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2
Measurement error in continuous

endpoints of randomised trials:
Problems and solutions

In randomised trials, continuous endpoints are often measured with some degree of error. This chapter
explores the impact of ignoring measurement error, and proposes methods to improve statistical inference
in the presence of measurement error. Three main types of measurement error in continuous endpoints
are considered: classical, systematic and differential. For each measurement error type, a corrected effect
estimator is proposed. The corrected estimators and several methods for confidence interval estimation
are tested in a simulation study. These methods combine information about error-prone and error-free
measurements of the endpoint in individuals not included in the trial (external validation sample). We
show that when classical measurement error in continuous endpoints is ignored, the treatment effect
estimator is unbiased, while Type-II error is increased at a given sample size. Conversely, the estimator
can be substantially biased when measurement error is systematic or differential. In those cases, bias can
largely be prevented and inferences improved upon using information from an external validation sample,
of which the required sample size increases as the strength of the association between the error-prone and
error-free endpoint decreases. Measurement error correction using already a small (external) validation
sample is shown to improve inferences and could be considered in trials with error-prone endpoints.
Implementation of the proposed correction methods is accommodated by a new software package for R.

This chapter is based on: L. Nab, R.H.H. Groenwold, P.M.J. Welsing and M. van Smeden, Measurement error in
continuous endpoints of randomised trials: Problems and solutions, Statistics inMedicine 38 (27) (2019) 5182–5196.
doi:10.1002/sim.8359
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2.1. Introduction
In randomised controlled trials, continuous endpoints are often measured with some
degree of error. Examples include trial endpoints that are based on self-report (e.g.
self-reported physical activity levels [1]), endpoints that are collected as part of routine
care (e.g. in pragmatic trials [2]), endpoints that are assessed without blinding the patient
or assessor to treatment allocation (e.g., in surgical [3] or dietary [4] interventions) and an
alternative endpoint assessment that substitutes a gold-standard measurement because of
monetary or time constraints or ethical considerations (e.g. food frequency questionnaire
as substitute for doubly-labelledwater tomeasure energy intake [5]). In these examples, the
continuous endpoint measurements contain error in the sense that the recorded endpoints
do not unequivocally reflect the endpoint one aims to measure.

Despite calls for attention to the issue of measurement error in endpoints (e.g., [6]),
developments and applications of correction methods for error in endpoints are still rare
[7]. Specifically, methodology that allow for correction of study estimates for the presence
of measurement error have so far largely been focused on the setting of error in explanatory
variables, which may give rise to inferential errors such as regression dilution bias [8–13].
In addition, the application of correction methods for measurement error in the applied
medical literature is unusual [9, 14].

We provide an exploration of problems and solutions for measurement error in
continuous trial endpoints. For illustration of the problems and solutions for measurement
error in continuous endpoints we consider one published trial that examined the efficacy
and tolerability of low-dose iron-supplements during pregnancy [15]. To test the effect
of the iron supplementation on maternal haemoglobin levels, haemoglobin concentrations
were measured at delivery in venous blood.

This chapter describes a taxonomy of measurement error in trial endpoints, evaluates
the impact of measurement error on the analysis of trials and tests existing and proposes
new methods evaluating trials containing measurement error. Implementation of the
proposed measurement error correction methods (i.e., the existing and novel methods)
are supported by introducing a new R package mecor, available at: https://github.
com/LindaNab/mecor. This chapter is structured as follows. In section 2.2 we revisit the
example trial introduced in the previous paragraph. Section 2.3 presents an exploration
of measurement error structures and their impact on inferences of trials. In section 2.4
measurement error correction methods are proposed. A simulation study investigating
the efficacy of the correction methods is presented in section 2.5. Conclusions and
recommendations resulting from this study are provided in section 2.6.

2.2. Illustrative example: measurement of haemoglobin levels
Makrides et al. [15] tested the efficacy of a 20-mg daily iron supplement (ferrous sulfate)
on maternal iron status in pregnant women in a randomised, two-arm, double-blind,
placebo-controlled trial. Respectively, 216 and 214 women were randomised to the iron
supplement and placebo arm. At delivery, a 5-mL venous blood sample was collected from
the women to assess haemoglobin levels as a marker for their iron status. Haemoglobin
levels of women in the iron supplement arm were significantly higher than haemoglobin
levels of women in the placebo arm (mean difference 6.9, 95% confidence interval (CI)
(4.4; 9.3)). Haemoglobin concentrations were measured spectrophotometrically. Mean
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haemoglobin values were 137 (standard deviation (SD) 3.2) g/L when measured by certified
measurements, compared to mean 135 (SD 0.96) g/L when measured using the equipment
used in the trial to measure haemoglobin levels. This might indicate small measurement
error in the measured haemoglobin levels of the women in the trial. The authors did not
discuss if and how the remaining measurement error could have affected their results.

In this domain, similar trials have been conducted in which the endpoint was assessed
with lower standards. For instance, in field trials testing the effectiveness of iron
supplementation, capillary blood samples instead of venous blood samples are often
used to measure haemoglobin levels (e.g., [16]). While easier to measure, capillary
haemoglobin levels are less accurate than venous haemoglobin levels [17]. We now discuss
how measurement error in haemoglobin levels might affect trial inference, by assuming
hypothetical differences between capillary and venous haemoglobin levels. Two additional
illustrative example trials are discussed in section S2.1 of the supplementary material.
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Figure 2.1: Illustration of impact of hypothetical measurement error in example trial 1 [15]: (a) no measurement
error; (b) classical measurement error; (c) systematic measurement error; (d) differential measurement error. The
left plots depict every thousandth estimated OLS regression line (grey lines), the average estimated treatment
effect (dashed line) and the true effect (solid line). The right plots depict the density distribution of the Wald
test-statistic of the slope of the regression line, under the null hypothesis of no effect (grey distribution) and the
alternative hypothesis of any effect (black distribution).

2.2.1. Simulations based on example trial
We expand on the preceding example to hypothetical structures of error in measurement
of the endpoints by simulation. These structures are only explained intuitively (explicit
definitions are provided in section 2.3). For this example, we take the observed
mean difference in haemoglobin levels in the two groups of the iron supplementation
trials as a reference (6.9 g/L higher in the iron-supplemented group), and assume that
haemoglobin levels are normally distributed with equal variance in both groups (SD 12.6
g/L). Fifty-thousand simulation samples were taken with 54 patients in each treatment arm.
The number of patients differed from the 430 patients in the original trial to yield a Type-II



2

12 Measurement error in continuous endpoints

error of approximately 20% in the absence of measurement error at the usual alpha level
(5%). Treatment effect for each simulation sample (mean difference in haemoglobin levels
between the two arms) was estimated by OLS regression.

Classical measurement error in example trial. In the context of measurement of
haemoglobin levels, random variability in the haemoglobin levels measured in capillary
blood samples may be expected to vary more than haemoglobin levels measured in
venous blood [17], independent of the true haemoglobin level and allocated treatment.
Increased Type-II error is a well-known consequence of endpoints measured by the lower
standard that are unbiased but more variable than the endpoints measured by the preferred
measurement instruments [13]. This form of measurement error is commonly described
as ‘random measurement error’ or ‘classical measurement error’ [10]. To simulate such
independent variation, we arbitrarily increased the standard deviation of haemoglobin
levels by 75% (from 12.6 to 22.05). This is equivalent to adding a term drawn from a normal
distribution with mean 0 and standard deviation 18.1 to each endpoint. The impact of this
imposed classical error was an increased between-replication variance of the estimated
treatment effects of approximately 55% (left plot in panel b, Figure 2.1). The average
estimated effect across simulations (depicted by the dashed line) is approximately equal
to the true effect (depicted by the solid line), suggesting the classical measurement error
did not introduce a bias in the estimated treatment effect (a formal proof is given in section
Classical measurement error). Type-II error increased (to 38%) (grey area in Figure 2.1,
panel b) while Type-I error remained at the nominal level (at 5%, illustrated by the red area
in Figure 2.1, panel b).

Systematic measurement error in example trial. It may alternatively be assumed
that capillary haemoglobin levels are systematically different from venous haemoglobin
levels. This systematic difference can be either additive or multiplicative. For additive
systematic measurement error, the capillary haemoglobin levels differ from venous
haemoglobin levels with a certain constant, independently of venous haemoglobin levels.
This implies that in both treatment groups mean haemoglobin level is higher, but that
the difference between the two treatment groups is unbiased. The term systematic
measurement error is often used to indicate multiplicative measurement error [18]. In that
case, the expected capillary haemoglobin levels are equal to venous haemoglobin levels
multiplied by a certain constant. Consequently, haemoglobin levels in capillary blood are
more accurately measured in patients with low venous haemoglobin levels than in patients
with high true haemoglobin levels (or vice versa). Under the assumption of a non-zero
treatment effect, the expected difference between mean haemoglobin levels between the
two treatment groups is biased; in the absence of a treatment effect, the expected difference
between the two groups will remain unaffected. To simulate, we assumed that capillary
haemoglobin levels are 1.05 times haemoglobin levels and we increased the standard
deviation of haemoglobin levels by 75%, equivalent to the previous example. The impact of
this imposed systematic measurement error structure is that the average treatment effect
was biased, increasing from 6.9 to 7.2, and that there is an increased between-replication
variance of the estimated treatment effect of approximately 66% (left plot in Figure 2.1,
panel c). Type-II error increased (to 37%) (grey area in Figure 2.1, panel c) while Type-I error
remained at rate close to nominal level (at 5%) (red area in Figure 2.1, panel c).

Differential measurement error in example trial. Themeasurement error structure
may also differ between the treatment arms. In an extreme scenario, haemoglobin levels
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in placebo group patients would be measured by venous blood samples while patients
in active arm (iron supplemented) would be measured using capillary blood samples.
To simulate such a scenario, we assume the same systematic error structure from the
previous paragraph, now only applying to the active group. Additionally, we assume
classical measurement error in the placebo group. This scenario classifies as differential
measurement error [7]. The impact of this measurement error structure is that the average
treatment effect was biased, increasing from 6.9 to 13.3, and that the between-replication
variance of the estimated treatment effect is increased by approximately 62% (left plot in
Figure 2.1, panel d). Type-II error decreased (to 0.1%) (grey area in Figure 2.1, panel d) and
Type-I error rates increased (to 48%) (grey area in Figure 2.1, panel d).

2.3. Measurement error structures
Consider a two-arm randomised controlled trial that compares the effects of two treatments
(𝑋 ∈ {0, 1}), where 0 may represent a placebo treatment or an active comparator. Let 𝑌
denote the true (or preferred) trial endpoint and 𝑌 ∗ an error prone operationalisation of
𝑌 . We will assume that both 𝑌 and 𝑌 ∗ are measured on a continuous scale. We assume a
linear regression model for the endpoint 𝑌 :

𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀, (2.1)

where 𝜀 is iid normally distributed with mean 0 and variance 𝜎2. Under these assumptions
and assumptions about the model for 𝑌 ∗ (described below), simple formulas for the bias in
the OLS estimator of the treatment effect can be derived. Details of these derivations can
be found in the supplementary material, section S2.2.

2.3.1. Classical measurement error
There is classical measurement error in 𝑌 ∗ when 𝑌 ∗ is an unbiased proxy for 𝑌 [10]: 𝑌 ∗ =
𝑌 + 𝑒, where 𝑒 has mean 0 and Var(𝑒) = 𝜏2 and 𝑒 independent of 𝑌 , 𝑋 , 𝜀 in (2.1). Using 𝑌 ∗
instead of 𝑌 in the linear model yields:

𝑌 ∗ = 𝛼 ∗𝑌 + 𝛽∗𝑌𝑋 + 𝛿, (2.2)

Where 𝛽∗𝑌 = 𝛽𝑌 and the residuals 𝛿 have mean 0 and variance 𝜎2𝛿 = 𝜎2 + 𝜏2. This leads to a
larger variance in ̂𝛽∗𝑌 (the estimator for 𝛽∗𝑌 ) compared to the variance in ̂𝛽𝑌 (the estimator for
𝛽𝑌 ). Consequently, classical measurement error will not lead to bias in the effect estimator
but will increase Type-II for a given sample size.

2.3.2. Heteroscedastic measurement error
In the above we assumed that the variance in 𝑒 is equal in both arms. When this assumption
is violated, there is so called heteroscedastic measurement error. Heteroscedastic error will
not lead to bias in the effect estimator, but will invalidate the estimator of the variance of
̂𝛽∗𝑌 (proof is given in supplementary material section S2.2).

2.3.3. Systematic measurement error
There is systematic measurement error in 𝑌 ∗ if 𝑌 ∗ depends systematically on 𝑌 : 𝑌 ∗ =
𝜃0 + 𝜃1𝑌 + 𝑒, where 𝑒 has mean 0 and Var(𝑒) = 𝜏2 and 𝑒 independent of 𝑌 , 𝑋 , 𝜀 in (2.1).
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Throughout, we assume systematic measurement error if 𝜃0 ≠ 0 or 𝜃1 ≠ 1 (and of course,
𝜃1 ≠ 0 in all cases). We assume independence between 𝑒 and 𝑌 , 𝑋 , 𝜀 in (2.1). Using 𝑌 ∗
with systematic measurement error in the linear model yields in the model defined by (2.2)
where 𝛽∗𝑌 = 𝜃1𝛽𝑌 and the residuals 𝛿 have mean 0 and variance 𝜎𝛿 = 𝜃21𝜎2 + 𝜏2. Depending
on the value of 𝜃1, the variance of ̂𝛽∗𝑌 is larger or smaller than the variance of ̂𝛽𝑌 . Hence,
Type-II error will either decrease or increase under systematic measurement. Type-I error
is unaffected since if 𝛽𝑌 = 0, 𝛽∗𝑌 = 0 (i.e., tests for null effects are still valid under systematic
measurement error) (proof is given in supplementary material section S2.2).

2.3.4. Differential measurement error
There is differential measurement error in 𝑌 ∗ if 𝑌 ∗ depends systematically on 𝑌 varying for
𝑋 : 𝑌 ∗ = 𝜃00 + (𝜃01 −𝜃00)𝑋 +𝜃10𝑌 + (𝜃11 −𝜃10)𝑋𝑌 + 𝑒𝑋 , where 𝑒𝑋 has mean 0 and Var(𝑒) = 𝜏2𝑋
and 𝑒𝑋 independent of 𝑌 , and 𝜀 in (2.1) for 𝑋 = 0, 1. Using 𝑌 ∗ with differential measurement
error in the linear model yields in the model defined in (2.2) where 𝛽∗𝑌 = 𝜃01 − 𝜃00 + (𝜃11 −
𝜃10)𝛼𝑌 +𝜃11𝛽𝑌 and the residuals 𝛿 havemean 0 and variance [𝜃210+(𝜃211−𝜃210)𝑋]𝜎2+𝜏2𝑋 for𝑋 =
0, 1. Since the residual variance is not equal in both arms, the estimator of the variance of ̂𝛽∗𝑌
is invalid, and will underestimate the true variance. A heteroscedastic consistent estimator
of the variance of ̂𝛽∗𝑌 is provided by the White estimator [19]. Assuming that the White
estimator is used to estimate the variance of ̂𝛽∗𝑌 , Type-I error is not expected the nominal
level (𝛼) and Type-II error will decrease or increase under the differential measurement error
model (proof is given in supplementary material section S2.2).

2.4. Correction methods for measurement error in a continuous
trial endpoint

In this section we describe several approaches to address measurement error in the trial
endpoint. Throughout, we assume that 𝑌 ∗ is measured for all 𝑖 = 1, … , 𝑁 randomly
allocated patients in the trial. We also assume that 𝑌 and 𝑌 ∗ are both measured for a
smaller set of different individuals not included in the trial (𝑗 = 1, … , 𝐾, 𝐾 < 𝑁 ), hereinafter
referred to as the external calibration sample. In all but one case, it is assumed that only
𝑌 ∗ and 𝑌 are measured in the external validation sample. In the case that the error in 𝑌 ∗
is different for the two treatment groups, it is assumed that the external validation sample
is in the form of a small pilot study where both treatments are allocated (i.e., 𝑌 ∗ and 𝑌 are
both measured after assignment of 𝑋 ). Instead of external validation data, we could use
internal validation data to correct for measurement error (𝑌 and 𝑌 ∗ are both measured in a
small subset of the trial), which is not considered in this section as it was studied elsewhere
[7].

A well-known consequence of classical measurement error in a continuous trial
endpoint is that a larger sample size (as compared to the same situations without the
measurement error) is needed to compensate for the reduced precision [13]. For example,
the new sample size 𝑁 ∗ may be calculated by 𝑁/𝑅 formula where 𝑅 is the reliability
coefficient and𝑁 the original sample size for the trial [20]. For solutions for heteroscedastic
measurement error, we refer to standard theory of dealing with heteroscedastic errors in
regression to find an unbiased estimator for the variance of ̂𝛽𝑌 ∗ (e.g., see [19] for an overview
of different heteroscedasticity consistent covariance matrices).
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Hereinafter we focus on measurement error in 𝑌 ∗ that is either systematic or
differential, both of which have been shown to introduce bias in the effect estimator if
measurement error is neglected (section 2.3). Consistent estimators for the intervention
effects are introduced, and various methods for constructing CIs for these estimators are
discussed. Section S2.3 in the supplementarymaterial provides an explanation of the results
stated in this section. Throughout, we assume that 𝑌 ∗ is measured for all 𝑖 = 1, … , 𝑁
patients in the trial. We also assume that 𝑌 and 𝑌 ∗ are both measured for a smaller set
of different individuals not included in the trial (𝑗 = 1, … , 𝐾, 𝐾 < 𝑁 ), hereinafter referred
to as the external validation sample. For an earlier exploration of the use of an internal
validation set when there is systematic or differential measurement error in endpoints, see
[7].

2.4.1. Systematic measurement error
From section Systematic measurement error it follows that natural estimators for 𝛼𝑌 and
𝛽𝑌 are

𝛼̂𝑌 = (𝛼̂𝑌 ∗ − ̂𝜃0)/ ̂𝜃1 and ̂𝛽𝑌 = ̂𝛽𝑌 ∗ / ̂𝜃1, (2.3)

Where ̂𝜃0 and ̂𝜃1 are the estimated error parameters from the validation data set using
standard OLS regression. From equation (2.3), it becomes apparent that ̂𝜃1 needs to be
assumed bounded away from zero for finite estimates of 𝛼̂𝑌 and ̂𝛽𝑌 [8]. The estimators in
(2.3) are consistent, see for a proof section S2.3 in the supplementary material.
The variance of the estimators defined in (2.3) can be approximated using the Deltamethod,
the Fieller method, the Zero-variance method [21] and by bootstrap [22]. Further details
are provided in section S2.3 of the supplementary material.

2.4.2. Differential measurement error
From section Differential measurement error it follows that natural estimators for 𝛼𝑌 and
𝛽𝑌 are,

𝛼̂𝑌 = (𝛼̂𝑌 ∗ − ̂𝜃00)/ ̂𝜃10 and ̂𝛽𝑌 = ( ̂𝛽𝑌 ∗ + 𝛼̂𝑌 ∗ − ̂𝜃01)/ ̂𝜃11 − 𝛼̂𝑌 , (2.4)

where ̂𝜃00, ̂𝜃10, ̂𝜃01 and ̂𝜃11 are estimated from the external validation set using standard
OLS estimators. Here it is assumed that both ̂𝜃10 and ̂𝜃11 are bounded away from zero
(for reasons similar to those mentioned in section 2.4.1). The estimators in (2.4) are
consistent, see for a proof section S2.3 of the supplementary material. The variance of
the estimators defined in (2.4) can be approximated using the Delta method [21], the
Zero-variance method and by bootstrap [22]. Further details are provided in section S2.3
of the supplementary material.

2.5. Simulation study
The finite sample performance of the measurement error corrected estimators of the
treatment effect was studied by simulation. We focussed on the setting of a two-arm trial in
which the continuous surrogate endpoint 𝑌 ∗ was measured with systematic or differential
measurement error, and in which an external validation set was available, which was varied
in size. The results from example trial 1 are used to motivate our simulation study (see
section 2.2).
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2.5.1. Data generation
Data were generated for a sample of 𝑁 = 400 individuals, approximately equal to the size
of example trial 1 [15]. The individuals were equally divided in the two treatment arms.
The true endpoints were generated according to model (2.1), assuming iid normal errors,
and using the estimated characteristics found in example trial 1 (𝛼𝑌 = 120, 𝛽𝑌 = 6.9
and 𝜎 = 12.6). Surrogate endpoints 𝑌 ∗ were generated under models for systematic
measurement error and differential measurement error described in section Systematic
measurement error and Differential measurement error, respectively.

For systematic measurement error in 𝑌 ∗, we set 𝜃0 = 0 and 𝜃1 = 1.05. Under the
differential measurement error model we set 𝜃00 = 0, 𝜃01 = 0, 𝜃10 = 1, 𝜃11 = 1.05. We
considered three scenarios based on the coefficient of determination between the 𝑌 ∗ and
𝑌 , 𝑅2𝑌 ∗,𝑌 : (i) 𝑅2𝑌 ∗,𝑌 = 0.8, (ii) 𝑅2𝑌 ∗,𝑌 = 0.5 and (iii) 𝑅2𝑌 ∗,𝑌 = 0.2. This large range in coefficient
of determination values reflects the wide variation we anticipate in practice from very
strong correlations between 𝑌∗ and 𝑌 (𝑅2𝑌 ∗,𝑌 = 0.8) to weak correlations (𝑅2𝑌 ∗,𝑌 = 0.2), as for
example, one could expect in the context of trials with dietary intake as endpoints [7, 23].
For 𝑅2𝑌 ∗,𝑌 = 0.8, 𝜏 = 6.6 for systematic measurement error and 𝜏0 = 6.3 and 𝜏1 = 6.6 for
differential measurement error. For 𝑅2𝑌 ∗,𝑌 = 0.5, 𝜏 = 13.2 for systematic measurement error
and 𝜏0 = 12.6 and 𝜏1 = 13.2 for differential measurement error. For 𝑅2𝑌 ∗,𝑌 = 0.2, 𝜏 = 26.5
for systematic measurement error and 𝜏0 = 25.2 and 𝜏1 = 26.5 for differential measurement
error. Additionally, we considered a scenario with greater systematic measurement error
holding 𝜃0 = 0 and 𝜃1 = 1.25. Here, we only studied a high coefficient of determination
𝑅2𝑌 ∗,𝑌 = 0.8, implying that 𝜏 = 7.9.

For the scenarios with systematic measurement error induced, a separate validation set
was generated of size 𝐾 with the characteristics of the placebo arm for each simulated data
set. For differential measurement error scenarios, a validation data set was generated of
size𝐾 for each simulated data set, with𝐾0 = 𝐾1 = 𝐾/2 subjects equally divided over the two
treatment groups. The sample size of the external validation data set (𝐾) was varied with
𝐾 ∈ {5, 7, 10, 15, 20, 30, 40, 50} for systematic measurement error and 𝐾 ∈ {10, 20, 30, 40, 50}
for differential measurement error.

2.5.2. Computation
For each simulated data set the corrected treatment effect estimator (2.3) for systematic
error and (2.4) for differential error were applied. In systematic measurement error
scenarios, 95% CIs for the corrected estimator were constructed by using the Zero-variance
method, the Delta method, the Fieller method, and bootstrap based on 999 replicates (as
defined in section Systematic measurement error). In the case of differential measurement
error, 95% CIs for the corrected estimator were constructed by using the Zero-Variance
method, the Delta method and the bootstrap based on 999 replicates (as defined in section
Differential measurement error). The HC3 heteroscedastic consistent variance estimator
was used to accommodate for heteroscedastic error in the differential measurement error
scenario [19]. Furthermore, for both the systematic and differential measurement error
scenarios the naive analysis was performed (resulting in a naive effect estimate and naive
CI), which is the ’regular’ analysis which would be performed if measurement error was
neglected.

We studied performance of the corrected treatment effect estimators in terms of
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percentage bias [24], empirical standard error (EmpSE) and square root of themean squared
error (SqrtMSE) [25]. The performance of the methods for constructing the CIs was studied
in terms of coverage and Type-II error [25].

In our simulations, the Fieller method resulted in undefined CIs if in an iteration
̂𝜃1/√𝑡2/𝑆(𝑐)𝑦𝑦 > 𝑡𝑁−2. The percentage of iterations for which the Fieller method failed to

construct CIs is reported. If the Fieller method resulted in undefined CIs in more than
5% of cases in one simulation scenario, the coverage and average CI width were not
calculated as this would result in unfair comparisons between the different CI constructing
methods. The bootstrap CIs were based on less than 999 estimates in case the sample
drawn from the external validation set consisted of 𝐾 equal replicates. These errors
occurred more frequently for small values of 𝐾 and low R-squared. All simulations
were run in R version 3.4, using the R package mecor (version 0.1.0). The results of the
simulation are available at doi:10.6084/m9.figshare.7068695 and the code is available at
doi:10.6084/m9.figshare.7068773, together with the seed used for the simulation study.

2.5.3. Results of simulation study
Systematic measurement error. Table 2.1 shows percentage bias, EmpSE and SqrtMSE
of the naive estimator and the corrected estimator when there is systematic measurement
error. Naturally, the percentage of bias in the naive estimator is about 5% if 𝜃1 = 1.05 and
25% if 𝜃1 = 1.25. For the corrected estimator and 𝜃1 = 1.05 or 𝜃1 = 1.25 and 𝑅2𝑌 ∗,𝑌 = 0.8,
percentage bias, EmpSE and SqrtMSE of ̂𝛽𝑌 were reasonably small for 𝐾 ≥ 10. SqrtMSE of
the corrected estimator was never lower than the SqrtMSE of the naive estimator because
the bias in the naive estimator was small for 𝜃1 = 1.05, . However, for settings where bias
in the naive estimator was greater (𝜃1 = 1.25), SqrtMSE of the corrected estimator was
smaller than SqrtMSE of the naive estimator for 𝐾 ≥ 15. For the corrected estimator and
𝜃1 = 1.05 and 𝑅2𝑌 ∗,𝑌 = 0.5, bias was reasonably small for 𝐾 ≥ 30. Nevertheless, SqrtMSE of
the corrected estimator was always greater than SqrtMSE of the naive estimator. For the
corrected estimator and 𝜃1 = 1.05 and 𝑅2𝑌 ∗,𝑌 = 0.2, the bias of ̂𝛽𝑌 fluctuated and EmpSE and
SqrtMSE was large for all 𝐾 ′𝑠. Figure 2.2 shows the estimates of the intervention effect
using the corrected estimator of each 10th iteration of our simulation, which provides
a clear visualisation of the results formerly discussed. The larger the sample size of
the external calibration set and the higher R-squared, the better the performance of the
corrected estimator. The sampling distribution of ̂𝜃1 depicted in Figure 2.3 explains why
there was so much variation in the corrected effect estimator for small sample sizes of
the external validation set and low R-squared. Namely, for a number of iterations in our
simulation, ̂𝜃1 was estimated close to zero, expanding the corrected estimator the same
number of times resulting in large bias, EmpSE and MSE. Note that if ̂𝜃1 < 0, the sign of
the corrected estimator changes, explaining why the corrected estimate of the intervention
effect was sometimes below zero.

For R2𝑌 ∗,𝑌 = 0.8 and both 𝜃1 = 1.05 and 𝜃1 = 1.25, the Fieller method failed to construct
CIs in 15, 5, 1 and 0.1 % of simulated datasets for respectively 𝐾 = 5, 7, 10, 15. Therefore,
coverage and average CI width of the Fieller method was not evaluated for 𝐾 ∈ {5, 7}. For
R2𝑌 ∗,𝑌 = 0.5, the Fieller method failed to construct CIs in 48, 36, 22, 8, 3, 0.3 % of simulated
data sets for 𝐾 ∈ {5, 7, 10, 15, 20, 30}, respectively. Consequently, coverage and average
CI width was not evaluated for 𝐾 ∈ {5, 7, 10, 15}. For R2𝑌 ∗,𝑌 = 0.2, the Fieller method

https://doi.org/10.6084/m9.figshare.7068695
https://doi.org/10.6084/m9.figshare.7068773
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failed to construct CIs in 74, 71, 64, 53, 43, 26, 15 and 8 % of simulated data sets for
𝐾 ∈ {5, 7, 10, 15, 20, 30, 40, 50}, respectively. the Fieller method was therefore not evaluated
for R2𝑌 ∗,𝑌 = 0.2.

Table 2.2 shows coverage of the true intervention effect in the constructed CIs using
the Zero-variance, Delta, Fieller method and bootstrap. Using Wald CIs for the naive
effect estimator nearly yielded 95% coverage of the true treatment effect of 6.9, because
for 𝜃1 = 1.05 the bias percentage in the naive estimator was small (, 5%). Yet, as bias
percentage increased in the naive estimator for 𝜃1 = 1.25 (i.e., 25%) coverage dropped to
83.5%. Table 2.3 shows average CI width using the Zero-variance, Delta and bootstrap. The
Zero-variance method yielded too narrow CIs for all scenario’s, an intuitively clear result
as the Zero-variance method neglects the variance in ̂𝜃1. For R2𝑌 ∗,𝑌 = 0.8 the Delta, Fieller
and bootstrap constructed correct CIs for 𝐾 ≥ 15. For 𝐾 ≤ 10 the Delta method and the
Fieller method constructed too narrow CIs, and bootstrap too broad CIs. For R2𝑌 ∗,𝑌 = 0.5
the Delta and bootstrap constructed correct CIs for 𝐾 ≥ 30. For 𝐾 ≤ 20 the Delta method
constructed too narrow CIs, and bootstrap too broad CIs. Coverage of the Fieller method
was about the desired 95% level for 𝐾 ≥ 30.

Using the naive effect estimator, Type-II error was 0.2%, 2.9% and 31.6% for R2𝑌 ∗,𝑌 = 0.8
(both for 𝜃1 = 1.05 and 𝜃1 = 1.25), R2𝑌 ∗,𝑌 = 0.5 and R2𝑌 ∗,𝑌 = 0.2, respectively. Type-II error
in the corrected estimator using the Zero-variance and Delta method and bootstrap was
0%. For the considered scenario’s using the Fieller method, Type-II error was 0.02% for
R2𝑌 ∗,𝑌 = 0.8 and 2.9% for R2𝑌 ∗,𝑌 = 0.5.
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Figure 2.2: Estimates of the treatment effect using the naive estimator and corrected estimator for different values
of R-squared (row grids) and different sample sizes of the external validation set (column grids) under systematic
measurement error (𝜃1 = 1.05 (0.2; 0.5; 0.8a) or 𝜃1 = 1.25 (0.8b)). Each grid is based on every 10th estimate of
a simulation of 10,000 replicates, using an estimand of 6.9 (indicated by the solid supplementary material line),
based on example trial 1 by Makrides et al. [15].
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Figure 2.3: Estimates of 𝜃1 (i.e., slope of the systematic measurement error model) for different values of R-squared
(row grids) and different sample sizes of the external validation set (column grids). Each grid is based on every
10th estimate of a simulation of 10,000 replicates, using an estimand of 1.05 (indicated by the solid supplementary
material line).



2

23

Ta
bl
e
2.
3:

Av
er
ag

e
co

nf
id
en

ce
in
te
rv

al
(C

I)
w
id
th

of
th

e
na

iv
e
es

ti
m
at

or
an

d
th

e
co

rr
ec

te
d
es

ti
m
at

or
fo

r
sy

st
em

at
ic

m
ea

su
re
m
en

te
rr
or

(𝜃 0
=0

an
d

𝜃 1
=1

.25
or

𝜃 1
=1

.05
),
R
-s
qu

ar
ed

eq
ua

lt
o
0.
8,

0.
5
an

d
0.
2
an

d,
di
ff
er
en

t
sa

m
pl
e
si
ze

s
of

th
e
va

lid
at

io
n

da
ta

se
t.

Ea
ch

sc
en

ar
io

is
ba

se
d
on

10
,0
00

re
pl
ic
at

es
,t
he

va
lu
e
of

th
e
es

ti
m
an

d
is

6.
9,

ba
se

d
on

ex
am

pl
e
tr
ia
l1

by
M

ak
ri
de

s
et

al
.[

15
]

𝜃 1
𝑅2 𝑌∗

,𝑌
N
ai
ve

M
et
ho

d
fo
r

C
or
re
ct
ed

Es
ti
m
at
or

Es
ti
-

C
on

st
ru

ct
io
n

Sa
m
pl
e
Si
ze

Ex
te
rn

al
C
al
ib
ra
ti
on

Se
t

m
at
or

a
of

C
I

5
7

10
15

20
30

40
50

1.
25

0.
8

6.9
Z
er
o-
Va

ri
an

ce
30

33
3.0

11
41
.5

5.5
4.7

4.7
4.6

4.5
4.5

D
el
ta

40
.7

13
.6

8.7
7.5

7.0
6.5

6.3
6.1

Fi
el
le
rb

-
-

11
.8

8.3
7.0

6.4
6.1

6.0
B
oo

ts
tr
ap

86
.9

29
.3

14
.1

8.3
7.1

6.4
6.1

6.0
1.
05

0.
8

5.8
Z
er
o-
Va

ri
an

ce
36

11
0.7

13
59
.0

6.5
5.6

5.5
5.4

5.4
5.4

D
el
ta

35
.0

12
.2

8.0
7.0

6.7
6.3

6.1
6.0

Fi
el
le
rb

-
-

11
.8

8.3
7.0

6.4
6.1

6.0
B
oo

ts
tr
ap

86
.9

29
.3

14
.1

8.3
7.1

6.4
6.1

6.0
0.
5

7.4
Z
er
o-
Va

ri
an

ce
72

28
.9

97
59
.5

76
3.1

37
.5

17
.8

7.7
7.3

7.1
D
el
ta

58
.1

43
.2

21
.2

12
.6

11
.0

9.3
8.7

8.4
Fi
el
le
rb

-
-

67
.9

63
.2

25
.0

12
.4

9.8
9.0

B
oo

ts
tr
ap

14
6.8

87
.4

65
.2

34
.7

22
.8

12
.4

9.9
9.0

0.
2

11
.6

Z
er
o-
Va

ri
an

ce
12

6
83

0.3
11

67
7.5

87
12

3.4
30

70
9.4

32
4
87

0.7
12

43
0.8

77
4.6

12
6.8

D
el
ta

17
9.3

10
2.5

11
2.7

69
.9

65
.7

34
.1

19
.7

16
.6

Fi
el
le
rb

-
-

92
.6

95
.1

72
.1

82
.2

60
.6

59
.2

B
oo

ts
tr
ap

17
6.0

12
1.9

12
6.2

11
8.7

10
7.7

77
.6

54
.8

39
.7

aA
ve

ra
ge

C
Iw

id
th

us
in
g
re
gu

la
r
W

al
d
C
Is

of
th

e
na

iv
e
eff

ec
t
es

ti
m
at

or
.

bR
es

ul
ts

of
th

e
Fi
el
le
r
m
et
ho

d
ar

e
sh

ow
n
if

le
ss

th
an

5%
of

ca
se

s
re
su

lt
ed

in
un

de
fi
ne

d
C
Is

(s
ee

se
ct
io
n
C
om

pu
ta

ti
on

).



2

24 Measurement error in continuous endpoints

Differential measurement error. Table 2.4 shows percentage bias, EmpSE and
SqrtMSE of the naive estimator and the corrected estimator when there is differential
measurement error. The percentage bias in the naive estimator was about 92%. For the
corrected estimator and 𝑅2𝑌 ∗,𝑌 = 0.8, percentage bias, EmpSE and SqrtMSE of ̂𝛽𝑌 were
reasonably small for 𝐾 ≥ 20. For the naive estimator and 𝑅2𝑌 ∗,𝑌 = 0.5, percentage bias,
EmpSE and MSE of the corrected estimator were small for 𝐾 = 50. For the naive estimator
and 𝑅2𝑌 ∗,𝑌 = 0.2, percentage bias, EmpSE and MSE of the corrected estimator was large for
all 𝐾 ’s. The estimates of the intervention effect using the corrected estimator of each 10th
iteration of our simulation is shown in Figure 2.4, which provides a clear visualization of
the results formerly discussed. the sample size of the external validation set and the higher
R-squared, the better the performance of the corrected estimator.

Table 2.5 shows coverage of the true intervention effect in the constructed CIs and
average CI width using the Zero-Variance and Delta method and bootstrap. Coverage of
the true treatment effect of 6.9 using Wald CIs for the naive effect estimator were about
1%, 7% and 41% for 𝑅2𝑌 ∗,𝑌 = 0.8, 𝑅2𝑌 ∗,𝑌 = 0.5 and 𝑅2𝑌 ∗,𝑌 = 0.2, respectively. In all cases, the
Zero-Variance method yielded too narrow CIs; the Delta method yielded too broad CIs and
the bootstrap yielded mostly too broad CIs, except for 𝑅2𝑌 ∗,𝑌 = 0.8 and 𝐾 = 30 and 𝐾 = 40
(too narrow). For 𝑅2𝑌 ∗,𝑌 = 0.8 and 𝐾 = 50, coverage of the true intervention effect was 95%.

Type-II error in the naive effect estimator was 0%, 0% and 0.4% for R2𝑌 ∗,𝑌 = 0.8, R2𝑌 ∗,𝑌 =
0.5 and R2𝑌 ∗,𝑌 = 0.2, respectively. Type-II error in the corrected effect estimator using the
Zero-variance and Delta method and bootstrap was 0%.

Table 2.4: Percentage bias, Empirical Standard Error (EmpSE), Mean Squared Error (MSE),
Squared root of Mean Squared Error (SqrtMSE) of the corrected estimator for differential
measurement error (𝜃00 = 0, 𝜃10 = 1, 𝜃01 = 0, 𝜃11 = 1.05) R-squared equal to 0.8, 0.5 and
0.2 and different sample sizes of the validation data set. Each scenario is based on 10,000
replicates, the value of the estimand is 6.9, based on example trial 1 by Makrides et al. [15]

Performance 𝑅2𝑌 ∗,𝑌 Naive Corrected Estimator
Measurea Esti- Sample Size External Calibration Set

mator 10 20 30 40 50
Percentage 0.8 91.8 5.2 1.2 −0.4 −0.2 −0.1
bias (%) 0.5 91.8 −9.7 33.0 154.2 −21.4 −0.1

0.2 91.9 −319.4 152.9 193.1 −21.5 2.2
EmpSE 0.8 1.4 52.0 6.8 2.9 2.6 2.3

0.5 1.8 949.1 369.1 1080.4 142.1 4.5
0.2 2.9 2658.0 8425.8 1569.7 443.7 92.1

SqrtMSE 0.8 6.5 52.0 6.8 2.9 2.6 2.3
0.5 6.6 949.1 369.1 1080.4 142.1 4.5
0.2 7.0 2658.0 8425.4 1569.7 443.7 92.1

aMonte Carlo standard errors of Bias, EmpSE and MSE are EmpSE√1/10, 000; EmpSE/(2√9, 999);

√
∑10,000
𝑖=1 [( ̂𝛽𝑖 −6.9)2−MSE]2

9,999×10,000 , respectively [25].
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Figure 2.4: Estimates of the treatment effect using the naive estimator and corrected estimator for different values
of R-squared (row grids) and different sample sizes of the external validation set (column grids) under differential
measurement error (𝜃00 = 0, 𝜃10 = 1, 𝜃01 = 0, 𝜃11 = 1.05). Each grid is based on every 10th estimate of a simulation of
10,000 replicates, using an estimand of 6.9 (indicated by the solid supplementary material line), based on example
trial 1 by Makrides et al. [15].
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2.5.4. Measurement error dependent on a prognostic factor
Above, we focused on measurement error in endpoints that are either systematic (linearly
dependent on true endpoint) or differential (linearly dependent on true endpoint and
exposure). Yet, measurement error could depend on prognostic factors. For example,
measurement error in haemoglobin levels measured in capillary bloodmay differ for women
andmen [17]. Moreover, haemoglobin levels are, on average, higher in men than in women.
To illustrate the effect of measurement error that is dependent on a prognostic factor, we
use example trial 1, here assuming that it was conducted in women and men. Data were
generated for a sample of 𝑁 = 400 individuals, equally divided in two treatment arms and
with equal sex distribution in both arms. Let the proportion of women in the sample be
75% (𝑆 = 1 for men and 𝑆 = 0 for women). Further, assume 𝑌 = 120 + 6.9𝑋 + 10𝑆 + 𝜀, where
𝜀 has mean 0 and Var(𝜀) = 158.8. Additionally, assume additive systematic measurement
error in 𝑌 ∗, 𝑌 ∗ = 𝑌 + 0.5𝑆 + 𝑒 (additive systematic measurement error in men and random
measurement error in women), where 𝑒 has mean 0 and Var(𝑒) = 6.6 and 𝑒 independent
of 𝑌 , 𝑋 , 𝑆 and 𝜀. In a simulation of 10,000 replicates we estimated the effect of 𝑌 ∗ on
𝑋 (naive analysis) and the effect of 𝑌 ∗ on 𝑋 , conditional for 𝑆 (conditional analysis). In
section S2.4 of the supplementary material, we proof that both analyses will result in
correct estimation of the treatment effect. The results of the simulation study show that
the average treatment effect estimate of both analyses was 6.89, indicating that there is
no bias in either of the analyses. Yet, the empirical variance of the effect estimate in the
10,000 replicates was somewhat lower for the conditional analysis compared to the naive
analysis (2.01 vs. 2.22), indicating an efficiency gain in favour of the conditional analysis.
By assuming that randomisation was well-performed, measurement error dependent on a
prognostic factor does not introduce bias in the naive analysis other than the biases already
discussed.

2.6. Discussion
This chapter outlined the ramifications for randomised trial inferences when a continuous
endpoint is measured with error. Our study showed that when this measurement error
is ignored, not only can trial results be hampered by a loss in precision of the treatment
effect estimate (i.e., increased Type-II error for a given sample size), but trial inferences
can be impacted through bias in the treatment effect estimator and a null-hypothesis
significance test for the treatment effect can deviate substantially from the nominal level.
In this chapter we proposed a number of regression calibration-like correction methods to
reduce the bias in the treatment effect estimator and obtain CIs with nominal coverage. In
our simulation studies, these methods were effective in improving trial inferences when
an external validation dataset (containing information about error-prone and error-free
measurements) with at least 15 subjects was available.

To anticipate the impact of measurement error on trial inferences, knowledge is needed
on the mechanism and magnitude of the measurement error. Endpoints that are measured
with purely homoscedastic classicalmeasurement error are expected to reduce the precision
of treatment effect estimates and increase Type-II error at a given sample size, proportional
to the relative amount of variance that is due to the error. Heteroscedastic classical error
and differential error also affect Type-I error. Under systematic measurement error, only
Type-I errors for testing null effects are expected to be at the nominal level. The treatment
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effect estimator itself is biased by systematic error and differential error. Heteroscedastic
error can be addressed using standard robust standard error estimators (e.g., HC3 [19]).
Systematic error and differential error in the endpoint can be addressed via regression
calibration-like correction methods.

We considered regression calibration-like correction methods that rely on an
external validation set that contains information about both error-prone and error-free
measurements. We anticipate such an external validation set can be feasible as a planned
pilot study phase of a trial. Our simulation study shows that the effectiveness of correction
methods to adjust the trial results for endpoint measurement error are dependent on the
size of the validation sample and the strength of the correlation between the error-free and
error-prone measurement of the trial endpoint. For a weak relation (R2 = 0.20) we found the
correction methods to be generally ineffective in improving trial inference with reasonably
sized validation sets (i.e., up to size N = 50). However, for medium (R2 = 0.50) or strong (R2 =
0.80) correlations, the regression calibration showed improvements with external validation
samples as small as 15 observations. With the relatively small validation samples (up to 50
observations), our study showed that the bootstrap performed best in constructing CIs in
terms of coverage. The use of percentiles might explain that CIs were slightly conservative
(i.e., too broad) for small validation samples (10 observations), which may be improved
by using bias-corrected and accelerated bootstrap intervals [26]. The proposed regression
calibration-like correction methods rely on a linear regression framework and can thus
easily be extended to incorporate covariables in the trial analysis [27].

The use of measurement error corrections is still rare in applied biomedical studies
with measurement error problems usually reported as an afterthought [9, 14]. Indeed, to
our knowledge, no measurement error correction methods have been used so far in the
analysis of biomedical trials to correct for measurement error in the endpoint. This may
in part be due to a common misconception that measurement error can only affect trial
inference by reducing the precision of estimating the effect of treatment and increasing
Type-II error, which can be improved by increasing the study sample size. Note that
our study demonstrates that such an assumption is warranted only when strict classical
homoscedastic error structure of the trial endpoint can be assumed. Such does not hold,
for instance, when measurement error are more pronounced in the tails of the distribution,
or when measurement error vary between treatment arms.

Instead of the use of external validation datasets, internal measurement correction
approaches where both the preferred endpoint and the error contaminated endpoint
are measured on a subset of trial participants may sometimes be more feasible. For
internal validation, Keogh et al. [7] recently reviewed methods of moment estimation and
maximum likelihood estimation approaches. There are also other approaches to correct
for measurement error that we did not discuss in this chapter. For instance, Cole and
colleagues suggested a multiple imputing approach based on an internal validation set [28].
We also only focused on continuous outcomes in this chapter. Problems and solutions for
misclassified categorical outcomes can be found elsewhere [29]. Yet, to the best of our
knowledge, none of these methods have been tested in the setting where trial endpoints
are measured with error and thus need further study.

Lastly, we solely discuss parametricmeasurement errormodels, whichmightmisspecify
the measurement error model. The extent to which the distribution of the unmeasured
outcome can be estimated without parametric assumptions is a question for further
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research. In the context of measurement error in explanatory variables this is formerly
described as deconvolution ([10], Chapter 12 and references therein). Further, the method
of non-parametric maximum likelihood has been successfully applied for explanatory
variables measured with error [30, 31] and this might be an avenue of future research.

In summary, the impact of measurement error in a continuous endpoint on trial
inferences can be particularly non-ignorable when the measurement error is not strictly
random, because Type-I error, Type-II and the effect estimates can be affected. To alleviate
the detrimental effects of measurement error we proposed measurement error corrected
estimators and a variety of methods to construct CIs for non-random measurement error.
To facilitate the implementation of these measurement error correction estimators we have
developed the R package mecor, available at: https://github.com/LindaNab/mecor.

https://github.com/LindaNab/mecor
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