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4
Regression calibration for

measurement error correction: The
bias–variance trade off and finite

sample performance
Correction of possible bias in exposure-outcome associations due to exposure measurement error using
regression calibrationmay come at the cost of increased variance, referred to as the bias–variance trade off.
Notably, in settings where measurement error is relatively large, the finite sample properties of regression
calibration have not been investigated. We explore the bias–variance trade off for regression calibration
and study the finite sample performance of regression calibration in settings where measurement error
is relatively large using Monte Carlo simulation. The bias–variance trade off was of relevance in small
samples (sample size <80) and was more pronounced in settings where measurement error was relatively
large (reliability = 0.3) and residual error variance of the exposure-outcome association was relatively
large (variance = 25). Particularly in settings where measurement error was relatively large (reliability
<0.2) and sample size small (sample size <150), the performance of regression calibration was poor with
percentage bias ranging from −99%–79% and mean squared error ranging from 6–25431. Application
of regression calibration may not be useful in small sample size settings where measurement error is
relatively large, because of the overall poor performance of the estimator in these settings.

This chapter has been submitted as: L. Nab and R.H.H. Groenwold, Regression calibration for measurement error
correction: The bias–variance trade off and finite sample performance when measurement error is large
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4.1. Introduction
Exposure measurement error is common in epidemiologic research but often neglected [1,
2]. When neglected, exposure measurement error can lead to bias in the exposure-outcome
association [3], even when measurement error is random [4]. In the rare occasion of
measurement error correction in epidemiologic research, regression calibration is among
the methods used most often [1, 2]. Regression calibration relies on information about the
measurement error model and its parameters, which can be estimated in extra data such as
replicates data or internal validation data, or alternatively, informed by expert knowledge
[5, 6].

When exposure measurement error is present, the estimator not correcting for
this measurement error is typically biased. The application of regression calibration
for measurement error correction is of particular interest when bias in the estimator
not correcting for the exposure measurement error is relatively large. That is, when
measurement error is relatively large, or equivalently, reliability of the error-prone
measurement low. Regression calibration is a correction method designed to reduce
this bias, at the price of an increased variance [7], a phenomenon referred to as the
bias–variance trade off. We are unaware of reports of the finite sample performance of
regression calibration in settings of highly unreliable measurements.

In this chapter we demonstrate settings in which the application of regression
calibration can be useful, but importantly also when it may not. We report on settings
where the estimator not correcting for exposure measurement error may be more
efficient in terms of mean squared error than the regression calibration estimator (i.e.,
the bias–variance trade off). Additionally, we report on the performance of regression
calibration in settings where the measurement error in the exposure is relatively large.
Specific attention is paid to the performance of regression calibration in small samples.
This is illustrated using an example of the association between active energy expenditure
and lean body mass.

This chapter is organised as follows. In section 4.2, a study is introduced of the
association between active energy expenditure and lean body mass. In section 4.3,
the bias–variance trade off is illustrated for regression calibration. The finite sample
performance of regression calibration when measurement error is relatively large is studied
in section 4.4 by means of Monte Carlo simulation, focusing on settings where sample size
is small. We conclude with a discussion of our results in section 4.5.

4.2. Example of lean body mass and energy expenditure
To motivate our study, we use an example of the association between energy expenditure
and lean body mass. The association between active energy expenditure (mean active
energy expenditure in kilo calories (kcal) per day) and percentage lean body mass
(percentage of lean body mass of total body mass) was studied using publicly available
data from the cross-sectional Karlsruhe Metabolomics and Nutrition study [8], detailed
information on the study can be found here [9]. Body weight was measured in underwear
and without shoes using a standardized scale. Lean body mass was measured in a
standardized way by dual-energy X-ray absorptiometry and expressed as percentage of
total body weight. The energy expenditure (in kcal per day) was measured by Actiheart®
(CamNtech, Cambridge, United Kingdom). In addition, energy expenditure was measured
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using the international physical activity questionnaire (IPAQ). This questionnaire provides
a substitute measure of energy expenditure, based on physical activity and expressed
in metabolic equivalent of task (MET)-minutes. This measure was then transformed to
approximate subject’s energy expenditure in kilocalories per day [10].

Throughout this example, we consider energy expenditure measured by Actiheart®
the reference measure and energy expenditure measured by the IPAQ the (error-prone)
substitute measure. Figure 4.1 shows the agreement between energy expenditure in kcal
per daymeasured by Actiheart® and the IPAQ in the KarlsruheMetabolomics andNutrition
study. The correlation between the two measures of energy expenditure was 0.10 (95%
confidence interval (CI): -0.02;0.21).
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Figure 4.1: Agreement of mean active energy expenditure (AEE) measured by Actiheart® (reference measure) and
AEE measured by the international physical activity questionnaire (substitute measure)

Table 4.1 gives an overview of four different estimates of the association between energy
expenditure and lean body mass. Using the reference measure of energy expenditure
measured by Actiheart®, we found that an increase in energy expenditure of 1,000 kcal
per day was associated with a 3.2 increase in lean body mass (95%CI: 1.8;4.7). Using
the substitute measure of energy expenditure measured by IPAQ instead, it was found
that an increase in energy expenditure of 1,000 kcal per day was associated with a 0.7
decrease in lean body mass (95%CI: −1.5;0.1). This estimate was considered biased due to
the measurement error in the questionnaire-based energy expenditure level. When this
estimate was corrected by means of regression calibration (RC), informed by the relation
between the substitute measure and reference measure, we found an increase in energy
expenditure of 1,000 kcal per day was associated with an 18.7 decrease in lean body mass.
Notably, there is a large discrepancy between the point estimate obtained by regressing the
referencemeasure of energy expenditure (measured by Actiheart®) and lean bodymass (i.e.,
3.2) and themeasurement error corrected point estimate (i.e., −18.7). Two differentmethods
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for CI construction were available for the RC corrected estimate: the Delta method and the
bootstrap percentile method, yielding 95% CIs of −56.6;19.2 and −270.0;217.2, respectively.
The above estimates were all adjusted for sex. Covariate adjustment was restricted to sex
for illustration purposes, the covariate adjustment set should potentially be expanded.

Table 4.1: Estimates of the association between an increase of 1,000 kcal/day
in mean active energy expenditure and percentage lean body mass (adjusted
for sex) and associated 95% confidence intervals (CIs) in the Karlsruhe
Metabolomics and Nutrition study [8]

Method Point 95% CI
Estimate

Actiheart® 3.2 1.8;4.7
International Physical −0.7 −1.5;0.1
Activity Questionnaire
Regression Calibration and −18.7 −56.6;19.2
Delta for CI Construction
Regression Calibration and −18.7 −270.0;217.2
Bootstrap for CI Constructiona

a Based on 999 replicates using percentiles

4.3. Bias–variance trade off for regression calibration
The estimator of the exposure-outcome association that does not account for measurement
error in the exposure variable is typically biased. Nevertheless, a correction for this bias by
means of RC may come at the price of an increased variance, sometimes referred to as the
bias–variance trade off [7]. That is, the RC estimator is typically unbiased, yet it is more
variable than the uncorrected estimator. Consequently, there may be circumstances where
the uncorrected estimator is more efficient in terms of mean squared error (MSE) than the
corrected estimator.

We illustrate this phenomenon here by graphical presentation of the MSE of the
uncorrected estimator and the RC estimator in simple settings, by using the theoretical
derivation of the MSE of the two estimators, described by Carroll et al. [7]. Since the
theoretical derivation by Carroll et al. relies on the assumption that the correction factor
used in RC is known, which is rare, we expand these results by means of Monte Carlo
simulation to simple settings where the correction factor is not known and is estimated
from the data.

The data generating mechanism used to generate sets of artificial data is described in
Table 4.2. Parameters of the data generating mechanism were inspired by the motivating
example of energy expenditure and body mass. For simplicity, we assume random
measurement error in the error-prone AEE* (i.e., AEE* is distributed around AEE with
independent error). In our artificial data, the reliability of AEE* is equal to 0.25 / (0.25
+ 𝜏2). This ratio is referred to as the ‘reliability’ in this chapter and in case of random
measurement error as assumed here, the reliability is equal to the ‘correction factor’
mentioned above. There is an inverse relation between themeasurement error variance (i.e.,
𝜏2) and the reliability of the error-prone measure. When the measurement error variance
is large, the reliability is low and vice versa.
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Table 4.2: Data generating mechanism

Variable Variable Name Distribution
Active AEE 𝑁(1, 0.25)
Energy Expenditure
Error-Prone Active AEE* 𝑁(𝐴𝐸𝐸, 𝜏2)
Energy Expenditure
Percentage Lean LBM 𝑁(80 + 3 × 𝐴𝐸𝐸, 𝜎2)
Body Mass

We refer to the estimator of the linear regression of LBM on the error-prone
measurement of AEE (i.e., AEE*) using ordinary least squares (OLS) as the OLS estimator.
We refer to the corrected estimator by means of regression calibration (RC) as the ‘RC
estimator’. In this chapter, the RC estimator available in the package mecor [6] is used.
This package adopts the RC estimator described by Rosner et al. in [11], which is for linear
regression equivalent to the method of moments estimator [3]. The RC estimator divides
the OLS estimator by a ‘correction factor’ which can be estimated in extra data.

4.3.1. Correction factor known
From the results from Carroll et al. [7] and the data generating mechanism in Table 4.2, the
bias in the OLS estimator is equal to 1minus the correction factor times the effect ofAEE on
LBM (i.e., 3 in Table 4.2). The variance of the OLS estimator is equal to the variance of the
residual errors (i.e., 𝜎2 in Table 4.2) divided by the number of observations (i.e., 𝑛 in Table
4.2) times the variance of AEE* (i.e., 0.25 + 𝜏2 in the above). The MSE of the OLS estimator
is equal to its bias squared plus its variance. The RC estimator is assumed unbiased, and
its variance is equal to the variance of the OLS estimator divided by the correction factor
squared. Figure 4.2 shows the MSE of the OLS estimator and the RC estimator for different
scenarios of variance of the residual errors, sample size and reliability. It illustrates that
when the variance of the residual errors is relatively large (25) and sample size is small (≤60),
the OLS estimator may be more efficient than the RC estimator in terms of MSE. This gain
in efficiency becomes smaller and ultimately turns around in favour of the RC estimator as
reliability increases, sample size increases, or the variance of the residual errors decreases.
Note that we fixed the variance of AEE (i.e., 0.25) and the effect of AEE on LBM (i.e., 3)
throughout this illustration. Varying these will impact the graphical illustrations of the
bias–variance trade off in Figure 4.2, but the phenomenon would still exist.

4.3.2. Correction factor not known
We compared the MSE of the OLS estimator and the RC estimator by means of Monte
Carlo simulation investigating scenarios of finite samples where the correction factor is not
known. The correction factor is estimated in an extra data set providing information about
the reference measure AEE and the substitute measure AEE*. We generated data using the
data generating mechanism described in Table 4.2 and studied MSE for 𝜎2 equal to 5 or 25,
reliability equal to 0.3, 0.6 or 0.9, and the number of observations 20, 40, 60, 80 or 100 in a
full-factorial design (2 × 3 × 5 = 30 scenarios). We set the sample size of the set that is used to
estimate the correction factor equal to the sample size of the study. For each scenario, 5000
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datasets were generated. In each generated data set, the uncorrected effect was estimated
by regressing the outcome percentage lean body mass on the error-prone active energy
expenditure using standard software. Subsequently, the corrected effect was estimated by
means of RC using the R package mecor [6]. The performance of these two estimators
was evaluated in terms of MSE. Accompanying Monte Carlo standard errors (MCSE) were
calculated [12], using the R package rsimsum [13]. All code used for the simulation study
is publicly available via https://github.com/LindaNab/woorc. Figure 4.3 shows the MSE
of the OLS estimator and the RC estimator. Overall, the same patterns were obtained as
those described in section Correction factor known. An important difference is, however,
that the MSE of the RC estimator was much larger than its theoretical derivation when
sample size is small, which was most pronounced in the settings where reliability was 0.3
and the residual errors of the outcome model relatively high (i.e., 𝜎2 equal to 25) (Figure
4.3).
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Figure 4.2: Theoretical mean squared error of the estimator not correcting for measurement error (OLS) (gray
dashed line) and the regression calibration (RC) estimator (black dashed line), as derived by Carroll et al. [7],
for varying sizes of the sample size (20-100, x axis) and for varying sizes of the residual error variance (REV) (25:
panels A-C; 5: panels D-F) and for varying size of the reliability (0.3: panels A and D; 0.6: panels B and E; 0.9:
panels C and F). In panel F, the lines overlap.

https://github.com/LindaNab/woorc
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Figure 4.3: Results of a Monte Carlo simulation study of the mean squared error of the estimator not correcting
for measurement error (OLS) (gray solid line with dots indicating the estimates) and the regression calibration
(RC) estimator (black solid line with dots indicating the estimates) for varying sizes of the sample size (20-100,
x-axis) and for varying sizes of the residual error variance (REV) (25: panels A-C; 5: panels D-F) and for varying
size of the reliability (0.3: panels A and D; 0.6: panels B and E; 0.9: panels C and F). The dashed gray and black
lines represent the theoretical mean squared error of the estimator not correcting for measurement error and the
regression calibration estimator, respectively, as derived by Carroll et al. [7]. In panel A and D, the mean squared
errors of the regression calibration estimator in the Monte Carlo simulation study fell outside the range of the
graph when number of observations was 20, and were 211 (Monte Carlo standard error (MCSE) 142) and 133
(MCSE 89), respectively. In panel F, all lines overlap.
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4.4. Finite sample properties of regression calibration
In case of exposure measurement error in a linear regression, RC provides consistent
estimates if the correction factor is estimated consistently [3]. A consistent estimate of
the correction factor can be obtained in extra data such as internal validation data or
replicates data. However, earlier studies (e.g., [14]) suggested that the RC estimator is
not necessarily unbiased, specifically in settings where the reliability of the error-prone
measurement is low (i.e., 0.2). In addition, in our investigation of the efficiency of the RC
estimator described in the previous section, we found that when the reliability was equal
to 0.3 and sample size was 20, the MSE of the RC estimator was extremely large compared
to the MSE of the OLS estimator (i.e., 211 vs 6 and 133 vs 5, for residual error variance equal
to 25 and 5, respectively). Here, we aim to extend these results and investigate the finite
sample performance of RC in settings where the measurement error is relatively large (i.e.,
reliability low), thereby focusing on small samples.

4.4.1. Data generating mechanism
Again, we used the generating mechanism described in Table 4.2. The number of
observations (25, 50, 150, 300 and 600) and the reliability of the error-prone exposure AEE*
(0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05 and 0.01) were varied in a full factorial
design (5 × 13 = 65 scenarios). Although our specific interest was the performance of RC
for an error-prone measure with low reliability, we studied the full range of the reliability
for illustration purposes. We set the sample size of the set that is used to estimate the
correction factor equal to the sample size of the study. For each scenario, 5,000 datasets
were generated.

4.4.2. Assessment of performance
In each generated data set, the uncorrected effect was estimated by regressing the
outcome variable LBM on the error-prone AEE* using standard software. Subsequently, the
corrected effect was estimated by means of RC using the R package mecor [6]. Ninety-five
percent CIs of the uncorrected analysis were constructed using standard software, and for
the RC analysis these were constructed using the Delta method and bootstrap resampling
using 999 replicates and taking the 2.5% and 97.5% percentiles, both available in the R
package mecor. Performance of the two different analyses was evaluated in terms of
bias, MSE, confidence interval coverage (the proportion of 95% CIs that contained the
true value of the true effect), empirical SE, and model based SE. Model based SE was
estimated using the standard errors for the uncorrected analysis from standard software,
and using the standard errors estimated by the Delta method or the standard deviation of
the 999 replicates of the bootstrap samples for the RC analysis. Monte Carlo standard
errors (MCSE) were calculated for all performance measures [12], using the R package
rsimsum [13]. All code used for the simulation study is publicly available via https:
//github.com/LindaNab/woorc.

4.4.3. Results
Figures 4.4 and 4.5 show percentage bias, MSE and confidence interval coverage for varying
levels of the reliability of the error-prone measure and number of observations. The OLS
estimator was biased, with decreasing bias for increasing levels of reliability. Bias in the

https://github.com/LindaNab/woorc
https://github.com/LindaNab/woorc


4

75

OLS estimator was independent of sample size. Generally, the RC estimator was unbiased,
except when reliability was 0.01 for all levels of the sample size. Specifically, for a sample
size of 150 and reliability 0.01, the percentage bias was 659% (Monte Carlo SE (MCSE)
of bias 23). In addition, the RC estimator was severely biased for a sample size of 50 and
reliability equal to 0.01 and 0.05 (percentage bias was 78.7% (MCSE of bias 0.624) and -73.9%
(MCSE of bias 2.255), respectively) and for a sample size of 25 and reliability 0.01, 0.05 and
0.1 (percentage bias was -9.4% (MCSE of bias 1.91), -83.7% (MCSE 0.514) and -34.2% (MCSE
0.273), respectively). MSE of the OLS estimator and the RC estimator decreased when
reliability increased (Figures 4.4 and 4.5). Generally, the RC estimator was more efficient in
terms of MSE than the OLS estimator, except for reliability equal to 0.01 for all sample sizes;
reliability ≤ 0.2 for a sample size of 50; or reliability ≤ 0.3 for a sample size of 25 (Table 4.3).
In addition, the RC estimator and OLS estimator show similar efficiency for high reliability
(i.e., reliability ≥0.9).

Confidence interval coverage was around the nominal level of 95% for the CIs
constructed using bootstrap resampling, independent of sample size or reliability. CI
coverage was slightly above the nominal level of 95% for the CI constructed using the
Delta method for reliability ≤ 0.8 (i.e., ranging between 96%–100%, MCSE <0.05) and at the
nominal level for reliability greater or equal to 0.9, independent of sample size. Generally,
the coverage of the CIs of the OLS estimator was lower than the nominal level of 95% and
moved closer to the nominal level for increasing values of the reliability (ranging between
0%–97%, MCSE < 0.05).

Model based standard errors were equal to empirical standard error of the analysis
ignoring measurement error for all studied settings (Figures 4.6 and 4.7 and Table
4.4). Generally, model based standard errors obtained by bootstrap resampling better
approximated empirical standard errors of the RC analysis (Figures 4.6 and 4.7). Model
based standard error of the RC analysis were equal to empirical standard error for reliability
ranging between 0.1–1 for a sample size of 600; reliability ranging between 0.2–1 for a
sample size of 300 or 150; and reliability ranging between 0.9–1 for a sample size of 50
or 25 (Figures 4.6 and 4.7 and Table 4.5). For all other studied simulation settings, model
based standard errors differed from the empirical standard errors of the RC analysis (Table
4.5).
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Figure 4.4: Performance of the analysis ignoring measurement error (OLS) and regression calibration (RC) in a
setting with 600 (first column) and 300 (second column) observations, in terms of percentage bias (panels A and
B); mean squared error (panels C and D) and coverage (panels E and F) for varying values of reliability of the
error-prone exposure (x-axis). In panel C and D, the mean squared errors of the regression calibration estimator
fell outside the range of the graph when reliability was 0.01, and were 12 (Monte Carlo standard error (MCSE) 2)
and 80 (MCSE 29), respectively.



4

77

0 0.2 0.4 0.6 0.8 1

Reliability

−100

−50

0

50

100

P
e

rc
e

n
ta

g
e

 B
ia

s,
 %

No. of observations = 25
C)

0 0.2 0.4 0.6 0.8 1

Reliability

−100

−50

0

50

100

P
e

rc
e

n
ta

g
e

 B
ia

s,
 %

No. of observations = 50
B)

0 0.2 0.4 0.6 0.8 1

Reliability

−100

−50

0

50

100

P
e

rc
e

n
ta

g
e

 B
ia

s,
 %

No. of observations = 150

Estimator

OLS
RC

A)

0 0.2 0.4 0.6 0.8 1

Reliability

0

2

4

6

8

10

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

No. of observations = 25
F)

0 0.2 0.4 0.6 0.8 1

Reliability

0

2

4

6

8

10

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

No. of observations = 50
E)

0 0.2 0.4 0.6 0.8 1

Reliability

0

2

4

6

8

10

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

No. of observations = 150
D)

0 0.2 0.4 0.6 0.8 1

Reliability

0

0.2

0.4

0.6

0.8

1

C
o
ve

ra
g

e

No. of observations = 25
I)

0 0.2 0.4 0.6 0.8 1

Reliability

0

0.2

0.4

0.6

0.8

1

C
o
ve

ra
g

e

No. of observations = 50
H)

0 0.2 0.4 0.6 0.8 1

Reliability

0

0.2

0.4

0.6

0.8

1

C
o
ve

ra
g

e

No. of observations = 150

Method

Delta
Bootstrap
Wald

G)

Figure 4.5: Performance of the analysis ignoring measurement error (OLS) and regression calibration (RC) in a
setting with 150 (first column), 150 (second column) and 25 (third column) observations, in terms of percentage
bias (panels A-C); mean squared error (panels D-F) and coverage (panels G-I) for varying values of reliability of the
error-prone exposure (x-axis). In panel A, the percentage bias in the regression calibration estimator fell outside
the range of the graph when reliablity was 0.01, and was 659% (Monte Carlo standard error (MCSE) of bias 23).
The values that fell outside the range of panels D-F, can be found in Table 4.3
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Table 4.3: Mean Squared error (MSE) of the regression
calibration estimator in the settings which fell outside the plot
range of the graphs in Panel D-F in Figure 4.5

n Relia- MSE MCSE Panel
bility

150 0.01 2 536 515 2 307 534 D
0.05 20 3

50 0.01 1950 446 E
0.05 25 431 9740
0.10 1025 325
0.20 20 5

25 0.01 7092 1062 F
0.05 1328 231
0.10 374 59
0.20 630 540
0.30 57 37
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Figure 4.6: Empirical standard error (EmpSE) of the analysis ignoring measurement error (OLS) (solid gray lines
with dots indicating the estimates) and regression calibration (RC) (solid black lines with dots indicating the
estimates); and model based standard error (ModSE) of the analysis ignoring measurement error (OLS) (dotted
gray lines with open dots indicating the estimates) and regression calibration (RC) using the Delta method (D)
(dotted black lines with open dots indicating the estimates) or bootstrap resampling (B) (dotted black lines with
open triangles indicating the estimates) in a setting with 600 (first column) and 300 (second column) observations
for varying values of the reliability of the error-prone exposure (x-axis). The lines of the OLS estimator for the
empirical standard error and model based standard error overlap. The lines of the RC estimator for the empirical
standard error and model based standard error using bootstrap resampling overlap.
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Figure 4.7: Empirical standard error (EmpSE) of the analysis ignoring measurement error (OLS) (solid gray lines
with dots indicating the estimates) and regression calibration (RC) (solid black lines with dots indicating the
estimates); and model based standard error (ModSE) of the analysis ignoring measurement error (OLS) (dotted
gray lines with open dots indicating the estimates) and regression calibration (RC) using the Delta method (D)
(dotted black lines with open dots indicating the estimates) or bootstrap resampling (B) (dotted black lines with
open triangles indicating the estimates) in a setting with 150 (first column), 50 (second column) and 25 (third
column) observations for varying values of the reliability of the error-prone exposure (x-axis). The lines of the
OLS estimator for the empirical standard error and model based standard error overlap. The lines of the RC
estimator for the empirical standard error and model based standard error using bootstrap resampling overlap in
panel A. In panel B, the model based standard error of the RC estimator using bootstrap resampling fell outside
the range of the graph for reliability equal to 0.5 and was 2.5 (Monte Carlo SE (MCSE) 0.411). In panel E, the
model based standard error of the RC estimator using bootstrap resampling fell outside the range of the graph
for reliability equal to 0.5, 0.6, 0.7, and 0.8, and was 211.9 (MCSE 25.489), 27.8 (MCSE 9.575), 6.4 (MCSE 0.551), 2.4
(MCSE 0.241), respectively.
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Table 4.4: Empirical standard error (EmpSE) and model based standard
error (ModSE) of the analysis ignoring measurement error for varying
values of the sample size and reliability of the error-prone exposure
measure

n Relia- EmpSE MCSE ModSE MCSE
bility

600 0.01 0.02 <0.001 0.02 <0.001
0.05 0.05 <0.001 0.05 <0.001
0.10 0.07 0.001 0.07 <0.001
0.20 0.09 0.001 0.10 <0.001
0.30 0.11 0.001 0.11 <0.001
0.40 0.13 0.001 0.13 <0.001
0.50 0.14 0.001 0.14 <0.001

300 0.01 0.03 <0.001 0.03 <0.001
0.05 0.07 0.001 0.07 <0.001
0.10 0.09 0.001 0.10 <0.001
0.20 0.13 0.001 0.13 <0.001
0.30 0.15 0.002 0.16 <0.001
0.40 0.17 0.002 0.18 <0.001
0.50 0.19 0.002 0.20 <0.001

150 0.01 0.04 <0.001 0.04 <0.001
0.05 0.10 0.001 0.10 <0.001
0.10 0.14 0.001 0.14 <0.001
0.20 0.19 0.002 0.19 <0.001
0.30 0.24 0.002 0.23 <0.001
0.40 0.26 0.003 0.26 <0.001
0.50 0.30 0.003 0.29 <0.001

50 0.01 0.08 0.001 0.08 <0.001
0.05 0.17 0.002 0.17 <0.001
0.10 0.24 0.002 0.25 0.001
0.20 0.33 0.003 0.34 0.001
0.30 0.40 0.004 0.41 0.001
0.40 0.46 0.005 0.46 0.001
0.50 0.51 0.005 0.51 0.001

25 0.01 0.12 0.001 0.12 <0.001
0.05 0.22 0.002 0.25 0.001
0.10 0.37 0.004 0.36 0.001
0.20 0.51 0.005 0.50 0.002
0.30 0.61 0.006 0.60 0.002
0.40 0.70 0.007 0.68 0.002
0.50 0.76 0.008 0.74 0.002
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Table 4.5: Empirical standard error and model based standard error using the Delta method or bootstrap
(btstrp) resampling of regression calibration and associated Monte Carlo standard errors (MCSE) for varying
values of the sample size and reliability

n Relia- EmpSE MCSE ModSE MCSE ModSE MCSE
bility Delta Btstrp

600 0.01 3.44 0.034 28.23 10.792 719.18 73.283
0.05 0.88 0.009 1.20 0.004 1.42 0.076
0.10 0.60 0.006 0.81 0.002 0.62 0.001
0.20 0.41 0.004 0.54 0.001 0.42 0.001
0.30 0.33 0.003 0.43 < 0.001 0.34 < 0.001
0.40 0.28 0.003 0.36 < 0.001 0.29 < 0.001
0.50 0.25 0.002 0.31 < 0.001 0.26 < 0.001

300 0.01 8.84 0.088 17 882.74 8938.773 1006.92 173.947
0.05 1.13 0.011 1.78 0.012 72.07 28.696
0.10 0.88 0.009 1.17 0.004 1.08 0.131
0.20 0.54 0.005 0.77 0.002 0.60 0.001
0.30 0.45 0.004 0.61 0.001 0.48 0.001
0.40 0.38 0.004 0.51 0.001 0.41 0.001
0.50 0.35 0.003 0.44 0.001 0.37 0.001

150 0.01 1592.68 15.928 140 226.41 65 175.844 3727.84 1670.360
0.05 4.49 0.045 102.07 17.746 1132.07 123.372
0.10 1.89 0.019 3.35 0.438 97.39 14.841
0.20 0.88 0.009 1.15 0.004 0.99 0.008
0.30 0.73 0.007 0.89 0.002 0.72 0.003
0.40 0.59 0.006 0.74 0.002 0.61 0.002
0.50 0.55 0.005 0.64 0.001 0.53 0.001

50 0.01 44.09 0.441 12 448.39 2456.747 4439.06 756.806
0.05 159.47 1.595 306 333.55 65 894.251 4958.66 631.884
0.10 32.02 0.320 5841.30 1090.653 864.77 225.879
0.20 4.42 0.044 140.83 22.227 178.76 13.801
0.30 1.27 0.013 1.73 0.011 47.74 5.814
0.40 1.09 0.011 1.37 0.007 13.04 1.355
0.50 0.93 0.009 1.17 0.004 2.47 0.411

25 0.01 84.22 0.842 155 586.92 46 169.38 6699.71 1731.772
0.05 36.35 0.364 2866.83 263.583 1173.37 48.557
0.10 19.32 0.193 1048.99 125.869 2287.16 234.035
0.20 25.09 0.251 4762.48 2369.783 527.13 100.104
0.30 7.58 0.076 384.43 153.234 628.15 257.196
0.40 1.70 0.017 2.44 0.112 207.84 78.895
0.50 1.44 0.014 1.83 0.014 211.88 25.489
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4.5. Discussion
This chapter studied settings in which application of regression calibration (RC) may not
be appropriate for correcting bias induced by exposure measurement error. Particularly in
small samples, the RC estimator may be less efficient in terms of MSE than an estimator
not correcting for the exposure measurement error. This bias–variance trade off was most
pronounced in settings where reliability was low and residual error variance high. In an
investigation of the finite sample properties of RC, we showed that particularly when the
measurement error is relatively large and sample size small, RC provided biased estimates,
large MSEs and large empirical standard errors. Particularly, in these settings, the model
based standard errors did not agreewith the empirical standard errors and the RC estimator
was instable as shown by large Monte Carlo standard errors.

In settings where the reliability of the error-prone measure was low (i.e., reliability <0.2)
and sample size small (i.e., sample size <150), the performance of RC was poor. This is
explained by the fact that by application of RC, the uncorrected estimate was divided by
an estimate of the correction factor. This correction factor was equal to the reliability of
the error-prone measurement in our study. In settings in which the correction factor was
close to zero, it was more likely that in one of the replications in the simulation study the
correction factor approached zero. Specifically when sample size was small. Consequently,
the corrected estimate in that specific replicationwas large, affectingmean percentage bias,
MSE, and the empirical standard error of the setting under study, since outliers affect these
summary estimates. Bootstrapped confidence intervals were sensitive to this property as
well. That is, independent of the original artificial data, one of the 999 replicates could
provide a correction factor approaching zero, affecting the distribution of the estimates in
the different bootstrap samples, and thus standard errors based on the standard deviation
of that distribution. Taking the 2.5% and 97.5% bootstrap percentiles for CI constructionwas
less sensitive to outliers, but when many of the bootstrap resamples provided a correction
factor approaching zero, clearly the percentile-based CIs were affected too.

In our motivating example of active energy expenditure and lean body mass, RC
provided an effect estimate that was large compared to the uncorrected estimate (-17.8
versus -0.7) accompanied with wide confidence intervals (-56.6;19.2 (Delta) and -270.0;217.2
(bootstrap)). The large width of the bootstrap confidence intervals can be explained by the
fact that the correction factor was small and approached zero in some of the bootstrap
resamples.

We only studied relatively simple settings, i.e., random measurement error and
univariable models. However, the two phenomena explained here can be extended
to settings where the measurement error is not random (e.g., in case of systematic
measurement error) and in multivariable models. When differential measurement error
is expected, the use of RC for measurement error correction is inappropriate [3, 15].

RC is not only suited for exposure measurement error correction in linear regression
models but serves as a fair approximation in logistic regression and survival models as well
[3]. In case of logistic regression and survival models, RC is only approximately consistent
if ‘measurement error is small’ and the odds ratio or hazard ratio ‘small to moderate’.
See for a detailed discussion of RC for logistic regression, Kuha et al. [16] and for a
detailed discussion of RC, Carroll et al. [17]. An investigation of the bias–variance trade
off and finite sample performance of RC in logistic regression or survival models when
measurement error is large is a topic for future research.
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RC provides a valuable tool for exposure measurement error correction in epidemiologic
studies but may not be particularly useful in settings where sample size is small and
reliability of the error-prone exposure low. In those settings, it is advised to replace
the substitute error-prone exposure by a more reliable measure of exposure and/or the
collection of more data is needed.



4

84 Regression calibration for measurement error correction

References
[1] T. B. Brakenhoff, M. Mitroiu, R. H. Keogh, K. G. M. Moons, R. H. H. Groenwold, M. van

Smeden, Measurement error is often neglected in medical literature: A systematic
review, Journal of Clinical Epidemiology 98 (2018) 89–97. doi:10.1016/j.jclinepi.
2018.02.023.

[2] P. A. Shaw, V. Deffner, R. H. Keogh, J. A. Tooze, K. W. Dodd, H. Küchenhoff, V. Kipnis,
L. S. Freedman, Epidemiologic analyses with error-prone exposures: Review of current
practice and recommendations, Annals of Epidemiology 28 (11) (2018) 821–828. doi:
10.1016/j.annepidem.2018.09.001.

[3] R. H. Keogh, P. A. Shaw, P. Gustafson, R. J. Carroll, V. Deffner, K. W. Dodd,
H. Küchenhoff, J. A. Tooze, M. P. Wallace, V. Kipnis, L. S. Freedman, STRATOS
guidance document on measurement error and misclassification of variables in
observational epidemiology: Part 1—Basic theory and simple methods of adjustment,
Statistics in Medicine 39 (16) (2020) 2197–2231. doi:10.1002/sim.8532.

[4] J. A. Hutcheon, A. Chiolero, J. A. Hanley, Random measurement error and regression
dilution bias, BMJ 340 (c2289) (2010). doi:10.1136/bmj.c2289.

[5] R. H. Keogh, J. W. Bartlett, Measurement error as a missing data problem, in: G. Yi,
A. Delaigle, P. Gustafson (Eds.), Handbook of measurement error models, 1st Edition,
CRC Press, Boca Raton, FL, 2021, Ch. 20, pp. 429–452.

[6] L. Nab, M. van Smeden, R. H. Keogh, R. H. H. Groenwold, Mecor: An R package for
measurement error correction in linear regression models with a continuous outcome,
Computer Methods and Programs in Biomedicine 208 (2021) 106238. doi:10.1016/j.
cmpb.2021.106238.

[7] R. J. Carroll, D. Ruppert, L. A. Stefanski, C. M. Crainiceanu, Bias versus variance, in:
Measurement error in nonlinear models, 2nd Edition, Chapman & Halll/CRC, Boca
Raton, FL, 2006, Ch. 3, pp. 60–63.

[8] N. Biniaminov, Data from: Irisin, physical activity and fitness status in healthy
humans: no association under resting conditions in a cross-sectional study, Dryad,
Dataset (2019). doi:10.5061/dryad.ck501.

[9] N. Biniaminov, S. Bandt, A. Roth, S. Haertel, R. Neumann, A. Bub, Irisin, physical
activity and fitness status in healthy humans: No association under resting conditions
in a cross-sectional study, PLOS ONE 13 (1) (2018) e0189254. doi:10.1371/journal.
pone.0189254.

[10] B. E. Ainsworth, W. L. Haskell, S. D. Herrmann, N. Meckes, D. R. Basset,
C. Tudor-Locke, J. L. Greer, J. Vezina, M. C. Whitt-Glover, A. S. Leon, 2011
Compendium of physical activities, Medicine & Science in Sports & Exercise 43 (8)
(2011) 1575–1581. doi:10.1249/MSS.0b013e31821ece12.

[11] B. Rosner, D. Spiegelman, W. C. Willett, Correction of logistic regression relative
risk estimates and confidence intervals for measurement error: The case of multiple

https://doi.org/10.1016/j.jclinepi.2018.02.023
https://doi.org/10.1016/j.jclinepi.2018.02.023
https://doi.org/10.1016/j.annepidem.2018.09.001
https://doi.org/10.1016/j.annepidem.2018.09.001
https://doi.org/10.1002/sim.8532
https://doi.org/10.1136/bmj.c2289
https://doi.org/10.1016/j.cmpb.2021.106238
https://doi.org/10.1016/j.cmpb.2021.106238
https://doi.org/10.5061/dryad.ck501
https://doi.org/10.1371/journal.pone.0189254
https://doi.org/10.1371/journal.pone.0189254
https://doi.org/10.1249/MSS.0b013e31821ece12


4

85

covariates measured with error, American Journal of Epidemiology 132 (4) (1990)
734–745. doi:10.1093/oxfordjournals.aje.a115715.

[12] T. P. Morris, I. R.White, M. J. Crowther, Using simulation studies to evaluate statistical
methods, Statistics in Medicine 38 (11) (2019) 2074–2102. doi:10.1002/sim.8086.

[13] A. Gasparini, Rsimsum: Summarise results from Monte Carlo simulation studies,
Journal of Open Source Software 3 (26) (2018) 739. doi:10.21105/joss.00739.

[14] L. Nab, R. H. H. Groenwold, Sensitivity analysis for random measurement error using
regression calibration and simulation-extrapolation, Global Epidemiology 3 (2021)
100067. doi:10.1016/j.gloepi.2021.100067.

[15] L. Nab, R. H. H. Groenwold, M. van Smeden, R. H. Keogh, Quantitative bias analysis
for amisclassified confounder: A comparison betweenmarginal structural models and
conditional models for point treatments, Epidemiology 31 (6) (2020) 796–805. doi:
10.1097/EDE.0000000000001239.

[16] J. Kuha, Corrections for exposure measurement error in logistic regression models
with an application to nutritional data, Statistics inMedicine 13 (11) (1994) 1135–1148.
doi:10.1002/sim.4780131105.

[17] R. J. Carroll, D. Ruppert, L. A. Stefanski, C. M. Crainiceanu, Regression calibration for
survival analysis, in: Measurement error in nonlinear models, 2nd Edition, Chapman
& Hall/CRC, Boca Raton, FL, 2006, Ch. 14, pp. 321–323.

https://doi.org/10.1093/oxfordjournals.aje.a115715
https://doi.org/10.1002/sim.8086
https://doi.org/10.21105/joss.00739
https://doi.org/10.1016/j.gloepi.2021.100067
https://doi.org/10.1097/EDE.0000000000001239
https://doi.org/10.1097/EDE.0000000000001239
https://doi.org/10.1002/sim.4780131105



