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Mecor: An R package for

measurement error correction in
linear models with a continuous

outcome
Measurement error in a covariate or the outcome of regressionmodels is common, but is often ignored, even
though measurement error can lead to substantial bias in the estimated covariate-outcome association.
While several texts on measurement error correction methods are available, these methods remain
seldomly applied. To improve the use of measurement error correction methodology, we developed
mecor, an R package that implements measurement error correction methods for regression models with
continuous outcomes. Measurement error correction requires information about the measurement error
model and its parameters. This information can be obtained from four types of studies, used to estimate
the parameters of the measurement error model: an internal validation study, a replicates study, a
calibration study and an external validation study. In the package mecor, regression calibration methods
and a maximum likelihood method are implemented to correct for measurement error in a continuous
covariate in regression analyses. Additionally, methods of moments methods are implemented to correct
for measurement error in the continuous outcome in regression analyses. Variance estimation of the
corrected estimators is provided in closed form and using the bootstrap.

This chapter is based on: L. Nab, M. van Smeden, R.H. Keogh and R.H.H. Groenwold. Mecor: An R package for
measurement error correction in linear regression models with a continuous outcome, Computer Methods and
Programs in Biomedicine 208 (2021) 106238. doi:10.1016/j.cmpb.2021.106238
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3.1. Introduction
Measurement error is common across research fields, affecting the measurement of
outcomes as well as important covariates. When left uncorrected, this can lead to severely
biased and inefficient estimates of associations between covariates and outcome variables.
Several texts have been published describing the impact of measurement error, and
measurement error correction methodology [1–4]. However, recent reviews by Brakenhoff
et al. [5] and Shaw et al. [6] show that, in biomedical research, measurement error
correction methods remain seldomly applied. Keogh et al. [7] suggest that one of the main
barriers to the use of correction methods may be the lack of accessible software. Moreover,
as exemplified in [8], measurement is not only common in biomedical research, but in
bioinformatics, chemistry, astronomy and econometrics as well. Therefore, to facilitate
and encourage the use of measurement error correction methodology, we developed mecor,
an R package that provides measurement error correction methods for linear models with
continuous outcomes.

Several approaches to measurement error correction have been developed in the past
decade. Examples include, simulation-extrapolation (SIMEX) by Cook et al. [9], multiple
imputation for measurement error by Cole et al. [10], Bayesian correction (e.g., [4, 11]),
maximum likelihood-based methods (e.g., [12, 13]), method of moments (MM) (e.g., [1]),
and regression calibration (RC) introduced by Gleser [14] and Carroll et al. [15]. Of all
these measurement error correction methods, RC is among the most commonly applied
in biomedical research [6], possibly because of its relative simplicity and the possibility to
implement it in conjunction with a variety of analysis types, e.g., linear regression [14, 15],
survival analysis [16]), logistic regression [17] and other generalized linear models [2, 18].

In R [19], covariate measurement error correction by means of SIMEX is implemented in
the package simex by Lederer et al. [20]. The R package simexaft by He et al. [21] provides
SIMEX covariate measurement error correction for accelerated failure time models. A
special issue of the Stata [22] Journal was published in 2003 and dedicated to measurement
error models [23]. Three different methods were introduced for correction of measurement
error in covariates in a generalized linear model. The rcal and eivreg procedure were
introduced for RC byHardin et al. [24], the simex and simexplot procedurewere introduced
for SIMEX by Hardin et al. [25] and, the cme procedure was introduced by Rabe-Hesketh
et al. [26] for measurement error correction using a maximum likelihood approach.
In SAS, multiple macros have been developed for measurement error correction. These
macros include %blinplus, implementing the method by Rosner et al. [17]), %relibpls8,
implementing the method by Rosner et al. [27], and %rrc, implementing the method by
Liao et al. [28]), and the National Cancer Institute method macros, implementing the
methods by Kipnis et al. [29]. An overview of available software including useful web
links can be found in Table 4 and 5 of the paper by Keogh et al. [7]. Although several
measurement error correction methods are available in Stata and SAS, to date RC-like
methods for measurement error correction in a covariate have not been implemented in
an R package. Moreover, no method for measurement error correction in a continuous
outcome has been implemented in R.

In this paper we present and describe mecor, an R package for measurement error
correction in linear regression models with a continuous outcome. Several methods
(i.e., RC, MM and maximum likelihood) are implemented to correct covariate-outcome
associations for measurement error in a covariate, or in the outcome. The package mecor
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is flexible regarding the information that can be used to enable the measurement error
correction, which can be of either of four types of measurement validation studies: an
internal validation study, a replicates study, a calibration study and an external validation
study. For each of these types of validation studies, standard RC, validation RC, efficient
RC by Spiegelman et al. [30] and a maximum likelihood approach by Bartlett et al.
[12] are implemented for measurement error correction in a covariate. For outcome
measurement error correction, standard MM [1] and efficient MM [31] are available, for
all different types of validation studies except replicates studies. The package mecor allows
for random or systematic measurement error in a covariate, systematic measurement error
in the outcome and, additionally, differential outcome measurement error in a univariable
analysis. This broad spectrum of validation study types, measurement error models and
correction methods in our easy-to-use software package should improve the application of
measurement error corrections in research practice.

This paper is organized as follows. Section 3.2 introduces several measurement error
models and the data structures of the four validation study types that can be used
to estimate the parameters of the measurement error model. Section 3.3 outlines the
measurement error correctionmethods. Section 3.4 introduces the functions in the package
mecor. Section 3.5 demonstrates how the package mecor can be used in different settings
using simulated example data.

3.2. Measurement error: notation, types and data structures
In this section, we introduce notation, derive expressions for the impact of measurement
error on covariate-outcome associations and introduce the data structure of four
different types of studies, that provide input for measurement error correction methods.
Throughout, it is assumed that there is a continuous outcome 𝑌 , a continuous covariate
𝑋 and a vector of 𝑘 other covariates 𝐙 = (𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑘). We consider measurement
error in one variable at a time, i.e., in the covariate, 𝑋 , or in the outcome, 𝑌 and assume
that the other variables in the model are measured without error. Since our focus is on
studies in which we aim to estimate the covariate-outcome association, the covariate 𝑋
could be the main exposure of interest or a variable that confounds the relation between
the main exposure and the outcome (one of the 𝑍 variables). The parameters of interest
are 𝜷 = (𝛽𝑋 , 𝛽0, 𝜷𝑍 ) (with 𝜷𝑍 a 1 × 𝑘 matrix) from the linear model,

𝑌 = 𝛽𝑋𝑋 + 𝛽0 + 𝜷𝑍𝐙′ + 𝑒, Var(𝑒) = 𝜎2, (3.1)

where we assume that E(𝑒) = 0 and Cov(𝑒, 𝑋 ) = Cov(𝑒, 𝐙) = 0. This model will be referred
to as the outcome model.

3.2.1. Types of measurement error and their impact
To quantify the impact of measurement error, we first define the assumed measurement
error models. Subsequently, we outline the impact of measurement error in a covariate and
the outcome on the estimates of the outcome model parameters, separately.



3

36 mecor: An R package for measurement error correction

Covariate measurement error
Let 𝑋 ∗ denote the error-prone substitute measure of the error-free reference measure 𝑋 ,
following the measurement error model,

𝑋 ∗ = 𝜃0 + 𝜃1𝑋 + 𝑈 , Var(𝑈 ) = 𝜏2, (3.2)

and assume that E(𝑈 ) = 0 and Cov(𝑈 , 𝑋) = 0. We assume non-differential covariate
measurement error (i.e., 𝑋 ∗ ⊧𝑌 |𝑋 , 𝐙 or, equivalently, that the errors 𝑈 are independent
of the errors 𝑒 in equation (3.1)). The measurement error is called ‘classical’ or ‘random’
if 𝜃0 = 0 and 𝜃1 = 1. The terms classical measurement error and random measurement
error are used interchangeably in the literature. In this paper, we use the term random
measurement error to refer to this type of measurement error. The measurement error is
called ‘systematic’ for all other values of 𝜃0 and 𝜃1.

Suppose that there is one covariate 𝐙 = 𝑍1 in the outcome model in (3.1), and that data
on 𝑌 , 𝑋 ∗ and 𝑍1 are available to fit the linear model,

E(𝑌 |𝑋 ∗, 𝑍1) = 𝛽∗𝑋𝑋 ∗ + 𝛽∗0 + 𝜷∗𝑍𝑍1. (3.3)

In this model, the least squares estimators ̂𝜷∗ = ( ̂𝛽∗𝑋 , ̂𝛽∗0, ̂𝛽∗𝑍 ), are biased for 𝜷 , and consistent
and unbiased estimators for 𝜷𝚲 where 𝚲 is the 3 × 3 calibration model matrix:

𝚲 = (
𝜆𝑋 ∗ 𝜆0 𝜆𝑍10 1 0
0 0 1

) .

A well-known special case of the calibration model matrix is the attenuation factor. In
particular, when there is random measurement error in the substitute error-prone measure
𝑋 ∗, we have 𝛽∗𝑋 = 𝜆𝑋 ∗𝛽 , where 𝜆𝑋 ∗ is called the attenuation factor [32] or regression dilution
factor [33, 34]. When there is more than one 𝐙 covariate in the outcome model defined by
equation (3.1), the calibration model matrix generalizes to the following (2 + 𝑘) × (2 + 𝑘)
matrix:

𝚲 =
⎛
⎜⎜
⎝

𝜆𝑋 ∗ 𝜆0 𝝀𝐙

0 𝐼
⎞
⎟⎟
⎠
, (3.4)

where 𝝀𝐙 is a 1 × 𝑘 matrix, 𝟎 is a (1 + 𝑘) × 1 null matrix and 𝐈 is a (1 + 𝑘) × (1 + 𝑘) identity
matrix.

Outcome measurement error
Let 𝑌 ∗ denote the error-prone substitute measure of the error-free reference measure 𝑌 ,
following the measurement error model,

𝑌 ∗ = 𝜃0 + 𝜃1𝑌 + 𝑈 , Var(𝑈 ) = 𝜏2, (3.5)

and assume that E(𝑈 ) = 0 and Cov(𝑈 , 𝑌 ) = 0. We assume non-differential outcome
measurement error (i.e., 𝑌 ∗ ⊧𝑋 |𝑌 , 𝐙 or, equivalently, that the errors 𝑈 are independent
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of the errors 𝑒 in equation (3.1)), unless specified otherwise. Random and systematic
outcome measurement error are defined analogously to random and systematic covariate
measurement error, respectively [35, 36].

Suppose, again, that there is one covariate 𝐙 = 𝑍1 in the outcome model in (3.1) and
that data on 𝑌 ∗, 𝑋 and 𝑍1 are available to fit the linear model,

E[𝑌 ∗|𝑋 , 𝑍1] = 𝛽∗𝑋𝑋 + 𝛽∗0 + 𝛽∗𝑍𝑍1. (3.6)

If the measurement error in 𝑌 ∗ is random, the least squares estimators ̂𝜷∗ = ( ̂𝛽∗𝑋 , ̂𝛽∗0, ̂𝛽∗𝑍 )
are unbiased for 𝜷 . In contrast, if the error in 𝑌 ∗ is systematic, the least squares estimators
̂𝜷∗ = ( ̂𝛽∗𝑋 , ̂𝛽∗0, ̂𝛽∗𝑍 ) are biased for 𝜷 [1, 31, 36]. In order to identify consistent estimators for 𝜷

by matrix multiplication, we add the integer 1 to the vector ̂𝜷∗. Then, ( ̂𝜷∗, 1) are consistent
and unbiased estimators for (𝜷, 1)𝚯 where 𝚯 is the 4 × 4 outcome measurement error
model matrix:

𝚯 =
⎛
⎜⎜
⎝

𝜃1 0 0 0
0 𝜃1 0 0
0 0 𝜃1 0
0 𝜃0 0 1

⎞
⎟⎟
⎠
.

When there is more than one 𝐙 covariate in the outcome model defined in equation (3.1),
the calibration model matrix generalizes to the following (2 + 𝑘 + 1) × (2 + 𝑘 + 1) outcome
measurement error model matrix:

𝚯 =

⎛
⎜
⎜
⎜
⎜
⎝

𝜃1 0 … … … 0
0 ⋱ ⋱ ⋮
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
⋮ 0 … 0 𝜃1 0
0 𝜃0 0 … 0 1

⎞
⎟
⎟
⎟
⎟
⎠

, (3.7)

where 𝚯̂ contains all zero’s except on the diagonal and the (2 + 𝑘 + 1, 2)th element.

Differential outcome measurement error in univariable analyses
We assume non-differential measurement error in the outcome in all but the following
special case. Suppose exposure 𝑋 is binary (e.g., in a two-arm controlled randomised trial)
and that there are no other covariates 𝐙 in the outcome model defined by equation (3.1).
Further, suppose that the measurement error in 𝑌 is differential such that the measurement
error in the unexposed individuals (i.e., 𝑋 = 0) is different from the measurement error in
the exposed individuals (i.e., 𝑋 = 1). Equivalently, let 𝑌 ∗ be the error-prone substitute
measure of the error-free reference measure 𝑌 , with mean E(𝑌 ∗|𝑌 , 𝑋 ) = 𝜃𝑋0 + 𝜃𝑋1𝑌 and
variance 𝜏2, for 𝑋 = 0, 1. Suppose now that data on 𝑌 ∗ and 𝑋 are available to fit the linear
model,

E[𝑌 ∗|𝑋 ] = 𝛽∗𝑋𝑋 + 𝛽∗0.
In this model, the least squares estimators ̂𝜷∗ = ( ̂𝛽∗𝑋 , ̂𝛽∗0) are biased for 𝜷 [31, 36]. In

order to identify consistent estimators for 𝜷 by matrix multiplication, we again add the
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integer 1 to the vector ̂𝜷∗. Then, ( ̂𝜷∗, 1) are consistent and unbiased estimators for (𝜷, 1)𝚯
where, 𝚯 is the following 3 × 3 differential outcome measurement error model matrix:

𝚯 = (
𝜃11 0 0

𝜃11 − 𝜃10 𝜃10 0
𝜃01 − 𝜃00 𝜃00 1

) . (3.8)

3.2.2. Validation study data structures for measurement error correction
Four types of validation studies can be used to estimate the calibration model matrix or
outcome measurement error model matrix defined in section Types of measurement error
and their impact: an internal validation study, a replicates study, a calibration study or an
external validation study [7, 37]. The first three validation studies make use of information
internal to the study cohort, whereas the fourth makes use of information external to the
study cohort.

Internal validation study
In an internal validation study, the error-free reference covariate values 𝑋 or outcome
values 𝑌 are observed in a subset of individuals (Table 3.1). Table 3.1a shows the structure
of an internal validation study for covariate measurement error. In the main study, the
outcome 𝑌 , the error-prone substitute covariate 𝑋 ∗ and the covariates 𝐙 are measured
in all 𝑛 individuals. Additionally, in 𝑛sub individuals (𝑛sub < 𝑛) the true covariate 𝑋 is
measured, assumed a random subset of the main study. As an example, suppose the true
exposure of interest is visceral adipose tissue measurements (i.e., 𝑋 ) but that this is too
expensive to obtain on all study participants and the error-prone substitute measure of
waist circumference is instead collected for everyone (i.e, 𝑋 ∗) [38]. The same structure
holds for an internal validation study for outcome measurement error, as shown in Table
3.1b.

Table 3.1: Data structure of internal validation studies. The true covariate or outcome is observed in a subset
of the individuals from the main study. The superscript ∗ indicates that the variable was measured with error.

(a) Covariate-validation study

𝑌 𝑋 ∗ 𝐙 𝑋
𝑦1 𝑥∗1 𝐳𝟏 𝑥1
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ 𝑥𝑛sub⋮ ⋮ ⋮ -
⋮ ⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑛 𝐳𝐧 -

(b) Outcome-validation study

𝑌 ∗ 𝑋 𝐙 𝑌
𝑦∗1 𝑥1 𝐳𝟏 𝑦1
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ 𝑦𝑛sub⋮ ⋮ ⋮ -
⋮ ⋮ ⋮ ⋮
𝑦∗𝑛 𝑥𝑛 𝐳𝐧 -

Replicates study
A replicates study can be used if the measurement error in a covariate is random, denoted
by 𝑋 ∗𝑟 . We will only use this type of study for covariate measurement error since random
measurement error in an outcome does not result in biased association estimates (section
Types of measurement error and their impact). In a replicates study, the error-prone
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substitute covariate 𝑋 ∗𝑟 is repeatedly measured (i.e., 𝑚 times, where 𝑚 ≥ 2) in all or in a
random subset of individuals (Table 3.2). The repeatedmeasures are denoted by𝑋 ∗𝑟1 , … , 𝑋 ∗𝑟𝑚 .
We assume that, in each individual, the same number of repeated measures was observed.
Further, we assume that the measurement error in the replicates is jointly independent.
Table 3.2a and 3.2b show the structure of a replicates study with full and partial replicates,
respectively. In the main study, the outcome 𝑌 , the error-prone substitute covariate 𝑋 ∗𝑟1
and the covariates 𝐙 are measured in all 𝑛 individuals. Additionally, 𝑛sub ≤ 𝑛 individuals
have 𝑚 replicates of the error-prone substitute measure 𝑋 ∗𝑟𝑗 for 𝑗 = 2…𝑚. An example is
the repeated measurement of several coronary risk factors in the Framingham Heart study,
such as serum cholesterol, blood glucose, and systolic blood pressure [27].

Table 3.2: Data structure of a covariate-replicates study for full or partial replicates. The error-prone
covariate is measured 𝑚 times in all or a subset of individuals. The superscript ∗𝑟 indicates random measurement
error.

(a) Full replicates study

𝑌 𝑋 ∗𝑟1 𝐙 𝑋 ∗𝑟2 … 𝑋 ∗𝑟𝑚
𝑦1 𝑥∗𝑟11 𝐳𝟏 𝑥∗𝑟12 … 𝑥∗𝑟1𝑚
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑟𝑛1 𝐳𝐧 𝑥∗𝑟𝑛2 … 𝑥∗𝑟𝑛𝑚

(b) Partial replicates study

𝑌 𝑋 ∗𝑟1 𝐙 𝑋 ∗𝑟2 … 𝑋 ∗𝑟𝑚
𝑦1 𝑥∗𝑟11 𝐳𝟏 𝑥∗𝑟12 … 𝑥∗𝑟1𝑚
⋮ ⋮ ⋮ ⋮ … ⋮
⋮ ⋮ ⋮ 𝑥 ∗𝑟𝑛sub2 … 𝑥∗𝑟𝑛sub𝑚
⋮ ⋮ ⋮ - … -
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑟𝑛1 𝐳𝐧 - … -

Calibration study
A calibration study is a special type of sub-study where two types of error-prone
substitute measurement methods are used to measure the covariate or outcome: substitute
measurement prone to systematic measurement error and a substitute measurement prone
to random measurement error (Table 3.3). Table 3.3a shows the structure of a calibration
study for covariate measurement error. All 𝑛 individuals in the main study have obtained
measures of the outcome 𝑌 , the error-prone substitute covariate 𝑋 ∗𝑠 and the covariates 𝐙.
The error-prone substitute covariate𝑋 ∗𝑠 is systematically different from𝑋 , or, E(𝑋 ∗𝑠 |𝑋 ) ≠ 𝑋
(systematic measurement error). Additionally, a random subset of 𝑛sub individuals (𝑛sub <
𝑛) have 𝑚 replicates of the error-prone substitute measure 𝑋 ∗𝑟𝑗 , where E(𝑋 ∗𝑟𝑗 |𝑋 ) = 𝑋 for
𝑗 = 1…𝑚 (random measurement error). The same structure holds for a calibration study
for outcome measurement error, as shown in Table 3.3b. An example of an calibration
study for outcome measurement error is a study of sodium intake measured by a 24-hour
recall (assumed systematic measurement error) and urinary biomarkers (assumed random
measurement error) [31].

External validation study
In an external validation study the error-free reference covariate values𝑋 or outcome values
𝑌 are observed in a small set of individuals not included in the main study (Table 3.4). Table
3.4a shows the structure of an external validation study for covariate measurement error.
In all 𝑛 individuals in the main study measures are obtained of outcome 𝑌 , the error-prone
substitute covariate 𝑋 ∗ and the covariates 𝐙. Additionally, there is an external data set
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Table 3.3: Data structure of calibration studies. Two types of error-prone measurement methods are used to
measure the covariate or outcome. The superscripts ∗𝑟 and ∗𝑠 indicate random and systematic measurement error,
respectively.

(a) Covariate-calibration study

𝑌 𝑋 ∗𝑠 𝐙 𝑋 ∗𝑟1 … 𝑋 ∗𝑟𝑚
𝑦1 𝑥∗𝑠1 𝐳𝟏 𝑥∗𝑟11 … 𝑥∗𝑟1𝑚
⋮ ⋮ ⋮ ⋮ … ⋮
⋮ ⋮ ⋮ 𝑥∗𝑟𝑛sub1 … 𝑥∗𝑟𝑛sub𝑚
⋮ ⋮ ⋮ - … -
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑠𝑛 𝐳𝐧 - … -

(b) Outcome-calibration study

𝑌 ∗𝑠 𝑋 𝐙 𝑌 ∗𝑟1 … 𝑌 ∗𝑟𝑚
𝑦∗𝑠1 𝑥1 𝐳𝟏 𝑦∗𝑟11 … 𝑦∗𝑟1𝑚
⋮ ⋮ ⋮ ⋮ … ⋮
⋮ ⋮ ⋮ 𝑦∗𝑟𝑛sub1 … 𝑦∗𝑟𝑛sub𝑚
⋮ ⋮ ⋮ - … -
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦∗𝑠𝑛 𝑥𝑛 𝐳𝐧 - … -

comprising of individuals on whom measures are obtained of the error-free reference
covariate 𝑋 , the error-prone substitute covariate 𝑋 ∗ and the other covariates 𝐙. Table 3.4b
shows the structure of an external validation study for outcome measurement error. In
this setting, there is an external data set comprising of individuals of whom measures are
obtained of the error-free reference outcome 𝑌 and the error-prone substitute outcome 𝑌 ∗.
The external data set does not need to comprise measures of the covariates. An example
of an external validation study for outcome measurement error is a trial designed to study
the efficacy of iron supplementation in pregnant womenwhere haemoglobin is measured in
capillary blood samples (error-prone substitutemeasure) instead of in venous blood samples
(error-free reference measure) [36].

Table 3.4: Data structure of external validation studies. An error-prone covariate or outcome is measured in
the main study and the true covariate or outcome is measured in a small external set. The superscript ∗ indicates
that there is random or systematic measurement error in the variables

(a) External covariate-validation study

𝑌 𝑋 ∗ 𝐙
𝑦1 𝑥∗1 𝐳𝟏
⋮ ⋮ ⋮
⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑛 𝐳𝐧
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Main study

𝑋 𝑋 ∗ 𝐙
𝑥1 𝑥∗1 𝐳𝟏
⋮ ⋮ ⋮

𝑥𝑛ex
𝑥∗𝑛ex

𝐳𝐧ex⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
External

(b) External outcome-validation study

𝑌 ∗ 𝑋 𝐙
𝑦∗1 𝑥1 𝐳𝟏
⋮ ⋮ ⋮
⋮ ⋮ ⋮
𝑦∗𝑛 𝑥𝑛 𝐳𝐧
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Main study

𝑌 𝑌 ∗
𝑦1 𝑦∗1
⋮ ⋮

𝑦𝑛ex
𝑦∗𝑛ex⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
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3.3.Measurement error correction
In section Types of measurement error and their impact, the calibration model matrix 𝚲
and the measurement error model matrix 𝚯 were introduced. These matrices quantify the
bias in the naive analysis, i.e., the analysis that does not take the measurement error in 𝑋 ∗
or 𝑌 ∗ into account. In the following sections, measurement error correction methods are
introduced that utilize the matrices 𝚲 and 𝚯.

The standard method for covariate measurement error correction that uses the



3

41

calibration model matrix 𝚲 is standard regression calibration (RC) [14, 15]. Standard RC can
be applied in all four types of studies from the previous section. In addition, validation RC,
an adapted version of standard RC for internal validation studies, is the standard covariate
measurement error correction method for internal validation studies [2]. Further, the
standard method for outcome measurement error correction that uses the measurement
error model matrix𝚯 is standard method of moments (MM) [1]. Standard MM can be applied
in internal and external validation studies, and calibration studies.

Standard RC and standard MM do not make the most efficient use of the information
available in internal validation studies and calibration studies [2]. More efficient methods
for measurement error correction methods are therefore implemented in mecor. A more
efficient RC estimator, called efficient RC, was introduced by Spiegelman et al. [30]. A
more efficient MM estimator was introduced by Keogh et al. [31], which is called the
Buonaccorsi approach using the method of moments. For simplicity, we will refer to this
method as efficient MM.

Likewise, in replicates studies, standard RC does not make the most efficient use of the
information available [33]. The standard RC method is sub-optimal in terms of efficiency,
since the method depends on the ordering of the replicate measurements [33]. This can
be intuitively understood as follows. The standard RC regresses the mean of all but the
first replicate on the first replicate, but this could as easily be exchanged with the second
replicate. Therefore, different approaches are possible (e.g., maximum likelihood) [33].
Bartlett et al. [12] showed how a standard random-intercepts model can be used to
obtain maximum likelihood (ML) estimates that are more efficient than standard RC, at the
cost of some additional parametric assumptions, discussed in section Maximum likelihood
estimation for replicates studies.

Section Standard measurement error correction introduces standard RC and validation
RC for covariate measurement error correction, and standard MM for outcome
measurement error correction. Efficient RC and efficient MM are introduced in section
More efficient measurement error correction and the maximum likelihood approach for
replicates studies is introduced in section Maximum likelihood estimation for replicates
studies. When no information is available to estimate the parameters of the measurement
error model, a sensitivity analysis or quantitative bias analysis can be used to analyse the
sensitivity of study results to measurement error [39, 40]. An approach for conducting
sensitivity analyses is discussed in section Sensitivity analyses.

3.3.1. Standard measurement error correction
Covariate measurement error
In standard RC, the biased least squares estimator ̂𝜷∗ is multiplied by the inverse of an
estimate of the calibration model matrix 𝚲 to give a consistent and unbiased estimator of
𝜷 , denoted ̂𝜷RC:

̂𝜷RC = ̂𝜷∗𝚲̂−1 (3.9)

Standard RC can be applied using all four types of validation studies (section Validation
study data structures for measurement error correction).

To construct the calibration model matrix 𝚲 (see equation (3.4)), we estimate its
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components 𝝀 = (𝜆𝑋 ∗ , 𝜆0, 𝝀𝑍 ), from the linear calibration model:

E(𝑋 |𝑋 ∗, 𝐙) = 𝜆𝑋 ∗𝑋 ∗ + 𝜆0 + 𝝀𝐙𝐙′, (3.10)

using least squares. Here, 𝝀𝐙 is a 1 × 𝑘 matrix. Throughout, we assume that the calibration
model matrix is correctly specified. To obtain estimates of the parameters of interest 𝝀
in an internal validation study (Table 3.1a) and external validation study (Table 3.4a), the
error-free reference measure 𝑋 is regressed on the error-prone substitute measure 𝑋 ∗ and
the other covariates 𝐙. To obtain estimates of the parameters of interest 𝝀 in a replicates
study (Table 3.2a), the mean of all replicates except the first replicate (i.e., 𝑋 ∗𝑟2 , … , 𝑋 ∗𝑟𝑚 )
is regressed on the first replicate 𝑋 ∗1 and the other covariates 𝐙. To obtain estimates of
the parameters of interest 𝝀 in a calibration study (Table 3.3a), the mean of the replicates
𝑋 ∗𝑟1 , … , 𝑋 ∗𝑟𝑚 with random measurement error is regressed on the measurement 𝑋 ∗𝑠 with
systematic measurement error and the other covariates 𝐙.

An adapted version of standard RC in internal validation studies is validation RC [2]. In
validation RC, the outcome 𝑌 is regressed on the calibrated values𝑋cal and𝐙. The calibrated
values 𝑋cal are constructed as follows: if 𝑋 is observed, 𝑋cal = 𝑋 , and if 𝑋 is not observed,
𝑋cal = E(𝑋 |𝑋 ∗, 𝐙). The parameters from the regression of 𝑌 on 𝑋cal and 𝐙 are estimates of
our parameters of interest 𝜷 in equation (3.5). Note that standard RC described above is
identical to using 𝑋cal = E(𝑋 |𝑋 ∗, 𝐙) for all 𝑋 [7].

Outcome measurement error
In standard MM, the biased least squares estimator ̂𝜷∗ is multiplied by the inverse of an
estimate of the outcome measurement error model matrix 𝚯 to give a consistent and
unbiased estimator of 𝜷 , denoted ̂𝜷MM:

̂𝜷MM = ( ̂𝜷∗, 𝟏)𝚯̂−1. (3.11)

Standard MM can be applied using internal and external validation studies, and calibration
studies (section Validation study data structures for measurement error correction).

To construct the outcome measurement error model matrix 𝚯 (see equation (3.7)),
we estimate its components 𝜽 = (𝜃0, 𝜃1) from the linear measurement error model
E(𝑌 ∗|𝑌 ) = 𝜃0 + 𝜃1𝑌 using least squares. Throughout, we assume that the measurement
error model matrix is correctly specified. To obtain estimates of the parameters of interest
𝜽 in an internal validation study (Table 3.1b) and an external validation study (Table
3.4b), the error-prone substitute measurement 𝑌 ∗ is regressed on the error-free reference
measurement 𝑌 . To obtain estimates of the parameters of interest 𝜽 in a calibration study
(Table 3.3b), the measurement 𝑌 ∗𝑠 with systematic measurement error is regressed on the
mean of the replicates 𝑌 ∗𝑟1 , … , 𝑌 ∗𝑟𝑚 with random measurement error, thereby correcting for
the bias in the estimated ̂𝜽 using standard RC (implying that 𝑚 > 1).

Differential outcome measurement error in univariable analyses
For the special case of differential measurement error, the outcome measurement error
model matrix 𝚯 (see equation (3.8)), can be constructed as follows. We estimate its
components 𝜽 = (𝜃00, 𝜃01, 𝜃10, 𝜃11) from the measurement error model E(𝑌 ∗|𝑌 , 𝑋 ) =
𝜃00 + (𝜃01 − 𝜃00)𝑋 + 𝜃10𝑌 + (𝜃11 − 𝜃10)𝑋𝑌 . This model can be fitted directly in an internal
validation study (Table 3.1b), provided that the random internal subset includes exposed
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(i.e., 𝑋 = 1) and non-exposed individuals (i.e., 𝑋 = 0). The model can be fitted in an
external validation study (Table 3.4b), provided that 𝑋 is measured, and that exposed and
non-exposed individuals are included in the external set. In a calibration study (Table
3.3b), the measurement with systematic measurement error is regressed on the mean of the
replicates 𝑌 ∗𝑟1 , … , 𝑌 ∗𝑟𝑚 with randommeasurement error and the covariate 𝑋 (again, provided
that the random subset with replicates with random measurement error includes exposed
and non-exposed individuals).

Variance estimation
The variance of the standard RC estimator can be estimated using the multivariate
delta method [17] or the zero-variance method [41]. Confidence intervals can then be
obtained by constructing Wald-type confidence intervals using one of the former two
methods. Additionally, confidence intervals can be obtained by the stratified bootstrap, by
sampling the observations in the internal subset separately from the observations outside
the internal subset. The variance of the standard MM estimator can also be estimated
with the multivariate delta method, the zero-variance method or the stratified bootstrap.
Additionally, for standard RC, confidence intervals for ̂𝛽𝑋 RC (the first element of the ̂𝜷RC)
can be obtained by the Fiellermethod [33]. For standardMM, confidence intervals for ̂𝛽𝑋MM
and ̂𝜷𝐙MM (the first two elements of the ̂𝜷MM) can be obtained by the Fieller method [36].
Details of these procedures can be found in section S3.1 of the supplementary materials.

3.3.2. More efficient measurement error correction
Covariate measurement error
Efficient RC can be used in internal validation studies or calibration studies [30]. It pools
the standard RC estimate with an internal estimate for 𝜷 obtained in the internal validation
study or calibration study.

In internal validation studies, the error-free reference covariate 𝑋 is obtained in an
internal subset of the main study (Table 3.1a). By regressing the outcome 𝑌 on 𝑋 and
the other covariates 𝐙 using least squares in the internal subset, one obtains an unbiased
estimate for our parameters of interest 𝜷 . Denote this estimator by ̂𝜷I. This internal
estimator ̂𝜷I can then be combined with the standard RC estimator ̂𝜷RC defined in equation
(3.9), by taking the inverse variance weighted mean of the two estimates:

̂𝜷ERC = [𝚺̂−1𝛽RC + 𝚺̂−1𝛽I ]−1[𝚺̂−1𝛽RC ̂𝛽RC + 𝚺̂−1𝛽I ̂𝛽I], (3.12)

where 𝚺̂−1𝛽RC is the variance–covariance matrix obtained from the multivariate delta method

and 𝚺̂𝛽I is the standard variance–covariance matrix of a least squares estimator. The
efficient RC estimator defined above is an unbiased, consistent and the most efficient
estimator for 𝜷 if sampling into the internal validation set is unbiased (e.g., if the validation
study is a random subset of participants) [30].

In calibration studies, the covariate 𝑋 is observed with random measurement error in
an internal subset of the main study (Table 3.3a). If at least 2 replicates are available, an
unbiased estimator for 𝜷 can be obtained by using the standard RC estimator for a replicates
study (see section Standard measurement error correction) in the internal subset. Again,
denote this estimator by ̂𝜷I. Then, the estimate obtained from the internal subset can be
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pooled with the standard RC estimate following equation (3.12). Alternatively, an unbiased
estimator for 𝜷 using the replicates in the internal subset can be obtained by using the
ML estimation discussed in section Maximum likelihood estimation for replicates studies.
Again, this estimate can then be pooled with the standard RC estimate following equation
(3.12).

Outcome measurement error
Efficient MM can be used in internal validation studies or calibration studies [31]. It pools
the standardMM estimate with an internal estimate for 𝜷 obtained in the internal validation
study or calibration study.

In internal validation studies, the error-free reference outcome 𝑌 is obtained in an
internal subset of the main study (Table 3.1b). By regressing 𝑌 on the covariates 𝑋 and
𝐙 using least squares in the internal subset, one obtains an unbiased estimator for 𝜷 .
Denote this estimator by ̂𝜷I. In calibration studies, the outcome is observed with random
measurement error in an internal subset of the main study (Table 3.3b). The internal
estimator ̂𝜷I is obtained by regressing the outcome 𝑌 ∗,𝑟 with randommeasurement error on
the covariates 𝑋 and 𝐙 using least squares in the internal subset. Using the outcome with
random measurement error will lead to the unbiased estimation of the association under
study since random outcome measurement error does not bias the association. A single
measurement with random measurement error (i.e., 𝑚 = 1 in Table 3.1b) is sufficient to
obtain an internal estimate. However, if the outcome with random measurement error is
observed more than once, the mean of the measures 𝑌 ∗𝑟1 , … , 𝑌 ∗𝑟𝑚 can be used and regressed
on the covariates 𝑋 and 𝐙. Subsequently, the estimate obtained from the internal subset
in an internal validation study or calibration study can be pooled with the standard MM
estimate following equation (3.12), by replacing the standard RC estimate with the standard
MM estimate in the equation.

Differential outcome measurement error in univariable analyses
In internal validation studies, the internal estimator ̂𝜷I can be obtained by regressing 𝑌 on
the covariates 𝑋 and 𝐙 using least squares. In calibration studies, the internal estimator
̂𝜷I can be obtained by regressing the outcome 𝑌 ∗,𝑟 with random measurement error on the

covariates 𝑋 and 𝐙. A single measurement with random measurement error (i.e., 𝑚 = 1 in
Table 3.1b) is sufficient to obtain an internal estimate. However, if the outcomewith random
measurement error is observed more than once, the mean of the measures 𝑌 ∗𝑟1 , … , 𝑌 ∗𝑟𝑚 can
be used and regressed on the covariates 𝑋 and 𝐙. We assume that the internal subset is
a random subset of the main study, and hence that exposed and unexposed are included
in the internal subset. Subsequently, the estimate obtained from the internal subset in an
internal validation study or calibration study can be pooled with the standard MM estimate
following equation (3.12), by replacing the standard RC estimate with the standard MM
estimate in the equation.

Variance estimation
The variance of the efficient RC estimator can be obtained from the following:

𝚺̂𝛽ERC = [𝚺̂−1𝛽 + 𝚺̂−1𝛽I ]−1.
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The variance of the efficient RC estimator can also be obtained by stratified bootstrapping,
by sampling the observations in the internal subset separately from the observations
outside the internal subset. Confidence intervals can be obtained by constructing
Wald-type confidence intervals using one of the former two variances or by stratified
percentile bootstrap. The same applies for the efficient MM estimator.

3.3.3. Maximum likelihood estimation for replicates studies
The use of a standard random-intercepts model to obtain maximum likelihood (ML)
estimates for 𝜷 in replicates studies was introduced by Bartlett et al. [12]. To explain
the ML method for replicates studies, we add the index 𝑖 = 1, … , 𝑛 to our notation in the
outcome model:

𝑌𝑖 = 𝛽𝑋𝑋𝑖 + 𝛽0 + 𝜷𝑍𝐙′𝑖 + 𝑒𝑖 , Var(𝑒𝑖) = 𝜎2,
where we again assume that E(𝑒𝑖) = 0 and Cov(𝑒𝑖 , 𝑋𝑖) = Cov(𝑒𝑖 , 𝐙𝑖) = 0. Further, 𝐙𝑖 =
(𝑍𝑖1, … , 𝑍𝑖𝑘) and 𝜷𝑍 is again a 1×𝑘matrix. On top of these assumptions, we also assume that
the 𝑒𝑖 are normal and independently distributed. Additionally, assume that 𝑋𝑖 is normally
distributed given 𝐙𝑖 , with,

E(𝑋𝑖 |𝐙𝑖) = 𝜌0 + 𝝆𝐙𝐙′𝑖 and Var(𝑋𝑖 |𝐙𝑖) = 𝜎2𝑋𝑖 |𝐙𝑖 ,
where 𝝆𝑍 is a 1 × 𝑘 matrix. In a replicates study, 𝑋𝑖 is not observed. Instead, 𝑚 replicates
of the error-prone measurement 𝐗∗𝑟𝑖 = (𝑋 ∗𝑟𝑖1 , … , 𝑋 ∗𝑟𝑖𝑚) are observed, for 𝑖 = 1, … , 𝑛. In a
full-replicates study (Table 3.2a), we assume that the number of replicate measurements
𝑚 ≥ 2 is constant for every individual. In a partial-replicates study (Table 3.2b), we assume
that the number of replicates 𝑚 ≥ 2 is constant in the replicate sub-study and 𝑚 = 1
in the main study. These measurements are assumed to follow the following random
measurement error model:

𝑋 ∗𝑟𝑖𝑗 = 𝑋𝑖 + 𝑈𝑖𝑗 , Var(𝑈𝑖𝑗) = 𝜏2, 𝑗 = 1, … ,𝑚,
where we again assume that E(𝑈𝑖𝑗) = 0, Cov(𝑈𝑖𝑗 , 𝑋𝑖) = 0, and that the measurement
error in non-differential, i.e., the errors 𝑈𝑖𝑗 are independent of the errors 𝑒𝑖 in the outcome
model described above. In addition, we also assume that the errors 𝑈𝑖𝑗 are normal and
independently distributed.

We consider the likelihood function when only 𝑌𝑖 , 𝐗∗𝑟𝑖 and 𝐙𝑖 are observed. The log
likelihood can be factorized as follows:

ℓ(𝜽|𝑌𝑖 , 𝐗∗𝑟𝑖 , 𝐙𝑖) = log(𝑓 (𝑌𝑖 |𝐙𝑖 , 𝜽)) + log(𝑓 (𝐗∗𝑟𝑖 |𝑌𝑖 , 𝐙𝑖 , 𝜽)), (3.13)

where 𝜽 = (𝛽𝑋 , 𝛽0, 𝜷𝑍 , 𝜎2, 𝜌0, 𝝆𝐙, 𝜎2𝑋 |𝐙, 𝜏2). From the assumptions that 𝑋𝑖 |𝐙𝐢 is normally
distributed, the 𝑒𝑖 are normally distributed and that 𝑋𝑖 |𝐙𝐢 and 𝑒𝑖 are independent, [12]
show that 𝑌𝑖 given 𝐙𝑖 is normal with mean 𝛿0 + 𝜹𝐙𝐙𝑖 and variance 𝜎2𝑌 |𝐙, where 𝜹𝑍 is a 1 × 𝑘
matrix. Furthermore, since 𝑋𝑖 |𝐙𝐢 and 𝑌𝑖 |𝐙𝐢 are jointly normal, 𝑋𝑖 |𝑌𝑖 , 𝐙𝑖 is also normal. [12]
show that we can therefore write:

𝑋𝑖 = 𝜅0 + 𝜅𝑌𝑌𝑖 + 𝜿𝐙𝐙𝑖 + 𝑏𝑖 ,
where 𝑏𝑖 ∼ N(0, 𝜎2𝑋 |𝑌 ,𝐙). Then, since 𝑋 ∗𝑖𝑗 = 𝑋𝑖 + 𝑈𝑖𝑗 , it follows from the above equation that,

𝑋 ∗𝑖𝑗 = 𝜅0 + 𝜅𝑌𝑌𝑖 + 𝜿𝐙𝐙𝑖 + 𝑏𝑖 + 𝑈𝑖𝑗 ,



3

46 mecor: An R package for measurement error correction

where 𝑈𝑖𝑗 ∼ 𝑁 (0, 𝜏2) is independent of 𝑏𝑖 [12] and 𝜿𝑍 is a 1 × 𝑘 matrix. Hence, 𝐗∗𝑟𝑖 given 𝑌𝑖
and 𝐙𝑖 follows a random-intercepts model with fixed effects of 𝑌𝑖 and 𝐙𝑖 , random intercepts
variance 𝜎2𝑋 |𝑌 ,𝐙 and within subject variance 𝜏2.

The parameter vector 𝜻 = (𝛿0, 𝜹𝐙, 𝜎2𝑌 |𝐙, 𝜅0, 𝜅𝑌 , 𝜿𝐙, 𝜎2𝑋 |𝑌 ,𝐙, 𝜏2) is a one-to-one function

of the original model parameter vector 𝜽 = (𝛽𝑋 , 𝛽0, 𝜷𝑍 , 𝜎2, 𝜌0, 𝝆𝐙, 𝜎2𝑋 |𝐙, 𝜏2). Accordingly,
Bartlett et al. [12] show that the ML estimate for 𝜁 can be obtained by maximizing
the two likelihood components of equation (3.13) separately. The likelihood component
corresponding to 𝑓 (𝑌𝑖 |𝐙𝐢, 𝜻) in equation (3.13) can be maximized by fitting the least squares
regression of 𝑌𝑖 on 𝐙𝑖 . The likelihood component corresponding to 𝑓 (𝐗∗𝑟𝑖 |𝑌𝑖 , 𝐙𝑖 , 𝜻) in
equation (3.13) can be maximized by fitting a random-intercepts model for 𝐗∗𝑟𝑖 given 𝑌𝑖
and 𝐙𝑖 .

An ML estimate for 𝜷 can now be obtained by the following formulas:

𝛽𝑋 = 𝜅𝑌 ×
𝜎2𝑌 |𝐙

𝜎2𝑋 |𝑌 ,𝐙 + 𝜅2𝑌𝜎2𝑌 |𝐙
,

𝛽0 = 𝛿0 − 𝛽𝑋 𝜌0 = 𝛿0 − 𝛽𝑋 {𝜅0 + 𝜅𝑌 𝛿0},
𝜷𝐙 = 𝜹𝐙 − 𝛽𝑋𝝆𝐙 = 𝜹𝐙 − 𝛽𝑋 {𝜿𝐙 + 𝜅𝑌𝜹𝐙}.

The estimator ̂𝜷ML = ( ̂𝛽𝑋ML
, ̂𝛽0ML

, ̂𝜷𝑍ML
) can be obtained by replacing the parameters from

parameter vector 𝜻 by their estimates in the above equations.

Variance estimation
The variance of the maximum likelihood estimator can be estimated with the multivariate
delta method [12]. Confidence intervals can then be obtained by constructing Wald-type
confidence intervals. Confidence intervals can also be obtained by stratified bootstrap, by
sampling the observations in the internal subset separately from the observations outside
the internal subset. Details of these procedures can be found in the supplementarymaterial
section S3.2.

3.3.4. Sensitivity analyses
Information from a validation study may not always be available. In that case, a formal
correction is not possible. Nevertheless, when measurement error in a covariate or the
outcome is expected, one may check how sensitive study results are to that measurement
error. Literature or expert knowledge can be used to inform this sensitivity analysis, e.g.,
by hypothesizing possible ranges for the parameter values of the measurement model.

When random covariate measurement error is expected, speculation is needed of the
values of 𝜏2, i.e., the variance of the random measurement error. Additionally, when
systematic covariate measurement error is suspected, speculation is needed about the
parameter values of the calibration model described by equation (3.10). When systematic
outcomemeasurement error is suspected, speculation is needed about the parameter values
of the outcome measurement error model, described in equation (3.5).

3.4.The R package mecor
The R package mecor offers functionality to correct for measurement error in a continuous
covariate or outcome in linear models with a continuous outcome. The main model fitting
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function in mecor is mecor:

mecor(formula, data, method, B)

The function fits the linear model defined in formula, corrected for the measurement error
in one of the variables. The arguments are as follows:

• formula a formula object, with the response on the left of a ‘∼’ operator and the
terms, separated by + operators, on the right. This argument takes the form outcome
∼ MeasError(substitute, reference, replicate, differential) + covariates for
covariate measurement error, and MeasError(substitute, reference, replicate,
differential) ∼ covariates for outcome measurement error. The MeasError object
can be used for measurement error correction in internal validation, replicates
and calibration studies. For external validation studies or sensitivity analyses of
systematic measurement error, the object
MeasErrorExt(substitute, model) is used instead of a MeasError
object. For sensitivity analyses of random measurement error, the object
MeasErrorRandom(substitute, error) is used.

• data a data.frame containing the variables in the model specified by
formula.

• method specifies the method used for measurement error correction. The options
are ”standard” for standard RC and standard MM, ”valregcal” for validation RC,
”efficient” for efficient RC and efficient MM, and ”mle” for maximum likelihood
estimation.

• B number of bootstrap samples used for standard error estimation. The default is set
to 0.

An object of class mecor can be summarised using the summary function:

summary(object, alpha, zerovar, fieller)

The arguments are as follows:

• object an object of class mecor.

• alpha a numeric indicating the probability of obtaining a type II error. Defaults to
0.05.

• zerovar a boolean indicating whether confidence intervals using the zero-variance
method [41] must be printed. Only available for mecor objects fitted with method
equal to ”standard”. Defaults to FALSE.

• fieller a boolean indicating whether confidence intervals using the fieller method
[33, 36] must be printed. Only available for mecor objects fitted with method equal to
”standard”. Defaults to FALSE.

The default summary object of an object of class mecor prints standard errors and confidence
intervals obtained by the delta method. See the various ‘Variance estimation’ paragraphs
in section 3.3 for a description of the methods for variance estimation.

The formula argument in mecor contains a MeasError object, a
MeasErrorExt object or a MeasErrorRandom object. All three objects are described below.
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3.4.1.The MeasError object
To correct for measurement error using an internal validation study, a replicates study or
a calibration study, the formula argument in mecor contains a MeasError object on the
right-hand side (covariate measurement error) or left-hand side (outcome measurement
error). The MeasError object can be used for random and systematic measurement error
correction, depending on the method used to correct for the measurement error in mecor:

MeasError(substitute, reference, replicate, differential)

with the arguments being described as follows:

• substitute the error-prone substitute measurement;

• reference the gold-standard referencemeasurement, to be used in case of an internal
validation study, else NULL;

• replicate (a vector of) the replicate measurement of the error-prone substitute
measurement, to be used in case of a replicates study or calibration study, else NULL;

• differential the binary exposure on which the outcome measurement error
structure is dependent, to be used for differential outcome measurement error in
univariable analyses, else NULL.

Depending on the type of validation study used, either argument reference (internal
validation study) or replicate (replicates study or calibration study) can be used, but never
both.

3.4.2.The MeasErrorExt object
To correct for measurement error using an external validation study, the formula object in
mecor contains a MeasErrorExt object on the right-hand side (covariate measurement error)
or left-hand side (outcome measurement error):

MeasErrorExt(substitute, model)

with the arguments being described as follows:

• substitute the error-prone measurement;

• model a fitted lm object of the calibration model in equation (3.10) (covariate
measurement error) or the measurement error model in equation (3.5) (outcome
measurement error). Or alternatively, a listwith named arguments coef containing
a vector of the coefficients of the calibration model or measurement error model and
named argument vcov containing a matrix of the corresponding variance–covariance
matrix. The argument vcov is not required.

The argument model is also used for conducting a sensitivity analysis by making informed
guesses about the parameters of the calibration model (covariate measurement error) or
measurement error model (outcome measurement error).
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3.4.3. The MeasErrorRandom object
When random measurement error in a covariate is suspected but cannot be quantified, the
MeasErrorRandom object can be used to conduct a sensitivity analysis:

MeasErrorRandom(substitute, variance)

with the arguments being described as follows:

• substitute the error-prone measurement;

• variance a numeric indicating the random measurement error variance in the
substitute measurement, i.e., the parameter value of 𝜏2 in equation (3.2).

3.5. Examples
Six simulated datasets are included in the package mecor. These datasets mimic real
datasets and represent the data structures described in section Validation study data
structures for measurement error correction. There is an internal validation study
with covariate measurement error (vat), an internal validation study with outcome
measurement error (haemoglobin), a replicates study (bloodpressure) and a calibration
study with outcomemeasurement error (sodium). The dataset vat_ext provides an external
validation study for the vat dataset, and the dataset haemoglobin_ext provides an external
validation study for the haemoglobin dataset. These datasets are described and analysed
in the following sections.

3.5.1. Internal validation study
The dataset vat is a simulated dataset, representing the structure of the internal
covariate-validation study shown in Table 3.1a. The dataset is inspired by the Netherlands
Epidemiology of Obesity (NEO) study [42] and was used as the motivating example in
a study investigating measurement error correction by Nab et al. [38]. The dataset
represents a cross-sectional study of the association between visceral adipose tissue and
insulin resistance. Visceral adipose tissue measures are expensive and therefore only
available in 40% of the study population. Waist circumference measures however provide
a simple proxy for visceral adipose tissue and are observed in the full study population.
The dataset vat contains 650 observations of the natural logarithm of the outcome insulin
resistance (ir_ln, fasting glucose (mmol/L) x fasting insulin (mU/L) / 22.5), the standardised
error-prone exposure waist circumference (wc, cm), the covariates sex (sex, 0 = male, 1 =
female), age (age, years), and standardised total body fat (tbf, %), and the standardised
error-free measurement of the exposure visceral adipose tissue (vat, cm2).
R> data(”vat”, package = ”mecor”)
R> head(vat)

ir_ln wc sex age tbf vat
1 -0.09341837 -1.3136816 1 48 -0.6571345 NA
2 0.16820894 -2.0336624 0 54 -1.5882163 NA
3 0.57299976 -0.2611214 0 46 -1.1033709 NA
4 0.63677178 0.8631987 0 55 -1.4785869 0.5083247
5 0.92908882 -1.2054861 1 61 0.9020136 NA
6 -0.72410039 -2.5032852 1 47 -0.9584166 NA
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By ignoring the measurement error in wc, a linear model can be fitted to the data as follows:

R> lm(ir_ln ~ wc + sex + age + tbf, data = vat)

Call:
lm(formula = ir_ln ~ wc + sex + age + tbf, data = vat)

Coefficients:
(Intercept) wc sex age tbf

0.50976 0.09697 -0.70953 0.01133 0.38783

The coefficients of this model will however be biased due to the measurement error in wc.
The measurement error in wc can be corrected for using standard regression calibration
(RC) as follows:

R> mecor(
+ ir_ln ~ MeasError(wc, reference = vat) + sex + age + tbf,
+ data = vat,
+ method = ”standard”)

Call:
mecor(formula = ir_ln ~ MeasError(wc, reference = vat) + sex +
age + tbf, data = vat, method = ”standard”)

Coefficients Corrected Model:
(Intercept) vat sex age tbf
0.473398350 0.207598087 -0.438453038 0.009477677 0.270864391

Coefficients Uncorrected Model:
(Intercept) wc sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

Stratified percentile bootstrap confidence intervals of the coefficients of the corrected
model can be obtained by using the argument B in the function mecor. To obtain standard
errors and confidence intervals using the Fieller method or zero-variance method, the
arguments zerovar and fieller of the summary object are set to TRUE:

R> set.seed(20210526)
R> mecor_fit <-
+ mecor(
+ ir_ln ~ MeasError(wc, reference = vat) + sex + age + tbf,
+ data = vat,
+ method = ”standard”,
+ B = 999)
R> summary(mecor_fit, zerovar = TRUE, fieller = TRUE)

Call:
mecor(formula = ir_ln ~ MeasError(wc, reference = vat) + sex +
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age + tbf, data = vat, method = ”standard”, B = 999)

95% Confidence Intervals:
Estimate LCI UCI LCI (btstr)

(Intercept) 0.473398 0.185743 0.761054 0.212557
vat 0.207598 0.140549 0.274648 0.144636
sex -0.438453 -0.594458 -0.282448 -0.577730
age 0.009478 0.004385 0.014570 0.005013
tbf 0.270864 0.199007 0.342721 0.200120

UCI (btstr) LCI (zerovar) UCI (zerovar)
(Intercept) 0.721228 0.225140 0.721657
vat 0.281810 0.149712 0.265484
sex -0.276988 -0.574231 -0.302675
age 0.014058 0.005096 0.013860
tbf 0.332815 0.208528 0.333201

LCI (fieller) UCI (fieller)
(Intercept) NA NA
vat 0.145068 0.281464
sex NA NA
age NA NA
tbf NA NA
Bootstrap Confidence Intervals are based on 999 bootstrap
replicates using percentiles

The measurement error is corrected for by application of
regression calibration

Coefficients Uncorrected Model:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5097640 0.1264211 4.0323 6.185e-05
wc 0.0969705 0.0137957 7.0290 5.308e-12
sex -0.7095274 0.0390086 -18.1890 < 2.2e-16
age 0.0113271 0.0022048 5.1374 3.695e-07
tbf 0.3878267 0.0201489 19.2481 < 2.2e-16

95% Confidence Intervals:
Estimate LCI UCI

(Intercept) 0.509764 0.261517 0.758011
wc 0.096970 0.069881 0.124060
sex -0.709527 -0.786127 -0.632928
age 0.011327 0.006998 0.015657
tbf 0.387827 0.348261 0.427392

Residual standard error: 0.3123469 on 645 degrees of
freedom
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In addition to standard RC, efficient RC (method = ”efficient”) or validation RC (method
= ”valregcal”) can also be used to correct for the measurement error in the error-prone
covariate wc.

The dataset haemoglobin is a simulated dataset, representing the structure of the
internal outcome-validation study shown in Table 3.1b. The dataset is inspired by a trial
investigating the efficacy of low-dose iron supplements [43] andwas used as themotivating
example for a study investigatingmeasurement error correction in trial endpoints by Nab et
al. [36]. The dataset represents a trial investigating the effect of low-dose iron supplements
during pregnancy on haemoglobin levels at delivery. Haemoglobin levels were measured in
venous blood in approximately 25% of the subjects (reference measure), and were measured
in capillary blood in all subjects (substitutemeasure). The dataset haemoglobin contains 400
observations of the error-prone capillary haemoglobin levels (capillary, g/L), an indicator
of whether the subject was randomised to receive the low-dose iron supplement (20 mg/d)
(supplement, 0 = no, 1 = yes), and the error-free reference venous haemoglobin levels
(venous, g/L).

R> data(”haemoglobin”, package = ”mecor”)
R> tail(haemoglobin)

capillary supplement venous
395 124.0489 1 NA
396 127.1005 0 127.9526
397 132.1858 1 NA
398 123.4427 0 NA
399 125.2438 1 NA
400 124.0738 0 NA

The measurement error in capillary can be accounted for by using standard method of
moments (MM) as shown in the following:

R> mecor(
+ MeasError(capillary, reference = venous) ~
+ supplement,
+ data = haemoglobin,
+ method = ”standard”)

Call:
mecor(formula = MeasError(capillary, reference = venous) ~
supplement, data = haemoglobin, method = ”standard”)

Coefficients Corrected Model:
(Intercept) supplement
117.99341 6.97392

Coefficients Uncorrected Model:
(Intercept) supplement
124.452261 7.764702
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In addition to standard MM, efficient MM (method = ”efficient”) can also be used to
correct for the measurement error in the error-prone outcome Y_star.

When differential outcome measurement error in capillary haemoglobin measures is
suspected, the argument differential of the MeasError object can be used to correct for
differential measurement error as follows:

R> mecor(
+ MeasError(capillary,
+ reference = venous,
+ differential = supplement) ~ supplement,
+ data = haemoglobin,
+ method = ”standard”)

Call:
mecor(formula = MeasError(capillary, reference = venous,
differential = supplement) ~ supplement,
data = haemoglobin, method = ”standard”)

Coefficients Corrected Model:
(Intercept) supplement
118.386903 6.080729

Coefficients Uncorrected Model:
(Intercept) supplement
124.452261 7.764702

Efficient MM (method = ”efficient”) can also be used to correct for the differential
measurement error in the error-prone outcome Y_star.

3.5.2. Replicates study
The dataset bloodpressure is a simulated dataset, representing the structure of the
replicates study shown in Table 3.2a. The dataset represents a cross-sectional study of the
association between blood pressure and creatinine in pregnant women [44]. Blood pressure
measurements are prone to random measurement error. The dataset bloodpressure
contains 450 observations of serum creatinine (creatinine, 𝜇mol/L), age (age, years), and
systolic blood pressure (sbp, mm Hg). Systolic blood pressure is measured at 30, 60, 90 and
120 minutes.

R> data(”bloodpressure”, package = ”mecor”)
R> head(bloodpressure)

creatinine age sbp30 sbp60 sbp90 sbp120
1 53.75670 27 120.7987 113.2812 118.0705 124.2282
2 63.08498 36 121.7254 106.8143 118.9882 115.1341
3 60.04718 31 108.8798 119.6577 106.5588 117.5473
4 62.42976 43 116.5566 117.4964 126.3625 121.7148
5 61.31801 25 123.3018 116.4629 112.0310 109.8754
6 50.60952 35 124.9119 129.0927 129.0224 114.0828
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In a study estimating the association between serum creatinine and systolic blood pressure,
corrected for age, the random measurement error in the error-prone systolic blood pressure
measurement at 30 minutes can be accounted for as follows:

R> mecor(
+ creatinine ~ MeasError(sbp30,
+ replicate =
+ cbind(sbp60,
+ sbp90,
+ sbp120)) + age,
+ data = bloodpressure,
+ method = ”standard”)

Call:
mecor(formula = creatinine ~ MeasError(sbp30, replicate
= cbind(sbp60, sbp90, sbp120)) + age,
data = bloodpressure, method = ”standard”)

Coefficients Corrected Model:
(Intercept) cor_sbp30 age
32.3796021 0.1877343 0.1743760

Coefficients Uncorrected Model:
(Intercept) sbp30 age
41.3050286 0.1165333 0.1650849

Maximum likelihood estimation (method = ”mle”) can also be used to correct for
the measurement error in the error-prone exposure sbp30. Note that, in this example
dataset, the coefficients of the corrected model using standard RC will differ when
MeasError(sbp60, replicate = cbind(sbp30, sbp90, sbp120)) is used instead of
MeasError(sbp30, replicate = cbind(sbp60, sbp90, sbp120)). In contrast, the corrected
estimated coefficients obtained usingmaximum likelihood estimationwill not changewhen
the order of replicates is changed.

3.5.3. Calibration study
The dataset sodium is a simulated dataset, representing the structure of the outcome
calibration study, shown in Table 3.3b. The dataset represents a randomised controlled trial
designed to investigate whether a reduction in sodium intake results in satisfactory blood
pressure control [45] and was used as the motivating example for a study investigating
measurement error correction in dietary intake [31]. Sodium intake of the subjects was
measured by a 24h recall and in urine. Sodium intake measured by a 24h recall is assumed
prone to systematic measurement error and sodium intake measured in urine is assumed
prone to random measurement error. The dataset sodium contains 1,000 observations
of sodium intake measured by a 24h recall (recall, mg), an indicator of whether the
subject was randomised to their usual diet or sodium-lowering diet (diet, 0 = usual, 1 =
sodium-lowering), and two measures of urinary sodium (urinary1, urinary2, mg). The
replicate urinary sodium are observed in approximately 50% of the subjects included in the
trial.
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R> data(”sodium”, package = ”mecor”)
R> tail(sodium)

recall diet urinary1 urinary2
995 3.320633 1 NA NA
996 3.496626 0 NA NA
997 3.127590 1 3.818815 4.204880
998 4.363960 0 NA NA
999 4.009316 1 4.719055 4.389111
1000 3.910490 0 NA NA

The measurement error in the error-prone exposure recall can be accounted for as follows:

R> mecor(
+ MeasError(recall, replicate = cbind(urinary1,
+ urinary2)) ~ diet,
+ data = sodium,
+ method = ”standard”)

Call:
mecor(formula = MeasError(recall, replicate = cbind(
urinary1, urinary2)) ~ diet, data = sodium,
method = ”standard”)

Coefficients Corrected Model:
(Intercept) diet
4.6075011 -0.4843495

Coefficients Uncorrected Model:
(Intercept) diet
3.8819732 -0.3051777

Efficient MM (method = ”efficient”) can also be used to correct for the measurement
error in the error-prone outcome recall.

3.5.4. External validation study
The dataset vat_ext is a simulated dataset, representing the structure of the external part
of the external covariate-validation study shown in Table 3.4a. The dataset accompanies
the dataset vat introduced in section Internal validation study. The dataset contains 100
observations of the error-free continuous exposure vat, the error-prone exposure wc and a
covariates sex, age and tbf.

R> data(”vat_ext”, package = ”mecor”)
R> head(vat_ext)

wc vat sex age tbf
1 -0.01357552 -1.69944962 1 50 -1.17103270
2 1.10201426 1.43889836 0 51 -0.99837467
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3 1.23328072 1.24129099 0 54 -0.91030636
4 -0.07849380 0.05219091 0 55 -1.52766077
5 -0.47481715 -0.61165766 1 46 0.28706021
6 -1.33717429 -0.58193963 1 50 0.08718737

Suppose that in the dataset vat, the reference measure vat had not been observed. Using
dataset vat_ext, we can correct for the measurement error in wc in dataset vat. The first
step is to fit the calibration model in the external validation study as follows:

R> calmod_fit <- lm(vat ~ wc + sex + age + tbf,
data = vat_ext)

R> calmod_fit

Call:
lm(formula = vat ~ wc + sex + age + tbf, data = vat_ext)

Coefficients:
(Intercept) wc sex age tbf

0.437466 0.571233 -0.984891 0.001111 0.488749

The second step is to use the calibration model calmod_fit in the MeasErrorExt object as
follows:

R> data(”vat”, package = ”mecor”)
R> mecor(
+ ir_ln ~ MeasErrorExt(wc, calmod_fit) + sex + age + tbf,
+ data = vat,
+ method = ”standard”
+ )

Call:
mecor(formula = ir_ln ~ MeasErrorExt(wc, calmod_fit) + sex +
age + tbf, data = vat, method = ”standard”)

Coefficients Corrected Model:
(Intercept) cor_wc sex age tbf
0.43550128 0.16975650 -0.54233566 0.01113844 0.30485834

Coefficients Uncorrected Model:
(Intercept) wc sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

Dataset haemoglobin_ext is a simulated dataset, representing the structure of the
external part of the external outcome-validation study shown in Table 3.4b. The dataset
accompanies the dataset haemoglobin introduced in section Internal validation study. The
dataset contains 100 observations of the error-free outcome venous and the error-prone
outcome capillary.
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R> data(”haemoglobin_ext”, package = ”mecor”)
R> head(haemoglobin)

capillary venous
1 104.7269 115.3023
2 133.9946 119.7616
3 104.0304 108.0562
4 119.0214 121.1780
5 114.3891 111.7864
6 111.7754 112.8943

Suppose that in the dataset haemoglobin, the reference venous haemoglobin levels had not
been observed. Using dataset haemoglobin_ext, we correct for the measurement error in
capillary in haemoglobin, by fitting the measurement error model, as follows:

R> memod_fit <- lm(capillary ~ venous, data = haemoglobin_ext)
R> data(”iovs”, package = ”mecor”)
R> mecor(
+ MeasErrorExt(capillary, memod_fit) ~ supplement,
+ data = haemoglobin,
+ method = ”standard”)

Call:
mecor(formula = MeasErrorExt(capillary, memod_fit) ~

supplement,
data = haemoglobin,
method = ”standard”)

Coefficients Corrected Model:
(Intercept) supplement
119.136649 7.227302

Coefficients Uncorrected Model:
(Intercept) supplement
124.452261 7.764702

3.5.5. Sensitivity analyses
Suppose that there is no error-free measure and no external validation study available for
dataset vat. To investigate the sensitivity of study results to measurement error in variable
vat, informed guesses of the coefficients of the calibration model are needed. Suppose one
assumes that 𝐸(VAT|WC, sex, age, tbf) = 0.4+0.6×WC−sex+0×age+0.5×TBF. A sensitivity
analysis could then be conducted as follows:

R> data(”vat”, package = ”mecor”)
R> mecor_fit_sens <-
+ mecor(
+ ir_ln ~ MeasErrorExt(wc, list(coef =
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c(0.4, 0.6, -1, 0, 0.5))) +
+ sex + age + tbf,
+ data = vat,
+ method = ”standard”)
R> mecor_fit_sens

Call:
mecor(formula = ir_ln ~ MeasErrorExt(wc, list(coef =
c(0.4, 0.6, -1, 0, 0.5))) + sex + age + tbf,
data = vat, method = ”standard”)

Coefficients Corrected Model:
(Intercept) cor_wc sex age tbf
0.44511698 0.16161742 -0.54790994 0.01132712 0.30701800

Coefficients Uncorrected Model:
(Intercept) wc sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

The calibration model matrix used to correct for the measurement error in wc, is saved as
matrix in the corfit object attached to mecor_fit_sens:

R> mecor_fit_sens$corfit$matrix

Lambda1 Lambda0 Lambda3 Lambda4 Lambda5
Lambda1 0.6 0.4 -1 0 0.5
Lambda0 0.0 1.0 0 0 0.0
Lambda3 0.0 0.0 1 0 0.0
Lambda4 0.0 0.0 0 1 0.0
Lambda5 0.0 0.0 0 0 1.0

In the dataset bloodpressure discussed in section Replicates study, random
measurement error is suspected in systolic blood pressure. Suppose now that in the
dataset bloodpressure, the three replicate measures sbp60, sbp90, sbp120 had not been
observed. Suppose further that a measurement error variance of 30 mm Hg is assumed
in the first systolic blood pressure measure sbp30. For measurement error correction, the
MeasErrorRandom object could be used, here in combination with zerovariance estimation
of standard errors (assuming that there is no uncertainty in the speculated value of the
variance of the random measurement error sbp30):

R> mecor_fit_random <-
+ mecor(
+ creatinine ~ MeasErrorRandom(sbp30, variance = 30)
+ + age,
+ data = bloodpressure,
+ method = ”standard”)
R > summary(mecor_fit_random, zerovar = T)
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Call:
mecor(formula = creatinine ~ MeasErrorRandom(sbp30,
variance = 30) + age, data = bloodpressure,
method = ”standard”)

Coefficients Corrected Model:
Estimate SE (zerovar)

(Intercept) 33.568149 9.909771
cor_sbp30 0.182509 0.080298
age 0.159752 0.094837

95% Confidence Intervals:
Estimate LCI (zerovar) UCI (zerovar)

(Intercept) 33.568149 14.145355 52.990943
cor_sbp30 0.182509 0.025127 0.339890
age 0.159752 -0.026125 0.345628

The measurement error is corrected for by application of
regression calibration

Coefficients Uncorrected Model:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.305029 6.758932 6.1112 2.155e-09
sbp30 0.116533 0.051271 2.2729 0.02351
age 0.165085 0.094705 1.7431 0.08200

95% Confidence Intervals:
Estimate LCI UCI

(Intercept) 41.305029 28.021799 54.588258
sbp30 0.116533 0.015771 0.217296
age 0.165085 -0.021038 0.351208

Residual standard error: 9.897091 on 447 degrees of freedom

The calibration model matrix used to correct for the measurement error in sbp30, is again
saved as matrix in the corfit object attached to mecor_fit_random:

R > mecor_fit_random$corfit$matrix

Lambda1 Lambda0 Lambda3
Lambda1 0.6385083 42.39186 0.02922153
Lambda0 0.0000000 1.00000 0.00000000
Lambda3 0.0000000 0.00000 1.00000000

The sensitivity analyses could be expanded to ranges of possible coefficients of the
calibration model or assumed variance of the random measurement error.
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3.6. Conclusion
We demonstrated how measurement error correction methods can be applied using our R
package mecor. These correction methods can be used in linear models with a continuous
outcome when there is measurement error in the outcome or in a continuous covariate. The
package accommodates measurement error correction methodology for a wide range of
data structures: internal and external validation studies, replicates studies, and calibration
studies. Various measurement error correction methods are implemented in the package:
RC, MM and correction based on maximum likelihood estimation. For standard error
estimation, the delta method and bootstrap are implemented for all methods. The package
also facilitates sensitivity analysis or quantitative bias analysis when no data are available
to estimate the parameters of the measurement error model, but the assumption of no
measurement error is not warranted. A vast body of literature exists comparing the relative
performance of the measurement error correction methods implemented in mecor [38, 46]
and in comparison, with other methods e.g., simulation-extrapolation [47, 48], multiple
imputation methods [49, 50] and Bayesian methods [11]. We focused on studies in which
interest lies in estimating a covariate-outcome association. In other types of studies, e.g.,
prediction studies, considerations for measurement error correction are different and may
not even require corrections [51, 52]. In future updates of the package, the measurement
error correction methods may be extended to time-to-event [16] and binary outcomes, and
multiple variables with measurement error [17, 27].
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