was set equal to 0.44 (corresponding to an R-squared of 0.8 in the
main study), the skewness of the residual errors of VAT was 0.1 and the estimand (𝛽) was
again 0.2.

5.3.1. Results
For brevity, herewe do not show results of the scenarios where R-squaredwas equal to 0.9 or
where skewness was equal to 1 (results are shown in Tables S5.2-S5.7 in the supplementary
material section S5.3). The results of these parameter values did not contribute to the main
comparisons made because the results of R-squared equal to 0.9 were similar to R-squared

https://github.com/LindaNab/me_neo
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equal to 0.8 and the results of skewness equal to 1 were similar to skewness equal to
1.5. Further, since the focus of this paper is the comparison between the three sampling
strategies, we focus on the performance of the three sampling strategies in the internal
validation restricted analysis and validation regression calibration. We chose to focus
on validation regression calibration since this appears to be the standard method when
applying regression calibration when there is an internal validation sample. The results
of the sampling strategies using efficient regression calibration and standard regression
calibration can be found in Figure S5.2-S5.3 and Tables S5.8-S5.18 in the supplementary
material section S5.3.
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Figure 5.4: Nested loop plot of the percentage bias in the analysis ignoring measurement error. Solid line: Linear
measurement error model; and dashed line: Non-linear measurement error model. Order from outer to inner
loops: Skewness of the residual errors of the gold standard measure (S, 3 levels, increasing); R-squared of the
measurement error model (𝑅2, 4 levels, increasing).

Figure 5.4 shows the percentage bias in the uncorrected analysis. In the uncorrected
analysis, the association between VAT and insulin resistance was severely underestimated
(bias ranging from -92% to -22%). The percentage bias decreased when R-squared increased
and the bias in the uncorrected analysis was slightly higher when the measurement error
model was non-linear compared to a linear model. The skewness of the residual errors of
VAT had no bearing on bias.

Efficiency in terms of mean squared errors. Figure 5.5 shows the mean squared
errors for the internal validation sample restricted analysis with an internal validation
sample of 40% and 10% of the main study’s sample size. Smaller mean squared errors were
seen for stratified random and extremes sampling compared to random sampling for both
samples sizes of the internal validation data. For the internal validation sample of 40% of
the main study’s sample size, the percentage decrease in mean squared error was 19% and
24% on average, for stratified and extremes sampling, respectively, MCSE < 0.0001. For the
internal validation sample of 10% of the main study’s sample size, the percentage decrease
in mean squared error was 36% and 41% on average, for stratified and extremes sampling,
respectively, MCSE < 0.0005. Most notably, mean squared errors decreased further for
both stratified random and extremes sampling when the residuals error of VAT were more
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skewed.
Figure 5.6 shows the mean squared errors for validation regression calibration with an

internal validation sample of 40% and 10% of the main study’s sample size. For the internal
validation sample of 40% of the main study’s sample size, mean squared errors were smaller
for stratified random and extremes sampling compared to random sampling, with a 10%
and 12% decrease on average, respectively, MCSE < 0.0001. For the internal validation
sample of 10% of the main study’s sample size, mean squared errors were found smaller for
stratified random and extremes sampling compared to random sampling, with a 31% and
36% decrease on average, respectively, MCSE < 0.0005. The gain in efficiency was greatest
for higher levels of skewness.

In a comparison between the internal validation restricted analysis and validation
regression calibration, mean squared errors were generally smaller for validation regression
calibration compared with the internal validation restricted analysis (compare Figure 5.5
and 5.6). The difference was more pronounced for high values of the R-squared and a
validation sample of 10% of the main study’s sample size.

The results for the internal validation restricted analysis and validation regression
calibration with an internal validation sample comprising of 25% of the main study can
be found in Figure S5.1 of supplementary material section S5.3.

Bias and coverage. Table 5.2 and 5.3 shows percentage bias and coverage of the
internal validation restricted and the validation regression calibration analysis, respectively,
with an internal validation sample of 40% of the main study’s sample size. For the
internal validation restricted analysis, all three different sampling strategies recovered
the association between VAT and insulin resistance, with bias close to 0%. Additionally,
coverage was close to the nominal level of 95% for all three sampling strategies. For
the validation regression analysis and a randomly sampled internal validation sample,
percentage bias was close to 0%. Contrary to random sampling, stratified random and
extremes sampling introduced bias in the association under study. Which was greater
for higher levels of the skewness and the R-squared. Coverage was close to the nominal
level of 95% for random sampling. For stratified random and extremes sampling, coverage
was close to the nominal level of 95% for all but the following three scenarios. There
was undercoverage (91.5% and 91.9% (stratified) and, 90.1% and 90.1% (extremes)) in the
linear setting when skewness was equal to 3.0 and R-squared was 0.6 or 0.8, respectively.
Additionally, there was undercoverage (90.0% (stratified) and 91.3% (extremes)) in the
non-linear setting when the skewness was equal to 3.0 and R-squared was 0.8.

Table 5.4 and 5.5 shows the percentage bias and coverage of the internal validation
restricted and validation regression calibration analysis, respectively, with an internal
validation sample of 10% of the main study’s sample size. For the internal validation
restricted analysis and all three sampling strategies, percentage bias and coverage were
both close to levels of 0% and 95%, respectively. For validation regression calibration, the
association between VAT and insulin resistance was biased in most scenarios. Percentages
bias in the association under study ranged between −5.0% − 7.2% when skewness was
equal to 0.1. When skewness was equal to 1.5 or 3.0, percentages bias ranged between
−24.5% − 10.2%. Since the association under study was biased in almost all scenarios, the
effect estimate was undercovered for most scenarios, and increasingly when residual errors
were more skewed, since bias was greater in these settings. For random sampling, the
association under study was undercovered with levels ranging between 82.7% − 92.9%. For
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stratified random and extremes sampling, coverage was close to the nominal level of 95%
when skewness was equal to 0.1 (ranging between 92.5%−95.4%). When skewness was equal
to 1.5 or 3.0 the effect estimate was generally undercovered with levels ranging between
62.9% − 94.6%.

Differential measurement error. Table 5.6 shows that differential measurement
error can cause bias in the association between VAT and insulin resistance. The internal
validation sample restricted analysis using internal validation data that is sampled
randomly recovers the association under study with percentage bias equal to 0%. The
internal validation sample restricted analysis using stratified random or extremes sampling
were both biased with percentage bias equal to 10% and 30%, respectively. The different
regression calibration analyses were all biased, independent of how the internal validation
sample was sampled.
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Figure 5.5: Nested loop plot of the mean squared errors in the analysis restricted to the internal validation sample
for the three different sampling strategies. A) Linear measurement error model and an internal validation sample
of 40% of the main study; B) Non-linear measurement error model and an internal validation sample of 40% of
the main study; C) Linear measurement error model and an internal validation sample of 10% of the main study;
and D) Non-linear measurement error model and an internal validation sample of 10% of the main study. Order
from outer to inner loops: Skewness of the residual errors of the gold standard measure (S, 3 levels, increasing);
R-squared of the measurement error model (𝑅2, 4 levels, increasing).
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Figure 5.6: Nested loop plot of the mean squared errors in the analysis using validation regression calibration
to correct for the measurement error for the three different sampling strategies. A) Linear measurement error
model and an internal validation sample of 40% of the main study; B) Non-linear measurement error model and an
internal validation sample of 40% of themain study; C) Linear measurement error model and an internal validation
sample of 10% of the main study; and D) Non-linear measurement error model and an internal validation sample
of 10% of the main study. Order from outer to inner loops: Skewness of the residual errors of the gold standard
measure (S, 3 levels, increasing); R-squared of the measurement error model (𝑅2, 4 levels, increasing).
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Table 5.2: Percentage bias and coverage in the estimated association between visceral adipose tissue and insulin
resistance with an internal validation sample of 40% of the main study’s sample size

Scenario IVS Restricted Analysis
Linear 𝑅2 Skew- Percentage Bias (%)a Coverage (%)b

ness R SR E R SR E
Yes 0.2 0.1 −0.5 0.2 −0.1 94.9 94.8 95.1

1.5 −0.1 −0.1 0.2 94.8 94.6 95.0
3.0 −0.2 0.2 −0.1 94.7 94.4 94.7

0.4 0.1 −0.1 0.4 0.1 95.0 95.3 94.9
1.5 0.1 0.3 0.1 94.8 95.4 95.1
3.0 0.3 0.0 0.2 95.3 94.9 94.9

0.6 0.1 0.4 0.8 0.2 94.8 94.8 94.2
1.5 0.1 −0.3 0.4 95.1 95.0 94.5
3.0 0.0 −0.3 −0.1 94.8 94.8 94.6

0.8 0.1 −0.3 0.1 0.1 94.9 94.7 95.3
1.5 0.2 −0.2 −0.3 94.7 95.3 95.0
3.0 0.0 −0.2 0.0 94.7 94.7 94.7

No 0.2 0.1 0.3 0.2 0.2 94.8 94.6 95.1
1.5 −0.3 0.2 −0.2 94.6 95.0 95.4
3.0 −0.2 0.2 0.1 94.3 94.5 94.3

0.4 0.1 0.4 0.0 −0.1 95.3 94.4 94.9
1.5 −0.6 −0.1 −0.2 94.8 95.4 95.0
3.0 −0.2 −0.3 −0.4 94.6 94.3 94.4

0.6 0.1 0.4 −0.4 −0.1 94.7 95.0 94.9
1.5 0.2 0.4 0.4 95.1 95.3 95.4
3.0 0.0 −0.1 0.0 94.6 94.8 94.5

0.8 0.1 0.1 0.0 0.3 94.5 94.8 94.8
1.5 0.0 −0.2 −0.2 94.9 94.4 94.8
3.0 0.3 0.3 0.4 94.7 95.0 94.6

Abbreviations: IVS = internal validation sample; R = random; SR = stratified random; and E = extremes,
aMonte Carlo standard error (MCSE) <0.001, bMCSE <0.005
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Table 5.3: Percentage bias and coverage in the estimated association between visceral adipose tissue and insulin
resistance with an internal validation sample of 40% of the main study’s sample size

Scenario Validation Regression Calibration
Linear 𝑅2 Skew- Percentage Bias (%)a Coverage (%)b

ness R SR E R SR E
Yes 0.2 0.1 −0.5 0.2 −0.1 94.9 95.3 95.7

1.5 −0.4 −0.7 −0.3 94.8 95.5 95.6
3.0 −0.3 −1.2 −1.4 94.7 94.5 94.8

0.4 0.1 −0.3 0.4 0.2 94.9 95.2 95.2
1.5 0.1 −1.7 −1.9 94.8 95.0 95.2
3.0 0.9 −4.1 −4.4 94.1 94.4 94.4

0.6 0.1 0.6 0.9 0.6 95.2 94.9 94.8
1.5 0.5 −3.3 −3.3 94.7 94.5 94.4
3.0 0.9 −7.4 −8.9 93.2 91.5 90.8

0.8 0.1 0.2 0.1 0.2 94.6 94.9 95.1
1.5 0.4 −3.6 −4.2 94.9 94.7 94.0
3.0 1.0 −7.7 −9.5 93.8 91.9 90.8

No 0.2 0.1 −0.2 0.1 0.1 95.3 94.9 95.4
1.5 −0.7 −0.3 −0.5 94.7 95.2 95.5
3.0 −0.5 −0.4 −0.4 94.7 94.7 94.7

0.4 0.1 0.4 −0.1 −0.4 95.2 94.7 95.2
1.5 −0.8 −1.3 −1.5 95.0 95.6 95.5
3.0 −0.4 −2.7 −2.6 94.6 94.2 94.7

0.6 0.1 0.1 −0.5 −1.0 94.8 95.2 94.8
1.5 0.2 −2.2 −2.9 95.4 95.3 95.2
3.0 0.2 −5.6 −5.6 94.0 93.5 93.5

0.8 0.1 0.4 0.1 0.3 94.4 94.8 95.2
1.5 −0.1 −5.7 −4.9 94.4 93.3 94.1
3.0 1.0 −9.7 −9.1 94.0 90.0 91.3

Abbreviations: R = random; SR = stratified random; and E = extremes,
aMonte Carlo standard error (MCSE) <0.001, bMCSE <0.005
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Table 5.4: Percentage bias and coverage in the estimated association between visceral adipose tissue and insulin
resistance with an internal validation sample of 10% of the main study’s sample size

Scenario IVS Restricted Analysis
Linear 𝑅2 Skew- Percentage Bias (%)a Coverage (%)b

ness R SR E R SR E
Yes 0.2 0.1 −0.9 0.3 −0.6 94.2 94.5 94.1

1.5 0.2 −0.4 0.0 94.2 95.0 94.0
3.0 −0.2 0.2 0.2 94.5 94.5 94.6

0.4 0.1 0.1 0.5 1.0 94.8 94.4 94.7
1.5 −0.4 0.0 −0.3 95.1 94.8 94.4
3.0 −0.2 −0.2 −0.1 94.6 94.8 94.4

0.6 0.1 0.4 0.4 0.1 94.3 94.5 94.7
1.5 −0.1 −0.4 0.2 95.3 94.3 94.5
3.0 −0.2 −0.7 −0.2 94.3 94.0 94.4

0.8 0.1 0.0 −0.6 −0.3 94.9 94.7 94.6
1.5 −1.4 −0.5 −0.9 94.7 94.5 94.8
3.0 −0.2 0.2 0.3 94.3 94.7 94.7

No 0.2 0.1 0.3 −0.7 1.1 94.3 94.0 94.3
1.5 −0.1 0.1 −0.2 94.7 94.6 94.4
3.0 −1.0 1.3 −0.2 94.2 94.0 94.5

0.4 0.1 0.6 0.0 0.4 94.8 94.5 94.0
1.5 −1.5 0.5 −1.0 94.3 94.5 94.5
3.0 −0.4 −0.1 −0.1 94.9 94.4 95.0

0.6 0.1 0.6 0.0 −0.1 94.7 94.7 94.2
1.5 0.2 0.1 0.3 94.9 94.7 94.9
3.0 −0.2 0.8 0.0 94.0 94.5 94.0

0.8 0.1 −0.3 −0.2 0.4 93.7 94.2 94.2
1.5 −0.8 −0.3 −0.5 94.3 94.0 94.2
3.0 0.3 0.4 0.7 94.6 94.9 94.4

Abbreviations: IVS = internal validation sample; R = random; SR = stratified random; and E = extremes,
aMonte Carlo standard error (MCSE) <0.005, bMCSE <0.01
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Table 5.5: Percentage bias and coverage in the estimated association between visceral adipose tissue and insulin
resistance with an internal validation sample of 10% of the main study’s sample size

Scenario Validation Regression Calibration
Linear 𝑅2 Skew- Percentage Bias (%)a Coverage (%)b

ness R SR E R SR E
Yes 0.2 0.1 −1.4 0.1 −0.4 92.3 94.4 95.4

1.5 −0.5 −4.0 −3.2 91.7 93.6 94.4
3.0 1.4 −9.8 −8.1 89.1 89.5 91.3

0.4 0.1 1.7 1.6 1.3 91.7 93.3 93.4
1.5 3.9 −8.3 −8.2 89.7 89.3 91.5
3.0 9.0 −20.1 −19.5 85.3 73.8 78.1

0.6 0.1 2.9 2.0 1.8 91.2 92.7 93.3
1.5 4.5 −10.9 −11.1 88.4 86.7 87.7
3.0 10.2 −24.5 −24.5 82.7 62.9 65.5

0.8 0.1 1.0 0.4 0.8 92.9 93.7 93.6
1.5 2.5 −9.8 −8.9 91.1 88.7 89.0
3.0 7.6 −19.0 −18.1 85.5 73.7 76.5

No 0.2 0.1 −5.0 −1.7 −0.5 92.9 94.2 94.9
1.5 −3.7 −2.5 −3.0 92.2 94.2 94.6
3.0 −3.7 −2.5 −3.8 91.9 93.5 94.2

0.4 0.1 0.6 0.7 −1.7 92.3 93.9 93.9
1.5 −0.4 −4.0 −8.7 91.4 93.0 92.7
3.0 2.8 −10.2 −14.2 89.6 89.1 87.8

0.6 0.1 1.2 2.3 −1.6 91.5 93.4 93.5
1.5 3.5 −6.0 −10.8 90.5 92.0 91.2
3.0 7.7 −16.4 −21.8 85.5 80.3 75.9

0.8 0.1 2.0 4.1 7.2 91.6 92.6 92.5
1.5 3.2 −8.6 −6.6 88.4 89.1 91.6
3.0 8.8 −20.2 −18.3 83.5 71.2 77.7

Abbreviations: R = random; SR = stratified random; and E = extremes,
aMonte Carlo standard error (MCSE) <0.005, bMCSE <0.01

Table 5.6: Percentage bias in the estimated association between visceral adipose tissue and insulin resistance in
case of differential measurement error

Method Percentage Bias (%)a
Random Stratified Random Extremes

IVS Restricted 0 10 30
Standard RC 76 75 75
Efficient RC 42 45 46
Validation RC 35 36 36

Abbreviations: IVS = internal validation sample; and RC = regression calibration
a The percentage bias in the uncorrected analysis was 25%, Monte Carlo standard error < 0.001
for all analyses
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5.4. Discussion
This study investigated three internal validation sampling strategies (i.e., random, stratified
random and extremes sampling) in conjunction with regression calibration to correct for
measurement error in a continuous exposure. Our simulation study showed a small
efficiency gain in terms of mean squared error of stratified random and extremes sampling
over a random sampling strategy for the internal validation restricted and regression
calibration analyses, but only whenmeasurement error was non-differential. For regression
calibration, this gain in efficiency was at the cost of higher percentages bias and lower
confidence interval coverage. We therefore recommend that, in general, regression
calibration using randomly sampled validation samples are preferable over stratified or
extremes sampled samples.

Three different regression calibration methods (i.e., standard, efficient and validation)
and an internal validation sample restricted analysis were tested in our simulation study.
The internal validation sample restricted analysis and validation regression calibration
showed the best overall performance in terms of percentage bias and confidence interval
coverage of the true effect. Furthermore, validation regression calibration had the same
efficiency as efficient regression calibration under strong correlations between the exposure
and outcome. These findings are consistent with the work by Thurston et al. [19]. In
addition, a slight undercoverage of the confidence intervals was found for the efficient
regression calibration approach.

Our simulation study showed a gain in efficiency of validation regression calibration
over the internal validation sample restricted analysis. The gain in efficiency was more
pronounced when the R-squared of the measurement error model was high and for
smaller validation samples (e.g., 10% of full sample). Intuitively, the validation sample
restricted analysis uses information about the gold standard measurement, but only for
those individuals in whom it was measured (i.e., the internal validation sample). For
regression calibration, however, information about all individuals is used, which tends to
increase the efficiency, compared to the restricted analysis. However, the efficiency is
negatively affected by the uncertainty in the correction factor that needs to be estimated
from the internal validation sample. The relative gain in efficiency for regression calibration
compared to an analysis of the gold standardmeasurement only (restricted to the validation
sample) depends on the correlation between the gold standard and the error-prone
measurement [15], as well as the appropriateness of parametric assumptions made for
regression calibration.

Relatedwork on internal validation studies can be found in the field of psychology, often
referred there as ‘two-method designs’ or ‘planned missing data designs’. These terms
were recently suggested by Rioux et al. for epidemiologic research [25]. Graham et al.
studied the cost-effectiveness of two-method designs and concluded that, in comparison
with an analysis restricted to the internal validation sample, the two-method design can
yield lower standard errors for testing associations using structural equation modelling
[26]. In particular, the benefit of the design can be enormous when there is a large cost
difference between the error-prone and the gold standard measures and effect sizes are
small.

Regression calibration is one approach to correct for measurement error. Other
measurement error correction methods include multiple imputation for measurement
error [8], simulation-extrapolation [9], Bayesian methods [5] and methods based on
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maximum likelihood estimation [27]. Earlier simulation studies have been conducted
comparing multiple imputation for measurement error and regression calibration. These
studies showed that, in general, multiple imputation for measurement error produced less
biased estimates than regression calibration, but can have larger variances [8, 28, 29].
Simulation-extrapolation was originally designed to correct for measurement error that
is random, which the measurement error in our case study was not. Adaptations have been
made to also allow for systematic measurement error [30].

In our motivating example, regression calibration performed poorly. This was
likely caused by violation of the non-differential measurement error assumption that
regression calibration relies on and it signifies the importance of this assumption. WC
measures may contain differential measurement error, since WC measures also provide
a proxy for subcutaneous fat, which in turn is associated with insulin resistance. In
our simulation study, where measurement error was known to be non-differential or
differential, regression calibration performed well (for non-differential measurement error)
or poorly (for non-differential measurement error), which further adds to our suspicion that
differential measurement error might have affected the results of the motivating example.

Non-differential measurement error is a strong assumption and may be unlikely in
practice [31]. Our motivating example signifies the importance of this assumption for
measurement error correction and illustrates that when measurement error is differential,
1) regression calibration is not an appropriate method for measurement error correction
and 2) non-random internal validation sampling strategies introduce collider stratification
bias (see Figure 5.3). In the case differential measurement error is assumed, alternative
methods formeasurement error correction can be used, for examplemultiple imputation for
measurement error [8] and regular multiple imputation methods [32–34]. Future research
could investigate if non-random validation sample strategies improve the efficiency of
multiple imputation methods for measurement error correction.

Large epidemiologic studies could consider to use internal validation samples when
a gold standard measurement is expensive, time consuming, or burdensome. Our
publicly available code at https://github.com/LindaNab/me_neo, provides an opportunity
for careful planning of a sampling strategy, including the size of the internal validation
sample, and the choice between an analysis restricted to the internal validation sample
or application of regression calibration. The code can be adapted to accommodate other
situations than the ones studied here.

In summary, our study showed that there appears to be little added value of stratified
random or extremes sampling in internal validation studies to correct for measurement
error. Regression calibration, if non-differential measurement error can be assumed,
was shown to be an effective approach to correct analyses for measurement error.
When handled with care, application of regression calibration can improve efficiency of
epidemiologic studies with internal validation samples.

https://github.com/LindaNab/me_neo
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