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1
General introduction and outline of

the thesis

1.1. Introduction
Measurement error affects the validity of many epidemiologic studies, that often rely
on imperfect data [1]. Epidemiologic studies may for example rely on data obtained
from electronic health records. These records are retrieved for other purposes than
epidemiologic precision and may therefore be more subject to measurement error than
data retrieved for answering specific research questions. Another example of error-prone
data includes data collection based on self-reports by study participants [2]. Self-reports
may come with (selective) reporting and recollection biases [3]. The inability to accurately
measure variables of interest in epidemiologic research studies may result in failure to
observe associations between a certain exposure and health outcome [4], or oppositely,
the observation of spurious associations [5].

Epidemiologic studies often rely on the salient assumption of no measurement error.
This assumption may be satisfied for some variables (e.g., age in years) but much harder to
justify for others, such as variables subject to natural variation (e.g., blood pressure) [6] or
laboratory error (e.g., Inhibin B) [7]. As an example, Figure 1.1 illustrates the discrepancy
between two consecutive measurements of systolic blood pressure in the National Health
and Nutrition Examination Survey (NHANES) [8].

Other epidemiologic studies may rely on self-reported measures, such as self-reported
length or weight [9], physical activity [10] or diet [11]. A self-reported measure tends to be
prone to error and generally does not perfectly correlate with the phenomenon it aims to
measure. In Figure 1.2 it is illustrated that in the NHANES [8] self-reported weight was not
perfectly correlated with weight measured by trained health technicians with a calibrated
weight scale.

When measurement error is not accounted for in the design or the analysis of an
epidemiologic study, measurement error can lead to considerable bias in exposure-outcome
associations. The consequences of measurement error in exposure and outcome variables
have been well established in the scientific literature [12–15]. The triple whammy of

1
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measurement error describes the three consequences of measurement error: i) it may lead
to bias in statistical parameter estimation, ii) it may lead to a loss of power, and iii) it
may mask the functional form of a relationship between two variables [13]. For the first
whammy, a common misconception is that the bias due to measurement error always
attenuates exposure-outcome associations. This general statement can be true in case of
random measurement error in the exposure, also known as ‘classical’ measurement error.
For other forms of measurement error, e.g., systematic or differential measurement error,
this simple heuristic may not apply [16].
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Figure 1.1: Discrepancy between two consecutive systolic blood pressure measurements in the National Health
and Nutrition Examination Survey (NHANES) 2017-2018 cycle [8]

Various correction methods for measurement error exist. Examples include
regression calibration [17, 18], simulation-extrapolation [19], moment reconstruction [20],
non-parametric maximum likelihood estimation [21], imputation-based methods [22, 23],
and Bayesian methods [15, 24]. Among these methods, regression calibration appears to
be the one that is most commonly used in epidemiology [25, 26].

In spite of the abundance of literature on measurement error, and more specifically,
on measurement error correction methods, correction for measurement error remains
seldomly applied in epidemiologic research [25–27]. In most epidemiologic studies,
the impact of measurement error is inadequately discussed [26] and often erroneously
dismissed as leading to an underestimation of the exposure-outcome association [25, 26].
Importantly, this practice has not changed over the last decades [25–27]. This may, in
part, be due to insufficient understanding of the impact of measurement error in settings
that go beyond the classical example of attenuated exposure-outcome associations. An
alternative explanation may be that researchers are unfamiliar with available measurement
error correction methods and tools to quantitatively assess the impact of measurement
error. In addition, researchers may not appreciate the added value of the collection of
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(external) validation data for measurement error correction, hampering the inclusion of
additional validation data within study designs when measurement error is suspected or
anticipated.

The aim of this thesis is to improve the understanding of the impact of measurement
error in epidemiologic studies, to facilitate the application of measurement error correction
methods, to improve the design of epidemiologic studies when measurement error in
a variable is suspected and to develop tools to quantitatively assess the impact of
measurement error in epidemiologic studies.
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Figure 1.2: Discrepancy between weight in kilograms measured by health technicians using a calibrated weight
scale (true weight) and self-reported weight in the National Health and Nutrition Examination Survey (NHANES)
2017-2018 cycle [8]

1.2. Outline
This thesis is organised as follows. To improve the understanding of the impact of
measurement error, in Chapter 2, it is investigated how randomised controlled trials are
affected by measurement error in a continuous endpoint. Three types of measurement
error are distinguished, classical (or random) measurement error, systematic measurement
error and differential measurement error.

To improve the application of measurement error correction methods, in Chapter 3 the
R package mecor is described for measurement error correction in linear models with a
continuous outcome. The R package mecor facilitates measurement error correction by
means of regression calibration, method of moments and a maximum likelihood-based
method. Information about the measurement error model and its parameters can be
obtained from four types of validation studies: internal validation, replicates, calibration
and external validation data. Each of these are discussed in detail. Chapter 4 provides
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an exploration of the bias–variance trade off for the regression calibration estimator
implemented in mecor, and an investigation of the performance of the estimator in settings
where measurement error is relatively large.

To improve the design of epidemiologic studies when measurement error is suspected,
guidance is provided for the collection of validation data needed for measurement error
correction in Chapter 5. Here, sampling methods for validation data are studied and the
assumptions required for the correct application of regression calibration for measurement
error correction investigated. Deterministic and non-deterministic methods for validation
data sampling are compared in terms of statistical efficiency. Next, in Chapter 6
reporting guidelines are proposed for studies on venous thromboembolism incidence
in Corona disease patients. These studies on incidence report highly heterogeneous
results. Different clinical and methodological sources of this heterogeneity are identified,
including misclassification error in the diagnosis of venous thromboembolism and
overall data quality. The proposed reporting guidelines guide future studies on venous
thromboembolism incidence.

To quantitatively assess the impact of measurement error in the absence of validation
data, sensitivity analysis or quantitative bias analysis could be used. In Chapter 7, two
methods, regression calibration and simulation-extrapolation are compared for a sensitivity
analysis for random exposure measurement error. In Chapter 8, a quantitative bias analysis
for confounder misclassification is proposed. The quantitative bias analysis approach is
described for traditional conditional regression and marginal structural models estimated
using inverse probability weighting. This thesis ends with a general discussion including
recommendations and directions for future research in Chapter 9.
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2
Measurement error in continuous

endpoints of randomised trials:
Problems and solutions

In randomised trials, continuous endpoints are often measured with some degree of error. This chapter
explores the impact of ignoring measurement error, and proposes methods to improve statistical inference
in the presence of measurement error. Three main types of measurement error in continuous endpoints
are considered: classical, systematic and differential. For each measurement error type, a corrected effect
estimator is proposed. The corrected estimators and several methods for confidence interval estimation
are tested in a simulation study. These methods combine information about error-prone and error-free
measurements of the endpoint in individuals not included in the trial (external validation sample). We
show that when classical measurement error in continuous endpoints is ignored, the treatment effect
estimator is unbiased, while Type-II error is increased at a given sample size. Conversely, the estimator
can be substantially biased when measurement error is systematic or differential. In those cases, bias can
largely be prevented and inferences improved upon using information from an external validation sample,
of which the required sample size increases as the strength of the association between the error-prone and
error-free endpoint decreases. Measurement error correction using already a small (external) validation
sample is shown to improve inferences and could be considered in trials with error-prone endpoints.
Implementation of the proposed correction methods is accommodated by a new software package for R.

This chapter is based on: L. Nab, R.H.H. Groenwold, P.M.J. Welsing and M. van Smeden, Measurement error in
continuous endpoints of randomised trials: Problems and solutions, Statistics inMedicine 38 (27) (2019) 5182–5196.
doi:10.1002/sim.8359
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10 Measurement error in continuous endpoints

2.1. Introduction
In randomised controlled trials, continuous endpoints are often measured with some
degree of error. Examples include trial endpoints that are based on self-report (e.g.
self-reported physical activity levels [1]), endpoints that are collected as part of routine
care (e.g. in pragmatic trials [2]), endpoints that are assessed without blinding the patient
or assessor to treatment allocation (e.g., in surgical [3] or dietary [4] interventions) and an
alternative endpoint assessment that substitutes a gold-standard measurement because of
monetary or time constraints or ethical considerations (e.g. food frequency questionnaire
as substitute for doubly-labelledwater tomeasure energy intake [5]). In these examples, the
continuous endpoint measurements contain error in the sense that the recorded endpoints
do not unequivocally reflect the endpoint one aims to measure.

Despite calls for attention to the issue of measurement error in endpoints (e.g., [6]),
developments and applications of correction methods for error in endpoints are still rare
[7]. Specifically, methodology that allow for correction of study estimates for the presence
of measurement error have so far largely been focused on the setting of error in explanatory
variables, which may give rise to inferential errors such as regression dilution bias [8–13].
In addition, the application of correction methods for measurement error in the applied
medical literature is unusual [9, 14].

We provide an exploration of problems and solutions for measurement error in
continuous trial endpoints. For illustration of the problems and solutions for measurement
error in continuous endpoints we consider one published trial that examined the efficacy
and tolerability of low-dose iron-supplements during pregnancy [15]. To test the effect
of the iron supplementation on maternal haemoglobin levels, haemoglobin concentrations
were measured at delivery in venous blood.

This chapter describes a taxonomy of measurement error in trial endpoints, evaluates
the impact of measurement error on the analysis of trials and tests existing and proposes
new methods evaluating trials containing measurement error. Implementation of the
proposed measurement error correction methods (i.e., the existing and novel methods)
are supported by introducing a new R package mecor, available at: https://github.
com/LindaNab/mecor. This chapter is structured as follows. In section 2.2 we revisit the
example trial introduced in the previous paragraph. Section 2.3 presents an exploration
of measurement error structures and their impact on inferences of trials. In section 2.4
measurement error correction methods are proposed. A simulation study investigating
the efficacy of the correction methods is presented in section 2.5. Conclusions and
recommendations resulting from this study are provided in section 2.6.

2.2. Illustrative example: measurement of haemoglobin levels
Makrides et al. [15] tested the efficacy of a 20-mg daily iron supplement (ferrous sulfate)
on maternal iron status in pregnant women in a randomised, two-arm, double-blind,
placebo-controlled trial. Respectively, 216 and 214 women were randomised to the iron
supplement and placebo arm. At delivery, a 5-mL venous blood sample was collected from
the women to assess haemoglobin levels as a marker for their iron status. Haemoglobin
levels of women in the iron supplement arm were significantly higher than haemoglobin
levels of women in the placebo arm (mean difference 6.9, 95% confidence interval (CI)
(4.4; 9.3)). Haemoglobin concentrations were measured spectrophotometrically. Mean

https://github.com/LindaNab/mecor
https://github.com/LindaNab/mecor
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haemoglobin values were 137 (standard deviation (SD) 3.2) g/L when measured by certified
measurements, compared to mean 135 (SD 0.96) g/L when measured using the equipment
used in the trial to measure haemoglobin levels. This might indicate small measurement
error in the measured haemoglobin levels of the women in the trial. The authors did not
discuss if and how the remaining measurement error could have affected their results.

In this domain, similar trials have been conducted in which the endpoint was assessed
with lower standards. For instance, in field trials testing the effectiveness of iron
supplementation, capillary blood samples instead of venous blood samples are often
used to measure haemoglobin levels (e.g., [16]). While easier to measure, capillary
haemoglobin levels are less accurate than venous haemoglobin levels [17]. We now discuss
how measurement error in haemoglobin levels might affect trial inference, by assuming
hypothetical differences between capillary and venous haemoglobin levels. Two additional
illustrative example trials are discussed in section S2.1 of the supplementary material.
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Figure 2.1: Illustration of impact of hypothetical measurement error in example trial 1 [15]: (a) no measurement
error; (b) classical measurement error; (c) systematic measurement error; (d) differential measurement error. The
left plots depict every thousandth estimated OLS regression line (grey lines), the average estimated treatment
effect (dashed line) and the true effect (solid line). The right plots depict the density distribution of the Wald
test-statistic of the slope of the regression line, under the null hypothesis of no effect (grey distribution) and the
alternative hypothesis of any effect (black distribution).

2.2.1. Simulations based on example trial
We expand on the preceding example to hypothetical structures of error in measurement
of the endpoints by simulation. These structures are only explained intuitively (explicit
definitions are provided in section 2.3). For this example, we take the observed
mean difference in haemoglobin levels in the two groups of the iron supplementation
trials as a reference (6.9 g/L higher in the iron-supplemented group), and assume that
haemoglobin levels are normally distributed with equal variance in both groups (SD 12.6
g/L). Fifty-thousand simulation samples were taken with 54 patients in each treatment arm.
The number of patients differed from the 430 patients in the original trial to yield a Type-II
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error of approximately 20% in the absence of measurement error at the usual alpha level
(5%). Treatment effect for each simulation sample (mean difference in haemoglobin levels
between the two arms) was estimated by OLS regression.

Classical measurement error in example trial. In the context of measurement of
haemoglobin levels, random variability in the haemoglobin levels measured in capillary
blood samples may be expected to vary more than haemoglobin levels measured in
venous blood [17], independent of the true haemoglobin level and allocated treatment.
Increased Type-II error is a well-known consequence of endpoints measured by the lower
standard that are unbiased but more variable than the endpoints measured by the preferred
measurement instruments [13]. This form of measurement error is commonly described
as ‘random measurement error’ or ‘classical measurement error’ [10]. To simulate such
independent variation, we arbitrarily increased the standard deviation of haemoglobin
levels by 75% (from 12.6 to 22.05). This is equivalent to adding a term drawn from a normal
distribution with mean 0 and standard deviation 18.1 to each endpoint. The impact of this
imposed classical error was an increased between-replication variance of the estimated
treatment effects of approximately 55% (left plot in panel b, Figure 2.1). The average
estimated effect across simulations (depicted by the dashed line) is approximately equal
to the true effect (depicted by the solid line), suggesting the classical measurement error
did not introduce a bias in the estimated treatment effect (a formal proof is given in section
Classical measurement error). Type-II error increased (to 38%) (grey area in Figure 2.1,
panel b) while Type-I error remained at the nominal level (at 5%, illustrated by the red area
in Figure 2.1, panel b).

Systematic measurement error in example trial. It may alternatively be assumed
that capillary haemoglobin levels are systematically different from venous haemoglobin
levels. This systematic difference can be either additive or multiplicative. For additive
systematic measurement error, the capillary haemoglobin levels differ from venous
haemoglobin levels with a certain constant, independently of venous haemoglobin levels.
This implies that in both treatment groups mean haemoglobin level is higher, but that
the difference between the two treatment groups is unbiased. The term systematic
measurement error is often used to indicate multiplicative measurement error [18]. In that
case, the expected capillary haemoglobin levels are equal to venous haemoglobin levels
multiplied by a certain constant. Consequently, haemoglobin levels in capillary blood are
more accurately measured in patients with low venous haemoglobin levels than in patients
with high true haemoglobin levels (or vice versa). Under the assumption of a non-zero
treatment effect, the expected difference between mean haemoglobin levels between the
two treatment groups is biased; in the absence of a treatment effect, the expected difference
between the two groups will remain unaffected. To simulate, we assumed that capillary
haemoglobin levels are 1.05 times haemoglobin levels and we increased the standard
deviation of haemoglobin levels by 75%, equivalent to the previous example. The impact of
this imposed systematic measurement error structure is that the average treatment effect
was biased, increasing from 6.9 to 7.2, and that there is an increased between-replication
variance of the estimated treatment effect of approximately 66% (left plot in Figure 2.1,
panel c). Type-II error increased (to 37%) (grey area in Figure 2.1, panel c) while Type-I error
remained at rate close to nominal level (at 5%) (red area in Figure 2.1, panel c).

Differential measurement error in example trial. Themeasurement error structure
may also differ between the treatment arms. In an extreme scenario, haemoglobin levels
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in placebo group patients would be measured by venous blood samples while patients
in active arm (iron supplemented) would be measured using capillary blood samples.
To simulate such a scenario, we assume the same systematic error structure from the
previous paragraph, now only applying to the active group. Additionally, we assume
classical measurement error in the placebo group. This scenario classifies as differential
measurement error [7]. The impact of this measurement error structure is that the average
treatment effect was biased, increasing from 6.9 to 13.3, and that the between-replication
variance of the estimated treatment effect is increased by approximately 62% (left plot in
Figure 2.1, panel d). Type-II error decreased (to 0.1%) (grey area in Figure 2.1, panel d) and
Type-I error rates increased (to 48%) (grey area in Figure 2.1, panel d).

2.3. Measurement error structures
Consider a two-arm randomised controlled trial that compares the effects of two treatments
(𝑋 ∈ {0, 1}), where 0 may represent a placebo treatment or an active comparator. Let 𝑌
denote the true (or preferred) trial endpoint and 𝑌 ∗ an error prone operationalisation of
𝑌 . We will assume that both 𝑌 and 𝑌 ∗ are measured on a continuous scale. We assume a
linear regression model for the endpoint 𝑌 :

𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀, (2.1)

where 𝜀 is iid normally distributed with mean 0 and variance 𝜎2. Under these assumptions
and assumptions about the model for 𝑌 ∗ (described below), simple formulas for the bias in
the OLS estimator of the treatment effect can be derived. Details of these derivations can
be found in the supplementary material, section S2.2.

2.3.1. Classical measurement error
There is classical measurement error in 𝑌 ∗ when 𝑌 ∗ is an unbiased proxy for 𝑌 [10]: 𝑌 ∗ =
𝑌 + 𝑒, where 𝑒 has mean 0 and Var(𝑒) = 𝜏2 and 𝑒 independent of 𝑌 , 𝑋 , 𝜀 in (2.1). Using 𝑌 ∗
instead of 𝑌 in the linear model yields:

𝑌 ∗ = 𝛼 ∗𝑌 + 𝛽∗𝑌𝑋 + 𝛿, (2.2)

Where 𝛽∗𝑌 = 𝛽𝑌 and the residuals 𝛿 have mean 0 and variance 𝜎2𝛿 = 𝜎2 + 𝜏2. This leads to a
larger variance in ̂𝛽∗𝑌 (the estimator for 𝛽∗𝑌 ) compared to the variance in ̂𝛽𝑌 (the estimator for
𝛽𝑌 ). Consequently, classical measurement error will not lead to bias in the effect estimator
but will increase Type-II for a given sample size.

2.3.2. Heteroscedastic measurement error
In the above we assumed that the variance in 𝑒 is equal in both arms. When this assumption
is violated, there is so called heteroscedastic measurement error. Heteroscedastic error will
not lead to bias in the effect estimator, but will invalidate the estimator of the variance of
̂𝛽∗𝑌 (proof is given in supplementary material section S2.2).

2.3.3. Systematic measurement error
There is systematic measurement error in 𝑌 ∗ if 𝑌 ∗ depends systematically on 𝑌 : 𝑌 ∗ =
𝜃0 + 𝜃1𝑌 + 𝑒, where 𝑒 has mean 0 and Var(𝑒) = 𝜏2 and 𝑒 independent of 𝑌 , 𝑋 , 𝜀 in (2.1).
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Throughout, we assume systematic measurement error if 𝜃0 ≠ 0 or 𝜃1 ≠ 1 (and of course,
𝜃1 ≠ 0 in all cases). We assume independence between 𝑒 and 𝑌 , 𝑋 , 𝜀 in (2.1). Using 𝑌 ∗
with systematic measurement error in the linear model yields in the model defined by (2.2)
where 𝛽∗𝑌 = 𝜃1𝛽𝑌 and the residuals 𝛿 have mean 0 and variance 𝜎𝛿 = 𝜃21𝜎2 + 𝜏2. Depending
on the value of 𝜃1, the variance of ̂𝛽∗𝑌 is larger or smaller than the variance of ̂𝛽𝑌 . Hence,
Type-II error will either decrease or increase under systematic measurement. Type-I error
is unaffected since if 𝛽𝑌 = 0, 𝛽∗𝑌 = 0 (i.e., tests for null effects are still valid under systematic
measurement error) (proof is given in supplementary material section S2.2).

2.3.4. Differential measurement error
There is differential measurement error in 𝑌 ∗ if 𝑌 ∗ depends systematically on 𝑌 varying for
𝑋 : 𝑌 ∗ = 𝜃00 + (𝜃01 −𝜃00)𝑋 +𝜃10𝑌 + (𝜃11 −𝜃10)𝑋𝑌 + 𝑒𝑋 , where 𝑒𝑋 has mean 0 and Var(𝑒) = 𝜏2𝑋
and 𝑒𝑋 independent of 𝑌 , and 𝜀 in (2.1) for 𝑋 = 0, 1. Using 𝑌 ∗ with differential measurement
error in the linear model yields in the model defined in (2.2) where 𝛽∗𝑌 = 𝜃01 − 𝜃00 + (𝜃11 −
𝜃10)𝛼𝑌 +𝜃11𝛽𝑌 and the residuals 𝛿 havemean 0 and variance [𝜃210+(𝜃211−𝜃210)𝑋]𝜎2+𝜏2𝑋 for𝑋 =
0, 1. Since the residual variance is not equal in both arms, the estimator of the variance of ̂𝛽∗𝑌
is invalid, and will underestimate the true variance. A heteroscedastic consistent estimator
of the variance of ̂𝛽∗𝑌 is provided by the White estimator [19]. Assuming that the White
estimator is used to estimate the variance of ̂𝛽∗𝑌 , Type-I error is not expected the nominal
level (𝛼) and Type-II error will decrease or increase under the differential measurement error
model (proof is given in supplementary material section S2.2).

2.4. Correction methods for measurement error in a continuous
trial endpoint

In this section we describe several approaches to address measurement error in the trial
endpoint. Throughout, we assume that 𝑌 ∗ is measured for all 𝑖 = 1, … , 𝑁 randomly
allocated patients in the trial. We also assume that 𝑌 and 𝑌 ∗ are both measured for a
smaller set of different individuals not included in the trial (𝑗 = 1, … , 𝐾, 𝐾 < 𝑁 ), hereinafter
referred to as the external calibration sample. In all but one case, it is assumed that only
𝑌 ∗ and 𝑌 are measured in the external validation sample. In the case that the error in 𝑌 ∗
is different for the two treatment groups, it is assumed that the external validation sample
is in the form of a small pilot study where both treatments are allocated (i.e., 𝑌 ∗ and 𝑌 are
both measured after assignment of 𝑋 ). Instead of external validation data, we could use
internal validation data to correct for measurement error (𝑌 and 𝑌 ∗ are both measured in a
small subset of the trial), which is not considered in this section as it was studied elsewhere
[7].

A well-known consequence of classical measurement error in a continuous trial
endpoint is that a larger sample size (as compared to the same situations without the
measurement error) is needed to compensate for the reduced precision [13]. For example,
the new sample size 𝑁 ∗ may be calculated by 𝑁/𝑅 formula where 𝑅 is the reliability
coefficient and𝑁 the original sample size for the trial [20]. For solutions for heteroscedastic
measurement error, we refer to standard theory of dealing with heteroscedastic errors in
regression to find an unbiased estimator for the variance of ̂𝛽𝑌 ∗ (e.g., see [19] for an overview
of different heteroscedasticity consistent covariance matrices).
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Hereinafter we focus on measurement error in 𝑌 ∗ that is either systematic or
differential, both of which have been shown to introduce bias in the effect estimator if
measurement error is neglected (section 2.3). Consistent estimators for the intervention
effects are introduced, and various methods for constructing CIs for these estimators are
discussed. Section S2.3 in the supplementarymaterial provides an explanation of the results
stated in this section. Throughout, we assume that 𝑌 ∗ is measured for all 𝑖 = 1, … , 𝑁
patients in the trial. We also assume that 𝑌 and 𝑌 ∗ are both measured for a smaller set
of different individuals not included in the trial (𝑗 = 1, … , 𝐾, 𝐾 < 𝑁 ), hereinafter referred
to as the external validation sample. For an earlier exploration of the use of an internal
validation set when there is systematic or differential measurement error in endpoints, see
[7].

2.4.1. Systematic measurement error
From section Systematic measurement error it follows that natural estimators for 𝛼𝑌 and
𝛽𝑌 are

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃0)/ ̂𝜃1 and ̂𝛽𝑌 = ̂𝛽𝑌 ∗ / ̂𝜃1, (2.3)

Where ̂𝜃0 and ̂𝜃1 are the estimated error parameters from the validation data set using
standard OLS regression. From equation (2.3), it becomes apparent that ̂𝜃1 needs to be
assumed bounded away from zero for finite estimates of �̂�𝑌 and ̂𝛽𝑌 [8]. The estimators in
(2.3) are consistent, see for a proof section S2.3 in the supplementary material.
The variance of the estimators defined in (2.3) can be approximated using the Deltamethod,
the Fieller method, the Zero-variance method [21] and by bootstrap [22]. Further details
are provided in section S2.3 of the supplementary material.

2.4.2. Differential measurement error
From section Differential measurement error it follows that natural estimators for 𝛼𝑌 and
𝛽𝑌 are,

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃00)/ ̂𝜃10 and ̂𝛽𝑌 = ( ̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01)/ ̂𝜃11 − �̂�𝑌 , (2.4)

where ̂𝜃00, ̂𝜃10, ̂𝜃01 and ̂𝜃11 are estimated from the external validation set using standard
OLS estimators. Here it is assumed that both ̂𝜃10 and ̂𝜃11 are bounded away from zero
(for reasons similar to those mentioned in section 2.4.1). The estimators in (2.4) are
consistent, see for a proof section S2.3 of the supplementary material. The variance of
the estimators defined in (2.4) can be approximated using the Delta method [21], the
Zero-variance method and by bootstrap [22]. Further details are provided in section S2.3
of the supplementary material.

2.5. Simulation study
The finite sample performance of the measurement error corrected estimators of the
treatment effect was studied by simulation. We focussed on the setting of a two-arm trial in
which the continuous surrogate endpoint 𝑌 ∗ was measured with systematic or differential
measurement error, and in which an external validation set was available, which was varied
in size. The results from example trial 1 are used to motivate our simulation study (see
section 2.2).
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2.5.1. Data generation
Data were generated for a sample of 𝑁 = 400 individuals, approximately equal to the size
of example trial 1 [15]. The individuals were equally divided in the two treatment arms.
The true endpoints were generated according to model (2.1), assuming iid normal errors,
and using the estimated characteristics found in example trial 1 (𝛼𝑌 = 120, 𝛽𝑌 = 6.9
and 𝜎 = 12.6). Surrogate endpoints 𝑌 ∗ were generated under models for systematic
measurement error and differential measurement error described in section Systematic
measurement error and Differential measurement error, respectively.

For systematic measurement error in 𝑌 ∗, we set 𝜃0 = 0 and 𝜃1 = 1.05. Under the
differential measurement error model we set 𝜃00 = 0, 𝜃01 = 0, 𝜃10 = 1, 𝜃11 = 1.05. We
considered three scenarios based on the coefficient of determination between the 𝑌 ∗ and
𝑌 , 𝑅2𝑌 ∗,𝑌 : (i) 𝑅2𝑌 ∗,𝑌 = 0.8, (ii) 𝑅2𝑌 ∗,𝑌 = 0.5 and (iii) 𝑅2𝑌 ∗,𝑌 = 0.2. This large range in coefficient
of determination values reflects the wide variation we anticipate in practice from very
strong correlations between 𝑌∗ and 𝑌 (𝑅2𝑌 ∗,𝑌 = 0.8) to weak correlations (𝑅2𝑌 ∗,𝑌 = 0.2), as for
example, one could expect in the context of trials with dietary intake as endpoints [7, 23].
For 𝑅2𝑌 ∗,𝑌 = 0.8, 𝜏 = 6.6 for systematic measurement error and 𝜏0 = 6.3 and 𝜏1 = 6.6 for
differential measurement error. For 𝑅2𝑌 ∗,𝑌 = 0.5, 𝜏 = 13.2 for systematic measurement error
and 𝜏0 = 12.6 and 𝜏1 = 13.2 for differential measurement error. For 𝑅2𝑌 ∗,𝑌 = 0.2, 𝜏 = 26.5
for systematic measurement error and 𝜏0 = 25.2 and 𝜏1 = 26.5 for differential measurement
error. Additionally, we considered a scenario with greater systematic measurement error
holding 𝜃0 = 0 and 𝜃1 = 1.25. Here, we only studied a high coefficient of determination
𝑅2𝑌 ∗,𝑌 = 0.8, implying that 𝜏 = 7.9.

For the scenarios with systematic measurement error induced, a separate validation set
was generated of size 𝐾 with the characteristics of the placebo arm for each simulated data
set. For differential measurement error scenarios, a validation data set was generated of
size𝐾 for each simulated data set, with𝐾0 = 𝐾1 = 𝐾/2 subjects equally divided over the two
treatment groups. The sample size of the external validation data set (𝐾) was varied with
𝐾 ∈ {5, 7, 10, 15, 20, 30, 40, 50} for systematic measurement error and 𝐾 ∈ {10, 20, 30, 40, 50}
for differential measurement error.

2.5.2. Computation
For each simulated data set the corrected treatment effect estimator (2.3) for systematic
error and (2.4) for differential error were applied. In systematic measurement error
scenarios, 95% CIs for the corrected estimator were constructed by using the Zero-variance
method, the Delta method, the Fieller method, and bootstrap based on 999 replicates (as
defined in section Systematic measurement error). In the case of differential measurement
error, 95% CIs for the corrected estimator were constructed by using the Zero-Variance
method, the Delta method and the bootstrap based on 999 replicates (as defined in section
Differential measurement error). The HC3 heteroscedastic consistent variance estimator
was used to accommodate for heteroscedastic error in the differential measurement error
scenario [19]. Furthermore, for both the systematic and differential measurement error
scenarios the naive analysis was performed (resulting in a naive effect estimate and naive
CI), which is the ’regular’ analysis which would be performed if measurement error was
neglected.

We studied performance of the corrected treatment effect estimators in terms of
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percentage bias [24], empirical standard error (EmpSE) and square root of themean squared
error (SqrtMSE) [25]. The performance of the methods for constructing the CIs was studied
in terms of coverage and Type-II error [25].

In our simulations, the Fieller method resulted in undefined CIs if in an iteration
̂𝜃1/√𝑡2/𝑆(𝑐)𝑦𝑦 > 𝑡𝑁−2. The percentage of iterations for which the Fieller method failed to

construct CIs is reported. If the Fieller method resulted in undefined CIs in more than
5% of cases in one simulation scenario, the coverage and average CI width were not
calculated as this would result in unfair comparisons between the different CI constructing
methods. The bootstrap CIs were based on less than 999 estimates in case the sample
drawn from the external validation set consisted of 𝐾 equal replicates. These errors
occurred more frequently for small values of 𝐾 and low R-squared. All simulations
were run in R version 3.4, using the R package mecor (version 0.1.0). The results of the
simulation are available at doi:10.6084/m9.figshare.7068695 and the code is available at
doi:10.6084/m9.figshare.7068773, together with the seed used for the simulation study.

2.5.3. Results of simulation study
Systematic measurement error. Table 2.1 shows percentage bias, EmpSE and SqrtMSE
of the naive estimator and the corrected estimator when there is systematic measurement
error. Naturally, the percentage of bias in the naive estimator is about 5% if 𝜃1 = 1.05 and
25% if 𝜃1 = 1.25. For the corrected estimator and 𝜃1 = 1.05 or 𝜃1 = 1.25 and 𝑅2𝑌 ∗,𝑌 = 0.8,
percentage bias, EmpSE and SqrtMSE of ̂𝛽𝑌 were reasonably small for 𝐾 ≥ 10. SqrtMSE of
the corrected estimator was never lower than the SqrtMSE of the naive estimator because
the bias in the naive estimator was small for 𝜃1 = 1.05, . However, for settings where bias
in the naive estimator was greater (𝜃1 = 1.25), SqrtMSE of the corrected estimator was
smaller than SqrtMSE of the naive estimator for 𝐾 ≥ 15. For the corrected estimator and
𝜃1 = 1.05 and 𝑅2𝑌 ∗,𝑌 = 0.5, bias was reasonably small for 𝐾 ≥ 30. Nevertheless, SqrtMSE of
the corrected estimator was always greater than SqrtMSE of the naive estimator. For the
corrected estimator and 𝜃1 = 1.05 and 𝑅2𝑌 ∗,𝑌 = 0.2, the bias of ̂𝛽𝑌 fluctuated and EmpSE and
SqrtMSE was large for all 𝐾 ′𝑠. Figure 2.2 shows the estimates of the intervention effect
using the corrected estimator of each 10th iteration of our simulation, which provides
a clear visualisation of the results formerly discussed. The larger the sample size of
the external calibration set and the higher R-squared, the better the performance of the
corrected estimator. The sampling distribution of ̂𝜃1 depicted in Figure 2.3 explains why
there was so much variation in the corrected effect estimator for small sample sizes of
the external validation set and low R-squared. Namely, for a number of iterations in our
simulation, ̂𝜃1 was estimated close to zero, expanding the corrected estimator the same
number of times resulting in large bias, EmpSE and MSE. Note that if ̂𝜃1 < 0, the sign of
the corrected estimator changes, explaining why the corrected estimate of the intervention
effect was sometimes below zero.

For R2𝑌 ∗,𝑌 = 0.8 and both 𝜃1 = 1.05 and 𝜃1 = 1.25, the Fieller method failed to construct
CIs in 15, 5, 1 and 0.1 % of simulated datasets for respectively 𝐾 = 5, 7, 10, 15. Therefore,
coverage and average CI width of the Fieller method was not evaluated for 𝐾 ∈ {5, 7}. For
R2𝑌 ∗,𝑌 = 0.5, the Fieller method failed to construct CIs in 48, 36, 22, 8, 3, 0.3 % of simulated
data sets for 𝐾 ∈ {5, 7, 10, 15, 20, 30}, respectively. Consequently, coverage and average
CI width was not evaluated for 𝐾 ∈ {5, 7, 10, 15}. For R2𝑌 ∗,𝑌 = 0.2, the Fieller method

https://doi.org/10.6084/m9.figshare.7068695
https://doi.org/10.6084/m9.figshare.7068773
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failed to construct CIs in 74, 71, 64, 53, 43, 26, 15 and 8 % of simulated data sets for
𝐾 ∈ {5, 7, 10, 15, 20, 30, 40, 50}, respectively. the Fieller method was therefore not evaluated
for R2𝑌 ∗,𝑌 = 0.2.

Table 2.2 shows coverage of the true intervention effect in the constructed CIs using
the Zero-variance, Delta, Fieller method and bootstrap. Using Wald CIs for the naive
effect estimator nearly yielded 95% coverage of the true treatment effect of 6.9, because
for 𝜃1 = 1.05 the bias percentage in the naive estimator was small (, 5%). Yet, as bias
percentage increased in the naive estimator for 𝜃1 = 1.25 (i.e., 25%) coverage dropped to
83.5%. Table 2.3 shows average CI width using the Zero-variance, Delta and bootstrap. The
Zero-variance method yielded too narrow CIs for all scenario’s, an intuitively clear result
as the Zero-variance method neglects the variance in ̂𝜃1. For R2𝑌 ∗,𝑌 = 0.8 the Delta, Fieller
and bootstrap constructed correct CIs for 𝐾 ≥ 15. For 𝐾 ≤ 10 the Delta method and the
Fieller method constructed too narrow CIs, and bootstrap too broad CIs. For R2𝑌 ∗,𝑌 = 0.5
the Delta and bootstrap constructed correct CIs for 𝐾 ≥ 30. For 𝐾 ≤ 20 the Delta method
constructed too narrow CIs, and bootstrap too broad CIs. Coverage of the Fieller method
was about the desired 95% level for 𝐾 ≥ 30.

Using the naive effect estimator, Type-II error was 0.2%, 2.9% and 31.6% for R2𝑌 ∗,𝑌 = 0.8
(both for 𝜃1 = 1.05 and 𝜃1 = 1.25), R2𝑌 ∗,𝑌 = 0.5 and R2𝑌 ∗,𝑌 = 0.2, respectively. Type-II error
in the corrected estimator using the Zero-variance and Delta method and bootstrap was
0%. For the considered scenario’s using the Fieller method, Type-II error was 0.02% for
R2𝑌 ∗,𝑌 = 0.8 and 2.9% for R2𝑌 ∗,𝑌 = 0.5.
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Figure 2.2: Estimates of the treatment effect using the naive estimator and corrected estimator for different values
of R-squared (row grids) and different sample sizes of the external validation set (column grids) under systematic
measurement error (𝜃1 = 1.05 (0.2; 0.5; 0.8a) or 𝜃1 = 1.25 (0.8b)). Each grid is based on every 10th estimate of
a simulation of 10,000 replicates, using an estimand of 6.9 (indicated by the solid supplementary material line),
based on example trial 1 by Makrides et al. [15].
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Figure 2.3: Estimates of 𝜃1 (i.e., slope of the systematic measurement error model) for different values of R-squared
(row grids) and different sample sizes of the external validation set (column grids). Each grid is based on every
10th estimate of a simulation of 10,000 replicates, using an estimand of 1.05 (indicated by the solid supplementary
material line).
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Differential measurement error. Table 2.4 shows percentage bias, EmpSE and
SqrtMSE of the naive estimator and the corrected estimator when there is differential
measurement error. The percentage bias in the naive estimator was about 92%. For the
corrected estimator and 𝑅2𝑌 ∗,𝑌 = 0.8, percentage bias, EmpSE and SqrtMSE of ̂𝛽𝑌 were
reasonably small for 𝐾 ≥ 20. For the naive estimator and 𝑅2𝑌 ∗,𝑌 = 0.5, percentage bias,
EmpSE and MSE of the corrected estimator were small for 𝐾 = 50. For the naive estimator
and 𝑅2𝑌 ∗,𝑌 = 0.2, percentage bias, EmpSE and MSE of the corrected estimator was large for
all 𝐾 ’s. The estimates of the intervention effect using the corrected estimator of each 10th
iteration of our simulation is shown in Figure 2.4, which provides a clear visualization of
the results formerly discussed. the sample size of the external validation set and the higher
R-squared, the better the performance of the corrected estimator.

Table 2.5 shows coverage of the true intervention effect in the constructed CIs and
average CI width using the Zero-Variance and Delta method and bootstrap. Coverage of
the true treatment effect of 6.9 using Wald CIs for the naive effect estimator were about
1%, 7% and 41% for 𝑅2𝑌 ∗,𝑌 = 0.8, 𝑅2𝑌 ∗,𝑌 = 0.5 and 𝑅2𝑌 ∗,𝑌 = 0.2, respectively. In all cases, the
Zero-Variance method yielded too narrow CIs; the Delta method yielded too broad CIs and
the bootstrap yielded mostly too broad CIs, except for 𝑅2𝑌 ∗,𝑌 = 0.8 and 𝐾 = 30 and 𝐾 = 40
(too narrow). For 𝑅2𝑌 ∗,𝑌 = 0.8 and 𝐾 = 50, coverage of the true intervention effect was 95%.

Type-II error in the naive effect estimator was 0%, 0% and 0.4% for R2𝑌 ∗,𝑌 = 0.8, R2𝑌 ∗,𝑌 =
0.5 and R2𝑌 ∗,𝑌 = 0.2, respectively. Type-II error in the corrected effect estimator using the
Zero-variance and Delta method and bootstrap was 0%.

Table 2.4: Percentage bias, Empirical Standard Error (EmpSE), Mean Squared Error (MSE),
Squared root of Mean Squared Error (SqrtMSE) of the corrected estimator for differential
measurement error (𝜃00 = 0, 𝜃10 = 1, 𝜃01 = 0, 𝜃11 = 1.05) R-squared equal to 0.8, 0.5 and
0.2 and different sample sizes of the validation data set. Each scenario is based on 10,000
replicates, the value of the estimand is 6.9, based on example trial 1 by Makrides et al. [15]

Performance 𝑅2𝑌 ∗,𝑌 Naive Corrected Estimator
Measurea Esti- Sample Size External Calibration Set

mator 10 20 30 40 50
Percentage 0.8 91.8 5.2 1.2 −0.4 −0.2 −0.1
bias (%) 0.5 91.8 −9.7 33.0 154.2 −21.4 −0.1

0.2 91.9 −319.4 152.9 193.1 −21.5 2.2
EmpSE 0.8 1.4 52.0 6.8 2.9 2.6 2.3

0.5 1.8 949.1 369.1 1080.4 142.1 4.5
0.2 2.9 2658.0 8425.8 1569.7 443.7 92.1

SqrtMSE 0.8 6.5 52.0 6.8 2.9 2.6 2.3
0.5 6.6 949.1 369.1 1080.4 142.1 4.5
0.2 7.0 2658.0 8425.4 1569.7 443.7 92.1

aMonte Carlo standard errors of Bias, EmpSE and MSE are EmpSE√1/10, 000; EmpSE/(2√9, 999);

√
∑10,000
𝑖=1 [( ̂𝛽𝑖 −6.9)2−MSE]2

9,999×10,000 , respectively [25].
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Figure 2.4: Estimates of the treatment effect using the naive estimator and corrected estimator for different values
of R-squared (row grids) and different sample sizes of the external validation set (column grids) under differential
measurement error (𝜃00 = 0, 𝜃10 = 1, 𝜃01 = 0, 𝜃11 = 1.05). Each grid is based on every 10th estimate of a simulation of
10,000 replicates, using an estimand of 6.9 (indicated by the solid supplementary material line), based on example
trial 1 by Makrides et al. [15].
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2.5.4. Measurement error dependent on a prognostic factor
Above, we focused on measurement error in endpoints that are either systematic (linearly
dependent on true endpoint) or differential (linearly dependent on true endpoint and
exposure). Yet, measurement error could depend on prognostic factors. For example,
measurement error in haemoglobin levels measured in capillary bloodmay differ for women
andmen [17]. Moreover, haemoglobin levels are, on average, higher in men than in women.
To illustrate the effect of measurement error that is dependent on a prognostic factor, we
use example trial 1, here assuming that it was conducted in women and men. Data were
generated for a sample of 𝑁 = 400 individuals, equally divided in two treatment arms and
with equal sex distribution in both arms. Let the proportion of women in the sample be
75% (𝑆 = 1 for men and 𝑆 = 0 for women). Further, assume 𝑌 = 120 + 6.9𝑋 + 10𝑆 + 𝜀, where
𝜀 has mean 0 and Var(𝜀) = 158.8. Additionally, assume additive systematic measurement
error in 𝑌 ∗, 𝑌 ∗ = 𝑌 + 0.5𝑆 + 𝑒 (additive systematic measurement error in men and random
measurement error in women), where 𝑒 has mean 0 and Var(𝑒) = 6.6 and 𝑒 independent
of 𝑌 , 𝑋 , 𝑆 and 𝜀. In a simulation of 10,000 replicates we estimated the effect of 𝑌 ∗ on
𝑋 (naive analysis) and the effect of 𝑌 ∗ on 𝑋 , conditional for 𝑆 (conditional analysis). In
section S2.4 of the supplementary material, we proof that both analyses will result in
correct estimation of the treatment effect. The results of the simulation study show that
the average treatment effect estimate of both analyses was 6.89, indicating that there is
no bias in either of the analyses. Yet, the empirical variance of the effect estimate in the
10,000 replicates was somewhat lower for the conditional analysis compared to the naive
analysis (2.01 vs. 2.22), indicating an efficiency gain in favour of the conditional analysis.
By assuming that randomisation was well-performed, measurement error dependent on a
prognostic factor does not introduce bias in the naive analysis other than the biases already
discussed.

2.6. Discussion
This chapter outlined the ramifications for randomised trial inferences when a continuous
endpoint is measured with error. Our study showed that when this measurement error
is ignored, not only can trial results be hampered by a loss in precision of the treatment
effect estimate (i.e., increased Type-II error for a given sample size), but trial inferences
can be impacted through bias in the treatment effect estimator and a null-hypothesis
significance test for the treatment effect can deviate substantially from the nominal level.
In this chapter we proposed a number of regression calibration-like correction methods to
reduce the bias in the treatment effect estimator and obtain CIs with nominal coverage. In
our simulation studies, these methods were effective in improving trial inferences when
an external validation dataset (containing information about error-prone and error-free
measurements) with at least 15 subjects was available.

To anticipate the impact of measurement error on trial inferences, knowledge is needed
on the mechanism and magnitude of the measurement error. Endpoints that are measured
with purely homoscedastic classicalmeasurement error are expected to reduce the precision
of treatment effect estimates and increase Type-II error at a given sample size, proportional
to the relative amount of variance that is due to the error. Heteroscedastic classical error
and differential error also affect Type-I error. Under systematic measurement error, only
Type-I errors for testing null effects are expected to be at the nominal level. The treatment
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effect estimator itself is biased by systematic error and differential error. Heteroscedastic
error can be addressed using standard robust standard error estimators (e.g., HC3 [19]).
Systematic error and differential error in the endpoint can be addressed via regression
calibration-like correction methods.

We considered regression calibration-like correction methods that rely on an
external validation set that contains information about both error-prone and error-free
measurements. We anticipate such an external validation set can be feasible as a planned
pilot study phase of a trial. Our simulation study shows that the effectiveness of correction
methods to adjust the trial results for endpoint measurement error are dependent on the
size of the validation sample and the strength of the correlation between the error-free and
error-prone measurement of the trial endpoint. For a weak relation (R2 = 0.20) we found the
correction methods to be generally ineffective in improving trial inference with reasonably
sized validation sets (i.e., up to size N = 50). However, for medium (R2 = 0.50) or strong (R2 =
0.80) correlations, the regression calibration showed improvements with external validation
samples as small as 15 observations. With the relatively small validation samples (up to 50
observations), our study showed that the bootstrap performed best in constructing CIs in
terms of coverage. The use of percentiles might explain that CIs were slightly conservative
(i.e., too broad) for small validation samples (10 observations), which may be improved
by using bias-corrected and accelerated bootstrap intervals [26]. The proposed regression
calibration-like correction methods rely on a linear regression framework and can thus
easily be extended to incorporate covariables in the trial analysis [27].

The use of measurement error corrections is still rare in applied biomedical studies
with measurement error problems usually reported as an afterthought [9, 14]. Indeed, to
our knowledge, no measurement error correction methods have been used so far in the
analysis of biomedical trials to correct for measurement error in the endpoint. This may
in part be due to a common misconception that measurement error can only affect trial
inference by reducing the precision of estimating the effect of treatment and increasing
Type-II error, which can be improved by increasing the study sample size. Note that
our study demonstrates that such an assumption is warranted only when strict classical
homoscedastic error structure of the trial endpoint can be assumed. Such does not hold,
for instance, when measurement error are more pronounced in the tails of the distribution,
or when measurement error vary between treatment arms.

Instead of the use of external validation datasets, internal measurement correction
approaches where both the preferred endpoint and the error contaminated endpoint
are measured on a subset of trial participants may sometimes be more feasible. For
internal validation, Keogh et al. [7] recently reviewed methods of moment estimation and
maximum likelihood estimation approaches. There are also other approaches to correct
for measurement error that we did not discuss in this chapter. For instance, Cole and
colleagues suggested a multiple imputing approach based on an internal validation set [28].
We also only focused on continuous outcomes in this chapter. Problems and solutions for
misclassified categorical outcomes can be found elsewhere [29]. Yet, to the best of our
knowledge, none of these methods have been tested in the setting where trial endpoints
are measured with error and thus need further study.

Lastly, we solely discuss parametricmeasurement errormodels, whichmightmisspecify
the measurement error model. The extent to which the distribution of the unmeasured
outcome can be estimated without parametric assumptions is a question for further
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research. In the context of measurement error in explanatory variables this is formerly
described as deconvolution ([10], Chapter 12 and references therein). Further, the method
of non-parametric maximum likelihood has been successfully applied for explanatory
variables measured with error [30, 31] and this might be an avenue of future research.

In summary, the impact of measurement error in a continuous endpoint on trial
inferences can be particularly non-ignorable when the measurement error is not strictly
random, because Type-I error, Type-II and the effect estimates can be affected. To alleviate
the detrimental effects of measurement error we proposed measurement error corrected
estimators and a variety of methods to construct CIs for non-random measurement error.
To facilitate the implementation of these measurement error correction estimators we have
developed the R package mecor, available at: https://github.com/LindaNab/mecor.

https://github.com/LindaNab/mecor
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Mecor: An R package for

measurement error correction in
linear models with a continuous

outcome
Measurement error in a covariate or the outcome of regressionmodels is common, but is often ignored, even
though measurement error can lead to substantial bias in the estimated covariate-outcome association.
While several texts on measurement error correction methods are available, these methods remain
seldomly applied. To improve the use of measurement error correction methodology, we developed
mecor, an R package that implements measurement error correction methods for regression models with
continuous outcomes. Measurement error correction requires information about the measurement error
model and its parameters. This information can be obtained from four types of studies, used to estimate
the parameters of the measurement error model: an internal validation study, a replicates study, a
calibration study and an external validation study. In the package mecor, regression calibration methods
and a maximum likelihood method are implemented to correct for measurement error in a continuous
covariate in regression analyses. Additionally, methods of moments methods are implemented to correct
for measurement error in the continuous outcome in regression analyses. Variance estimation of the
corrected estimators is provided in closed form and using the bootstrap.

This chapter is based on: L. Nab, M. van Smeden, R.H. Keogh and R.H.H. Groenwold. Mecor: An R package for
measurement error correction in linear regression models with a continuous outcome, Computer Methods and
Programs in Biomedicine 208 (2021) 106238. doi:10.1016/j.cmpb.2021.106238
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3.1. Introduction
Measurement error is common across research fields, affecting the measurement of
outcomes as well as important covariates. When left uncorrected, this can lead to severely
biased and inefficient estimates of associations between covariates and outcome variables.
Several texts have been published describing the impact of measurement error, and
measurement error correction methodology [1–4]. However, recent reviews by Brakenhoff
et al. [5] and Shaw et al. [6] show that, in biomedical research, measurement error
correction methods remain seldomly applied. Keogh et al. [7] suggest that one of the main
barriers to the use of correction methods may be the lack of accessible software. Moreover,
as exemplified in [8], measurement is not only common in biomedical research, but in
bioinformatics, chemistry, astronomy and econometrics as well. Therefore, to facilitate
and encourage the use of measurement error correction methodology, we developed mecor,
an R package that provides measurement error correction methods for linear models with
continuous outcomes.

Several approaches to measurement error correction have been developed in the past
decade. Examples include, simulation-extrapolation (SIMEX) by Cook et al. [9], multiple
imputation for measurement error by Cole et al. [10], Bayesian correction (e.g., [4, 11]),
maximum likelihood-based methods (e.g., [12, 13]), method of moments (MM) (e.g., [1]),
and regression calibration (RC) introduced by Gleser [14] and Carroll et al. [15]. Of all
these measurement error correction methods, RC is among the most commonly applied
in biomedical research [6], possibly because of its relative simplicity and the possibility to
implement it in conjunction with a variety of analysis types, e.g., linear regression [14, 15],
survival analysis [16]), logistic regression [17] and other generalized linear models [2, 18].

In R [19], covariate measurement error correction by means of SIMEX is implemented in
the package simex by Lederer et al. [20]. The R package simexaft by He et al. [21] provides
SIMEX covariate measurement error correction for accelerated failure time models. A
special issue of the Stata [22] Journal was published in 2003 and dedicated to measurement
error models [23]. Three different methods were introduced for correction of measurement
error in covariates in a generalized linear model. The rcal and eivreg procedure were
introduced for RC byHardin et al. [24], the simex and simexplot procedurewere introduced
for SIMEX by Hardin et al. [25] and, the cme procedure was introduced by Rabe-Hesketh
et al. [26] for measurement error correction using a maximum likelihood approach.
In SAS, multiple macros have been developed for measurement error correction. These
macros include %blinplus, implementing the method by Rosner et al. [17]), %relibpls8,
implementing the method by Rosner et al. [27], and %rrc, implementing the method by
Liao et al. [28]), and the National Cancer Institute method macros, implementing the
methods by Kipnis et al. [29]. An overview of available software including useful web
links can be found in Table 4 and 5 of the paper by Keogh et al. [7]. Although several
measurement error correction methods are available in Stata and SAS, to date RC-like
methods for measurement error correction in a covariate have not been implemented in
an R package. Moreover, no method for measurement error correction in a continuous
outcome has been implemented in R.

In this paper we present and describe mecor, an R package for measurement error
correction in linear regression models with a continuous outcome. Several methods
(i.e., RC, MM and maximum likelihood) are implemented to correct covariate-outcome
associations for measurement error in a covariate, or in the outcome. The package mecor
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is flexible regarding the information that can be used to enable the measurement error
correction, which can be of either of four types of measurement validation studies: an
internal validation study, a replicates study, a calibration study and an external validation
study. For each of these types of validation studies, standard RC, validation RC, efficient
RC by Spiegelman et al. [30] and a maximum likelihood approach by Bartlett et al.
[12] are implemented for measurement error correction in a covariate. For outcome
measurement error correction, standard MM [1] and efficient MM [31] are available, for
all different types of validation studies except replicates studies. The package mecor allows
for random or systematic measurement error in a covariate, systematic measurement error
in the outcome and, additionally, differential outcome measurement error in a univariable
analysis. This broad spectrum of validation study types, measurement error models and
correction methods in our easy-to-use software package should improve the application of
measurement error corrections in research practice.

This paper is organized as follows. Section 3.2 introduces several measurement error
models and the data structures of the four validation study types that can be used
to estimate the parameters of the measurement error model. Section 3.3 outlines the
measurement error correctionmethods. Section 3.4 introduces the functions in the package
mecor. Section 3.5 demonstrates how the package mecor can be used in different settings
using simulated example data.

3.2. Measurement error: notation, types and data structures
In this section, we introduce notation, derive expressions for the impact of measurement
error on covariate-outcome associations and introduce the data structure of four
different types of studies, that provide input for measurement error correction methods.
Throughout, it is assumed that there is a continuous outcome 𝑌 , a continuous covariate
𝑋 and a vector of 𝑘 other covariates 𝐙 = (𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑘). We consider measurement
error in one variable at a time, i.e., in the covariate, 𝑋 , or in the outcome, 𝑌 and assume
that the other variables in the model are measured without error. Since our focus is on
studies in which we aim to estimate the covariate-outcome association, the covariate 𝑋
could be the main exposure of interest or a variable that confounds the relation between
the main exposure and the outcome (one of the 𝑍 variables). The parameters of interest
are 𝜷 = (𝛽𝑋 , 𝛽0, 𝜷𝑍 ) (with 𝜷𝑍 a 1 × 𝑘 matrix) from the linear model,

𝑌 = 𝛽𝑋𝑋 + 𝛽0 + 𝜷𝑍𝐙′ + 𝑒, Var(𝑒) = 𝜎2, (3.1)

where we assume that E(𝑒) = 0 and Cov(𝑒, 𝑋 ) = Cov(𝑒, 𝐙) = 0. This model will be referred
to as the outcome model.

3.2.1. Types of measurement error and their impact
To quantify the impact of measurement error, we first define the assumed measurement
error models. Subsequently, we outline the impact of measurement error in a covariate and
the outcome on the estimates of the outcome model parameters, separately.
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Covariate measurement error
Let 𝑋 ∗ denote the error-prone substitute measure of the error-free reference measure 𝑋 ,
following the measurement error model,

𝑋 ∗ = 𝜃0 + 𝜃1𝑋 + 𝑈 , Var(𝑈 ) = 𝜏2, (3.2)

and assume that E(𝑈 ) = 0 and Cov(𝑈 , 𝑋) = 0. We assume non-differential covariate
measurement error (i.e., 𝑋 ∗ ⊧𝑌 |𝑋 , 𝐙 or, equivalently, that the errors 𝑈 are independent
of the errors 𝑒 in equation (3.1)). The measurement error is called ‘classical’ or ‘random’
if 𝜃0 = 0 and 𝜃1 = 1. The terms classical measurement error and random measurement
error are used interchangeably in the literature. In this paper, we use the term random
measurement error to refer to this type of measurement error. The measurement error is
called ‘systematic’ for all other values of 𝜃0 and 𝜃1.

Suppose that there is one covariate 𝐙 = 𝑍1 in the outcome model in (3.1), and that data
on 𝑌 , 𝑋 ∗ and 𝑍1 are available to fit the linear model,

E(𝑌 |𝑋 ∗, 𝑍1) = 𝛽∗𝑋𝑋 ∗ + 𝛽∗0 + 𝜷∗𝑍𝑍1. (3.3)

In this model, the least squares estimators ̂𝜷∗ = ( ̂𝛽∗𝑋 , ̂𝛽∗0, ̂𝛽∗𝑍 ), are biased for 𝜷 , and consistent
and unbiased estimators for 𝜷𝚲 where 𝚲 is the 3 × 3 calibration model matrix:

𝚲 = (
𝜆𝑋 ∗ 𝜆0 𝜆𝑍10 1 0
0 0 1

) .

A well-known special case of the calibration model matrix is the attenuation factor. In
particular, when there is random measurement error in the substitute error-prone measure
𝑋 ∗, we have 𝛽∗𝑋 = 𝜆𝑋 ∗𝛽 , where 𝜆𝑋 ∗ is called the attenuation factor [32] or regression dilution
factor [33, 34]. When there is more than one 𝐙 covariate in the outcome model defined by
equation (3.1), the calibration model matrix generalizes to the following (2 + 𝑘) × (2 + 𝑘)
matrix:

𝚲 =
⎛
⎜⎜
⎝

𝜆𝑋 ∗ 𝜆0 𝝀𝐙

0 𝐼
⎞
⎟⎟
⎠
, (3.4)

where 𝝀𝐙 is a 1 × 𝑘 matrix, 𝟎 is a (1 + 𝑘) × 1 null matrix and 𝐈 is a (1 + 𝑘) × (1 + 𝑘) identity
matrix.

Outcome measurement error
Let 𝑌 ∗ denote the error-prone substitute measure of the error-free reference measure 𝑌 ,
following the measurement error model,

𝑌 ∗ = 𝜃0 + 𝜃1𝑌 + 𝑈 , Var(𝑈 ) = 𝜏2, (3.5)

and assume that E(𝑈 ) = 0 and Cov(𝑈 , 𝑌 ) = 0. We assume non-differential outcome
measurement error (i.e., 𝑌 ∗ ⊧𝑋 |𝑌 , 𝐙 or, equivalently, that the errors 𝑈 are independent
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of the errors 𝑒 in equation (3.1)), unless specified otherwise. Random and systematic
outcome measurement error are defined analogously to random and systematic covariate
measurement error, respectively [35, 36].

Suppose, again, that there is one covariate 𝐙 = 𝑍1 in the outcome model in (3.1) and
that data on 𝑌 ∗, 𝑋 and 𝑍1 are available to fit the linear model,

E[𝑌 ∗|𝑋 , 𝑍1] = 𝛽∗𝑋𝑋 + 𝛽∗0 + 𝛽∗𝑍𝑍1. (3.6)

If the measurement error in 𝑌 ∗ is random, the least squares estimators ̂𝜷∗ = ( ̂𝛽∗𝑋 , ̂𝛽∗0, ̂𝛽∗𝑍 )
are unbiased for 𝜷 . In contrast, if the error in 𝑌 ∗ is systematic, the least squares estimators
̂𝜷∗ = ( ̂𝛽∗𝑋 , ̂𝛽∗0, ̂𝛽∗𝑍 ) are biased for 𝜷 [1, 31, 36]. In order to identify consistent estimators for 𝜷

by matrix multiplication, we add the integer 1 to the vector ̂𝜷∗. Then, ( ̂𝜷∗, 1) are consistent
and unbiased estimators for (𝜷, 1)𝚯 where 𝚯 is the 4 × 4 outcome measurement error
model matrix:

𝚯 =
⎛
⎜⎜
⎝

𝜃1 0 0 0
0 𝜃1 0 0
0 0 𝜃1 0
0 𝜃0 0 1

⎞
⎟⎟
⎠
.

When there is more than one 𝐙 covariate in the outcome model defined in equation (3.1),
the calibration model matrix generalizes to the following (2 + 𝑘 + 1) × (2 + 𝑘 + 1) outcome
measurement error model matrix:

𝚯 =

⎛
⎜
⎜
⎜
⎜
⎝

𝜃1 0 … … … 0
0 ⋱ ⋱ ⋮
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
⋮ 0 … 0 𝜃1 0
0 𝜃0 0 … 0 1

⎞
⎟
⎟
⎟
⎟
⎠

, (3.7)

where �̂� contains all zero’s except on the diagonal and the (2 + 𝑘 + 1, 2)th element.

Differential outcome measurement error in univariable analyses
We assume non-differential measurement error in the outcome in all but the following
special case. Suppose exposure 𝑋 is binary (e.g., in a two-arm controlled randomised trial)
and that there are no other covariates 𝐙 in the outcome model defined by equation (3.1).
Further, suppose that the measurement error in 𝑌 is differential such that the measurement
error in the unexposed individuals (i.e., 𝑋 = 0) is different from the measurement error in
the exposed individuals (i.e., 𝑋 = 1). Equivalently, let 𝑌 ∗ be the error-prone substitute
measure of the error-free reference measure 𝑌 , with mean E(𝑌 ∗|𝑌 , 𝑋 ) = 𝜃𝑋0 + 𝜃𝑋1𝑌 and
variance 𝜏2, for 𝑋 = 0, 1. Suppose now that data on 𝑌 ∗ and 𝑋 are available to fit the linear
model,

E[𝑌 ∗|𝑋 ] = 𝛽∗𝑋𝑋 + 𝛽∗0.
In this model, the least squares estimators ̂𝜷∗ = ( ̂𝛽∗𝑋 , ̂𝛽∗0) are biased for 𝜷 [31, 36]. In

order to identify consistent estimators for 𝜷 by matrix multiplication, we again add the
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integer 1 to the vector ̂𝜷∗. Then, ( ̂𝜷∗, 1) are consistent and unbiased estimators for (𝜷, 1)𝚯
where, 𝚯 is the following 3 × 3 differential outcome measurement error model matrix:

𝚯 = (
𝜃11 0 0

𝜃11 − 𝜃10 𝜃10 0
𝜃01 − 𝜃00 𝜃00 1

) . (3.8)

3.2.2. Validation study data structures for measurement error correction
Four types of validation studies can be used to estimate the calibration model matrix or
outcome measurement error model matrix defined in section Types of measurement error
and their impact: an internal validation study, a replicates study, a calibration study or an
external validation study [7, 37]. The first three validation studies make use of information
internal to the study cohort, whereas the fourth makes use of information external to the
study cohort.

Internal validation study
In an internal validation study, the error-free reference covariate values 𝑋 or outcome
values 𝑌 are observed in a subset of individuals (Table 3.1). Table 3.1a shows the structure
of an internal validation study for covariate measurement error. In the main study, the
outcome 𝑌 , the error-prone substitute covariate 𝑋 ∗ and the covariates 𝐙 are measured
in all 𝑛 individuals. Additionally, in 𝑛sub individuals (𝑛sub < 𝑛) the true covariate 𝑋 is
measured, assumed a random subset of the main study. As an example, suppose the true
exposure of interest is visceral adipose tissue measurements (i.e., 𝑋 ) but that this is too
expensive to obtain on all study participants and the error-prone substitute measure of
waist circumference is instead collected for everyone (i.e, 𝑋 ∗) [38]. The same structure
holds for an internal validation study for outcome measurement error, as shown in Table
3.1b.

Table 3.1: Data structure of internal validation studies. The true covariate or outcome is observed in a subset
of the individuals from the main study. The superscript ∗ indicates that the variable was measured with error.

(a) Covariate-validation study

𝑌 𝑋 ∗ 𝐙 𝑋
𝑦1 𝑥∗1 𝐳𝟏 𝑥1
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ 𝑥𝑛sub⋮ ⋮ ⋮ -
⋮ ⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑛 𝐳𝐧 -

(b) Outcome-validation study

𝑌 ∗ 𝑋 𝐙 𝑌
𝑦∗1 𝑥1 𝐳𝟏 𝑦1
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ 𝑦𝑛sub⋮ ⋮ ⋮ -
⋮ ⋮ ⋮ ⋮
𝑦∗𝑛 𝑥𝑛 𝐳𝐧 -

Replicates study
A replicates study can be used if the measurement error in a covariate is random, denoted
by 𝑋 ∗𝑟 . We will only use this type of study for covariate measurement error since random
measurement error in an outcome does not result in biased association estimates (section
Types of measurement error and their impact). In a replicates study, the error-prone
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substitute covariate 𝑋 ∗𝑟 is repeatedly measured (i.e., 𝑚 times, where 𝑚 ≥ 2) in all or in a
random subset of individuals (Table 3.2). The repeatedmeasures are denoted by𝑋 ∗𝑟1 , … , 𝑋 ∗𝑟𝑚 .
We assume that, in each individual, the same number of repeated measures was observed.
Further, we assume that the measurement error in the replicates is jointly independent.
Table 3.2a and 3.2b show the structure of a replicates study with full and partial replicates,
respectively. In the main study, the outcome 𝑌 , the error-prone substitute covariate 𝑋 ∗𝑟1
and the covariates 𝐙 are measured in all 𝑛 individuals. Additionally, 𝑛sub ≤ 𝑛 individuals
have 𝑚 replicates of the error-prone substitute measure 𝑋 ∗𝑟𝑗 for 𝑗 = 2…𝑚. An example is
the repeated measurement of several coronary risk factors in the Framingham Heart study,
such as serum cholesterol, blood glucose, and systolic blood pressure [27].

Table 3.2: Data structure of a covariate-replicates study for full or partial replicates. The error-prone
covariate is measured 𝑚 times in all or a subset of individuals. The superscript ∗𝑟 indicates random measurement
error.

(a) Full replicates study

𝑌 𝑋 ∗𝑟1 𝐙 𝑋 ∗𝑟2 … 𝑋 ∗𝑟𝑚
𝑦1 𝑥∗𝑟11 𝐳𝟏 𝑥∗𝑟12 … 𝑥∗𝑟1𝑚
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑟𝑛1 𝐳𝐧 𝑥∗𝑟𝑛2 … 𝑥∗𝑟𝑛𝑚

(b) Partial replicates study

𝑌 𝑋 ∗𝑟1 𝐙 𝑋 ∗𝑟2 … 𝑋 ∗𝑟𝑚
𝑦1 𝑥∗𝑟11 𝐳𝟏 𝑥∗𝑟12 … 𝑥∗𝑟1𝑚
⋮ ⋮ ⋮ ⋮ … ⋮
⋮ ⋮ ⋮ 𝑥 ∗𝑟𝑛sub2 … 𝑥∗𝑟𝑛sub𝑚
⋮ ⋮ ⋮ - … -
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑟𝑛1 𝐳𝐧 - … -

Calibration study
A calibration study is a special type of sub-study where two types of error-prone
substitute measurement methods are used to measure the covariate or outcome: substitute
measurement prone to systematic measurement error and a substitute measurement prone
to random measurement error (Table 3.3). Table 3.3a shows the structure of a calibration
study for covariate measurement error. All 𝑛 individuals in the main study have obtained
measures of the outcome 𝑌 , the error-prone substitute covariate 𝑋 ∗𝑠 and the covariates 𝐙.
The error-prone substitute covariate𝑋 ∗𝑠 is systematically different from𝑋 , or, E(𝑋 ∗𝑠 |𝑋 ) ≠ 𝑋
(systematic measurement error). Additionally, a random subset of 𝑛sub individuals (𝑛sub <
𝑛) have 𝑚 replicates of the error-prone substitute measure 𝑋 ∗𝑟𝑗 , where E(𝑋 ∗𝑟𝑗 |𝑋 ) = 𝑋 for
𝑗 = 1…𝑚 (random measurement error). The same structure holds for a calibration study
for outcome measurement error, as shown in Table 3.3b. An example of an calibration
study for outcome measurement error is a study of sodium intake measured by a 24-hour
recall (assumed systematic measurement error) and urinary biomarkers (assumed random
measurement error) [31].

External validation study
In an external validation study the error-free reference covariate values𝑋 or outcome values
𝑌 are observed in a small set of individuals not included in the main study (Table 3.4). Table
3.4a shows the structure of an external validation study for covariate measurement error.
In all 𝑛 individuals in the main study measures are obtained of outcome 𝑌 , the error-prone
substitute covariate 𝑋 ∗ and the covariates 𝐙. Additionally, there is an external data set
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Table 3.3: Data structure of calibration studies. Two types of error-prone measurement methods are used to
measure the covariate or outcome. The superscripts ∗𝑟 and ∗𝑠 indicate random and systematic measurement error,
respectively.

(a) Covariate-calibration study

𝑌 𝑋 ∗𝑠 𝐙 𝑋 ∗𝑟1 … 𝑋 ∗𝑟𝑚
𝑦1 𝑥∗𝑠1 𝐳𝟏 𝑥∗𝑟11 … 𝑥∗𝑟1𝑚
⋮ ⋮ ⋮ ⋮ … ⋮
⋮ ⋮ ⋮ 𝑥∗𝑟𝑛sub1 … 𝑥∗𝑟𝑛sub𝑚
⋮ ⋮ ⋮ - … -
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑠𝑛 𝐳𝐧 - … -

(b) Outcome-calibration study

𝑌 ∗𝑠 𝑋 𝐙 𝑌 ∗𝑟1 … 𝑌 ∗𝑟𝑚
𝑦∗𝑠1 𝑥1 𝐳𝟏 𝑦∗𝑟11 … 𝑦∗𝑟1𝑚
⋮ ⋮ ⋮ ⋮ … ⋮
⋮ ⋮ ⋮ 𝑦∗𝑟𝑛sub1 … 𝑦∗𝑟𝑛sub𝑚
⋮ ⋮ ⋮ - … -
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦∗𝑠𝑛 𝑥𝑛 𝐳𝐧 - … -

comprising of individuals on whom measures are obtained of the error-free reference
covariate 𝑋 , the error-prone substitute covariate 𝑋 ∗ and the other covariates 𝐙. Table 3.4b
shows the structure of an external validation study for outcome measurement error. In
this setting, there is an external data set comprising of individuals of whom measures are
obtained of the error-free reference outcome 𝑌 and the error-prone substitute outcome 𝑌 ∗.
The external data set does not need to comprise measures of the covariates. An example
of an external validation study for outcome measurement error is a trial designed to study
the efficacy of iron supplementation in pregnant womenwhere haemoglobin is measured in
capillary blood samples (error-prone substitutemeasure) instead of in venous blood samples
(error-free reference measure) [36].

Table 3.4: Data structure of external validation studies. An error-prone covariate or outcome is measured in
the main study and the true covariate or outcome is measured in a small external set. The superscript ∗ indicates
that there is random or systematic measurement error in the variables

(a) External covariate-validation study

𝑌 𝑋 ∗ 𝐙
𝑦1 𝑥∗1 𝐳𝟏
⋮ ⋮ ⋮
⋮ ⋮ ⋮
𝑦𝑛 𝑥∗𝑛 𝐳𝐧
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Main study

𝑋 𝑋 ∗ 𝐙
𝑥1 𝑥∗1 𝐳𝟏
⋮ ⋮ ⋮

𝑥𝑛ex
𝑥∗𝑛ex

𝐳𝐧ex⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
External

(b) External outcome-validation study

𝑌 ∗ 𝑋 𝐙
𝑦∗1 𝑥1 𝐳𝟏
⋮ ⋮ ⋮
⋮ ⋮ ⋮
𝑦∗𝑛 𝑥𝑛 𝐳𝐧
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Main study

𝑌 𝑌 ∗
𝑦1 𝑦∗1
⋮ ⋮

𝑦𝑛ex
𝑦∗𝑛ex⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

External

3.3.Measurement error correction
In section Types of measurement error and their impact, the calibration model matrix 𝚲
and the measurement error model matrix 𝚯 were introduced. These matrices quantify the
bias in the naive analysis, i.e., the analysis that does not take the measurement error in 𝑋 ∗
or 𝑌 ∗ into account. In the following sections, measurement error correction methods are
introduced that utilize the matrices 𝚲 and 𝚯.

The standard method for covariate measurement error correction that uses the
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calibration model matrix 𝚲 is standard regression calibration (RC) [14, 15]. Standard RC can
be applied in all four types of studies from the previous section. In addition, validation RC,
an adapted version of standard RC for internal validation studies, is the standard covariate
measurement error correction method for internal validation studies [2]. Further, the
standard method for outcome measurement error correction that uses the measurement
error model matrix𝚯 is standard method of moments (MM) [1]. Standard MM can be applied
in internal and external validation studies, and calibration studies.

Standard RC and standard MM do not make the most efficient use of the information
available in internal validation studies and calibration studies [2]. More efficient methods
for measurement error correction methods are therefore implemented in mecor. A more
efficient RC estimator, called efficient RC, was introduced by Spiegelman et al. [30]. A
more efficient MM estimator was introduced by Keogh et al. [31], which is called the
Buonaccorsi approach using the method of moments. For simplicity, we will refer to this
method as efficient MM.

Likewise, in replicates studies, standard RC does not make the most efficient use of the
information available [33]. The standard RC method is sub-optimal in terms of efficiency,
since the method depends on the ordering of the replicate measurements [33]. This can
be intuitively understood as follows. The standard RC regresses the mean of all but the
first replicate on the first replicate, but this could as easily be exchanged with the second
replicate. Therefore, different approaches are possible (e.g., maximum likelihood) [33].
Bartlett et al. [12] showed how a standard random-intercepts model can be used to
obtain maximum likelihood (ML) estimates that are more efficient than standard RC, at the
cost of some additional parametric assumptions, discussed in section Maximum likelihood
estimation for replicates studies.

Section Standard measurement error correction introduces standard RC and validation
RC for covariate measurement error correction, and standard MM for outcome
measurement error correction. Efficient RC and efficient MM are introduced in section
More efficient measurement error correction and the maximum likelihood approach for
replicates studies is introduced in section Maximum likelihood estimation for replicates
studies. When no information is available to estimate the parameters of the measurement
error model, a sensitivity analysis or quantitative bias analysis can be used to analyse the
sensitivity of study results to measurement error [39, 40]. An approach for conducting
sensitivity analyses is discussed in section Sensitivity analyses.

3.3.1. Standard measurement error correction
Covariate measurement error
In standard RC, the biased least squares estimator ̂𝜷∗ is multiplied by the inverse of an
estimate of the calibration model matrix 𝚲 to give a consistent and unbiased estimator of
𝜷 , denoted ̂𝜷RC:

̂𝜷RC = ̂𝜷∗�̂�−1 (3.9)

Standard RC can be applied using all four types of validation studies (section Validation
study data structures for measurement error correction).

To construct the calibration model matrix 𝚲 (see equation (3.4)), we estimate its
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components 𝝀 = (𝜆𝑋 ∗ , 𝜆0, 𝝀𝑍 ), from the linear calibration model:

E(𝑋 |𝑋 ∗, 𝐙) = 𝜆𝑋 ∗𝑋 ∗ + 𝜆0 + 𝝀𝐙𝐙′, (3.10)

using least squares. Here, 𝝀𝐙 is a 1 × 𝑘 matrix. Throughout, we assume that the calibration
model matrix is correctly specified. To obtain estimates of the parameters of interest 𝝀
in an internal validation study (Table 3.1a) and external validation study (Table 3.4a), the
error-free reference measure 𝑋 is regressed on the error-prone substitute measure 𝑋 ∗ and
the other covariates 𝐙. To obtain estimates of the parameters of interest 𝝀 in a replicates
study (Table 3.2a), the mean of all replicates except the first replicate (i.e., 𝑋 ∗𝑟2 , … , 𝑋 ∗𝑟𝑚 )
is regressed on the first replicate 𝑋 ∗1 and the other covariates 𝐙. To obtain estimates of
the parameters of interest 𝝀 in a calibration study (Table 3.3a), the mean of the replicates
𝑋 ∗𝑟1 , … , 𝑋 ∗𝑟𝑚 with random measurement error is regressed on the measurement 𝑋 ∗𝑠 with
systematic measurement error and the other covariates 𝐙.

An adapted version of standard RC in internal validation studies is validation RC [2]. In
validation RC, the outcome 𝑌 is regressed on the calibrated values𝑋cal and𝐙. The calibrated
values 𝑋cal are constructed as follows: if 𝑋 is observed, 𝑋cal = 𝑋 , and if 𝑋 is not observed,
𝑋cal = E(𝑋 |𝑋 ∗, 𝐙). The parameters from the regression of 𝑌 on 𝑋cal and 𝐙 are estimates of
our parameters of interest 𝜷 in equation (3.5). Note that standard RC described above is
identical to using 𝑋cal = E(𝑋 |𝑋 ∗, 𝐙) for all 𝑋 [7].

Outcome measurement error
In standard MM, the biased least squares estimator ̂𝜷∗ is multiplied by the inverse of an
estimate of the outcome measurement error model matrix 𝚯 to give a consistent and
unbiased estimator of 𝜷 , denoted ̂𝜷MM:

̂𝜷MM = ( ̂𝜷∗, 𝟏)�̂�−1. (3.11)

Standard MM can be applied using internal and external validation studies, and calibration
studies (section Validation study data structures for measurement error correction).

To construct the outcome measurement error model matrix 𝚯 (see equation (3.7)),
we estimate its components 𝜽 = (𝜃0, 𝜃1) from the linear measurement error model
E(𝑌 ∗|𝑌 ) = 𝜃0 + 𝜃1𝑌 using least squares. Throughout, we assume that the measurement
error model matrix is correctly specified. To obtain estimates of the parameters of interest
𝜽 in an internal validation study (Table 3.1b) and an external validation study (Table
3.4b), the error-prone substitute measurement 𝑌 ∗ is regressed on the error-free reference
measurement 𝑌 . To obtain estimates of the parameters of interest 𝜽 in a calibration study
(Table 3.3b), the measurement 𝑌 ∗𝑠 with systematic measurement error is regressed on the
mean of the replicates 𝑌 ∗𝑟1 , … , 𝑌 ∗𝑟𝑚 with random measurement error, thereby correcting for
the bias in the estimated ̂𝜽 using standard RC (implying that 𝑚 > 1).

Differential outcome measurement error in univariable analyses
For the special case of differential measurement error, the outcome measurement error
model matrix 𝚯 (see equation (3.8)), can be constructed as follows. We estimate its
components 𝜽 = (𝜃00, 𝜃01, 𝜃10, 𝜃11) from the measurement error model E(𝑌 ∗|𝑌 , 𝑋 ) =
𝜃00 + (𝜃01 − 𝜃00)𝑋 + 𝜃10𝑌 + (𝜃11 − 𝜃10)𝑋𝑌 . This model can be fitted directly in an internal
validation study (Table 3.1b), provided that the random internal subset includes exposed
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(i.e., 𝑋 = 1) and non-exposed individuals (i.e., 𝑋 = 0). The model can be fitted in an
external validation study (Table 3.4b), provided that 𝑋 is measured, and that exposed and
non-exposed individuals are included in the external set. In a calibration study (Table
3.3b), the measurement with systematic measurement error is regressed on the mean of the
replicates 𝑌 ∗𝑟1 , … , 𝑌 ∗𝑟𝑚 with randommeasurement error and the covariate 𝑋 (again, provided
that the random subset with replicates with random measurement error includes exposed
and non-exposed individuals).

Variance estimation
The variance of the standard RC estimator can be estimated using the multivariate
delta method [17] or the zero-variance method [41]. Confidence intervals can then be
obtained by constructing Wald-type confidence intervals using one of the former two
methods. Additionally, confidence intervals can be obtained by the stratified bootstrap, by
sampling the observations in the internal subset separately from the observations outside
the internal subset. The variance of the standard MM estimator can also be estimated
with the multivariate delta method, the zero-variance method or the stratified bootstrap.
Additionally, for standard RC, confidence intervals for ̂𝛽𝑋 RC (the first element of the ̂𝜷RC)
can be obtained by the Fiellermethod [33]. For standardMM, confidence intervals for ̂𝛽𝑋MM
and ̂𝜷𝐙MM (the first two elements of the ̂𝜷MM) can be obtained by the Fieller method [36].
Details of these procedures can be found in section S3.1 of the supplementary materials.

3.3.2. More efficient measurement error correction
Covariate measurement error
Efficient RC can be used in internal validation studies or calibration studies [30]. It pools
the standard RC estimate with an internal estimate for 𝜷 obtained in the internal validation
study or calibration study.

In internal validation studies, the error-free reference covariate 𝑋 is obtained in an
internal subset of the main study (Table 3.1a). By regressing the outcome 𝑌 on 𝑋 and
the other covariates 𝐙 using least squares in the internal subset, one obtains an unbiased
estimate for our parameters of interest 𝜷 . Denote this estimator by ̂𝜷I. This internal
estimator ̂𝜷I can then be combined with the standard RC estimator ̂𝜷RC defined in equation
(3.9), by taking the inverse variance weighted mean of the two estimates:

̂𝜷ERC = [�̂�−1𝛽RC + �̂�−1𝛽I ]−1[�̂�−1𝛽RC ̂𝛽RC + �̂�−1𝛽I ̂𝛽I], (3.12)

where �̂�−1𝛽RC is the variance–covariance matrix obtained from the multivariate delta method

and �̂�𝛽I is the standard variance–covariance matrix of a least squares estimator. The
efficient RC estimator defined above is an unbiased, consistent and the most efficient
estimator for 𝜷 if sampling into the internal validation set is unbiased (e.g., if the validation
study is a random subset of participants) [30].

In calibration studies, the covariate 𝑋 is observed with random measurement error in
an internal subset of the main study (Table 3.3a). If at least 2 replicates are available, an
unbiased estimator for 𝜷 can be obtained by using the standard RC estimator for a replicates
study (see section Standard measurement error correction) in the internal subset. Again,
denote this estimator by ̂𝜷I. Then, the estimate obtained from the internal subset can be



3

44 mecor: An R package for measurement error correction

pooled with the standard RC estimate following equation (3.12). Alternatively, an unbiased
estimator for 𝜷 using the replicates in the internal subset can be obtained by using the
ML estimation discussed in section Maximum likelihood estimation for replicates studies.
Again, this estimate can then be pooled with the standard RC estimate following equation
(3.12).

Outcome measurement error
Efficient MM can be used in internal validation studies or calibration studies [31]. It pools
the standardMM estimate with an internal estimate for 𝜷 obtained in the internal validation
study or calibration study.

In internal validation studies, the error-free reference outcome 𝑌 is obtained in an
internal subset of the main study (Table 3.1b). By regressing 𝑌 on the covariates 𝑋 and
𝐙 using least squares in the internal subset, one obtains an unbiased estimator for 𝜷 .
Denote this estimator by ̂𝜷I. In calibration studies, the outcome is observed with random
measurement error in an internal subset of the main study (Table 3.3b). The internal
estimator ̂𝜷I is obtained by regressing the outcome 𝑌 ∗,𝑟 with randommeasurement error on
the covariates 𝑋 and 𝐙 using least squares in the internal subset. Using the outcome with
random measurement error will lead to the unbiased estimation of the association under
study since random outcome measurement error does not bias the association. A single
measurement with random measurement error (i.e., 𝑚 = 1 in Table 3.1b) is sufficient to
obtain an internal estimate. However, if the outcome with random measurement error is
observed more than once, the mean of the measures 𝑌 ∗𝑟1 , … , 𝑌 ∗𝑟𝑚 can be used and regressed
on the covariates 𝑋 and 𝐙. Subsequently, the estimate obtained from the internal subset
in an internal validation study or calibration study can be pooled with the standard MM
estimate following equation (3.12), by replacing the standard RC estimate with the standard
MM estimate in the equation.

Differential outcome measurement error in univariable analyses
In internal validation studies, the internal estimator ̂𝜷I can be obtained by regressing 𝑌 on
the covariates 𝑋 and 𝐙 using least squares. In calibration studies, the internal estimator
̂𝜷I can be obtained by regressing the outcome 𝑌 ∗,𝑟 with random measurement error on the

covariates 𝑋 and 𝐙. A single measurement with random measurement error (i.e., 𝑚 = 1 in
Table 3.1b) is sufficient to obtain an internal estimate. However, if the outcomewith random
measurement error is observed more than once, the mean of the measures 𝑌 ∗𝑟1 , … , 𝑌 ∗𝑟𝑚 can
be used and regressed on the covariates 𝑋 and 𝐙. We assume that the internal subset is
a random subset of the main study, and hence that exposed and unexposed are included
in the internal subset. Subsequently, the estimate obtained from the internal subset in an
internal validation study or calibration study can be pooled with the standard MM estimate
following equation (3.12), by replacing the standard RC estimate with the standard MM
estimate in the equation.

Variance estimation
The variance of the efficient RC estimator can be obtained from the following:

�̂�𝛽ERC = [�̂�−1𝛽 + �̂�−1𝛽I ]−1.
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The variance of the efficient RC estimator can also be obtained by stratified bootstrapping,
by sampling the observations in the internal subset separately from the observations
outside the internal subset. Confidence intervals can be obtained by constructing
Wald-type confidence intervals using one of the former two variances or by stratified
percentile bootstrap. The same applies for the efficient MM estimator.

3.3.3. Maximum likelihood estimation for replicates studies
The use of a standard random-intercepts model to obtain maximum likelihood (ML)
estimates for 𝜷 in replicates studies was introduced by Bartlett et al. [12]. To explain
the ML method for replicates studies, we add the index 𝑖 = 1, … , 𝑛 to our notation in the
outcome model:

𝑌𝑖 = 𝛽𝑋𝑋𝑖 + 𝛽0 + 𝜷𝑍𝐙′𝑖 + 𝑒𝑖 , Var(𝑒𝑖) = 𝜎2,
where we again assume that E(𝑒𝑖) = 0 and Cov(𝑒𝑖 , 𝑋𝑖) = Cov(𝑒𝑖 , 𝐙𝑖) = 0. Further, 𝐙𝑖 =
(𝑍𝑖1, … , 𝑍𝑖𝑘) and 𝜷𝑍 is again a 1×𝑘matrix. On top of these assumptions, we also assume that
the 𝑒𝑖 are normal and independently distributed. Additionally, assume that 𝑋𝑖 is normally
distributed given 𝐙𝑖 , with,

E(𝑋𝑖 |𝐙𝑖) = 𝜌0 + 𝝆𝐙𝐙′𝑖 and Var(𝑋𝑖 |𝐙𝑖) = 𝜎2𝑋𝑖 |𝐙𝑖 ,
where 𝝆𝑍 is a 1 × 𝑘 matrix. In a replicates study, 𝑋𝑖 is not observed. Instead, 𝑚 replicates
of the error-prone measurement 𝐗∗𝑟𝑖 = (𝑋 ∗𝑟𝑖1 , … , 𝑋 ∗𝑟𝑖𝑚) are observed, for 𝑖 = 1, … , 𝑛. In a
full-replicates study (Table 3.2a), we assume that the number of replicate measurements
𝑚 ≥ 2 is constant for every individual. In a partial-replicates study (Table 3.2b), we assume
that the number of replicates 𝑚 ≥ 2 is constant in the replicate sub-study and 𝑚 = 1
in the main study. These measurements are assumed to follow the following random
measurement error model:

𝑋 ∗𝑟𝑖𝑗 = 𝑋𝑖 + 𝑈𝑖𝑗 , Var(𝑈𝑖𝑗) = 𝜏2, 𝑗 = 1, … ,𝑚,
where we again assume that E(𝑈𝑖𝑗) = 0, Cov(𝑈𝑖𝑗 , 𝑋𝑖) = 0, and that the measurement
error in non-differential, i.e., the errors 𝑈𝑖𝑗 are independent of the errors 𝑒𝑖 in the outcome
model described above. In addition, we also assume that the errors 𝑈𝑖𝑗 are normal and
independently distributed.

We consider the likelihood function when only 𝑌𝑖 , 𝐗∗𝑟𝑖 and 𝐙𝑖 are observed. The log
likelihood can be factorized as follows:

ℓ(𝜽|𝑌𝑖 , 𝐗∗𝑟𝑖 , 𝐙𝑖) = log(𝑓 (𝑌𝑖 |𝐙𝑖 , 𝜽)) + log(𝑓 (𝐗∗𝑟𝑖 |𝑌𝑖 , 𝐙𝑖 , 𝜽)), (3.13)

where 𝜽 = (𝛽𝑋 , 𝛽0, 𝜷𝑍 , 𝜎2, 𝜌0, 𝝆𝐙, 𝜎2𝑋 |𝐙, 𝜏2). From the assumptions that 𝑋𝑖 |𝐙𝐢 is normally
distributed, the 𝑒𝑖 are normally distributed and that 𝑋𝑖 |𝐙𝐢 and 𝑒𝑖 are independent, [12]
show that 𝑌𝑖 given 𝐙𝑖 is normal with mean 𝛿0 + 𝜹𝐙𝐙𝑖 and variance 𝜎2𝑌 |𝐙, where 𝜹𝑍 is a 1 × 𝑘
matrix. Furthermore, since 𝑋𝑖 |𝐙𝐢 and 𝑌𝑖 |𝐙𝐢 are jointly normal, 𝑋𝑖 |𝑌𝑖 , 𝐙𝑖 is also normal. [12]
show that we can therefore write:

𝑋𝑖 = 𝜅0 + 𝜅𝑌𝑌𝑖 + 𝜿𝐙𝐙𝑖 + 𝑏𝑖 ,
where 𝑏𝑖 ∼ N(0, 𝜎2𝑋 |𝑌 ,𝐙). Then, since 𝑋 ∗𝑖𝑗 = 𝑋𝑖 + 𝑈𝑖𝑗 , it follows from the above equation that,

𝑋 ∗𝑖𝑗 = 𝜅0 + 𝜅𝑌𝑌𝑖 + 𝜿𝐙𝐙𝑖 + 𝑏𝑖 + 𝑈𝑖𝑗 ,
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where 𝑈𝑖𝑗 ∼ 𝑁 (0, 𝜏2) is independent of 𝑏𝑖 [12] and 𝜿𝑍 is a 1 × 𝑘 matrix. Hence, 𝐗∗𝑟𝑖 given 𝑌𝑖
and 𝐙𝑖 follows a random-intercepts model with fixed effects of 𝑌𝑖 and 𝐙𝑖 , random intercepts
variance 𝜎2𝑋 |𝑌 ,𝐙 and within subject variance 𝜏2.

The parameter vector 𝜻 = (𝛿0, 𝜹𝐙, 𝜎2𝑌 |𝐙, 𝜅0, 𝜅𝑌 , 𝜿𝐙, 𝜎2𝑋 |𝑌 ,𝐙, 𝜏2) is a one-to-one function

of the original model parameter vector 𝜽 = (𝛽𝑋 , 𝛽0, 𝜷𝑍 , 𝜎2, 𝜌0, 𝝆𝐙, 𝜎2𝑋 |𝐙, 𝜏2). Accordingly,
Bartlett et al. [12] show that the ML estimate for 𝜁 can be obtained by maximizing
the two likelihood components of equation (3.13) separately. The likelihood component
corresponding to 𝑓 (𝑌𝑖 |𝐙𝐢, 𝜻) in equation (3.13) can be maximized by fitting the least squares
regression of 𝑌𝑖 on 𝐙𝑖 . The likelihood component corresponding to 𝑓 (𝐗∗𝑟𝑖 |𝑌𝑖 , 𝐙𝑖 , 𝜻) in
equation (3.13) can be maximized by fitting a random-intercepts model for 𝐗∗𝑟𝑖 given 𝑌𝑖
and 𝐙𝑖 .

An ML estimate for 𝜷 can now be obtained by the following formulas:

𝛽𝑋 = 𝜅𝑌 ×
𝜎2𝑌 |𝐙

𝜎2𝑋 |𝑌 ,𝐙 + 𝜅2𝑌𝜎2𝑌 |𝐙
,

𝛽0 = 𝛿0 − 𝛽𝑋 𝜌0 = 𝛿0 − 𝛽𝑋 {𝜅0 + 𝜅𝑌 𝛿0},
𝜷𝐙 = 𝜹𝐙 − 𝛽𝑋𝝆𝐙 = 𝜹𝐙 − 𝛽𝑋 {𝜿𝐙 + 𝜅𝑌𝜹𝐙}.

The estimator ̂𝜷ML = ( ̂𝛽𝑋ML
, ̂𝛽0ML

, ̂𝜷𝑍ML
) can be obtained by replacing the parameters from

parameter vector 𝜻 by their estimates in the above equations.

Variance estimation
The variance of the maximum likelihood estimator can be estimated with the multivariate
delta method [12]. Confidence intervals can then be obtained by constructing Wald-type
confidence intervals. Confidence intervals can also be obtained by stratified bootstrap, by
sampling the observations in the internal subset separately from the observations outside
the internal subset. Details of these procedures can be found in the supplementarymaterial
section S3.2.

3.3.4. Sensitivity analyses
Information from a validation study may not always be available. In that case, a formal
correction is not possible. Nevertheless, when measurement error in a covariate or the
outcome is expected, one may check how sensitive study results are to that measurement
error. Literature or expert knowledge can be used to inform this sensitivity analysis, e.g.,
by hypothesizing possible ranges for the parameter values of the measurement model.

When random covariate measurement error is expected, speculation is needed of the
values of 𝜏2, i.e., the variance of the random measurement error. Additionally, when
systematic covariate measurement error is suspected, speculation is needed about the
parameter values of the calibration model described by equation (3.10). When systematic
outcomemeasurement error is suspected, speculation is needed about the parameter values
of the outcome measurement error model, described in equation (3.5).

3.4.The R package mecor
The R package mecor offers functionality to correct for measurement error in a continuous
covariate or outcome in linear models with a continuous outcome. The main model fitting
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function in mecor is mecor:

mecor(formula, data, method, B)

The function fits the linear model defined in formula, corrected for the measurement error
in one of the variables. The arguments are as follows:

• formula a formula object, with the response on the left of a ‘∼’ operator and the
terms, separated by + operators, on the right. This argument takes the form outcome
∼ MeasError(substitute, reference, replicate, differential) + covariates for
covariate measurement error, and MeasError(substitute, reference, replicate,
differential) ∼ covariates for outcome measurement error. The MeasError object
can be used for measurement error correction in internal validation, replicates
and calibration studies. For external validation studies or sensitivity analyses of
systematic measurement error, the object
MeasErrorExt(substitute, model) is used instead of a MeasError
object. For sensitivity analyses of random measurement error, the object
MeasErrorRandom(substitute, error) is used.

• data a data.frame containing the variables in the model specified by
formula.

• method specifies the method used for measurement error correction. The options
are ”standard” for standard RC and standard MM, ”valregcal” for validation RC,
”efficient” for efficient RC and efficient MM, and ”mle” for maximum likelihood
estimation.

• B number of bootstrap samples used for standard error estimation. The default is set
to 0.

An object of class mecor can be summarised using the summary function:

summary(object, alpha, zerovar, fieller)

The arguments are as follows:

• object an object of class mecor.

• alpha a numeric indicating the probability of obtaining a type II error. Defaults to
0.05.

• zerovar a boolean indicating whether confidence intervals using the zero-variance
method [41] must be printed. Only available for mecor objects fitted with method
equal to ”standard”. Defaults to FALSE.

• fieller a boolean indicating whether confidence intervals using the fieller method
[33, 36] must be printed. Only available for mecor objects fitted with method equal to
”standard”. Defaults to FALSE.

The default summary object of an object of class mecor prints standard errors and confidence
intervals obtained by the delta method. See the various ‘Variance estimation’ paragraphs
in section 3.3 for a description of the methods for variance estimation.

The formula argument in mecor contains a MeasError object, a
MeasErrorExt object or a MeasErrorRandom object. All three objects are described below.
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3.4.1.The MeasError object
To correct for measurement error using an internal validation study, a replicates study or
a calibration study, the formula argument in mecor contains a MeasError object on the
right-hand side (covariate measurement error) or left-hand side (outcome measurement
error). The MeasError object can be used for random and systematic measurement error
correction, depending on the method used to correct for the measurement error in mecor:

MeasError(substitute, reference, replicate, differential)

with the arguments being described as follows:

• substitute the error-prone substitute measurement;

• reference the gold-standard referencemeasurement, to be used in case of an internal
validation study, else NULL;

• replicate (a vector of) the replicate measurement of the error-prone substitute
measurement, to be used in case of a replicates study or calibration study, else NULL;

• differential the binary exposure on which the outcome measurement error
structure is dependent, to be used for differential outcome measurement error in
univariable analyses, else NULL.

Depending on the type of validation study used, either argument reference (internal
validation study) or replicate (replicates study or calibration study) can be used, but never
both.

3.4.2.The MeasErrorExt object
To correct for measurement error using an external validation study, the formula object in
mecor contains a MeasErrorExt object on the right-hand side (covariate measurement error)
or left-hand side (outcome measurement error):

MeasErrorExt(substitute, model)

with the arguments being described as follows:

• substitute the error-prone measurement;

• model a fitted lm object of the calibration model in equation (3.10) (covariate
measurement error) or the measurement error model in equation (3.5) (outcome
measurement error). Or alternatively, a listwith named arguments coef containing
a vector of the coefficients of the calibration model or measurement error model and
named argument vcov containing a matrix of the corresponding variance–covariance
matrix. The argument vcov is not required.

The argument model is also used for conducting a sensitivity analysis by making informed
guesses about the parameters of the calibration model (covariate measurement error) or
measurement error model (outcome measurement error).
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3.4.3. The MeasErrorRandom object
When random measurement error in a covariate is suspected but cannot be quantified, the
MeasErrorRandom object can be used to conduct a sensitivity analysis:

MeasErrorRandom(substitute, variance)

with the arguments being described as follows:

• substitute the error-prone measurement;

• variance a numeric indicating the random measurement error variance in the
substitute measurement, i.e., the parameter value of 𝜏2 in equation (3.2).

3.5. Examples
Six simulated datasets are included in the package mecor. These datasets mimic real
datasets and represent the data structures described in section Validation study data
structures for measurement error correction. There is an internal validation study
with covariate measurement error (vat), an internal validation study with outcome
measurement error (haemoglobin), a replicates study (bloodpressure) and a calibration
study with outcomemeasurement error (sodium). The dataset vat_ext provides an external
validation study for the vat dataset, and the dataset haemoglobin_ext provides an external
validation study for the haemoglobin dataset. These datasets are described and analysed
in the following sections.

3.5.1. Internal validation study
The dataset vat is a simulated dataset, representing the structure of the internal
covariate-validation study shown in Table 3.1a. The dataset is inspired by the Netherlands
Epidemiology of Obesity (NEO) study [42] and was used as the motivating example in
a study investigating measurement error correction by Nab et al. [38]. The dataset
represents a cross-sectional study of the association between visceral adipose tissue and
insulin resistance. Visceral adipose tissue measures are expensive and therefore only
available in 40% of the study population. Waist circumference measures however provide
a simple proxy for visceral adipose tissue and are observed in the full study population.
The dataset vat contains 650 observations of the natural logarithm of the outcome insulin
resistance (ir_ln, fasting glucose (mmol/L) x fasting insulin (mU/L) / 22.5), the standardised
error-prone exposure waist circumference (wc, cm), the covariates sex (sex, 0 = male, 1 =
female), age (age, years), and standardised total body fat (tbf, %), and the standardised
error-free measurement of the exposure visceral adipose tissue (vat, cm2).
R> data(”vat”, package = ”mecor”)
R> head(vat)

ir_ln wc sex age tbf vat
1 -0.09341837 -1.3136816 1 48 -0.6571345 NA
2 0.16820894 -2.0336624 0 54 -1.5882163 NA
3 0.57299976 -0.2611214 0 46 -1.1033709 NA
4 0.63677178 0.8631987 0 55 -1.4785869 0.5083247
5 0.92908882 -1.2054861 1 61 0.9020136 NA
6 -0.72410039 -2.5032852 1 47 -0.9584166 NA
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By ignoring the measurement error in wc, a linear model can be fitted to the data as follows:

R> lm(ir_ln ~ wc + sex + age + tbf, data = vat)

Call:
lm(formula = ir_ln ~ wc + sex + age + tbf, data = vat)

Coefficients:
(Intercept) wc sex age tbf

0.50976 0.09697 -0.70953 0.01133 0.38783

The coefficients of this model will however be biased due to the measurement error in wc.
The measurement error in wc can be corrected for using standard regression calibration
(RC) as follows:

R> mecor(
+ ir_ln ~ MeasError(wc, reference = vat) + sex + age + tbf,
+ data = vat,
+ method = ”standard”)

Call:
mecor(formula = ir_ln ~ MeasError(wc, reference = vat) + sex +
age + tbf, data = vat, method = ”standard”)

Coefficients Corrected Model:
(Intercept) vat sex age tbf
0.473398350 0.207598087 -0.438453038 0.009477677 0.270864391

Coefficients Uncorrected Model:
(Intercept) wc sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

Stratified percentile bootstrap confidence intervals of the coefficients of the corrected
model can be obtained by using the argument B in the function mecor. To obtain standard
errors and confidence intervals using the Fieller method or zero-variance method, the
arguments zerovar and fieller of the summary object are set to TRUE:

R> set.seed(20210526)
R> mecor_fit <-
+ mecor(
+ ir_ln ~ MeasError(wc, reference = vat) + sex + age + tbf,
+ data = vat,
+ method = ”standard”,
+ B = 999)
R> summary(mecor_fit, zerovar = TRUE, fieller = TRUE)

Call:
mecor(formula = ir_ln ~ MeasError(wc, reference = vat) + sex +



3

51

age + tbf, data = vat, method = ”standard”, B = 999)

95% Confidence Intervals:
Estimate LCI UCI LCI (btstr)

(Intercept) 0.473398 0.185743 0.761054 0.212557
vat 0.207598 0.140549 0.274648 0.144636
sex -0.438453 -0.594458 -0.282448 -0.577730
age 0.009478 0.004385 0.014570 0.005013
tbf 0.270864 0.199007 0.342721 0.200120

UCI (btstr) LCI (zerovar) UCI (zerovar)
(Intercept) 0.721228 0.225140 0.721657
vat 0.281810 0.149712 0.265484
sex -0.276988 -0.574231 -0.302675
age 0.014058 0.005096 0.013860
tbf 0.332815 0.208528 0.333201

LCI (fieller) UCI (fieller)
(Intercept) NA NA
vat 0.145068 0.281464
sex NA NA
age NA NA
tbf NA NA
Bootstrap Confidence Intervals are based on 999 bootstrap
replicates using percentiles

The measurement error is corrected for by application of
regression calibration

Coefficients Uncorrected Model:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5097640 0.1264211 4.0323 6.185e-05
wc 0.0969705 0.0137957 7.0290 5.308e-12
sex -0.7095274 0.0390086 -18.1890 < 2.2e-16
age 0.0113271 0.0022048 5.1374 3.695e-07
tbf 0.3878267 0.0201489 19.2481 < 2.2e-16

95% Confidence Intervals:
Estimate LCI UCI

(Intercept) 0.509764 0.261517 0.758011
wc 0.096970 0.069881 0.124060
sex -0.709527 -0.786127 -0.632928
age 0.011327 0.006998 0.015657
tbf 0.387827 0.348261 0.427392

Residual standard error: 0.3123469 on 645 degrees of
freedom
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In addition to standard RC, efficient RC (method = ”efficient”) or validation RC (method
= ”valregcal”) can also be used to correct for the measurement error in the error-prone
covariate wc.

The dataset haemoglobin is a simulated dataset, representing the structure of the
internal outcome-validation study shown in Table 3.1b. The dataset is inspired by a trial
investigating the efficacy of low-dose iron supplements [43] andwas used as themotivating
example for a study investigatingmeasurement error correction in trial endpoints by Nab et
al. [36]. The dataset represents a trial investigating the effect of low-dose iron supplements
during pregnancy on haemoglobin levels at delivery. Haemoglobin levels were measured in
venous blood in approximately 25% of the subjects (reference measure), and were measured
in capillary blood in all subjects (substitutemeasure). The dataset haemoglobin contains 400
observations of the error-prone capillary haemoglobin levels (capillary, g/L), an indicator
of whether the subject was randomised to receive the low-dose iron supplement (20 mg/d)
(supplement, 0 = no, 1 = yes), and the error-free reference venous haemoglobin levels
(venous, g/L).

R> data(”haemoglobin”, package = ”mecor”)
R> tail(haemoglobin)

capillary supplement venous
395 124.0489 1 NA
396 127.1005 0 127.9526
397 132.1858 1 NA
398 123.4427 0 NA
399 125.2438 1 NA
400 124.0738 0 NA

The measurement error in capillary can be accounted for by using standard method of
moments (MM) as shown in the following:

R> mecor(
+ MeasError(capillary, reference = venous) ~
+ supplement,
+ data = haemoglobin,
+ method = ”standard”)

Call:
mecor(formula = MeasError(capillary, reference = venous) ~
supplement, data = haemoglobin, method = ”standard”)

Coefficients Corrected Model:
(Intercept) supplement
117.99341 6.97392

Coefficients Uncorrected Model:
(Intercept) supplement
124.452261 7.764702
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In addition to standard MM, efficient MM (method = ”efficient”) can also be used to
correct for the measurement error in the error-prone outcome Y_star.

When differential outcome measurement error in capillary haemoglobin measures is
suspected, the argument differential of the MeasError object can be used to correct for
differential measurement error as follows:

R> mecor(
+ MeasError(capillary,
+ reference = venous,
+ differential = supplement) ~ supplement,
+ data = haemoglobin,
+ method = ”standard”)

Call:
mecor(formula = MeasError(capillary, reference = venous,
differential = supplement) ~ supplement,
data = haemoglobin, method = ”standard”)

Coefficients Corrected Model:
(Intercept) supplement
118.386903 6.080729

Coefficients Uncorrected Model:
(Intercept) supplement
124.452261 7.764702

Efficient MM (method = ”efficient”) can also be used to correct for the differential
measurement error in the error-prone outcome Y_star.

3.5.2. Replicates study
The dataset bloodpressure is a simulated dataset, representing the structure of the
replicates study shown in Table 3.2a. The dataset represents a cross-sectional study of the
association between blood pressure and creatinine in pregnant women [44]. Blood pressure
measurements are prone to random measurement error. The dataset bloodpressure
contains 450 observations of serum creatinine (creatinine, 𝜇mol/L), age (age, years), and
systolic blood pressure (sbp, mm Hg). Systolic blood pressure is measured at 30, 60, 90 and
120 minutes.

R> data(”bloodpressure”, package = ”mecor”)
R> head(bloodpressure)

creatinine age sbp30 sbp60 sbp90 sbp120
1 53.75670 27 120.7987 113.2812 118.0705 124.2282
2 63.08498 36 121.7254 106.8143 118.9882 115.1341
3 60.04718 31 108.8798 119.6577 106.5588 117.5473
4 62.42976 43 116.5566 117.4964 126.3625 121.7148
5 61.31801 25 123.3018 116.4629 112.0310 109.8754
6 50.60952 35 124.9119 129.0927 129.0224 114.0828
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In a study estimating the association between serum creatinine and systolic blood pressure,
corrected for age, the random measurement error in the error-prone systolic blood pressure
measurement at 30 minutes can be accounted for as follows:

R> mecor(
+ creatinine ~ MeasError(sbp30,
+ replicate =
+ cbind(sbp60,
+ sbp90,
+ sbp120)) + age,
+ data = bloodpressure,
+ method = ”standard”)

Call:
mecor(formula = creatinine ~ MeasError(sbp30, replicate
= cbind(sbp60, sbp90, sbp120)) + age,
data = bloodpressure, method = ”standard”)

Coefficients Corrected Model:
(Intercept) cor_sbp30 age
32.3796021 0.1877343 0.1743760

Coefficients Uncorrected Model:
(Intercept) sbp30 age
41.3050286 0.1165333 0.1650849

Maximum likelihood estimation (method = ”mle”) can also be used to correct for
the measurement error in the error-prone exposure sbp30. Note that, in this example
dataset, the coefficients of the corrected model using standard RC will differ when
MeasError(sbp60, replicate = cbind(sbp30, sbp90, sbp120)) is used instead of
MeasError(sbp30, replicate = cbind(sbp60, sbp90, sbp120)). In contrast, the corrected
estimated coefficients obtained usingmaximum likelihood estimationwill not changewhen
the order of replicates is changed.

3.5.3. Calibration study
The dataset sodium is a simulated dataset, representing the structure of the outcome
calibration study, shown in Table 3.3b. The dataset represents a randomised controlled trial
designed to investigate whether a reduction in sodium intake results in satisfactory blood
pressure control [45] and was used as the motivating example for a study investigating
measurement error correction in dietary intake [31]. Sodium intake of the subjects was
measured by a 24h recall and in urine. Sodium intake measured by a 24h recall is assumed
prone to systematic measurement error and sodium intake measured in urine is assumed
prone to random measurement error. The dataset sodium contains 1,000 observations
of sodium intake measured by a 24h recall (recall, mg), an indicator of whether the
subject was randomised to their usual diet or sodium-lowering diet (diet, 0 = usual, 1 =
sodium-lowering), and two measures of urinary sodium (urinary1, urinary2, mg). The
replicate urinary sodium are observed in approximately 50% of the subjects included in the
trial.
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R> data(”sodium”, package = ”mecor”)
R> tail(sodium)

recall diet urinary1 urinary2
995 3.320633 1 NA NA
996 3.496626 0 NA NA
997 3.127590 1 3.818815 4.204880
998 4.363960 0 NA NA
999 4.009316 1 4.719055 4.389111
1000 3.910490 0 NA NA

The measurement error in the error-prone exposure recall can be accounted for as follows:

R> mecor(
+ MeasError(recall, replicate = cbind(urinary1,
+ urinary2)) ~ diet,
+ data = sodium,
+ method = ”standard”)

Call:
mecor(formula = MeasError(recall, replicate = cbind(
urinary1, urinary2)) ~ diet, data = sodium,
method = ”standard”)

Coefficients Corrected Model:
(Intercept) diet
4.6075011 -0.4843495

Coefficients Uncorrected Model:
(Intercept) diet
3.8819732 -0.3051777

Efficient MM (method = ”efficient”) can also be used to correct for the measurement
error in the error-prone outcome recall.

3.5.4. External validation study
The dataset vat_ext is a simulated dataset, representing the structure of the external part
of the external covariate-validation study shown in Table 3.4a. The dataset accompanies
the dataset vat introduced in section Internal validation study. The dataset contains 100
observations of the error-free continuous exposure vat, the error-prone exposure wc and a
covariates sex, age and tbf.

R> data(”vat_ext”, package = ”mecor”)
R> head(vat_ext)

wc vat sex age tbf
1 -0.01357552 -1.69944962 1 50 -1.17103270
2 1.10201426 1.43889836 0 51 -0.99837467
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3 1.23328072 1.24129099 0 54 -0.91030636
4 -0.07849380 0.05219091 0 55 -1.52766077
5 -0.47481715 -0.61165766 1 46 0.28706021
6 -1.33717429 -0.58193963 1 50 0.08718737

Suppose that in the dataset vat, the reference measure vat had not been observed. Using
dataset vat_ext, we can correct for the measurement error in wc in dataset vat. The first
step is to fit the calibration model in the external validation study as follows:

R> calmod_fit <- lm(vat ~ wc + sex + age + tbf,
data = vat_ext)

R> calmod_fit

Call:
lm(formula = vat ~ wc + sex + age + tbf, data = vat_ext)

Coefficients:
(Intercept) wc sex age tbf

0.437466 0.571233 -0.984891 0.001111 0.488749

The second step is to use the calibration model calmod_fit in the MeasErrorExt object as
follows:

R> data(”vat”, package = ”mecor”)
R> mecor(
+ ir_ln ~ MeasErrorExt(wc, calmod_fit) + sex + age + tbf,
+ data = vat,
+ method = ”standard”
+ )

Call:
mecor(formula = ir_ln ~ MeasErrorExt(wc, calmod_fit) + sex +
age + tbf, data = vat, method = ”standard”)

Coefficients Corrected Model:
(Intercept) cor_wc sex age tbf
0.43550128 0.16975650 -0.54233566 0.01113844 0.30485834

Coefficients Uncorrected Model:
(Intercept) wc sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

Dataset haemoglobin_ext is a simulated dataset, representing the structure of the
external part of the external outcome-validation study shown in Table 3.4b. The dataset
accompanies the dataset haemoglobin introduced in section Internal validation study. The
dataset contains 100 observations of the error-free outcome venous and the error-prone
outcome capillary.
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R> data(”haemoglobin_ext”, package = ”mecor”)
R> head(haemoglobin)

capillary venous
1 104.7269 115.3023
2 133.9946 119.7616
3 104.0304 108.0562
4 119.0214 121.1780
5 114.3891 111.7864
6 111.7754 112.8943

Suppose that in the dataset haemoglobin, the reference venous haemoglobin levels had not
been observed. Using dataset haemoglobin_ext, we correct for the measurement error in
capillary in haemoglobin, by fitting the measurement error model, as follows:

R> memod_fit <- lm(capillary ~ venous, data = haemoglobin_ext)
R> data(”iovs”, package = ”mecor”)
R> mecor(
+ MeasErrorExt(capillary, memod_fit) ~ supplement,
+ data = haemoglobin,
+ method = ”standard”)

Call:
mecor(formula = MeasErrorExt(capillary, memod_fit) ~

supplement,
data = haemoglobin,
method = ”standard”)

Coefficients Corrected Model:
(Intercept) supplement
119.136649 7.227302

Coefficients Uncorrected Model:
(Intercept) supplement
124.452261 7.764702

3.5.5. Sensitivity analyses
Suppose that there is no error-free measure and no external validation study available for
dataset vat. To investigate the sensitivity of study results to measurement error in variable
vat, informed guesses of the coefficients of the calibration model are needed. Suppose one
assumes that 𝐸(VAT|WC, sex, age, tbf) = 0.4+0.6×WC−sex+0×age+0.5×TBF. A sensitivity
analysis could then be conducted as follows:

R> data(”vat”, package = ”mecor”)
R> mecor_fit_sens <-
+ mecor(
+ ir_ln ~ MeasErrorExt(wc, list(coef =
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c(0.4, 0.6, -1, 0, 0.5))) +
+ sex + age + tbf,
+ data = vat,
+ method = ”standard”)
R> mecor_fit_sens

Call:
mecor(formula = ir_ln ~ MeasErrorExt(wc, list(coef =
c(0.4, 0.6, -1, 0, 0.5))) + sex + age + tbf,
data = vat, method = ”standard”)

Coefficients Corrected Model:
(Intercept) cor_wc sex age tbf
0.44511698 0.16161742 -0.54790994 0.01132712 0.30701800

Coefficients Uncorrected Model:
(Intercept) wc sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

The calibration model matrix used to correct for the measurement error in wc, is saved as
matrix in the corfit object attached to mecor_fit_sens:

R> mecor_fit_sens$corfit$matrix

Lambda1 Lambda0 Lambda3 Lambda4 Lambda5
Lambda1 0.6 0.4 -1 0 0.5
Lambda0 0.0 1.0 0 0 0.0
Lambda3 0.0 0.0 1 0 0.0
Lambda4 0.0 0.0 0 1 0.0
Lambda5 0.0 0.0 0 0 1.0

In the dataset bloodpressure discussed in section Replicates study, random
measurement error is suspected in systolic blood pressure. Suppose now that in the
dataset bloodpressure, the three replicate measures sbp60, sbp90, sbp120 had not been
observed. Suppose further that a measurement error variance of 30 mm Hg is assumed
in the first systolic blood pressure measure sbp30. For measurement error correction, the
MeasErrorRandom object could be used, here in combination with zerovariance estimation
of standard errors (assuming that there is no uncertainty in the speculated value of the
variance of the random measurement error sbp30):

R> mecor_fit_random <-
+ mecor(
+ creatinine ~ MeasErrorRandom(sbp30, variance = 30)
+ + age,
+ data = bloodpressure,
+ method = ”standard”)
R > summary(mecor_fit_random, zerovar = T)



3

59

Call:
mecor(formula = creatinine ~ MeasErrorRandom(sbp30,
variance = 30) + age, data = bloodpressure,
method = ”standard”)

Coefficients Corrected Model:
Estimate SE (zerovar)

(Intercept) 33.568149 9.909771
cor_sbp30 0.182509 0.080298
age 0.159752 0.094837

95% Confidence Intervals:
Estimate LCI (zerovar) UCI (zerovar)

(Intercept) 33.568149 14.145355 52.990943
cor_sbp30 0.182509 0.025127 0.339890
age 0.159752 -0.026125 0.345628

The measurement error is corrected for by application of
regression calibration

Coefficients Uncorrected Model:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.305029 6.758932 6.1112 2.155e-09
sbp30 0.116533 0.051271 2.2729 0.02351
age 0.165085 0.094705 1.7431 0.08200

95% Confidence Intervals:
Estimate LCI UCI

(Intercept) 41.305029 28.021799 54.588258
sbp30 0.116533 0.015771 0.217296
age 0.165085 -0.021038 0.351208

Residual standard error: 9.897091 on 447 degrees of freedom

The calibration model matrix used to correct for the measurement error in sbp30, is again
saved as matrix in the corfit object attached to mecor_fit_random:

R > mecor_fit_random$corfit$matrix

Lambda1 Lambda0 Lambda3
Lambda1 0.6385083 42.39186 0.02922153
Lambda0 0.0000000 1.00000 0.00000000
Lambda3 0.0000000 0.00000 1.00000000

The sensitivity analyses could be expanded to ranges of possible coefficients of the
calibration model or assumed variance of the random measurement error.
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3.6. Conclusion
We demonstrated how measurement error correction methods can be applied using our R
package mecor. These correction methods can be used in linear models with a continuous
outcome when there is measurement error in the outcome or in a continuous covariate. The
package accommodates measurement error correction methodology for a wide range of
data structures: internal and external validation studies, replicates studies, and calibration
studies. Various measurement error correction methods are implemented in the package:
RC, MM and correction based on maximum likelihood estimation. For standard error
estimation, the delta method and bootstrap are implemented for all methods. The package
also facilitates sensitivity analysis or quantitative bias analysis when no data are available
to estimate the parameters of the measurement error model, but the assumption of no
measurement error is not warranted. A vast body of literature exists comparing the relative
performance of the measurement error correction methods implemented in mecor [38, 46]
and in comparison, with other methods e.g., simulation-extrapolation [47, 48], multiple
imputation methods [49, 50] and Bayesian methods [11]. We focused on studies in which
interest lies in estimating a covariate-outcome association. In other types of studies, e.g.,
prediction studies, considerations for measurement error correction are different and may
not even require corrections [51, 52]. In future updates of the package, the measurement
error correction methods may be extended to time-to-event [16] and binary outcomes, and
multiple variables with measurement error [17, 27].
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4
Regression calibration for

measurement error correction: The
bias–variance trade off and finite

sample performance
Correction of possible bias in exposure-outcome associations due to exposure measurement error using
regression calibrationmay come at the cost of increased variance, referred to as the bias–variance trade off.
Notably, in settings where measurement error is relatively large, the finite sample properties of regression
calibration have not been investigated. We explore the bias–variance trade off for regression calibration
and study the finite sample performance of regression calibration in settings where measurement error
is relatively large using Monte Carlo simulation. The bias–variance trade off was of relevance in small
samples (sample size <80) and was more pronounced in settings where measurement error was relatively
large (reliability = 0.3) and residual error variance of the exposure-outcome association was relatively
large (variance = 25). Particularly in settings where measurement error was relatively large (reliability
<0.2) and sample size small (sample size <150), the performance of regression calibration was poor with
percentage bias ranging from −99%–79% and mean squared error ranging from 6–25431. Application
of regression calibration may not be useful in small sample size settings where measurement error is
relatively large, because of the overall poor performance of the estimator in these settings.

This chapter has been submitted as: L. Nab and R.H.H. Groenwold, Regression calibration for measurement error
correction: The bias–variance trade off and finite sample performance when measurement error is large

67



4

68 Regression calibration for measurement error correction

4.1. Introduction
Exposure measurement error is common in epidemiologic research but often neglected [1,
2]. When neglected, exposure measurement error can lead to bias in the exposure-outcome
association [3], even when measurement error is random [4]. In the rare occasion of
measurement error correction in epidemiologic research, regression calibration is among
the methods used most often [1, 2]. Regression calibration relies on information about the
measurement error model and its parameters, which can be estimated in extra data such as
replicates data or internal validation data, or alternatively, informed by expert knowledge
[5, 6].

When exposure measurement error is present, the estimator not correcting for
this measurement error is typically biased. The application of regression calibration
for measurement error correction is of particular interest when bias in the estimator
not correcting for the exposure measurement error is relatively large. That is, when
measurement error is relatively large, or equivalently, reliability of the error-prone
measurement low. Regression calibration is a correction method designed to reduce
this bias, at the price of an increased variance [7], a phenomenon referred to as the
bias–variance trade off. We are unaware of reports of the finite sample performance of
regression calibration in settings of highly unreliable measurements.

In this chapter we demonstrate settings in which the application of regression
calibration can be useful, but importantly also when it may not. We report on settings
where the estimator not correcting for exposure measurement error may be more
efficient in terms of mean squared error than the regression calibration estimator (i.e.,
the bias–variance trade off). Additionally, we report on the performance of regression
calibration in settings where the measurement error in the exposure is relatively large.
Specific attention is paid to the performance of regression calibration in small samples.
This is illustrated using an example of the association between active energy expenditure
and lean body mass.

This chapter is organised as follows. In section 4.2, a study is introduced of the
association between active energy expenditure and lean body mass. In section 4.3,
the bias–variance trade off is illustrated for regression calibration. The finite sample
performance of regression calibration when measurement error is relatively large is studied
in section 4.4 by means of Monte Carlo simulation, focusing on settings where sample size
is small. We conclude with a discussion of our results in section 4.5.

4.2. Example of lean body mass and energy expenditure
To motivate our study, we use an example of the association between energy expenditure
and lean body mass. The association between active energy expenditure (mean active
energy expenditure in kilo calories (kcal) per day) and percentage lean body mass
(percentage of lean body mass of total body mass) was studied using publicly available
data from the cross-sectional Karlsruhe Metabolomics and Nutrition study [8], detailed
information on the study can be found here [9]. Body weight was measured in underwear
and without shoes using a standardized scale. Lean body mass was measured in a
standardized way by dual-energy X-ray absorptiometry and expressed as percentage of
total body weight. The energy expenditure (in kcal per day) was measured by Actiheart®
(CamNtech, Cambridge, United Kingdom). In addition, energy expenditure was measured
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using the international physical activity questionnaire (IPAQ). This questionnaire provides
a substitute measure of energy expenditure, based on physical activity and expressed
in metabolic equivalent of task (MET)-minutes. This measure was then transformed to
approximate subject’s energy expenditure in kilocalories per day [10].

Throughout this example, we consider energy expenditure measured by Actiheart®
the reference measure and energy expenditure measured by the IPAQ the (error-prone)
substitute measure. Figure 4.1 shows the agreement between energy expenditure in kcal
per daymeasured by Actiheart® and the IPAQ in the KarlsruheMetabolomics andNutrition
study. The correlation between the two measures of energy expenditure was 0.10 (95%
confidence interval (CI): -0.02;0.21).
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Figure 4.1: Agreement of mean active energy expenditure (AEE) measured by Actiheart® (reference measure) and
AEE measured by the international physical activity questionnaire (substitute measure)

Table 4.1 gives an overview of four different estimates of the association between energy
expenditure and lean body mass. Using the reference measure of energy expenditure
measured by Actiheart®, we found that an increase in energy expenditure of 1,000 kcal
per day was associated with a 3.2 increase in lean body mass (95%CI: 1.8;4.7). Using
the substitute measure of energy expenditure measured by IPAQ instead, it was found
that an increase in energy expenditure of 1,000 kcal per day was associated with a 0.7
decrease in lean body mass (95%CI: −1.5;0.1). This estimate was considered biased due to
the measurement error in the questionnaire-based energy expenditure level. When this
estimate was corrected by means of regression calibration (RC), informed by the relation
between the substitute measure and reference measure, we found an increase in energy
expenditure of 1,000 kcal per day was associated with an 18.7 decrease in lean body mass.
Notably, there is a large discrepancy between the point estimate obtained by regressing the
referencemeasure of energy expenditure (measured by Actiheart®) and lean bodymass (i.e.,
3.2) and themeasurement error corrected point estimate (i.e., −18.7). Two differentmethods
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for CI construction were available for the RC corrected estimate: the Delta method and the
bootstrap percentile method, yielding 95% CIs of −56.6;19.2 and −270.0;217.2, respectively.
The above estimates were all adjusted for sex. Covariate adjustment was restricted to sex
for illustration purposes, the covariate adjustment set should potentially be expanded.

Table 4.1: Estimates of the association between an increase of 1,000 kcal/day
in mean active energy expenditure and percentage lean body mass (adjusted
for sex) and associated 95% confidence intervals (CIs) in the Karlsruhe
Metabolomics and Nutrition study [8]

Method Point 95% CI
Estimate

Actiheart® 3.2 1.8;4.7
International Physical −0.7 −1.5;0.1
Activity Questionnaire
Regression Calibration and −18.7 −56.6;19.2
Delta for CI Construction
Regression Calibration and −18.7 −270.0;217.2
Bootstrap for CI Constructiona

a Based on 999 replicates using percentiles

4.3. Bias–variance trade off for regression calibration
The estimator of the exposure-outcome association that does not account for measurement
error in the exposure variable is typically biased. Nevertheless, a correction for this bias by
means of RC may come at the price of an increased variance, sometimes referred to as the
bias–variance trade off [7]. That is, the RC estimator is typically unbiased, yet it is more
variable than the uncorrected estimator. Consequently, there may be circumstances where
the uncorrected estimator is more efficient in terms of mean squared error (MSE) than the
corrected estimator.

We illustrate this phenomenon here by graphical presentation of the MSE of the
uncorrected estimator and the RC estimator in simple settings, by using the theoretical
derivation of the MSE of the two estimators, described by Carroll et al. [7]. Since the
theoretical derivation by Carroll et al. relies on the assumption that the correction factor
used in RC is known, which is rare, we expand these results by means of Monte Carlo
simulation to simple settings where the correction factor is not known and is estimated
from the data.

The data generating mechanism used to generate sets of artificial data is described in
Table 4.2. Parameters of the data generating mechanism were inspired by the motivating
example of energy expenditure and body mass. For simplicity, we assume random
measurement error in the error-prone AEE* (i.e., AEE* is distributed around AEE with
independent error). In our artificial data, the reliability of AEE* is equal to 0.25 / (0.25
+ 𝜏2). This ratio is referred to as the ‘reliability’ in this chapter and in case of random
measurement error as assumed here, the reliability is equal to the ‘correction factor’
mentioned above. There is an inverse relation between themeasurement error variance (i.e.,
𝜏2) and the reliability of the error-prone measure. When the measurement error variance
is large, the reliability is low and vice versa.
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Table 4.2: Data generating mechanism

Variable Variable Name Distribution
Active AEE 𝑁(1, 0.25)
Energy Expenditure
Error-Prone Active AEE* 𝑁(𝐴𝐸𝐸, 𝜏2)
Energy Expenditure
Percentage Lean LBM 𝑁(80 + 3 × 𝐴𝐸𝐸, 𝜎2)
Body Mass

We refer to the estimator of the linear regression of LBM on the error-prone
measurement of AEE (i.e., AEE*) using ordinary least squares (OLS) as the OLS estimator.
We refer to the corrected estimator by means of regression calibration (RC) as the ‘RC
estimator’. In this chapter, the RC estimator available in the package mecor [6] is used.
This package adopts the RC estimator described by Rosner et al. in [11], which is for linear
regression equivalent to the method of moments estimator [3]. The RC estimator divides
the OLS estimator by a ‘correction factor’ which can be estimated in extra data.

4.3.1. Correction factor known
From the results from Carroll et al. [7] and the data generating mechanism in Table 4.2, the
bias in the OLS estimator is equal to 1minus the correction factor times the effect ofAEE on
LBM (i.e., 3 in Table 4.2). The variance of the OLS estimator is equal to the variance of the
residual errors (i.e., 𝜎2 in Table 4.2) divided by the number of observations (i.e., 𝑛 in Table
4.2) times the variance of AEE* (i.e., 0.25 + 𝜏2 in the above). The MSE of the OLS estimator
is equal to its bias squared plus its variance. The RC estimator is assumed unbiased, and
its variance is equal to the variance of the OLS estimator divided by the correction factor
squared. Figure 4.2 shows the MSE of the OLS estimator and the RC estimator for different
scenarios of variance of the residual errors, sample size and reliability. It illustrates that
when the variance of the residual errors is relatively large (25) and sample size is small (≤60),
the OLS estimator may be more efficient than the RC estimator in terms of MSE. This gain
in efficiency becomes smaller and ultimately turns around in favour of the RC estimator as
reliability increases, sample size increases, or the variance of the residual errors decreases.
Note that we fixed the variance of AEE (i.e., 0.25) and the effect of AEE on LBM (i.e., 3)
throughout this illustration. Varying these will impact the graphical illustrations of the
bias–variance trade off in Figure 4.2, but the phenomenon would still exist.

4.3.2. Correction factor not known
We compared the MSE of the OLS estimator and the RC estimator by means of Monte
Carlo simulation investigating scenarios of finite samples where the correction factor is not
known. The correction factor is estimated in an extra data set providing information about
the reference measure AEE and the substitute measure AEE*. We generated data using the
data generating mechanism described in Table 4.2 and studied MSE for 𝜎2 equal to 5 or 25,
reliability equal to 0.3, 0.6 or 0.9, and the number of observations 20, 40, 60, 80 or 100 in a
full-factorial design (2 × 3 × 5 = 30 scenarios). We set the sample size of the set that is used to
estimate the correction factor equal to the sample size of the study. For each scenario, 5000
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datasets were generated. In each generated data set, the uncorrected effect was estimated
by regressing the outcome percentage lean body mass on the error-prone active energy
expenditure using standard software. Subsequently, the corrected effect was estimated by
means of RC using the R package mecor [6]. The performance of these two estimators
was evaluated in terms of MSE. Accompanying Monte Carlo standard errors (MCSE) were
calculated [12], using the R package rsimsum [13]. All code used for the simulation study
is publicly available via https://github.com/LindaNab/woorc. Figure 4.3 shows the MSE
of the OLS estimator and the RC estimator. Overall, the same patterns were obtained as
those described in section Correction factor known. An important difference is, however,
that the MSE of the RC estimator was much larger than its theoretical derivation when
sample size is small, which was most pronounced in the settings where reliability was 0.3
and the residual errors of the outcome model relatively high (i.e., 𝜎2 equal to 25) (Figure
4.3).

20 40 60 80 100

No. of Observations

0

5

10

15

20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r Estimator

OLS
RC

REV = 25, Reliability = 0.3
A)

20 40 60 80 100

No. of Observations

0

5

10

15

20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

REV = 5, Reliability = 0.9
F)

20 40 60 80 100

No. of Observations

0

5

10

15

20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

REV = 5, Reliability = 0.6
E)

20 40 60 80 100

No. of Observations

0

5

10

15

20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

REV = 5, Reliability = 0.3
D)

20 40 60 80 100

No. of Observations

0

5

10

15

20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

REV = 25, Reliability = 0.9
C)

20 40 60 80 100

No. of Observations

0

5

10

15

20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

REV = 25, Reliability = 0.6
B)

Figure 4.2: Theoretical mean squared error of the estimator not correcting for measurement error (OLS) (gray
dashed line) and the regression calibration (RC) estimator (black dashed line), as derived by Carroll et al. [7],
for varying sizes of the sample size (20-100, x axis) and for varying sizes of the residual error variance (REV) (25:
panels A-C; 5: panels D-F) and for varying size of the reliability (0.3: panels A and D; 0.6: panels B and E; 0.9:
panels C and F). In panel F, the lines overlap.

https://github.com/LindaNab/woorc
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Figure 4.3: Results of a Monte Carlo simulation study of the mean squared error of the estimator not correcting
for measurement error (OLS) (gray solid line with dots indicating the estimates) and the regression calibration
(RC) estimator (black solid line with dots indicating the estimates) for varying sizes of the sample size (20-100,
x-axis) and for varying sizes of the residual error variance (REV) (25: panels A-C; 5: panels D-F) and for varying
size of the reliability (0.3: panels A and D; 0.6: panels B and E; 0.9: panels C and F). The dashed gray and black
lines represent the theoretical mean squared error of the estimator not correcting for measurement error and the
regression calibration estimator, respectively, as derived by Carroll et al. [7]. In panel A and D, the mean squared
errors of the regression calibration estimator in the Monte Carlo simulation study fell outside the range of the
graph when number of observations was 20, and were 211 (Monte Carlo standard error (MCSE) 142) and 133
(MCSE 89), respectively. In panel F, all lines overlap.
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4.4. Finite sample properties of regression calibration
In case of exposure measurement error in a linear regression, RC provides consistent
estimates if the correction factor is estimated consistently [3]. A consistent estimate of
the correction factor can be obtained in extra data such as internal validation data or
replicates data. However, earlier studies (e.g., [14]) suggested that the RC estimator is
not necessarily unbiased, specifically in settings where the reliability of the error-prone
measurement is low (i.e., 0.2). In addition, in our investigation of the efficiency of the RC
estimator described in the previous section, we found that when the reliability was equal
to 0.3 and sample size was 20, the MSE of the RC estimator was extremely large compared
to the MSE of the OLS estimator (i.e., 211 vs 6 and 133 vs 5, for residual error variance equal
to 25 and 5, respectively). Here, we aim to extend these results and investigate the finite
sample performance of RC in settings where the measurement error is relatively large (i.e.,
reliability low), thereby focusing on small samples.

4.4.1. Data generating mechanism
Again, we used the generating mechanism described in Table 4.2. The number of
observations (25, 50, 150, 300 and 600) and the reliability of the error-prone exposure AEE*
(0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05 and 0.01) were varied in a full factorial
design (5 × 13 = 65 scenarios). Although our specific interest was the performance of RC
for an error-prone measure with low reliability, we studied the full range of the reliability
for illustration purposes. We set the sample size of the set that is used to estimate the
correction factor equal to the sample size of the study. For each scenario, 5,000 datasets
were generated.

4.4.2. Assessment of performance
In each generated data set, the uncorrected effect was estimated by regressing the
outcome variable LBM on the error-prone AEE* using standard software. Subsequently, the
corrected effect was estimated by means of RC using the R package mecor [6]. Ninety-five
percent CIs of the uncorrected analysis were constructed using standard software, and for
the RC analysis these were constructed using the Delta method and bootstrap resampling
using 999 replicates and taking the 2.5% and 97.5% percentiles, both available in the R
package mecor. Performance of the two different analyses was evaluated in terms of
bias, MSE, confidence interval coverage (the proportion of 95% CIs that contained the
true value of the true effect), empirical SE, and model based SE. Model based SE was
estimated using the standard errors for the uncorrected analysis from standard software,
and using the standard errors estimated by the Delta method or the standard deviation of
the 999 replicates of the bootstrap samples for the RC analysis. Monte Carlo standard
errors (MCSE) were calculated for all performance measures [12], using the R package
rsimsum [13]. All code used for the simulation study is publicly available via https:
//github.com/LindaNab/woorc.

4.4.3. Results
Figures 4.4 and 4.5 show percentage bias, MSE and confidence interval coverage for varying
levels of the reliability of the error-prone measure and number of observations. The OLS
estimator was biased, with decreasing bias for increasing levels of reliability. Bias in the

https://github.com/LindaNab/woorc
https://github.com/LindaNab/woorc


4

75

OLS estimator was independent of sample size. Generally, the RC estimator was unbiased,
except when reliability was 0.01 for all levels of the sample size. Specifically, for a sample
size of 150 and reliability 0.01, the percentage bias was 659% (Monte Carlo SE (MCSE)
of bias 23). In addition, the RC estimator was severely biased for a sample size of 50 and
reliability equal to 0.01 and 0.05 (percentage bias was 78.7% (MCSE of bias 0.624) and -73.9%
(MCSE of bias 2.255), respectively) and for a sample size of 25 and reliability 0.01, 0.05 and
0.1 (percentage bias was -9.4% (MCSE of bias 1.91), -83.7% (MCSE 0.514) and -34.2% (MCSE
0.273), respectively). MSE of the OLS estimator and the RC estimator decreased when
reliability increased (Figures 4.4 and 4.5). Generally, the RC estimator was more efficient in
terms of MSE than the OLS estimator, except for reliability equal to 0.01 for all sample sizes;
reliability ≤ 0.2 for a sample size of 50; or reliability ≤ 0.3 for a sample size of 25 (Table 4.3).
In addition, the RC estimator and OLS estimator show similar efficiency for high reliability
(i.e., reliability ≥0.9).

Confidence interval coverage was around the nominal level of 95% for the CIs
constructed using bootstrap resampling, independent of sample size or reliability. CI
coverage was slightly above the nominal level of 95% for the CI constructed using the
Delta method for reliability ≤ 0.8 (i.e., ranging between 96%–100%, MCSE <0.05) and at the
nominal level for reliability greater or equal to 0.9, independent of sample size. Generally,
the coverage of the CIs of the OLS estimator was lower than the nominal level of 95% and
moved closer to the nominal level for increasing values of the reliability (ranging between
0%–97%, MCSE < 0.05).

Model based standard errors were equal to empirical standard error of the analysis
ignoring measurement error for all studied settings (Figures 4.6 and 4.7 and Table
4.4). Generally, model based standard errors obtained by bootstrap resampling better
approximated empirical standard errors of the RC analysis (Figures 4.6 and 4.7). Model
based standard error of the RC analysis were equal to empirical standard error for reliability
ranging between 0.1–1 for a sample size of 600; reliability ranging between 0.2–1 for a
sample size of 300 or 150; and reliability ranging between 0.9–1 for a sample size of 50
or 25 (Figures 4.6 and 4.7 and Table 4.5). For all other studied simulation settings, model
based standard errors differed from the empirical standard errors of the RC analysis (Table
4.5).
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Figure 4.4: Performance of the analysis ignoring measurement error (OLS) and regression calibration (RC) in a
setting with 600 (first column) and 300 (second column) observations, in terms of percentage bias (panels A and
B); mean squared error (panels C and D) and coverage (panels E and F) for varying values of reliability of the
error-prone exposure (x-axis). In panel C and D, the mean squared errors of the regression calibration estimator
fell outside the range of the graph when reliability was 0.01, and were 12 (Monte Carlo standard error (MCSE) 2)
and 80 (MCSE 29), respectively.
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Figure 4.5: Performance of the analysis ignoring measurement error (OLS) and regression calibration (RC) in a
setting with 150 (first column), 150 (second column) and 25 (third column) observations, in terms of percentage
bias (panels A-C); mean squared error (panels D-F) and coverage (panels G-I) for varying values of reliability of the
error-prone exposure (x-axis). In panel A, the percentage bias in the regression calibration estimator fell outside
the range of the graph when reliablity was 0.01, and was 659% (Monte Carlo standard error (MCSE) of bias 23).
The values that fell outside the range of panels D-F, can be found in Table 4.3
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Table 4.3: Mean Squared error (MSE) of the regression
calibration estimator in the settings which fell outside the plot
range of the graphs in Panel D-F in Figure 4.5

n Relia- MSE MCSE Panel
bility

150 0.01 2 536 515 2 307 534 D
0.05 20 3

50 0.01 1950 446 E
0.05 25 431 9740
0.10 1025 325
0.20 20 5

25 0.01 7092 1062 F
0.05 1328 231
0.10 374 59
0.20 630 540
0.30 57 37
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Figure 4.6: Empirical standard error (EmpSE) of the analysis ignoring measurement error (OLS) (solid gray lines
with dots indicating the estimates) and regression calibration (RC) (solid black lines with dots indicating the
estimates); and model based standard error (ModSE) of the analysis ignoring measurement error (OLS) (dotted
gray lines with open dots indicating the estimates) and regression calibration (RC) using the Delta method (D)
(dotted black lines with open dots indicating the estimates) or bootstrap resampling (B) (dotted black lines with
open triangles indicating the estimates) in a setting with 600 (first column) and 300 (second column) observations
for varying values of the reliability of the error-prone exposure (x-axis). The lines of the OLS estimator for the
empirical standard error and model based standard error overlap. The lines of the RC estimator for the empirical
standard error and model based standard error using bootstrap resampling overlap.
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Figure 4.7: Empirical standard error (EmpSE) of the analysis ignoring measurement error (OLS) (solid gray lines
with dots indicating the estimates) and regression calibration (RC) (solid black lines with dots indicating the
estimates); and model based standard error (ModSE) of the analysis ignoring measurement error (OLS) (dotted
gray lines with open dots indicating the estimates) and regression calibration (RC) using the Delta method (D)
(dotted black lines with open dots indicating the estimates) or bootstrap resampling (B) (dotted black lines with
open triangles indicating the estimates) in a setting with 150 (first column), 50 (second column) and 25 (third
column) observations for varying values of the reliability of the error-prone exposure (x-axis). The lines of the
OLS estimator for the empirical standard error and model based standard error overlap. The lines of the RC
estimator for the empirical standard error and model based standard error using bootstrap resampling overlap in
panel A. In panel B, the model based standard error of the RC estimator using bootstrap resampling fell outside
the range of the graph for reliability equal to 0.5 and was 2.5 (Monte Carlo SE (MCSE) 0.411). In panel E, the
model based standard error of the RC estimator using bootstrap resampling fell outside the range of the graph
for reliability equal to 0.5, 0.6, 0.7, and 0.8, and was 211.9 (MCSE 25.489), 27.8 (MCSE 9.575), 6.4 (MCSE 0.551), 2.4
(MCSE 0.241), respectively.
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Table 4.4: Empirical standard error (EmpSE) and model based standard
error (ModSE) of the analysis ignoring measurement error for varying
values of the sample size and reliability of the error-prone exposure
measure

n Relia- EmpSE MCSE ModSE MCSE
bility

600 0.01 0.02 <0.001 0.02 <0.001
0.05 0.05 <0.001 0.05 <0.001
0.10 0.07 0.001 0.07 <0.001
0.20 0.09 0.001 0.10 <0.001
0.30 0.11 0.001 0.11 <0.001
0.40 0.13 0.001 0.13 <0.001
0.50 0.14 0.001 0.14 <0.001

300 0.01 0.03 <0.001 0.03 <0.001
0.05 0.07 0.001 0.07 <0.001
0.10 0.09 0.001 0.10 <0.001
0.20 0.13 0.001 0.13 <0.001
0.30 0.15 0.002 0.16 <0.001
0.40 0.17 0.002 0.18 <0.001
0.50 0.19 0.002 0.20 <0.001

150 0.01 0.04 <0.001 0.04 <0.001
0.05 0.10 0.001 0.10 <0.001
0.10 0.14 0.001 0.14 <0.001
0.20 0.19 0.002 0.19 <0.001
0.30 0.24 0.002 0.23 <0.001
0.40 0.26 0.003 0.26 <0.001
0.50 0.30 0.003 0.29 <0.001

50 0.01 0.08 0.001 0.08 <0.001
0.05 0.17 0.002 0.17 <0.001
0.10 0.24 0.002 0.25 0.001
0.20 0.33 0.003 0.34 0.001
0.30 0.40 0.004 0.41 0.001
0.40 0.46 0.005 0.46 0.001
0.50 0.51 0.005 0.51 0.001

25 0.01 0.12 0.001 0.12 <0.001
0.05 0.22 0.002 0.25 0.001
0.10 0.37 0.004 0.36 0.001
0.20 0.51 0.005 0.50 0.002
0.30 0.61 0.006 0.60 0.002
0.40 0.70 0.007 0.68 0.002
0.50 0.76 0.008 0.74 0.002
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Table 4.5: Empirical standard error and model based standard error using the Delta method or bootstrap
(btstrp) resampling of regression calibration and associated Monte Carlo standard errors (MCSE) for varying
values of the sample size and reliability

n Relia- EmpSE MCSE ModSE MCSE ModSE MCSE
bility Delta Btstrp

600 0.01 3.44 0.034 28.23 10.792 719.18 73.283
0.05 0.88 0.009 1.20 0.004 1.42 0.076
0.10 0.60 0.006 0.81 0.002 0.62 0.001
0.20 0.41 0.004 0.54 0.001 0.42 0.001
0.30 0.33 0.003 0.43 < 0.001 0.34 < 0.001
0.40 0.28 0.003 0.36 < 0.001 0.29 < 0.001
0.50 0.25 0.002 0.31 < 0.001 0.26 < 0.001

300 0.01 8.84 0.088 17 882.74 8938.773 1006.92 173.947
0.05 1.13 0.011 1.78 0.012 72.07 28.696
0.10 0.88 0.009 1.17 0.004 1.08 0.131
0.20 0.54 0.005 0.77 0.002 0.60 0.001
0.30 0.45 0.004 0.61 0.001 0.48 0.001
0.40 0.38 0.004 0.51 0.001 0.41 0.001
0.50 0.35 0.003 0.44 0.001 0.37 0.001

150 0.01 1592.68 15.928 140 226.41 65 175.844 3727.84 1670.360
0.05 4.49 0.045 102.07 17.746 1132.07 123.372
0.10 1.89 0.019 3.35 0.438 97.39 14.841
0.20 0.88 0.009 1.15 0.004 0.99 0.008
0.30 0.73 0.007 0.89 0.002 0.72 0.003
0.40 0.59 0.006 0.74 0.002 0.61 0.002
0.50 0.55 0.005 0.64 0.001 0.53 0.001

50 0.01 44.09 0.441 12 448.39 2456.747 4439.06 756.806
0.05 159.47 1.595 306 333.55 65 894.251 4958.66 631.884
0.10 32.02 0.320 5841.30 1090.653 864.77 225.879
0.20 4.42 0.044 140.83 22.227 178.76 13.801
0.30 1.27 0.013 1.73 0.011 47.74 5.814
0.40 1.09 0.011 1.37 0.007 13.04 1.355
0.50 0.93 0.009 1.17 0.004 2.47 0.411

25 0.01 84.22 0.842 155 586.92 46 169.38 6699.71 1731.772
0.05 36.35 0.364 2866.83 263.583 1173.37 48.557
0.10 19.32 0.193 1048.99 125.869 2287.16 234.035
0.20 25.09 0.251 4762.48 2369.783 527.13 100.104
0.30 7.58 0.076 384.43 153.234 628.15 257.196
0.40 1.70 0.017 2.44 0.112 207.84 78.895
0.50 1.44 0.014 1.83 0.014 211.88 25.489
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4.5. Discussion
This chapter studied settings in which application of regression calibration (RC) may not
be appropriate for correcting bias induced by exposure measurement error. Particularly in
small samples, the RC estimator may be less efficient in terms of MSE than an estimator
not correcting for the exposure measurement error. This bias–variance trade off was most
pronounced in settings where reliability was low and residual error variance high. In an
investigation of the finite sample properties of RC, we showed that particularly when the
measurement error is relatively large and sample size small, RC provided biased estimates,
large MSEs and large empirical standard errors. Particularly, in these settings, the model
based standard errors did not agreewith the empirical standard errors and the RC estimator
was instable as shown by large Monte Carlo standard errors.

In settings where the reliability of the error-prone measure was low (i.e., reliability <0.2)
and sample size small (i.e., sample size <150), the performance of RC was poor. This is
explained by the fact that by application of RC, the uncorrected estimate was divided by
an estimate of the correction factor. This correction factor was equal to the reliability of
the error-prone measurement in our study. In settings in which the correction factor was
close to zero, it was more likely that in one of the replications in the simulation study the
correction factor approached zero. Specifically when sample size was small. Consequently,
the corrected estimate in that specific replicationwas large, affectingmean percentage bias,
MSE, and the empirical standard error of the setting under study, since outliers affect these
summary estimates. Bootstrapped confidence intervals were sensitive to this property as
well. That is, independent of the original artificial data, one of the 999 replicates could
provide a correction factor approaching zero, affecting the distribution of the estimates in
the different bootstrap samples, and thus standard errors based on the standard deviation
of that distribution. Taking the 2.5% and 97.5% bootstrap percentiles for CI constructionwas
less sensitive to outliers, but when many of the bootstrap resamples provided a correction
factor approaching zero, clearly the percentile-based CIs were affected too.

In our motivating example of active energy expenditure and lean body mass, RC
provided an effect estimate that was large compared to the uncorrected estimate (-17.8
versus -0.7) accompanied with wide confidence intervals (-56.6;19.2 (Delta) and -270.0;217.2
(bootstrap)). The large width of the bootstrap confidence intervals can be explained by the
fact that the correction factor was small and approached zero in some of the bootstrap
resamples.

We only studied relatively simple settings, i.e., random measurement error and
univariable models. However, the two phenomena explained here can be extended
to settings where the measurement error is not random (e.g., in case of systematic
measurement error) and in multivariable models. When differential measurement error
is expected, the use of RC for measurement error correction is inappropriate [3, 15].

RC is not only suited for exposure measurement error correction in linear regression
models but serves as a fair approximation in logistic regression and survival models as well
[3]. In case of logistic regression and survival models, RC is only approximately consistent
if ‘measurement error is small’ and the odds ratio or hazard ratio ‘small to moderate’.
See for a detailed discussion of RC for logistic regression, Kuha et al. [16] and for a
detailed discussion of RC, Carroll et al. [17]. An investigation of the bias–variance trade
off and finite sample performance of RC in logistic regression or survival models when
measurement error is large is a topic for future research.
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RC provides a valuable tool for exposure measurement error correction in epidemiologic
studies but may not be particularly useful in settings where sample size is small and
reliability of the error-prone exposure low. In those settings, it is advised to replace
the substitute error-prone exposure by a more reliable measure of exposure and/or the
collection of more data is needed.
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5
Sampling strategies for internal
validation samples for exposure
measurement error correction

Statistical correction for measurement error in epidemiologic studies is possible, provided that information
about the measurement error model and its parameters are available. Such information is commonly
obtained from a randomly sampled internal validation sample. It is however unknown whether randomly
sampling the internal validation sample is the optimal sampling strategy. We conducted a simulation
study to investigate various internal validation sampling strategies in conjunction with regression
calibration. Our simulation study showed that for an internal validation study sample of 40% of the main
study’s sample size, stratified random and extremes sampling had a small efficiency gain over random
sampling (10% and 12% decrease on average over all scenarios, respectively). The efficiency gain was
more pronounced in smaller validation samples of 10% of the main study’s sample size, i.e., a 31% and
36% decrease on average over all scenarios, for stratified random and extremes sampling, respectively.
To mitigate the bias due to measurement error in epidemiologic studies, small efficiency gains can be
achieved for internal validation sampling strategies other than random, but only when measurement
error is non-differential. For regression calibration, the gain in efficiency is, however, at the cost of a
higher percentage bias and lower coverage.

This chapter is based on: L. Nab, M. van Smeden, R. de Mutsert, F.R. Rosendaal and R.H.H. Groenwold, Sampling
strategies for internal validation samples for exposure measurement–error correction: A study of visceral adipose
tissue measures replaced by waist circumference measures, American Journal of Epidemiology 190 (9) (2021)
1935–1947. doi:10.1093/aje/kwab114
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5.1. Introduction

Preferred (or gold standard) measurements in large epidemiologic studies can be expensive,
time consuming, invasive, or burdensome. These measures therefore are often replaced
by simpler measures (less invasive, cheaper, faster), which are then assumed to highly
correlate with the preferred measure. For example, consider studies of visceral adipose
tissue (VAT), e.g. studies showing that higher values of VAT are associated with higher
values of insulin resistance [1, 2]. Measurement of VAT involves magnetic resonance
imaging (MRI) scans. Alternatively, measurement of waist circumference (WC), which
requires only a measuring tape, can provide a proxy measure of VAT [3]. Nevertheless,
the substitute measurements (e.g., WC) are not perfectly correlated with the gold standard
(e.g., VAT) and, consequently, the substitute measurement can be viewed as an error-prone
substitute for the gold standard.

Several methods have been developed to adjust for the bias in estimators of
exposure-outcome associations when an exposure is measured with error [4–12]. Despite
the abundance of literature on measurement error correction methodology, application of
measurement error correction is still rare [13, 14]. Of the measurement error correction
methods that are used, regression calibration is among the most commonly used in
epidemiologic research [15], possibly because of its relative simplicity and the possibility
to implement it in many situations [4, 7, 16, 17]. Regression calibration relies on
information about the relation between the error-prone and the preferred (or gold standard)
measurement, i.e., the measurement error model and its parameters. This relation can
be estimated using an internal validation sample, a subset of the main study including
individuals for whom both the error-prone substitute and gold standard measurement are
available.

Several regression calibration methods have been proposed. In linear models, examples
include standard and validation regression calibration (see e.g. [7]) as well as efficient
regression calibration by Spiegelman et al. [18]. The efficiency of these different regression
calibration methods has been compared in simulation studies (e.g., see [19]). Nonetheless,
no studies have been conducted to investigate what internal validation sampling strategy
(e.g., random, stratified random or extremes sampling) in conjunction with regression
calibration provides the most efficient estimate of the corrected exposure-outcome
association. The efficiency of regression calibration depends on the efficiency of the
estimation of the calibration model, which may hypothetically be improved by sampling
e.g. the extremes, assuming linear calibration models.

In the present study, we aim to compare different sampling strategies for the internal
validation sample in combination with different regression calibration methods to correct
for the bias in exposure-outcome associations caused by measurement error. First, we
introduce the Netherlands Epidemiology of Obesity (NEO) study and illustrate three
different internal validation sample sampling strategies. We then present a simulation
study contrasting the finite sample properties of different sampling strategies of the
internal validation sample in conjunction with regression calibration, motivated by the
analysis of the NEO data. We conclude with a discussion of our results.
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5.2. Case study: visceral adipose tissue measures as
replacement for waist circumference measures

The NEO study is a large prospective observational cohort designed to investigate the
pathways that lead to obesity-related diseases and conditions [20]. Men and women aged
between 45 and 65 years with a self-reported body mass index of 27 or higher, living in the
greater area of Leiden (in the West of the Netherlands) were eligible to participate in the
NEO study. In addition, all inhabitants aged between 45 and 65 years from onemunicipality
(Leiderdorp) were invited, irrespective of their body mass index, to represent the general
population.

A cross-sectional analysis of the association between VAT and insulin resistance was
conducted in the subset of individuals that originated from the Leiderdorp subcohort of the
NEO study comprising of 1,670 individuals. VAT depots were quantified bymeans of MRI in
a subsample of 668 (40%) individuals. These 668 individuals were randomly selected among
the individuals who had no contraindication to undergo anMRI.WCwasmeasuredmidway
between the border of the lower costal margin and the iliac crest in all individuals. In this
illustrative example we make two simplifying assumptions, 1) we consider WC measures as
the error-prone substitute measure of the exposure of interest (i.e., VAT) and 2) we assume
thatWC is independent of insulin resistance givenVAT and the confounding variables Z (i.e.,
non-differential measurement error). These two assumptions are summarized in the causal
diagram in Figure 5.1. Violation of the non-differential measurement error assumption
can lead to bias in both the regression calibration and internal validation analyses, under
the circumstances explained in the ‘Results’ section below. For the assessment of insulin
resistance, the homeostatic model assessment of insulin resistance was used as fasting
glucose (in mmol/L) × fasting insulin (in mU/L)/22.5. Of the 668 selected individuals, 19
were excluded from analysis because they used glucose lowering therapy and, additionally,
one patient was excluded because of a very low fasting glucose blood concentration.
This resulted in including 648 individuals in our analysis. There were 22 missings in
the selected variables for analysis, which were imputed once (single imputation), using
multivariate imputation through chained equations by the package mice version 3.8.0
[21] with standard settings from the statistical software R [22]. The association between
VAT and insulin resistance was adjusted for the potential confounding variables age, sex,
ethnicity, educational level, smoking state, alcohol consumption, total body fat, physical
activity, and additionally for hormonal use and menopausal state in women. We refer to
[2] for further details on the assessment of all variables used in this study. Measures of
VAT, WC and total body fat were standardized and measures of insulin resistance were log
transformed. The effect sizes were derived from a linear regression analysis and expressed
as percentages difference in outcome per standard deviation (SD) VAT.

After adjustment for confounding, insulin resistance was 27% higher (95% confidence
interval (CI): 19%-35%) per SDVAT (54 cm²). Alternatively, insulin resistance was 30% higher
(95%CI: 18%-43%) per SD WC (12 cm), with adjustment for the same potential confounders
as the association between VAT and insulin resistance. Under the assumptions depicted in
Figure 5.1, the difference in these two estimates can be explained by the measurement error
in WC as a measure of VAT.
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𝑍 VAT Insulin Resistance

WC

Measurement Error

Figure 5.1: Assumptions of our motivating example. Error-prone waist circumference (WC) measures used as a
substitute measurement to estimate the association between (VAT) and insulin resistance, confounded by 𝑍 (e.g.,
age, sex, total body fat).

5.2.1. Testing sampling strategies in a resampling study
To illustrate sampling strategies for an internal validation sample in combination with
regression calibration to correct for measurement error, a resampling study was performed
using data of the 648 individuals from the Leiderdorp cohort of whom both VAT and WC
measures were taken. Five hundred new data sets were created by sampling from the
648 individuals with replacement. In each of the 500 resampled data sets, the association
between VAT and insulin resistance was estimated (referred to as the reference analysis). In
addition, WC measurements were considered as a proxy for VAT, and used to estimate the
association between VAT and insulin resistance (referred to as the uncorrected analysis).
Both analyses were adjusted for the same confounders as the original analysis presented
above.

Next, 260 individuals (approximately 40% of 648) were included in the internal validation
sample. This 40%was chosen to resemble the percentage of individuals of whomVAT depots
were quantified of the whole Leiderdorp subcohort of the NEO study (i.e., in 668 individuals
of the 1,670 individuals). The internal validation sample was sampled by using one of the
following three sampling strategies: 1) random, 2) extremes or 3) stratified random (see
next subsection). The VAT measures of all individuals who were not selected in the internal
validation sample were removed. In each of these data sets, the association between VAT
and insulin resistance was estimated by using only the information of the 40% of individuals
included in the internal validation sample (internal validation sample restricted). Next, the
VAT measurements available in the internal validation sample were used to correct for the
measurement error in the association between WC and insulin resistance in three ways: 1)
standard regression calibration, 2) validation regression calibration or 3) efficient regression
calibration (see next subsection).

For each sampling strategy and each regression calibrationmethod, the mean of the 500
effect estimates was calculated and corresponding 95% CIs were constructed based on the
empirical standard errors. All analyses were adjusted for the above-mentioned potential
confounders.

Sampling strategies and regression calibration methods. Figure 5.2 shows a
visualisation of the three sampling strategies used in this study. The internal validation
sample was sampled 1) randomly, 2) the 130 individuals with the lowest and 130 with
the highest measured WC values were selected (extremes sampling) or 3) by grouping
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Figure 5.2: Visualisation of different internal validation sample sampling strategies in the Leiderdorp cohort of
the Netherlands Epidemiology of Obesity. A) Visceral adipose tissue (VAT) measures are obtained at random
(independent of waist circumference (WC)); B) VATmeasures are obtained stratified randomly (stratified for strata
of WC); and C) VAT measures are obtained in the individuals with the lowest and highest WC measures. The
black points indicate the individuals included in the internal validation sample and the grey points the excluded
individuals. The VAT measures and WC measures are standardized.

individuals according to tenths of the range of the measured WC values and sampling
26 individuals from each stratum (stratified random sampling). For stratified random
sampling, when one of the strata contained less than 26 individuals, all individuals of
this stratum were included in the internal validation sample. Subsequently, more than 26
individuals were sampled from the remaining strata, by equally distributing the shortage
of individuals in the strata with less individuals among the strata with more individuals.
We hypothesized that by sampling the extremes or by stratified random sampling, a linear
relation betweenWC and VAT could be estimated more efficiently in the internal validation
set. By increasing the efficiency of the estimation of the linear relation between WC and
VAT, the efficiency of regression calibration was expected to increase simultaneously.

Three regression calibration methods were applied: 1) standard regression calibration,
2) validation regression calibration and 3) efficient regression calibration. Standard
regression calibration and validation regression calibration are linear regressions where
insulin resistance is regressed on a corrected version of the error-prone WC measures,
and the confounding variables. Standard regression calibration replaces the error-prone
WC measures with the predicted mean of VAT given WC and the confounding variables.
Validation regression calibration replaces the error-prone WC measures with the predicted
mean of VAT given WC and confounding variables for individuals not included in the
internal validation sample. For the individuals included in the internal validation sample,
the error-prone WC measurements are replaced by their VAT measurements. Efficient
regression calibration takes the inverse variance weighted mean of the effect estimate of
the internal validation sample restricted analysis (see above) and the standard regression
calibration analysis. Further technical details (including standard error estimation) can be
found in the supplementary material section S5.1.

Results. The results of the resampling study are shown in Table 5.1. In the uncorrected
analysis, where WC was used to estimate the association between VAT and insulin
resistance, the association between VAT and insulin resistancewas overestimated compared
with the reference analysis (30% vs 27%). When the internal validation sample was
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Table 5.1: Estimated association between visceral adipose tissue and insulin resistance in the Leiderdorp cohort
of the NEO study using different methods to correct for the measurement error when visceral adipose tissue
measures were replaced by waist circumference measures

Method Random Stratified Random Extremes
Effect 95% CI Effect 95% CI Effect 95% CI
Size (%)a Size (%)a Size (%)a

IVS Restricted 26 14;40 20 9;33 18 7;31
Standard RC 67 24;126 60 25;105 59 24;104
Efficient RC 31 20;44 26 15;38 25 14;37
Validation RC 32 20;45 25 14;38 22 11;34

Abbreviations: CI = confidence interval; IVS = internal validation sample; and RC = regression calibration
a derived from 𝛽 coefficients from linear regression analyses and expressed as percentages difference in outcome measure
per standard deviation VAT; the effect size found in the reference analysis was 27% (95% CI 19%, 35%), the effect size
found in the uncorrected analysis was 30% (18%,43%)

sampled randomly, the internal validation sample restricted analysis concurred with the
reference analysis (26% vs 27%). However, the standard regression calibration approach
overestimated the association between VAT and insulin resistance severely in comparison
with the reference analysis (67% vs 27%). When the internal validation sample was sampled
stratified randomly or by sampling the extremes, the internal validation restricted analysis
underestimated the association between VAT and insulin resistance in comparison with
the reference analysis (20% and 18%, respectively vs 27%). In comparison, the standard
regression calibration analysis, again, severely overestimated the association between
VAT and insulin resistance (60% and 59%, for stratified random and extremes sampling,
respectively, vs 27%). Further, our results suggest that stratified random and extremes
sampling improve the estimates of efficient regression calibration and validation regression
calibration, since they appear to be closer to the reference analysis in comparison to random
sampling, but this may be a chance finding due to cancellation of effects. Efficient and
validation regression calibration are pooled averages of the underestimated association
in the internal validation restricted analysis and the overestimated association in the
standard regression calibration analysis. Specifically, the results of the standard regression
calibration analysis are clearly biased for all sampling strategies, and we therefore expect
the results of the efficient and validation regression calibration analyses to be biased as
well.

The results of our empirical example seem to indicate that only the internal validation
restricted analysis with a random sampling strategy concurs with the reference analysis.
These results were not expected and can be explained by the fact that the measurement
error in WC may depend on insulin resistance, since WC measures also provide a proxy for
subcutaneous fat, which in turn is associated with insulin resistance. Consequently, the
assumption of non-differential measurement error is violated. Particularly, to unbiasedly
recover the exposure-outcome association under study, regression calibration relies on the
assumption that the measurement error is non-differential. Furthermore, the internal
validation sample restricted analysis is biased when the internal validation sample is
obtained by sampling stratified randomly or extremes. In this case, sampling stratified
randomly or the extremes introduced collider stratification bias, since inclusion in the
internal validation sample is dependent on WC (depicted in the directed acyclic graph in
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Figure 5.3). Consequently, the relation between VAT and insulin resistance is expected to
be biased. Although sampling the internal validation sample other than randomly provides
results that do not concur with the reference analysis here, general conclusions based on
this empirical example are not warranted, which motivated our simulation study.

𝑍 VAT Insulin Resistance

WC

Measurement Error

𝑆

Figure 5.3: Collider stratification bias due to differential measurement error. Introduction of collider stratification
bias when the data are observed (𝑆) depending on the error-prone waist circumference (WC) measures with
differential measurement error in a study estimating the association between (VAT) and insulin resistance,
confounded by 𝑍 (e.g., age, sex, total body fat).

5.3. Simulation study
A simulation study was conducted to evaluate the finite-sample properties of the different
internal validation sample sampling strategies combined with regression calibration. The
sample size and the values of the parameters of the data generating mechanisms were
similar to those estimated in the NEO subcohort mentioned in the previous section.

Generating data. Data sets were generated with a sample size of 650. The following
data generating mechanisms were used to generate data on sex, age, total body fat (TBF),
VAT, WC and insulin resistance (IR):

sex ∼ Bern(0.5), age ∼ Unif(45, 65), TBF|sex, age ∼ N(−2 + sex + 0.01×age, 0.5),

VAT = 0.4 − 2×sex + 0.01×age + 0.9×TBF − (6𝜆×√
0.5
6𝜆 ) + 𝜀, 𝜀 ∼ Gamma(6𝜆,√

0.5
6𝜆 ),

WC|VAT ∼ N(0.8×VAT, 𝜏 2), and,

IR|VAT, sex, age, TBF ∼ N(0.5 + 𝛽×VAT − 0.5×sex + 0.01×age + 0.3×TBF, 0.3).

The estimand of this simulation study is the conditional effect of VAT on insulin
resistance (i.e, 𝛽) and was set to 0.2. The parameters 𝜏 and 𝜆 were varied in different data
generation scenarios of our simulation study. The variance of the measurement error (i.e.,
𝜏2) was varied according to the explained variance ofWC given VAT (hereafter referred to as
R-squared). Values for R-squared were set to: 0.2, 0.4, 0.6, 0.8 and 0.9, corresponding values
for 𝜏 can be found in Table S5.1a in the supplementary material section S5.2. For reference,
the R-squared of the linear model of VAT and WC was approximately 0.6 in the NEO data.
The above data generating mechanism for VAT allowed to change the skewness of the
residual errors while keeping the mean and variance of the marginal distribution constant.
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The skewness of the residual errors of VAT, 𝜀, (hereafter referred to as skewness) were varied
by changing 𝜆. Values for the skewness were set to: 0.1, 1, 1.5 and 3, corresponding values
for 𝜆 can be found in Table S5.1b in the supplementary material section S5.2. Additionally,
we changed the distribution of WC|VAT by using the square root of VAT instead of VAT
to generate WC, in what was called the non-linear scenario. R-squared, the skewness and
linearity were varied in a full-factorial design (i.e., 5×4×2 = 40 scenarios). For each scenario,
5000 datasets were generated.

Model estimation and performance measures. In each generated data set, we
applied the three sampling strategies (i.e., random, extremes and stratified random
sampling) and the five analyses (i.e., uncorrected, internal validation sample restricted
and the three regression calibration analyses). Standard errors were calculated using
standard software or by using the multivariate delta method, see for details supplementary
material section S5.1. Subsequently, Wald based confidence intervals were constructed.
Performance of the different analytical methods was evaluated in terms of the bias, mean
squared error (MSE), the proportion of 95% CIs that contain the true value of the estimand
(coverage), the empirical standard deviation of the estimated treatment effects and square
root ofmeanmodel based variance of the estimated treatment effect. Monte Carlo standard
errors (MCSE) were calculated for all performance measures [23], using the R package
rsimsum version 0.9.0 [24]. All code used for the simulation study is publicly available at
https://github.com/LindaNab/me_neo.

Sensitivity analyses. Two sensitivity analyses were conducted. First, to assess the
sensitivity of our results to the size of the internal validation sample, we changed the
percentage of individuals included to 10% and 25%. Second, in our empirical example in
section 5.2, it was seen that the performance of the three regression calibration analyses
was generally poor. We hypothesised that this is possibly due to differential measurement
error in the WC measures. Differential measurement error occurs when WC depends on
the outcome insulin resistance, conditional on VAT and the confounding variables (we
refer to supplementary material section S5.1 for further details). To evaluate the impact
of differential measurement error, one scenario was added by replacing the conditional
distributions of WC and insulin resistance by:

WC|VAT ∼ N(𝜃×VAT + 𝜏×𝑈 , 𝜏 2) and,

IR|VAT, sex, age, TBF ∼ N(0.5 + 𝛽×VAT − 0.5×sex + 0.01×age + 0.3×TBF + √0.3×𝑈 , 0.3),
where 𝑈 is a random variable with a Bernoulli distribution with mean 0.5. This scenario
is an example of differential measurement error, since the distribution of the error-prone
WC is dependent of the outcome insulin resistance via a third variable 𝑈 , considered
unmeasured. Here, 𝜏 was set equal to 0.44 (corresponding to an R-squared of 0.8 in the
main study), the skewness of the residual errors of VAT was 0.1 and the estimand (𝛽) was
again 0.2.

5.3.1. Results
For brevity, herewe do not show results of the scenarios where R-squaredwas equal to 0.9 or
where skewness was equal to 1 (results are shown in Tables S5.2-S5.7 in the supplementary
material section S5.3). The results of these parameter values did not contribute to the main
comparisons made because the results of R-squared equal to 0.9 were similar to R-squared

https://github.com/LindaNab/me_neo
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equal to 0.8 and the results of skewness equal to 1 were similar to skewness equal to
1.5. Further, since the focus of this paper is the comparison between the three sampling
strategies, we focus on the performance of the three sampling strategies in the internal
validation restricted analysis and validation regression calibration. We chose to focus
on validation regression calibration since this appears to be the standard method when
applying regression calibration when there is an internal validation sample. The results
of the sampling strategies using efficient regression calibration and standard regression
calibration can be found in Figure S5.2-S5.3 and Tables S5.8-S5.18 in the supplementary
material section S5.3.
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Figure 5.4: Nested loop plot of the percentage bias in the analysis ignoring measurement error. Solid line: Linear
measurement error model; and dashed line: Non-linear measurement error model. Order from outer to inner
loops: Skewness of the residual errors of the gold standard measure (S, 3 levels, increasing); R-squared of the
measurement error model (𝑅2, 4 levels, increasing).

Figure 5.4 shows the percentage bias in the uncorrected analysis. In the uncorrected
analysis, the association between VAT and insulin resistance was severely underestimated
(bias ranging from -92% to -22%). The percentage bias decreased when R-squared increased
and the bias in the uncorrected analysis was slightly higher when the measurement error
model was non-linear compared to a linear model. The skewness of the residual errors of
VAT had no bearing on bias.

Efficiency in terms of mean squared errors. Figure 5.5 shows the mean squared
errors for the internal validation sample restricted analysis with an internal validation
sample of 40% and 10% of the main study’s sample size. Smaller mean squared errors were
seen for stratified random and extremes sampling compared to random sampling for both
samples sizes of the internal validation data. For the internal validation sample of 40% of
the main study’s sample size, the percentage decrease in mean squared error was 19% and
24% on average, for stratified and extremes sampling, respectively, MCSE < 0.0001. For the
internal validation sample of 10% of the main study’s sample size, the percentage decrease
in mean squared error was 36% and 41% on average, for stratified and extremes sampling,
respectively, MCSE < 0.0005. Most notably, mean squared errors decreased further for
both stratified random and extremes sampling when the residuals error of VAT were more
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skewed.
Figure 5.6 shows the mean squared errors for validation regression calibration with an

internal validation sample of 40% and 10% of the main study’s sample size. For the internal
validation sample of 40% of the main study’s sample size, mean squared errors were smaller
for stratified random and extremes sampling compared to random sampling, with a 10%
and 12% decrease on average, respectively, MCSE < 0.0001. For the internal validation
sample of 10% of the main study’s sample size, mean squared errors were found smaller for
stratified random and extremes sampling compared to random sampling, with a 31% and
36% decrease on average, respectively, MCSE < 0.0005. The gain in efficiency was greatest
for higher levels of skewness.

In a comparison between the internal validation restricted analysis and validation
regression calibration, mean squared errors were generally smaller for validation regression
calibration compared with the internal validation restricted analysis (compare Figure 5.5
and 5.6). The difference was more pronounced for high values of the R-squared and a
validation sample of 10% of the main study’s sample size.

The results for the internal validation restricted analysis and validation regression
calibration with an internal validation sample comprising of 25% of the main study can
be found in Figure S5.1 of supplementary material section S5.3.

Bias and coverage. Table 5.2 and 5.3 shows percentage bias and coverage of the
internal validation restricted and the validation regression calibration analysis, respectively,
with an internal validation sample of 40% of the main study’s sample size. For the
internal validation restricted analysis, all three different sampling strategies recovered
the association between VAT and insulin resistance, with bias close to 0%. Additionally,
coverage was close to the nominal level of 95% for all three sampling strategies. For
the validation regression analysis and a randomly sampled internal validation sample,
percentage bias was close to 0%. Contrary to random sampling, stratified random and
extremes sampling introduced bias in the association under study. Which was greater
for higher levels of the skewness and the R-squared. Coverage was close to the nominal
level of 95% for random sampling. For stratified random and extremes sampling, coverage
was close to the nominal level of 95% for all but the following three scenarios. There
was undercoverage (91.5% and 91.9% (stratified) and, 90.1% and 90.1% (extremes)) in the
linear setting when skewness was equal to 3.0 and R-squared was 0.6 or 0.8, respectively.
Additionally, there was undercoverage (90.0% (stratified) and 91.3% (extremes)) in the
non-linear setting when the skewness was equal to 3.0 and R-squared was 0.8.

Table 5.4 and 5.5 shows the percentage bias and coverage of the internal validation
restricted and validation regression calibration analysis, respectively, with an internal
validation sample of 10% of the main study’s sample size. For the internal validation
restricted analysis and all three sampling strategies, percentage bias and coverage were
both close to levels of 0% and 95%, respectively. For validation regression calibration, the
association between VAT and insulin resistance was biased in most scenarios. Percentages
bias in the association under study ranged between −5.0% − 7.2% when skewness was
equal to 0.1. When skewness was equal to 1.5 or 3.0, percentages bias ranged between
−24.5% − 10.2%. Since the association under study was biased in almost all scenarios, the
effect estimate was undercovered for most scenarios, and increasingly when residual errors
were more skewed, since bias was greater in these settings. For random sampling, the
association under study was undercovered with levels ranging between 82.7% − 92.9%. For
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stratified random and extremes sampling, coverage was close to the nominal level of 95%
when skewness was equal to 0.1 (ranging between 92.5%−95.4%). When skewness was equal
to 1.5 or 3.0 the effect estimate was generally undercovered with levels ranging between
62.9% − 94.6%.

Differential measurement error. Table 5.6 shows that differential measurement
error can cause bias in the association between VAT and insulin resistance. The internal
validation sample restricted analysis using internal validation data that is sampled
randomly recovers the association under study with percentage bias equal to 0%. The
internal validation sample restricted analysis using stratified random or extremes sampling
were both biased with percentage bias equal to 10% and 30%, respectively. The different
regression calibration analyses were all biased, independent of how the internal validation
sample was sampled.



5

98 Sampling strategies for internal validation data

R
2 = 

0.
2,

 S
 =

 0
.1

R
2 = 

0.
4,

 S
 =

 0
.1

R
2 = 

0.
6,

 S
 =

 0
.1

R
2 = 

0.
8,

 S
 =

 0
.1

R
2 = 

0.
2,

 S
 =

 1
.5

R
2 = 

0.
4,

 S
 =

 1
.5

R
2 = 

0.
6,

 S
 =

 1
.5

R
2 = 

0.
8,

 S
 =

 1
.5

R
2 = 

0.
2,

 S
 =

 3
.0

R
2 = 

0.
4,

 S
 =

 3
.0

R
2 = 

0.
6,

 S
 =

 3
.0

R
2 = 

0.
8,

 S
 =

 3
.0

Scenario Parameters

0.0000

0.0015

0.0030

M
ea

n 
S

qu
ar

ed
 E

rr
or

A)

Sampling Strategy

Random
Stratified Random
Extremes

R
2 = 

0.
2,

 S
 =

 0
.1

R
2 = 

0.
4,

 S
 =

 0
.1

R
2 = 

0.
6,

 S
 =

 0
.1

R
2 = 

0.
8,

 S
 =

 0
.1

R
2 = 

0.
2,

 S
 =

 1
.5

R
2 = 

0.
4,

 S
 =

 1
.5

R
2 = 

0.
6,

 S
 =

 1
.5

R
2 = 

0.
8,

 S
 =

 1
.5

R
2 = 

0.
2,

 S
 =

 3
.0

R
2 = 

0.
4,

 S
 =

 3
.0

R
2 = 

0.
6,

 S
 =

 3
.0

R
2 = 

0.
8,

 S
 =

 3
.0

Scenario Parameters

0.0000

0.0015

0.0030

M
ea

n 
S

qu
ar

ed
 E

rr
or

B)

R
2 = 

0.
2,

 S
 =

 0
.1

R
2 = 

0.
4,

 S
 =

 0
.1

R
2 = 

0.
6,

 S
 =

 0
.1

R
2 = 

0.
8,

 S
 =

 0
.1

R
2 = 

0.
2,

 S
 =

 1
.5

R
2 = 

0.
4,

 S
 =

 1
.5

R
2 = 

0.
6,

 S
 =

 1
.5

R
2 = 

0.
8,

 S
 =

 1
.5

R
2 = 

0.
2,

 S
 =

 3
.0

R
2 = 

0.
4,

 S
 =

 3
.0

R
2 = 

0.
6,

 S
 =

 3
.0

R
2 =

0.
8,

 S
 =

 3
.0

Scenario Parameters

0.0000

0.0075

0.0150

M
ea

n 
S

qu
ar

ed
 E

rr
or

C)

R
2 = 

0.
2,

 S
 =

 0
.1

R
2 = 

0.
4,

 S
 =

 0
.1

R
2 = 

0.
6,

 S
 =

 0
.1

R
2 = 

0.
8,

 S
 =

 0
.1

R
2 = 

0.
2,

 S
 =

 1
.5

R
2 = 

0.
4,

 S
 =

 1
.5

R
2 = 

0.
6,

 S
 =

 1
.5

R
2 = 

0.
8,

 S
 =

 1
.5

R
2 = 

0.
2,

 S
 =

 3
.0

R
2 = 

0.
4,

 S
 =

 3
.0

R
2 = 

0.
6,

 S
 =

 3
.0

R
2 = 

0.
8,

 S
 =

 3
.0

Scenario Parameters

0.0000

0.0075

0.0150

M
ea

n 
S

qu
ar

ed
 E

rr
or

D)

Figure 5.5: Nested loop plot of the mean squared errors in the analysis restricted to the internal validation sample
for the three different sampling strategies. A) Linear measurement error model and an internal validation sample
of 40% of the main study; B) Non-linear measurement error model and an internal validation sample of 40% of
the main study; C) Linear measurement error model and an internal validation sample of 10% of the main study;
and D) Non-linear measurement error model and an internal validation sample of 10% of the main study. Order
from outer to inner loops: Skewness of the residual errors of the gold standard measure (S, 3 levels, increasing);
R-squared of the measurement error model (𝑅2, 4 levels, increasing).
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Figure 5.6: Nested loop plot of the mean squared errors in the analysis using validation regression calibration
to correct for the measurement error for the three different sampling strategies. A) Linear measurement error
model and an internal validation sample of 40% of the main study; B) Non-linear measurement error model and an
internal validation sample of 40% of themain study; C) Linear measurement error model and an internal validation
sample of 10% of the main study; and D) Non-linear measurement error model and an internal validation sample
of 10% of the main study. Order from outer to inner loops: Skewness of the residual errors of the gold standard
measure (S, 3 levels, increasing); R-squared of the measurement error model (𝑅2, 4 levels, increasing).
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Table 5.2: Percentage bias and coverage in the estimated association between visceral adipose tissue and insulin
resistance with an internal validation sample of 40% of the main study’s sample size

Scenario IVS Restricted Analysis
Linear 𝑅2 Skew- Percentage Bias (%)a Coverage (%)b

ness R SR E R SR E
Yes 0.2 0.1 −0.5 0.2 −0.1 94.9 94.8 95.1

1.5 −0.1 −0.1 0.2 94.8 94.6 95.0
3.0 −0.2 0.2 −0.1 94.7 94.4 94.7

0.4 0.1 −0.1 0.4 0.1 95.0 95.3 94.9
1.5 0.1 0.3 0.1 94.8 95.4 95.1
3.0 0.3 0.0 0.2 95.3 94.9 94.9

0.6 0.1 0.4 0.8 0.2 94.8 94.8 94.2
1.5 0.1 −0.3 0.4 95.1 95.0 94.5
3.0 0.0 −0.3 −0.1 94.8 94.8 94.6

0.8 0.1 −0.3 0.1 0.1 94.9 94.7 95.3
1.5 0.2 −0.2 −0.3 94.7 95.3 95.0
3.0 0.0 −0.2 0.0 94.7 94.7 94.7

No 0.2 0.1 0.3 0.2 0.2 94.8 94.6 95.1
1.5 −0.3 0.2 −0.2 94.6 95.0 95.4
3.0 −0.2 0.2 0.1 94.3 94.5 94.3

0.4 0.1 0.4 0.0 −0.1 95.3 94.4 94.9
1.5 −0.6 −0.1 −0.2 94.8 95.4 95.0
3.0 −0.2 −0.3 −0.4 94.6 94.3 94.4

0.6 0.1 0.4 −0.4 −0.1 94.7 95.0 94.9
1.5 0.2 0.4 0.4 95.1 95.3 95.4
3.0 0.0 −0.1 0.0 94.6 94.8 94.5

0.8 0.1 0.1 0.0 0.3 94.5 94.8 94.8
1.5 0.0 −0.2 −0.2 94.9 94.4 94.8
3.0 0.3 0.3 0.4 94.7 95.0 94.6

Abbreviations: IVS = internal validation sample; R = random; SR = stratified random; and E = extremes,
aMonte Carlo standard error (MCSE) <0.001, bMCSE <0.005
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Table 5.3: Percentage bias and coverage in the estimated association between visceral adipose tissue and insulin
resistance with an internal validation sample of 40% of the main study’s sample size

Scenario Validation Regression Calibration
Linear 𝑅2 Skew- Percentage Bias (%)a Coverage (%)b

ness R SR E R SR E
Yes 0.2 0.1 −0.5 0.2 −0.1 94.9 95.3 95.7

1.5 −0.4 −0.7 −0.3 94.8 95.5 95.6
3.0 −0.3 −1.2 −1.4 94.7 94.5 94.8

0.4 0.1 −0.3 0.4 0.2 94.9 95.2 95.2
1.5 0.1 −1.7 −1.9 94.8 95.0 95.2
3.0 0.9 −4.1 −4.4 94.1 94.4 94.4

0.6 0.1 0.6 0.9 0.6 95.2 94.9 94.8
1.5 0.5 −3.3 −3.3 94.7 94.5 94.4
3.0 0.9 −7.4 −8.9 93.2 91.5 90.8

0.8 0.1 0.2 0.1 0.2 94.6 94.9 95.1
1.5 0.4 −3.6 −4.2 94.9 94.7 94.0
3.0 1.0 −7.7 −9.5 93.8 91.9 90.8

No 0.2 0.1 −0.2 0.1 0.1 95.3 94.9 95.4
1.5 −0.7 −0.3 −0.5 94.7 95.2 95.5
3.0 −0.5 −0.4 −0.4 94.7 94.7 94.7

0.4 0.1 0.4 −0.1 −0.4 95.2 94.7 95.2
1.5 −0.8 −1.3 −1.5 95.0 95.6 95.5
3.0 −0.4 −2.7 −2.6 94.6 94.2 94.7

0.6 0.1 0.1 −0.5 −1.0 94.8 95.2 94.8
1.5 0.2 −2.2 −2.9 95.4 95.3 95.2
3.0 0.2 −5.6 −5.6 94.0 93.5 93.5

0.8 0.1 0.4 0.1 0.3 94.4 94.8 95.2
1.5 −0.1 −5.7 −4.9 94.4 93.3 94.1
3.0 1.0 −9.7 −9.1 94.0 90.0 91.3

Abbreviations: R = random; SR = stratified random; and E = extremes,
aMonte Carlo standard error (MCSE) <0.001, bMCSE <0.005
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Table 5.4: Percentage bias and coverage in the estimated association between visceral adipose tissue and insulin
resistance with an internal validation sample of 10% of the main study’s sample size

Scenario IVS Restricted Analysis
Linear 𝑅2 Skew- Percentage Bias (%)a Coverage (%)b

ness R SR E R SR E
Yes 0.2 0.1 −0.9 0.3 −0.6 94.2 94.5 94.1

1.5 0.2 −0.4 0.0 94.2 95.0 94.0
3.0 −0.2 0.2 0.2 94.5 94.5 94.6

0.4 0.1 0.1 0.5 1.0 94.8 94.4 94.7
1.5 −0.4 0.0 −0.3 95.1 94.8 94.4
3.0 −0.2 −0.2 −0.1 94.6 94.8 94.4

0.6 0.1 0.4 0.4 0.1 94.3 94.5 94.7
1.5 −0.1 −0.4 0.2 95.3 94.3 94.5
3.0 −0.2 −0.7 −0.2 94.3 94.0 94.4

0.8 0.1 0.0 −0.6 −0.3 94.9 94.7 94.6
1.5 −1.4 −0.5 −0.9 94.7 94.5 94.8
3.0 −0.2 0.2 0.3 94.3 94.7 94.7

No 0.2 0.1 0.3 −0.7 1.1 94.3 94.0 94.3
1.5 −0.1 0.1 −0.2 94.7 94.6 94.4
3.0 −1.0 1.3 −0.2 94.2 94.0 94.5

0.4 0.1 0.6 0.0 0.4 94.8 94.5 94.0
1.5 −1.5 0.5 −1.0 94.3 94.5 94.5
3.0 −0.4 −0.1 −0.1 94.9 94.4 95.0

0.6 0.1 0.6 0.0 −0.1 94.7 94.7 94.2
1.5 0.2 0.1 0.3 94.9 94.7 94.9
3.0 −0.2 0.8 0.0 94.0 94.5 94.0

0.8 0.1 −0.3 −0.2 0.4 93.7 94.2 94.2
1.5 −0.8 −0.3 −0.5 94.3 94.0 94.2
3.0 0.3 0.4 0.7 94.6 94.9 94.4

Abbreviations: IVS = internal validation sample; R = random; SR = stratified random; and E = extremes,
aMonte Carlo standard error (MCSE) <0.005, bMCSE <0.01
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Table 5.5: Percentage bias and coverage in the estimated association between visceral adipose tissue and insulin
resistance with an internal validation sample of 10% of the main study’s sample size

Scenario Validation Regression Calibration
Linear 𝑅2 Skew- Percentage Bias (%)a Coverage (%)b

ness R SR E R SR E
Yes 0.2 0.1 −1.4 0.1 −0.4 92.3 94.4 95.4

1.5 −0.5 −4.0 −3.2 91.7 93.6 94.4
3.0 1.4 −9.8 −8.1 89.1 89.5 91.3

0.4 0.1 1.7 1.6 1.3 91.7 93.3 93.4
1.5 3.9 −8.3 −8.2 89.7 89.3 91.5
3.0 9.0 −20.1 −19.5 85.3 73.8 78.1

0.6 0.1 2.9 2.0 1.8 91.2 92.7 93.3
1.5 4.5 −10.9 −11.1 88.4 86.7 87.7
3.0 10.2 −24.5 −24.5 82.7 62.9 65.5

0.8 0.1 1.0 0.4 0.8 92.9 93.7 93.6
1.5 2.5 −9.8 −8.9 91.1 88.7 89.0
3.0 7.6 −19.0 −18.1 85.5 73.7 76.5

No 0.2 0.1 −5.0 −1.7 −0.5 92.9 94.2 94.9
1.5 −3.7 −2.5 −3.0 92.2 94.2 94.6
3.0 −3.7 −2.5 −3.8 91.9 93.5 94.2

0.4 0.1 0.6 0.7 −1.7 92.3 93.9 93.9
1.5 −0.4 −4.0 −8.7 91.4 93.0 92.7
3.0 2.8 −10.2 −14.2 89.6 89.1 87.8

0.6 0.1 1.2 2.3 −1.6 91.5 93.4 93.5
1.5 3.5 −6.0 −10.8 90.5 92.0 91.2
3.0 7.7 −16.4 −21.8 85.5 80.3 75.9

0.8 0.1 2.0 4.1 7.2 91.6 92.6 92.5
1.5 3.2 −8.6 −6.6 88.4 89.1 91.6
3.0 8.8 −20.2 −18.3 83.5 71.2 77.7

Abbreviations: R = random; SR = stratified random; and E = extremes,
aMonte Carlo standard error (MCSE) <0.005, bMCSE <0.01

Table 5.6: Percentage bias in the estimated association between visceral adipose tissue and insulin resistance in
case of differential measurement error

Method Percentage Bias (%)a
Random Stratified Random Extremes

IVS Restricted 0 10 30
Standard RC 76 75 75
Efficient RC 42 45 46
Validation RC 35 36 36

Abbreviations: IVS = internal validation sample; and RC = regression calibration
a The percentage bias in the uncorrected analysis was 25%, Monte Carlo standard error < 0.001
for all analyses
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5.4. Discussion
This study investigated three internal validation sampling strategies (i.e., random, stratified
random and extremes sampling) in conjunction with regression calibration to correct for
measurement error in a continuous exposure. Our simulation study showed a small
efficiency gain in terms of mean squared error of stratified random and extremes sampling
over a random sampling strategy for the internal validation restricted and regression
calibration analyses, but only whenmeasurement error was non-differential. For regression
calibration, this gain in efficiency was at the cost of higher percentages bias and lower
confidence interval coverage. We therefore recommend that, in general, regression
calibration using randomly sampled validation samples are preferable over stratified or
extremes sampled samples.

Three different regression calibration methods (i.e., standard, efficient and validation)
and an internal validation sample restricted analysis were tested in our simulation study.
The internal validation sample restricted analysis and validation regression calibration
showed the best overall performance in terms of percentage bias and confidence interval
coverage of the true effect. Furthermore, validation regression calibration had the same
efficiency as efficient regression calibration under strong correlations between the exposure
and outcome. These findings are consistent with the work by Thurston et al. [19]. In
addition, a slight undercoverage of the confidence intervals was found for the efficient
regression calibration approach.

Our simulation study showed a gain in efficiency of validation regression calibration
over the internal validation sample restricted analysis. The gain in efficiency was more
pronounced when the R-squared of the measurement error model was high and for
smaller validation samples (e.g., 10% of full sample). Intuitively, the validation sample
restricted analysis uses information about the gold standard measurement, but only for
those individuals in whom it was measured (i.e., the internal validation sample). For
regression calibration, however, information about all individuals is used, which tends to
increase the efficiency, compared to the restricted analysis. However, the efficiency is
negatively affected by the uncertainty in the correction factor that needs to be estimated
from the internal validation sample. The relative gain in efficiency for regression calibration
compared to an analysis of the gold standardmeasurement only (restricted to the validation
sample) depends on the correlation between the gold standard and the error-prone
measurement [15], as well as the appropriateness of parametric assumptions made for
regression calibration.

Relatedwork on internal validation studies can be found in the field of psychology, often
referred there as ‘two-method designs’ or ‘planned missing data designs’. These terms
were recently suggested by Rioux et al. for epidemiologic research [25]. Graham et al.
studied the cost-effectiveness of two-method designs and concluded that, in comparison
with an analysis restricted to the internal validation sample, the two-method design can
yield lower standard errors for testing associations using structural equation modelling
[26]. In particular, the benefit of the design can be enormous when there is a large cost
difference between the error-prone and the gold standard measures and effect sizes are
small.

Regression calibration is one approach to correct for measurement error. Other
measurement error correction methods include multiple imputation for measurement
error [8], simulation-extrapolation [9], Bayesian methods [5] and methods based on
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maximum likelihood estimation [27]. Earlier simulation studies have been conducted
comparing multiple imputation for measurement error and regression calibration. These
studies showed that, in general, multiple imputation for measurement error produced less
biased estimates than regression calibration, but can have larger variances [8, 28, 29].
Simulation-extrapolation was originally designed to correct for measurement error that
is random, which the measurement error in our case study was not. Adaptations have been
made to also allow for systematic measurement error [30].

In our motivating example, regression calibration performed poorly. This was
likely caused by violation of the non-differential measurement error assumption that
regression calibration relies on and it signifies the importance of this assumption. WC
measures may contain differential measurement error, since WC measures also provide
a proxy for subcutaneous fat, which in turn is associated with insulin resistance. In
our simulation study, where measurement error was known to be non-differential or
differential, regression calibration performed well (for non-differential measurement error)
or poorly (for non-differential measurement error), which further adds to our suspicion that
differential measurement error might have affected the results of the motivating example.

Non-differential measurement error is a strong assumption and may be unlikely in
practice [31]. Our motivating example signifies the importance of this assumption for
measurement error correction and illustrates that when measurement error is differential,
1) regression calibration is not an appropriate method for measurement error correction
and 2) non-random internal validation sampling strategies introduce collider stratification
bias (see Figure 5.3). In the case differential measurement error is assumed, alternative
methods formeasurement error correction can be used, for examplemultiple imputation for
measurement error [8] and regular multiple imputation methods [32–34]. Future research
could investigate if non-random validation sample strategies improve the efficiency of
multiple imputation methods for measurement error correction.

Large epidemiologic studies could consider to use internal validation samples when
a gold standard measurement is expensive, time consuming, or burdensome. Our
publicly available code at https://github.com/LindaNab/me_neo, provides an opportunity
for careful planning of a sampling strategy, including the size of the internal validation
sample, and the choice between an analysis restricted to the internal validation sample
or application of regression calibration. The code can be adapted to accommodate other
situations than the ones studied here.

In summary, our study showed that there appears to be little added value of stratified
random or extremes sampling in internal validation studies to correct for measurement
error. Regression calibration, if non-differential measurement error can be assumed,
was shown to be an effective approach to correct analyses for measurement error.
When handled with care, application of regression calibration can improve efficiency of
epidemiologic studies with internal validation samples.

https://github.com/LindaNab/me_neo
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Guidance for reporting of studies on

incidence of venous
thromboembolism in COVID-19

patients
Coagulation abnormalities and coagulopathy are recognised as consequences of Coronavirus disease
(COVID-19) and venous thromboembolism (VTE) has been reported as a frequent complication. By 27May
2021, at least 93 original studies and 25 meta-analyses investigating VTE incidence in COVID-19 patients
had been published, showing large heterogeneity in reported VTE incidence ranging from 0–85%. This
large variation complicates interpretation of individual study results as well as comparisons across studies,
e.g., to investigate changes in incidence over time, compare subgroups, and perform meta-analyses. We
identified different sources of heterogeneity in VTE incidence studies and classified these as clinical sources
and methodologic sources. Clinical sources of heterogeneity include differences between studies regarding
patient characteristics which affect baseline VTE risk and protocols used for VTE testing. Methodologic
sources of heterogeneity include differences in VTE inclusion types, data quality and the methods used for
data analysis. Each of these issues is discussed and illustrated using examples of VTE incidence studies in
COVID-19 patients. To appreciate reported estimates of VTE incidence in COVID-19 patients in relation to
its aetiology, prevention, and treatment, researchers should unambiguously report about possible clinical
and methodological sources of heterogeneity in those estimates. This chapter provides guidance for that.

This chapter is based on: L. Nab, R.H.H. Groenwold, F.A. Klok, B.S. Bhoelan, M.J.H.A. Kruip and S.C. Cannegieter,
Estimating incidence of venous thromboembolism in COVID-19: Methodological considerations, Research and
Practice in Thrombosis and Haemostasis 6 (6) (2022) e12776. doi:10.1002/rth2.1277
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6.1. Introduction
Coronavirus disease (COVID-19), caused by the virus SARS-CoV-2, primarily affects the
respiratory system, but coagulation abnormalities and coagulopathy are also recognised as
consequences [1]. In particular, venous thromboembolism (VTE) has been reported as a
major complication, with VTE incidences up to 50% in intensive care unit (ICU) admitted
patients [2]. By 27 May 2021, already 25 systematic reviews investigating VTE incidence in
COVID-19 patients had been published [3–27], of which the most recent meta-analysis by
Kollias et al. identified 93 unique studies on VTE incidence [13].

Systematic reviews of VTE incidence in COVID-19 patients show large heterogeneity
[13], [20], [12]. For instance, Nopp et al. described VTE incidences in hospital admitted
patients ranging from 0% – 40.3% [20], while Jiménez et al. even reported VTE incidences
between 0% – 85% [12]. Kollias et al. restricted their systematic review to studies that
performed “screening/assessment in the total sample for DVT (lower limb ultrasonography)
or were focused on patients with suspicion for PE (whole study population subjected to
tomography pulmonary angiogram)”, but despite this restriction, they found heterogenous
VTE incidences ranging between 0% – 85% [13]. Possible explanations for this heterogeneity
in VTE incidence include differences in design of the study, clinical setting, and local
practice (e.g., thromboprophylaxis strategy) [20], differences in endpoint definition, testing
strategies, and patients’ characteristics [12].

The wide variation in VTE incidence not only raises questions about the interpretation
of individual study results, but, more importantly, complicates comparisons between
studies to investigate e.g., changes over time, difference among subgroups, and to perform
meta-analyses. To appreciate reported VTE incidences and to diminish their heterogeneity,
it is important to understand different sources of this heterogeneity across studies.
Therefore, we provide an overview of such sources of heterogeneity in VTE incidence studies
on COVID-19 and illustrate this using various examples. Conclusively, we add a list of
essential information to report, in order to improve consistency and hence the relevance of
studies on VTE incidence in COVID-19 patients.

6.2.Methods
The large heterogeneity in VTE incidence across studies found in the meta-analyses
by Jiménez et al. [12] and Nopp et al. [20] incentivised this project. On 27 May
2021, a pragmatic search on PubMed using the search string “meta-analysis covid-19
venous thromboembolism” was performed resulting in a rough estimate of the number
of meta-analyses published. Twenty-five meta-analyses were identified. The most recent
meta-analysis was published on April 4, 2021 by Kollias et al. [13]. The individual VTE
incidence studies included in the meta-analyses by Jiménez et al., Nopp et al. and Kollias
et al. were screened, and an initial list of potential sources of heterogeneity was created
through discussions by LN, RHHG and SCC. The initial list was discussed in meetings
with FAK, BSB and MJHAK, and revised until consensus was reached. For educational
purposes, an example was sought for each listed source of heterogeneity by identifying
two heterogenous studies also showing heterogeneity in their estimated VTE incidence,
without taking other explanations into account. For consistency, incidences of all VTE
incidence studies reported in this study were calculated as “number of cases during the
entire study follow up divided by the size of the study population” and accompanied by a
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95% Wald based confidence interval (CI).

6.3. Sources of heterogeneity of VTE incidence studies
Figures 6.1–6.2 provide an overview of the identified sources of variation in VTE incidence
studies. A distinction was made between clinical (Figure 6.1) and methodologic sources
(Figure 6.2). Clinical sources of heterogeneity include differences related to study
characteristics affecting VTE risk and VTE testing. Methodologic sources of heterogeneity
refer to differences in VTEmanifestation inclusion types (e.g., inclusion of DVT, PE or both),
data quality and the analytical methods used, i.e., what method was used to estimate VTE
incidence and how limitations of the data were handled. These clinical and methodologic
sources are explained in more detail below.
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6.3.1. Clinical sources of heterogeneity
Patient characteristics
One potential source of heterogeneity in VTE incidence studies are differences in patient
characteristics across studies. These patient characteristics are factors that increase or
decrease the risk of VTE, i.e., established risk factors such as age and comorbidities [28] or
ethnicity [29]. For example, Mei et al. performed a study among subjects with amean age of
55.5 years (range 0.5-87), of whom 0.8% had a history of VTE. They reported a VTE incidence
of 2.0% (95% CI 0.3;3.6).[30] In contrast, Middeldorp et al. reported a VTE incidence of
19.7% (95% CI 14.2;25.2) in a patient group that was older (mean age 61 years (standard
deviation (SD) 4)) and in whom a history of VTE was more frequent (5.6%). [31] Hence,
the underlying VTE risk may have been higher in the latter study, which may be one of the
factors explaining the higher VTE incidence found in that study.

In addition to these patient profiles, also relevant are characteristics of the research
setting, related to COVID-19 disease severity or VTE risk. For example, critically ill patients
are at higher risk of developing VTE compared to non-ICU patients [32], so inclusion of
patients from the ICU, the general ward or both, affects VTE incidence. In the study by
Al-Samkari et al., patients from both the general ward and ICU were included. In their
study, a VTE incidence was found of 3.1% in ward patients (95% CI 1.0;5.3) and of 7.6% in
ICU patients (95% CI 3.3-12.0).[33] Of note, the case mix of COVID-19 ICU patients may
differ between countries, due to national-level differences in accessibility of intensive care
beds [34]. What is more, VTE incidence in COVID-19 outpatients is different from VTE
incidence in hospitalised COVID-19 patients [35]. Limiting or not limiting the research
setting to patients with e.g. an elevated D-dimer level may affect VTE incidence, because
patients with an elevatedD-dimer level are at high risk of developing VTE [36]. For example,
Demelo-Rodríguez et al. only included patients with a D-dimer level >1000 ng/ml and
reported a VTE incidence of 14.7% (95% CI 9.2;20.3) [37]. In comparison, Whyte et al. did
not use a D-dimer level threshold to restrict patient inclusion and included all hospitalised
COVID-19 patients and found a VTE incidence of 5.4% (95% CI 4.3;6.6) [38]. The research
setting and VTE risk may also be affected by the way in which patient selection was
performed. For example, in a study by Hill et al., a VTE incidence of 1.4% (95% CI 1.1;1.7)
was found. In this study, patients were included retrospectively, by screening electronic
health records and including all patients positive for Sars-CoV-2 on polymerase chain
reaction-based testing. Patients were included after a visit to an emergency department
and/or admission to an inpatient unit.[39] In comparison, in a study by Trimaille et al., a
VTE incidence of 17.0% (95% CI 12.6;21.3) was found. In this study, all consecutive patients
who were hospitalised for COVID-19 were included.[40] In these two studies, the clinical
characteristics of the underlying populations where the study populations were sampled
from were different, which may have affected baseline risk for VTE.

A third characteristic that requires attention is the local medical strategy, such as the
use of anticoagulation treatment or COVID-19 treatment, which may influence the risk
of VTE. A patient group that is treated with full dose anticoagulation may show a lower
VTE incidence compared to patient groups receiving no or prophylactic anticoagulation.
Cattaneao et al. reported a VTE incidence of 0.0% (95% CI 0.000;0.008). In this study,
all patients had been treated with standard dose thromboprophylaxis.[41] In comparison,
Zhang et al. reported a VTE incidence of 46.2% (95% CI 38.0;54.3). In this study, 90 patients
out of 143 patients (63%) received no anticoagulation at all. [42] The difference in VTE
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incidence between these two studies could be partly explained by the difference in use of
anticoagulation. Additionally, as of 2 September 2020, the WHO recommended the use of
systemic corticosteroids in patients with severe or critical COVID-19 [43–45]. For example,
a meta-analysis showed an increased risk of 1.39 (95% CI 1.10-1.77) of VTE in COVID-19
patients when being administered corticosteroids [46]. The use of corticosteroids may
therefore also be a source of heterogeneity in VTE incidence.

VTE testing
An additional clinical source of heterogeneity in VTE incidence is variation in VTE
diagnostic practices. In particular, reasons to test for VTE and reasons to not test for
VTE differed across studies. For example, diagnostic tests for PE or DVT may have
been conducted at the occurrence of symptoms. Alternatively, a patient may have been
tested for VTE independent of symptoms (i.e., screening), detecting both symptomatic and
asymptomatic cases. For example, Cattaneao et al. found no symptomatic DVT cases in
their study, resulting in a VTE incidence of 0.0% (95% CI 0.000;0.008) [41]. In comparison,
Demelo-Rodríguez et al. screened for asymptomatic DVT and found an incidence of 14.7%
(95% CI 9.2;20.3) [37]. Furthermore, studies may use a decision rule (e.g., based on lab
results) before undertaking imaging. For example, Whyte et al. found a VTE incidence
of 5.4% (95% CI 4.3;6.6). In this study, imaging was not undertaken “for those considered
‘PE unlikely’ by the Wells score (score <4) in conjunction with a D-dimer result below 500
ng/ml”.[38] In comparison, Voicu et al. performed ultrasound imaging in all patients 3 days
after intubation and found a VTE incidence of 35.7% (95% CI 23.2;48.3) [47]. Studies using
a decision rule for VTE imaging, may miss cases of VTE [48], but are a closer resemblance
of clinical practice. What is more, despite a VTE testing protocol in place, VTE testing
may not be reasonable or feasible in some patients and studies may therefore deviate from
their testing protocol in these cases. For example, VTE testing may not be reasonable
in patients hospitalised for palliative care and VTE testing may not be feasible due to
limitations in (human) resources in a health crisis setting, since performing a computed
tomographic pulmonary angiogram (CTPA) in an ICU patient with mechanical ventilation
can be laborious. For instance, Koleilat et al. reported a VTE incidence of 0.5% (95%
CI 0.3;0.8). In this study, only “those patients with significant clinical concern for DVT
or in those in whom the results were deemed to impact management were tested for
DVT (e.g., patients who were mechanically ventilated and placed prone for persistently
poor oxygenation were deemed too unstable, and those already on anticoagulation for
other reasons such as cardiac arrhythmias or a prior history of thrombotic episodes
requiring lifelong anticoagulation were unlikely to undergo venous duplex testing)”.[49]
In comparison, Ren et al. reported a (both a- and symptomatic) VTE incidence of 85.4%
(95% CI 75.4;95.4). In the latter study, all patients were tested for DVT at least twice.[50]

6.3.2. Methodologic sources
VTE endpoint
Heterogeneity in VTE incidence studies may be caused by inconsistent inclusion of types
of VTE across studies. For example, Mazzaccora et al. reported a VTE incidence of 65.6%
(95% CI 49.2%;82.1%), where VTE included pulmonary embolism, diagnosed using a CT
pulmonary angiogram, or DVT, which was diagnosed with an ultrasound of the veins of the
upper and lower limbs.[51] In contrast, the study by Criel et al. reported a VTE incidence
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of 7.3% (95% CI 1.7;13.0). Here, VTE included DVT only. [52] Furthermore, thrombosis
in other venous compartments may be included (e.g., upper extremity, splanchnic veins).
In the above mentioned study by Mazzaccaro et al. all patients underwent a duplex
scan of the veins and arteries of the upper and lower limbs to investigate the presence
of peripheral thrombosis.[51] In contrast, Santoliquido et al. reported a VTE incidence
of 11.9% (95% CI 5.0;18.8).[53] Here, all patients were screened for DVT with lower-limb
venous compression ultrasound. Another example is the study by Llitjos et al., that found
a VTE incidence of 69.2% (95% CI 51.5;87.0) in which 4 of 18 (22%) reported DVTs were
superficial. In comparison, the study by Desborough et al. did not include superficial DVTs
and found a VTE incidence of 15.2% (95% CI 6.5;23.8). In addition, a distinction can be
made between central, segmental and subsegmental PEs, based on the location of thrombi
in the pulmonary vascular tree. Longchamp et al. “did not record subsegmental PEs” and
reported a VTE incidence of 56.0% (95% CI 36.5;75.5) [54]. In comparison, Mazzaccaro et
al. found a VTE incidence of 65.6% (95% CI 49.2;82.1), based on 21 cases of ‘pulmonary
vessel thrombosis’, including 7 (33.3%) cases of subsegmental thrombi [51]. Additionally,
DVT may be associated with indwelling lines and these DVTs could be included or not. For
example, in the study by Desborough et al. [55], 10 of the 66 patients were diagnosed with
VTE, resulting in a VTE incidence of 15.2% (95% CI 6.5;23.8). However, 6 of the DVTs were
found to be associatedwith a line and one patient had a both aDVT and a PE. Consequently,
5 patients had a none line associated VTE, changing VTE incidence to 7.6% (95% CI 1.2;14.0).

VTE endpoint classification may also differ across studies in terms of the protocol that
was used for the interpretation of the CT or ultrasound test by radiologists for a VTE
diagnosis. Chen et al. reported a VTE incidence of 1% (95% CI 0.4;1.6). In this study,
“all CT and CTPA image analyses were performed by 2 radiologists experienced in thoracic
radiology […], who were blinded to the clinical information. Disagreements were resolved
through discussion until consensus was reached”.[56] Conversely, Artifoni et al. reported
a VTE incidence of 22.5% (95% CI 12.8;32.3) in a study where “chest angio-CT scan was
performed in case of suspicion of pulmonary embolism” [57]. In the study by Chen et al.,
classification error in VTE diagnosis is less likely, while the study by Artifoni et al. more
closely resembles clinical practice.

In addition, a potential source of heterogeneity in the VTE endpoint across studies is
the data source used to classify the VTE endpoint. Data quality may differ between data
sources, which is discussed in the subsequent subsection.

Data quality
A potential source of heterogeneity in VTE incidence studies is classification error or
missing data in the VTE endpoint or in SARS-CoV-2 infection status. Thirty-four out of
the 49 VTE incidence studies (69%) included in the meta-analysis by Jiménez et al. were
identified as retrospective studies, 11 (22%) were identified as prospective studies, and
4 (8%) as cross-sectional studies [12]. In the 34 retrospective studies, data were often
not primarily collected to study VTE incidence, which increases the potential risk for
incorrectness of VTE endpoint classification and SARS-CoV-2 infection (i.e., a false-positive
or false-negative diagnosis). Misclassification error occurs for example due to an incorrect
interpretation of a radiologist or errors in data extraction and entering in databases.
Specifically, in the study by Hill et al., reporting a VTE incidence of 3.1% (95% CI 2.5;3.8),
electronic health records were queried to identify patients with diagnosis for VTE. Patients
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were identified as cases when they received apixaban, rivaroxaban, or dabigatran.[39]
Consequently, classification error in the VTE endpoint may be more likely in the study by
Hill et al. than in a study using clinical radiology reports for VTE endpoint classification.
Radiology reports were for example used in the study by Chen et al., reporting a VTE
incidence of 1.0% (95% CI 0.4;1.6).[56]

The consequences of misclassification error and missing data in SARS-CoV-2 infection
status is illustrated by the VTE incidence study conducted by Koleilat et al. [49]. In the
meta-analysis conducted by Jiménez et al. [12], a VTE incidence of 0.5% (95% CI 0.3;0.8)
was reported for the study by Koleilat et al.. This number was calculated by dividing the
number of patients with a DVT diagnosis (18) by the number of patients admitted to the
hospital with “confirmed COVID-19” (3404). It is unknown what was meant by “confirmed
COVID-19” in the original article. The flowchart published in the paper by Koleilat et
al. shows that of the 3404 patients with “confirmed COVID-19”, 846 patients underwent
lower extremity venous duplexes, of whom 145 patients were tested SARS-CoV-2 negative,
135 patients were tested SARS-CoV-2 positive, and 566 were not tested for SARS-CoV-2.
Koleilat et al. did not report the SARS-CoV-2 status of the remaining 2558 patients that
did not undergo lower extremity venous duplexes. Consequently, due to missing data
in SARS-CoV-2 infection status, and potential misclassification error in the “confirmed
COVID-19” cases, it is unknown what the correct estimate for VTE incidence was in this
study. As an example, if VTE incidence calculation had been restricted to those patients
who were known to be tested SARS-CoV-2 positive (135), VTE incidence would change
dramatically to (18/135) 13.3% (95% CI 7.6;19.1).

Another example of the consequences of missing data in VTE diagnosis is the VTE
incidence study conducted by Chen et al. In this study, 1,008 patients were hospitalised
with COVID-19 associated pneumonia.[56] A VTE was diagnosed in 10 patients, and
consequently, the meta-analysis by Jiménez et al. reported a VTE incidence of 1.0%
(95% CI 0.4;1.6) [12]. In the analysis reported in the original paper, all patients were
excluded who did not undergo CTPA examination, since these patients had missing data
in VTE diagnosis (yes/no). Restricting the analysis to these 25 patients, would change VTE
incidence dramatically to 40.0% (95% CI 20.8;59.2). Including or excluding the patients not
undergoing VTE testing, changes the research setting of a study (see also section Patient
characteristics). Particularly because, most likely, the odds of a VTE was a priori lower
in the group not undergoing a CTPA, compared with the group undergoing a CTPA which
was only performed in patients with “elevated D-dimer level or accompanying symptom(s),
including chest pain, hemoptysis, and dyspnea” [56].

Data analysis
The frequency measures used to describe VTE incidence may also differ across studies,
possibly contributing to heterogeneity in VTE incidence. Commonly used, yet distinct,
measures include the cumulative incidence (or risk or incidence proportion), the prevalence
and incidence rate.

The risk (or cumulative incidence) is the probability of getting a VTE in a certain period
of time and is calculated by dividing the number of subjects who experienced the outcome
in a certain time period by the total number of subjects that was observed during that time
period. [58] Estimating this measure requires that patients are followed for the entire time
period. In addition, interpretation of a risk is only warranted when the length of the time
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period over which the risk applies is known, which should therefore be reported. When the
time period is small, VTE incidence would approach 0, whereas as the time period becomes
longer, VTE incidence will increase [59]. Whyte et al. reported a cumulative incidence at
24 hours of 2.1% (95% CI 1.4;2.8). In comparison, Middeldorp et al. reported cumulative
incidences of VTE at 7 days, 14 days and 21 days of 16% (95% CI 10;22), 33% (95% CI 23;43)
and 42% (95% CI, 30;54), respectively [31]. Since follow-up duration was highly variable
in general, proper interpretation of the reported risks is a challenge and forms a possible
explanation for the heterogeneity in VTE incidence.

Prevalence is defined as the proportion of COVID-19 patients with VTE at a particular
moment in time [58]. In a cross-sectional study conducted by Criel et al., 82 patients
were included and consecutively screened for VTE. In this study, the patients were not
followed over time, and consequently, this study estimated VTE prevalence rather than
incidence, which was found to be 7.3% (95% CI 1.7;13.0). [52] In comparison, for example,
Desborough et al. followed patients for 28 days after admission to critical care (or until
death) and, reported a VTE incidence of 15.2% (95% CI 6.5;23.8) [60]. These two estimates
are heterogenous since VTE prevalence (Criel et al.) and VTE incidence (Desborough et al.)
are incomparable.

Another measure of VTE incidence is the VTE incidence rate, which explicitly takes
the duration of follow-up into account. It can be calculated by dividing the number of
COVID-19 patients who developed VTE by the total amount of time those patients were
followed. For example, Klok et al. reported a VTE incidence rate of 13/patient-year (95% CI
6;27) [2]. This method implicitly takes the length of the follow-up period, and variations
between patients, into account.

Another source of heterogeneity across studies is how competing risks are handled in
the analysis. In VTE studies of COVID-19, patients can develop a VTE, die, be discharged
from the hospital, or be transferred to another hospital. It is often not knownwhether these
patients developed a VTE (or not) after discharge or hospital transfer and it is impossible to
know whether these patients would have developed a VTE if they had not died. Moreover,
if a patient dies, autopsy should be performed to identify whether the cause of death
was a VTE, which usually does not happen. In these patients, the VTE endpoint may,
therefore, be misclassified (false-negative). For example, Middeldorp et al. reports “we did
not adjudicate deaths to identify fatal PE because almost all deaths were due to hypoxemic
respiratory failure, which can be indistinguishable from fatal PE, whereas autopsies were
rarely performed in COVID-19 patients”.[31] Adjusting or not adjusting for competing
risks affects the reported cumulative incidence. Klok et al., reported a crude cumulative
incidence of 57% (95% CI 47;67) and a cumulative incidence adjusted for the competing risk
of death of 49% (95% CI 41;57). A cumulative incidence adjusted for the competing risk of
death and hospital discharge may have decreased the cumulative incidence further since
43% of the patients included in the study were discharged alive.[2]

6.4. Discussion
Studies on VTE incidence in COVID-19 patients show highly heterogeneous results. We
identified different sources of this phenomenon, notably, clinical and methodological
sources, and illustrated these using various examples. The list of sources of heterogeneity
in VTE incidence studies described here (characteristics of study participants, VTE testing,



6

119

VTE endpoint, data quality, and data analysis) is not exhaustive and more aspects may be
needed to fully comprehend the heterogeneity across studies. Nevertheless, we consider
these sources to be important explanations and, therefore, we feel that reporting of these
aspects in future VTE incidence studies is required to appreciate and to properly interpret
reported VTE incidences. A list of these recommendations is provided in Box 6.1.

We discussed individual sources of heterogeneity in VTE incidence, but obviously
these could occur simultaneously. When two studies differ regarding multiple sources of
heterogeneity, the difference in VTE incidence could increase but it could also lead to a
cancellation of effects. We do not mean to suggest that the differences in VTE incidence in
our examples are caused by the discussed sources of heterogeneity. We solely provide one
of the many explanations for a difference in VTE incidence. The example studies referenced
in this chapter are merely illustrations and do not reflect our view about their quality.

The heterogeneity in reports of VTE incidence not only complicates interpretation of
VTE incidence but may also affect trials using VTE incidence as the primary endpoint or
one of the secondary endpoints, such as trials comparing different thromboprophylaxis
strategies in COVID-19 patients. Specifically, the sample size of these trials may be based
on a reported VTE incidence which may not reflect VTE incidence in the research setting
of the trial, leading to an under- or overpowered study. For example, the study by Connors
et al., studying the effect of antithrombotic therapy on clinical outcomes in outpatients,
“was terminated because of a control event rate lower than anticipated” [35]. It is unclear
if sample size calculation was directly affected by studies reporting high VTE incidence
in (ambulatory) COVID-19 patients. Connors et al. assumed a placebo event rate of 8%
as “previous trials of anticoagulants for prevention of thrombotic events in ambulatory
patients have noted similar event rates”. What is more, most, if not all, aspects described in
this paper translate to trial settings. For example, if no clear and unambiguous description
is provided of VTE endpoint assessment in trials, estimates of the treatment effect (e.g., risk
difference), or the number needed to treat derived from it, cannot be interpreted.

Standardising VTE research is not limited to COVID-19. Several efforts have already
been made to improve the quality and consistency of VTE clinical research data and
reporting practices. Examples include, amongst others, the VTE Common Data Elements
project launched in November 2018 by the International Society on Thrombosis and
Haemostasis [61] and recommendations for standardised reporting and analysis of VTE
in oncology trials [62].

Standardising reports of VTE incidence studies is important and allows for comparisons
of VTE incidence across groups (e.g., hospitals, countries, regions, sex, or over time), across
diseases (e.g., influenza), and for better understanding and comparison of the results of
trials on treatments aimed at reducing VTE incidence. Careful description of the elements
affecting heterogeneity in future VTE incidence studies may better isolate important
differences across groups, diseases and treatments and allow meta-analyses that provide
summary results based on more homogeneous studies. Eventually such literature will
contribute to improved management of VTE risk in COVID-19 patients.
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Box 6.1: Recommendations for reporting of studies of incidence of venous thromboembolism (VTE) in Covid-19
patients

Clinical sources
Characteristics of study participants

• Describe the patient profiles (e.g., sex, age, comorbidities)

• Describe the research setting (e.g., intensive care unit, ward)

• Describe the patients’ medical treatments (e.g., anticoagulation, steroids)

VTE testing

• Describe the VTE testing protocol (e.g., screening, symptoms, testing based on
lab results)

• Describe the reasons to deviate from the VTE testing protocol (e.g., when
testing was not reasonable (e.g., palliative care) or feasible (e.g., limited (human)
resources) or when testing had no clinical consequences)

Methodological sources
VTE endpoint

• Describe the types of VTE that were included (e.g., pulmonary embolism, deep
vein thrombosis)

• Describe the reference test used (e.g., ultrasound, computed tomographic
pulmonary angiogram)

Data quality

• Describe the likelihood of classification error and its consequences (e.g.,
classification error in VTE diagnosis and SARS-CoV-2 infection)

• Describe missing data and its consequences (e.g., missing data in VTE diagnosis
and SARS-CoV-2 infection)

Data analysis

• Describe the measure of incidence used and report its unit (if applicable) (e.g.,
cumulative incidence, prevalence)

• Describe competing risks (e.g., death, discharge, transfer)
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7
Sensitivity analysis for random

measurement error using regression
calibration and

simulation-extrapolation
Sensitivity analysis for random measurement error can be applied in the absence of validation data by
means of regression calibration and simulation-extrapolation. These have not been compared for this
purpose. A simulation study was conducted comparing the performance of regression calibration and
simulation-extrapolation for linear and logistic regression. The performance of the two methods was
evaluated in terms of bias, mean squared error (MSE) and confidence interval coverage, for various
values of reliability of the error-prone measurement (0.05–0.91), sample size (125–4,000), number of
replicates (2–10), and R-squared (0.03–0.75). It was assumed that no validation data were available
about the error-free measures, while correct information about the measurement error variance was
available. Regression calibration was unbiased while simulation-extrapolation was biased: median bias
was 0.8% (interquartile range (IQR): −0.6;1.7%), and −19.0% (IQR: −46.4;−12.4%), respectively. A small
gain in efficiency was observed for simulation-extrapolation (median MSE: 0.005, IQR: 0.004;0.006) versus
regression calibration (median MSE: 0.006, IQR: 0.005;0.009). Confidence interval coverage was at the
nominal level of 95% for regression calibration, and smaller than 95% for simulation-extrapolation (median
coverage: 85%, IQR: 73;93%). The application of regression calibration and simulation-extrapolation for a
sensitivity analysis was illustrated using an example of blood pressure and kidney function. Our results
support the use of regression calibration over simulation-extrapolation for sensitivity analysis for random
measurement error.

This chapter is based on: L. Nab and R.H.H. Groenwold, Sensitivity analysis for random measurement
error using regression calibration and simulation-extrapolation, Global Epidemiology 3 (2021) 100067.
doi:10.1016/j.gloepi.2021.100067

129

https://doi.org/10.1016/j.gloepi.2021.100067


7

130 Sensitivity analysis for random measurement error

7.1. Introduction
Measurement error is common in biomedical research but often ignored [1, 2]. When
ignored, measurement error can lead to considerable biases in exposure-outcome
associations [3]. Random measurement error in the exposure variable, also known as
‘classical’ measurement error, occurs when themeasured exposure is distributed around the
true exposure with independent error and, is common in various domains of epidemiology
[4–6]. Random measurement error in an exposure variable introduces bias in the
exposure-outcome association, which is sometimes referred to as attenuation bias [7] or
regression dilution bias [8, 9].

Variousmethods formeasurement error correction are available [10–18], yet application
of these methods is rare in biomedical research [3]. One possible barrier is the necessity of
for instance validation data, which are often unavailable [5]. Validation data can be used
to estimate the measurement error model and its parameters, and subsequently used for
measurement error correction.

In the absence of validation data, regression calibration [19, 20] and
simulation-extrapolation [21], among other, can be applied to correct for random
exposure measurement error. Both methods only require assumptions about the variance
of the random measurement error, for example based on literature or expert knowledge.
Regression calibration in the absence of validation data is available in the R [22] package
mecor for measurement error correction [23], that implements the regression calibration
described by Rosner et al. [24]. Alternatively, simulation-extrapolation is easy to use due
to its implementation in the R package simex [25] and the simex procedure [26] in Stata
[27].

Simulation-extrapolation and regression calibration have been compared in simulation
studies for scenarios where replicate measures of the error-prone exposure were available
[5, 28, 29]. The studies by Perrier et al. [5], Batistatou et al. [28] and Fung et al.
[29] were consistent and showed that, regression calibration and simulation-extrapolation
reduced bias compared to when no measurement error correction was applied or when
the replicate exposure measures were pooled. It was also shown that application of
simulation-extrapolation generally produced more biased effect estimates than regression
calibration, especially when the reliability of the error-prone measure was low.

Perrier et al. [5] and Batistatou et al. [28] studied a univariable linear regression in
a limited number of scenarios, e.g., large sample sizes, and limited range of reliability
of the error-prone measure. Fung et al. [29] studied a multivariable logistic regression
in a limited number of scenarios, e.g., not varying sample size and a limited range of
reliability. Further investigation is needed of the performance of regression calibration
and simulation-extrapolation in more complex settings, as typically found in epidemiologic
research (e.g., multivariable linear and logistic regression, varying sample size and levels
of reliability). Moreover, since the previous simulation studies focused on settings where
replicate measures were available, we aim to research how their results translate to settings
where no replicate measures, but only an estimate of the measurement error variance
is available. The quantification of the performance of the two methods in this broader
range of settings is used as the input for a framework guiding the application of sensitivity
analysis for random measurement error.

This chapter is structured as follows. Section 7.2 reviews and applies regression
calibration and simulation-extrapolation by using two motivating examples of a
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linear regression and logistic regression where the exposure is prone to error. In
section 7.3, a simulation study is described comparing regression calibration and
simulation-extrapolation for linear regression and logistic regression, and results from the
simulation study are shown. Section 7.4 introduces a framework for conducting sensitivity
analysis, also known as quantitative bias analysis [30], for random measurement error
by means of regression calibration and simulation-extrapolation. We conclude with a
discussion of our results and recommendations in section 7.5.

7.2. Review and motivating example
When an exposure variable is measured with random measurement error, the
exposure-outcome association is biased. In a univariable model with a continuous outcome,
under the assumption of random measurement error, the uncorrected effect estimate is
biased by a factor equal to the variance of the true measure divided by the sum of the
variance of the true measure and the measurement error variance. This is sometimes
referred to as the ‘attenuation factor’ because the variance of the true measure plus the
measurement error variance is always greater than the variance of the true measure alone
[7]. For a linear regression, this can be expanded to the multivariable case by conditioning
on the covariates in the multivariable model. For a logistic regression, the bias induced by
random measurement error cannot be quantified exactly [13]. Kuha [31] shows that under
the assumption that the effect of the exposure on the outcome is ‘small to moderate’ and/or
the measurement error is ‘small’, the uncorrected effect estimate in a logistic regression is
biased approximately by the attenuation factor. We refer to Kuha for a detailed discussion.

7.2.1. Review of regression calibration and simulation-extrapolation
In a linear regression or logistic regression, the random measurement error in an exposure
can be corrected by application of regression calibration and simulation-extrapolation.
Regression calibration starts by estimating the uncorrected effect of the error-prone
measure on the outcome (in a multivariable model, given the covariates). Subsequently, the
uncorrected estimate is multiplied by the inverse of the attenuation factor: the estimated
variance of the error-prone exposure (given the covariates), divided by the estimated
variance of the error-prone exposure (given the covariates) minus the measurement error
variance. The measurement error variance can be estimated by using e.g., replicate
measurements, by estimating the within individual variance and averaging over all
individuals. Alternatively, the measurement error variance could be informed by e.g.,
external data or expert knowledge.

Simulation-extrapolation consists of two steps. In the simulation step, extra
measurement error is added to the error-prone exposure. The size of this extra
measurement error is typically 0.5, 1, 1.5 and 2 times themeasurement error variance. Using
these simulated exposure measurements with extra addedmeasurement error, the outcome
model is estimated. This is repeated 100 times for each value of the extrameasurement error
variance and the newly obtained estimates are averaged. Then, in the extrapolation step, a
model (e.g., linear, quadratic) is fitted through the effect estimates for the varying sizes of
the measurement error. The corrected effect estimate is then obtained by extrapolating the
fitted model to the situation where the measurement error is equal to 0. For a visualisation
of simulation-extrapolation, see e.g. Keogh et al. [3].
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7.2.2.Motivating example
Hereafter, regression calibration and simulation-extrapolation to correct for random
measurement error are demonstrated for linear regression and logistic regression, using an
example about the association between systolic blood pressure and kidney function (serum
creatinine) and an example about the association between sodium intake and hypertension,
respectively.

Example 1: Linear regression of blood pressure and kidney function in pregnant women
For the first example, we used data of retrospective records of all women who attended a
tertiary maternity hospital pregnancy day assessment clinic over a 6-month period in 2014
in Australia [32]. Care always included serial, manual blood pressure measurements every
30 min by registered midwives using aneroid sphygmomanometers [32]. Serum creatinine
and demographic data were obtained using routinely collected data. One woman with a
serum creatinine level lower than 10 𝜇mol/L was excluded from the analysis.

First, the association between systolic blood pressure and serum creatinine was
determined by only using the systolic blood pressure measurement obtained after 30
min. The association was adjusted for age. We found that an increase of 10 mmHg in
systolic blood pressure was associated with a 1.18 𝜇mol/L (CI: 0.14 - 2.23) increase in serum
creatinine (Table 7.1). In this analysis, the random measurement error in the single systolic
blood pressure measurement was not taken into account. Using the four consecutive blood
pressure measurements (obtained after 30, 60, 90 and 120 minutes), it was found that the
within individual variance of the systolic blood pressure measures was on average 48.3
mmHg, equal to a reliability of 0.6. The within individual variance of 48.3 mmHg was
subsequently used to correct for the random measurement error in the single systolic blood
pressure measurement using regression calibration and simulation-extrapolation, while
adjusting for age. Using regression calibration, we found that an increase of 10 mmHg
was associated with a 2.04 𝜇mol/L (CI: 0.22;4.23) increase in serum creatinine (Table 7.1).
Using simulation-extrapolation, we found that an increase of 10mmHgwas associated with
a 1.67 𝜇mol/L (CI: 0.15;3.29) increase in serum creatinine (Table 7.1).

Example 2: Logistic regression of sodium intake and hypertension in adults
For the second example, we used data of the 2015-2016 cycle of the National Health
And Nutrition Examination Survey [33]. Given natural variation of sodium intake
within individuals, a single measurement of sodium intake often does not reflect the
true level of sodium intake. In the NHANES, two sodium intake measurements were
taken using a 24-hour recall. The first dietary recall interview was collected in-person
and the second interview was collected by telephone 3 to 10 days later. Participants’
hypertension status was based on a combination of their self-reported history of any
diagnosis of hypertension and self-reported use of prescribed hypertension medication.
Demographic information was collected using the family and sample person demographics
questionnaires in the home, by trained interviewers. Weight and height were measured
by trained health professionals. For this analysis, participants between 18-80 years were
included. Additionally, all participants with a body mass index (BMI) higher than 55 and a
sodium intake of more than 10 gram per day were excluded from the analysis.

First, the association between sodium intake and hypertension was determined by
only using the first sodium intake measurement. The association was adjusted for BMI
and age. It was found that an increase of 1 gram in sodium intake was associated with
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a 1.04 (95% CI: 1.00;1.09) times increase in the odds for hypertension. In the NHANES
data, the within individual variation of sodium intake was on average 1.7 gram, which was
obtained by using the two consecutive sodium intake measures, resulting in a reliability of
0.4. The within individual variance of 1.7 was subsequently used to correct for the random
measurement error in the first sodium intake measure using regression calibration and
simulation-extrapolation, while adjusting for age. Using regression calibration, we found
that an increase of 1 gram in sodium intake was associated with a 1.12 (95% CI: 0.99;1.27)
increase in the odds for hypertension (Table 7.1). Using simulation-extrapolation, we found
that an increase of 1 gram in sodium intake was associated with a 1.07 (95% CI: 1.00;1.16)
increase in the odds for hypertension (Table 7.1).

Table 7.1: Effect estimates (95% confidence intervals) of the association between blood pressure (systolic blood
pressure, per 10 mmHg) and kidney function (serum creatinine, 𝜇mol/L) (linear regression, example 1) and the
association between sodium intake (per gram) and hypertension (odds ratio obtained from a logistic regression,
example 2). The uncorrected effect estimates are obtained by using the first measurement only, the corrected
estimates are obtained by using the three consecutive blood pressure measurements (example 1) and the second
consecutive sodium intake measurement (example 2).

Example Uncorrected Regression Simulation-
Calibration extrapolation

Systolic blood 1.18b(0.14;2.23) 2.04 (0.22;4.23) 1.67 (0.15;3.29)
pressure
and kidney
function
Sodium intake 1.04c(1.00;1.09) 1.12 (0.99;1.27) 1.07 (1.00;1.16)
and
hypertensiona

Estimates were obtained from the pregnancy day and assessment clinic study (systolic blood pressure
and kidney function, reliability of the error-prone blood pressure measurement: 0.6) [32] and the
national health and nutrition examination survey (sodium intake and hypertension, reliability of the
error-prone sodium intake measurement: 0.4) [33]
a Odds ratio
b Estimate is corrected for age, but not for the measurement error in systolic blood pressure
c Estimate is corrected for age and body mass index, but not for the measurement error in sodium
intake

7.3. Simulation study
To investigate the observed difference between the regression calibration corrected and
simulation-extrapolation corrected analysis in our motivating examples above, a simulation
study was conducted to study the relative performance of regression calibration and
simulation-extrapolation in a linear regression model and a logistic regression model. The
relative performance was studied in terms of bias, mean squared error, and confidence
interval coverage of the true effect. Subsection Methods provides a general description
and motivation of the scenarios studied, and an explanation of the specific parameters set
in our simulation study. Subsection Results presents the results of our simulation study.
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Table 7.2: Simulation study settings linear regression

Scenarios Parameters of Data Generating Mechanisma
𝜏2 𝑛 𝑘 𝜙 𝛾

Base 30 500 3 100 0
Reliabilityb 200; 100; 50; 25; 500 3 100 0

20; 15; 10; 5
Sample Size 30 125; 250; 3 100 0

1,000; 10,000
Number of 30 500 2; 5; 10 100 0
R-squaredc 30 500 3 20; 5; 1 0
Covariate 30 500 3 100 1; 4; 8
Dependencyd

a 𝜏 2 : measurement error variance of the error-prone blood pressure measurement; 𝑛: number of observations in
the main study; 𝑘: number of replicate error-prone measurements; 𝜎 2 : residual variance of the outcome model;
𝛾 : association between blood pressure and age. The attenuation in the effect of blood pressure on creatinine due
to random measurement error is equal to 50/(50 + 𝜏 2)
b Reliability is equal to (25𝛾 2 + 50)/(25𝛾 2 + 50 + 𝜏 2)
c R-squared is equal to 1 − 𝜎 2/(0.4 × 50 + 10 + 𝜎 2)
d The effect of blood pressure on creatinine when age is not included in the model (crude model) is equal to 0.2 +
5𝛾/(25𝛾 2 + 50)

7.3.1.Methods
Linear regression. The relative performance of regression calibration versus
simulation-extrapolation for linear regression was studied before by Perrier et al.
[5] and Batistatou et al. [28]. We aimed to extend these two former simulation studies
by investigating the relative performance in scenarios other than those studied before.
Perrier et al. and Batistatou et al. assumed relatively large sample sizes (i.e., 3,000
and 1,000, respectively), only four different values for the reliability of the error-prone
exposure (i.e., 0.2 and 0.6 in the study by Perrier et al. and 0.2, 0.5 and 0.8 in the study
by Batistatou et al.) and a small coefficient of determination for the exposure-outcome
model (i.e., 0.004 and 0.0625, respectively). In addition, Perrier et al. studied the effect of
increasing the number of replicate measures on the performance of regression calibration
and simulation-extrapolation by pooling the replicate measurements. Moreover, Perrier
et al. and Batistatou et al. only examined models with a single independent variable.
Therefore, our simulation study focused on multivariable models, small sample sizes (i.e.,
smaller or equal to 1,000) and relatively large reliability of the error-prone measurement
(i.e., greater or equal to 0.625). In addition, the effect of a change in the coefficient of
determination of the outcome model was tested. Furthermore, increasing the number of
replicate measurements available was studied, without having the advantage of pooling
the replicate measurements in our analysis.

Data generating mechanism linear regression. Inspired by our example of blood pressure
and kidney function in pregnant women [32] described in section Motivating example,
we assumed the following data generating mechanisms for age, blood pressure (BP),
error-prone blood pressure (BP∗) and creatinine:

Age ∼ 𝒩 (32, 25), BP|Age ∼ 𝒩 (120 + 𝛾Age, 50), BP∗|BP ∼ 𝒩 (BP, 𝜏2),
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and Creatinine|BP, Age ∼ 𝒩 (30 + 0.2BP + 0.2Age, 𝜎2).
The above defined data generating mechanism defines that the error-prone blood

pressure (BP∗) has random measurement error with measurement error variance equal to
𝜏2. In our simulation study, a ‘base scenario’ was assumed and in the consecutive scenarios
studied, we changed one of the three parameters in the data generating mechanisms (i.e.,
𝛾 , 𝜏2 or 𝜎2), the number of observations (i.e., 𝑛), or the number of replicate measures (i.e., 𝑘)
(see Table 7.2). For each scenario, 5,000 datasets were generated. The parameters settings
of the base scenario were inspired by our example of blood pressure and kidney function
in pregnant women [32]. In the base scenario, 𝑛 = 500, 𝛾 = 0, 𝜏2 = 30 and 𝜎2 = 100 (Table
7.2). We assumed that three replicate measures of the error-prone blood pressure measure
were obtained in all individuals. From the parameter settings in the base scenario, it follows
that the reliability of the error-prone measure is 0.625. Further, in the base scenario, the
R-squared of the outcome model is 0.03, and the attenuation due to measurement error
of the effect of the error-prone blood pressure on creatinine (given age) is equal to the
reliability, i.e., 0.625.

In each generated data set, the uncorrected effect was estimated using the first replicate
measurement only. Subsequently, the corrected effect was estimated by application
of regression calibration and simulation-extrapolation using the R package mecor [23]
and simex [25], respectively. The measurement error variance was estimated using the
replicate measures. Ninety-five percent CI’s of the corrected effects were constructed using
bootstrap resampling. Performance of the three different analyses were evaluated in terms
of bias, mean squared error (MSE), and the proportion of 95% CIs that contained the true
value of the estimand (coverage). Monte Carlo standard errors (MCSE) were calculated for
all performance measures [34], using the R package rsimsum [35]. All code used for the
simulation study is publicly available via https://github.com/LindaNab/simexvsmecor.

Logistic regression. The relative performance of regression calibration and
simulation-extrapolation for logistic regression was studied before by Fung et al. [29]. Fung
et al. assumed a relatively small sample size (i.e., 500) and relatively high reliability (i.e.,
0.6 and 0.7). In our simulation study, we focus on parameters identical to the parameters
varied in linear regression: reliability, sample size, number of replicates, pseudo R-squared
(Nagelkerke) and covariate dependency.

Data generating mechanism logistic regression. Inspired by our example of sodium intake
and hypertension in adults [33] described in section Motivating example, we assume the
following data generating mechanisms for age, sodium intake (Na), error-prone sodium
intake (Na∗) and hypertension:

Age ∼ 𝒰[18,80], Na|Age ∼ 𝒩 (4 + 𝛾Age, 1), Na∗|Na ∼ 𝒩 (Na, 𝜏2),
and Hypertension|Na, Age ∼ ℬ(1, 1/(1 + 𝑒−𝑝)), where 𝑝 = −7 + 0.1Na + 𝜙Age.
The above defined data generating mechanism defines that the error-prone sodium

intake (Na∗) has random measurement error with measurement error variance equal to 𝜏2.
In our simulation study, a ‘base scenario’ was assumed and in the consecutive scenarios
studied, we changed one of the three parameters in the data generating mechanisms (i.e.,
𝜏2, 𝜙 or 𝛾 ), the number of observations (i.e., 𝑛), or the number of replicate measures (i.e., 𝑘)

https://github.com/LindaNab/simexvsmecor
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Table 7.3: Simulation study settings logistic regression

Scenarios Parameters of Data Generating Mechanisma
𝜏2 𝑛 𝑘 𝜙 𝛾

Base 2 4,000 2 0.1 0
Reliabilityb 20; 10; 4; 1.5; 4,000 2 0.1 0

1; 0.5; 0.25; 0.1
Sample Size 2 500; 1,000; 2 0.1 0

2,000; 10,000
Number of 2 4,000 3; 5; 0.1 0
Replicates 10
Pseudo 2 4,000 2 0.06; 0.08; 0
R-squaredc 0.2
Covariate 2 4,000 2 0.1 0.01; 0.1;
Dependencyd 0.2

a 𝜏 2 : measurement error variance of the error-prone sodium intake measurement; 𝑛: number of observations in
the main study; 𝑘: number of replicate error-prone measurements; 𝜙: association between hypertension and age
(given sodium intake); 𝛾 : association between sodium intake and age. The attenuation in the effect of sodium
intake on hypertension due to random measurement error is equal to 1/(1 + 𝜏 2)
b Reliability is equal to (𝛾 2(1/12)(80 − 18)2 + 1)/(𝛾 2(1/12)(80 − 18)2 + 1 + 𝜏 2)
c Computational calculations show Nagelkerke R-squared is equal to 0.1, 0.3 and 0.7 for 𝜙 equal to 0.06, 0.08 and
0.2, respectively. In the base scenario, Nagelkerke R-squared is equal to 0.4.
d Computational calculations show that the effect of sodium intake on hypertension when age is not included in
the model (crude model) is equal to 0.3, 0.8 and 0.6 for 𝛾 equal to 0.01, 0.1 and 0.2, respectively. In the base scenario,
the effect of sodium intake on hypertension in the crude model is 0.06. Changing 𝛾 affects Nagelkerke R-squared,
for 𝛾 equal to 0.1 and 0.2, Nagelkerke R-squared is 0.5. For 𝛾 equal to 0.01, Nagelkerke R-squared is comparable
to the base scenario (0.4).

(see Table 7.3). For each scenario, 5,000 datasets were generated. The parameters settings
of the base scenario were inspired by our example of sodium intake and hypertension in
adults [33]. In the base scenario, sample size was 4000, 𝜏2 = 2, 𝜙 = 0.1 and 𝛾 = 0 (Table 7.3).
Furthermore, we assumed that two replicate measures of the error-prone sodium intake
measure were obtained in all individuals. From the parameter settings in the base scenario,
it follows that the reliability of the error-pronemeasure is 0.33. Further, in the base scenario,
the Nagelkerke pseudo R-squared of the outcomemodel was 0.4, and the attenuation due to
measurement error of the effect of the error-prone sodium intake measure on hypertension
(given age) was approximately equal to the reliability, i.e., 0.33.

In each generated data set, the uncorrected effect was estimated using the first replicate
measurement only. Subsequently, the corrected effect was estimated by application
of regression calibration and simulation-extrapolation using regression calibration for
logistic regression as described by Rosner et al. [24] and by use of the R package simex
[25], respectively. The measurement error variance was estimated using the replicate
measures. Ninety-five percent CI’s of the corrected effects were constructed using
bootstrap resampling. Performance of the three different analyses were evaluated in terms
of bias, mean squared error (MSE), and the proportion of 95% CIs that contained the true
value of the estimand (coverage). Monte Carlo standard errors (MCSE) were calculated for
all performance measures [34], using the R package rsimsum [35]. All code used for the
simulation study is publicly available via www.github.com/LindaNab/simexvsmecor.
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Figure 7.1: Performance in a linear regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring randommeasurement error for varying values of the reliability of the error-prone
measure in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance
measures, Monte Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the
base scenario where reliability is assumed 0.625.

7.3.2. Results
Linear regression. Figure 7.1 shows the percentage bias, MSE and confidence interval
coverage for varying values of the reliability of the error-prone measure. The uncorrected
analysis was biased for all values of the reliability, and the percentage bias decreased when
reliability increased. Regression calibration provided unbiased results when reliability was
greater or equal to 0.33. Simulation-extrapolation provided biased results when reliability
was smaller than 0.8. MSE was lower for simulation-extrapolation than for the uncorrected
and regression calibration corrected analysis when reliability was equal to 0.2, and similar
to MSE of regression calibration otherwise. Coverage of the 95% confidence intervals
was at the nominal level for the regression calibration corrected analysis, and for the
simulation-extrapolation corrected analysis when reliability was greater than or equal to
0.625.
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Figure 7.2: Performance in a linear regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying sample sizes of the error-prone measure
in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance measures, Monte
Carlo standard errors were < 0.01 in all scenarios. The grey points indicate the base scenario where sample size is
assumed 500.
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Figure 7.2 shows the percentage bias, MSE and confidence interval coverage for varying
samples sizes of the main study. A sample size of 125, and 250 only increased percentage
bias minimally compared to the base scenario were sample size was 500. MSE was greater
for smaller sample sizes, and MSE of the uncorrected analysis with a sample size of 125
was smaller than the regression calibration and simulation-extrapolation corrected analysis
(0.015 vs 0.026 and 0.019, respectively, MCSE < 0.005). Coverage was equal to the nominal
level of 95% for regression calibration for all sample sizes, and the uncorrected analysis
showed coverage levels that were subnominal, ranging between 45% and 91% (MCSE <
0.01). Coverage of the 95% confidence intervals of the simulation-extrapolation corrected
analysis was close to the nominal level of 95% except when sample size was 1,000, in which
case coverage was 90% (MCSE 0.004). A decline in confidence interval coverage for the
simulation-extrapolation corrected analysis for larger sample sizes was confirmed by the
scenario where sample size was 10,000, in which case coverage was 53% (MCSE 0.007)(not
shown in the plots in Figure 7.2).
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Figure 7.3: Performance in a linear regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying number of replicates of the error-prone
measure in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance
measures, Monte Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the
base scenario where the number of replicates is assumed 3.
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Figure 7.4: Performance in a linear regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying R-squared of the outcome model in
terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance measures, Monte
Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the base scenario where
R-squared is assumed 0.03.

Figure 7.3 shows that the number of replicates had no effect on the percentage bias,
MSE and confidence interval coverage for varying number of replicates of the error-prone
measure.
Figure 7.4 shows that R-squared had no effect on percentage bias, and only a minor
decrease in MSE was found for increasing levels of R-squared. In addition, Figure 7.4
shows that 95% confidence interval coverage was around the nominal level for the
regression calibration corrected analysis for all values of the R-squared. However,
for the uncorrected and the simulation-extrapolation corrected analysis, confidence
interval coverage decreased for increasing values of R-squared. For R-squared equal
to 0.75, confidence interval coverage decreased to 15 % and 0 % (MCSE < 0.01) for the
simulation-extrapolation corrected and the uncorrected analysis, respectively.

In the scenarios where a dependency between the covariate age and the exposure
error-free blood pressure was introduced by changing parameter 𝛾 in the data generating
mechanism, the reliability of the error-prone measure was respectively 0.71, 0.94 and 0.98.
However, percentage bias, MSE and confidence interval coverage of the uncorrected and
corrected analyses were equal to the base scenario (the values in the base scenario are
shown in e.g. Figure 7.1). By introducing an effect of age on blood pressure, the total
variance of the error-free blood pressure increased. Consequently, the extra variability
in the error-prone blood pressure measurement due to measurement error was relatively
smaller than in the base scenario. Hence, it seemed as if the error-prone variable was more
reliable, though the attenuation due to random measurement error stayed constant at a
rate of 0.625.

Logistic regression. Figure 7.5 shows the percentage bias, MSE and confidence interval
coverage for varying values of the reliability of the error-prone measure. The uncorrected
analysis was biased for all values of the reliability, and the percentage bias decreased
when reliability increased. Regression calibration provided percentage bias close to null
when reliability was greater or equal to 0.2. Simulation-extrapolation provided biased
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Figure 7.5: Performance in a logistic regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring randommeasurement error for varying values of the reliability of the error-prone
measure in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance
measures, Monte Carlo standard errors were smaller than 0.02 in all scenarios. The grey points indicate the
base scenario where reliability is assumed 0.33. Mean squared error for RC and a reliability of 0.05 not shown
(1.28, Monte Carlo standard error: 0.42).

results when reliability was smaller than 0.8 and bias was close to null otherwise. MSE
was similar for simulation-extrapolation and the uncorrected analysis across the range
of reliability. MSE was greater for regression calibration than for the uncorrected and
simulation-extrapolation analysis when reliability was equal to or smaller than 0.2, and
similar otherwise. Coverage of the 95% confidence intervals was at the nominal level for
the regression calibration corrected analysis across the range of reliability, and for the
simulation-extrapolation corrected analysis when reliability was greater than or equal to
0.66.
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Figure 7.6: Performance in a logistic regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying sample sizes of the error-prone measure
in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance measures, Monte
Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the base scenario where
sample size is assumed 4,000. Mean squared error for RC and a sample size of 500 not shown (0.06, Monte Carlo
standard error: <0.01)
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Figure 7.7: Performance in a logistic regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying number of replicates of the error-prone
measure in terms of A) percentage bias; B) mean squared error and C) coverage. For all three performance
measures, Monte Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the
base scenario where the number of replicates is assumed 2.

Figure 7.6 shows the percentage bias, MSE and confidence interval coverage for varying
samples sizes of the main study. Percentage bias was increased for regression calibration
for a sample size of 500 compared to the base scenario where sample size was 4000 (7% vs
-2%, MCSE < 0.01) and was similar otherwise. Percentage bias remained at a high level
for simulation-extrapolation and the uncorrected analysis, ranging between -48% and
-45% (MCSE < 0.01) and -68% and -66% (MCSE < 0.01), respectively. MSE was greater for
smaller sample sizes. For a sample size of 4,000, MSE of regression calibration (ranging
between 0.06 and 0.01, MCSE < 0.01) was greater than for simulation-extrapolation and the
uncorrected analysis, ranging between 0.01 and 0.02, MCSE < 0.01 and 0.01, MCSE < 0.01,
respectively. Coverage was equal to the nominal level of 95% for regression calibration for
all sample sizes. The uncorrected analysis and simulation-extrapolation were undercovered
with coverage levels decreasing for increasing size of the sample size, ranging between
24% and 86% (MCSE < 0.01) and 73% and 89% (MCSE < 0.01), respectively. A decline in
confidence interval coverage for the simulation-extrapolation corrected analysis for larger
sample sizes was confirmed by the scenario where sample size was 10,000, in which case
coverage was 50% (MCSE 0.02) (not shown in the plots in Figure 7.6).
Figure 7.7 shows that the number of replicates had no effect on the percentage bias,
MSE and confidence interval coverage for varying number of replicates of the error-prone
measure.
Figure 7.8 shows that bias remains stable compared to the base scenario for varying values
of Pseudo R-squared, except for Pseudo R-squared equal to 0.12. Mean squared error
was higher for regression calibration than for the uncorrected or simulation-extrapolation
corrected analysis for Pseudo R-squared equal to 0.12, 0.25 and 0.69. Coverage
remained at the nominal level of 95% for regression calibration, and was subnominal
for simulation-extrapolation and the uncorrected analysis with values ranging between
73%-85% and 24%-68%, respectively.
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Figure 7.8: Performance in a logistic regression model of regression calibration (RC), simulation-extrapolation
(simex) and the analysis ignoring random measurement error for varying R-squared (Nagelkerke) of the outcome
model A) percentage bias; B) mean squared error and C) coverage. For all three performance measures, Monte
Carlo standard errors were smaller than 0.01 in all scenarios. The grey points indicate the base scenario where
R-squared is assumed 0.42

In the scenarios where a dependency between the covariate age and the error-free
exposure sodium intake was introduced by changing parameter 𝛾 in the data generating
mechanism, the reliability of the error-prone measure was respectively 0.34, 0.68, 0.87.
Similar to what was seen for linear regression, percentage bias, MSE and confidence interval
coverage of the uncorrected and corrected analyses were equal to the base scenario (the
values in the base scenario are shown in e.g. Figure 7.5).

7.4. Sensitivity analysis in the absence of validation data
In the first example introduced in section Motivating example, replicate measurements of
the error-prone systolic blood pressure were available. Nevertheless, validation data in the
form of replicate measurements may not always be available. When random measurement
error in a covariate is suspected in the absence of such validation data, a sensitivity
analysis could be conducted using regression calibration or simulation-extrapolation. A
general framework for conducting sensitivity analysis for random measurement error
is described here, where we assume that the input of the sensitivity analysis, i.e., the
measurement error variance and its uncertainty, are obtained from literature or expert
knowledge. Next, a distribution for the measurement error variance is assumed, e.g., a
uniform, triangular, or trapezidiol distribution [30]. Subsequently, regression calibration
or simulation-extrapolation are applied to the data for measurement error correction,
informed by the measurement error variance and its distribution. Finally, the results of the
application of measurement error correction are presented, and conclusions drawn about
the sensitivity of the results to measurement error.

7.4.1. Sensitivity analysis for measurement error in the example of blood
pressure and kidney function in pregnant women

Suppose that in the example of the relation between blood pressure and kidney function
in pregnant women discussed in section Motivating example (example 1), only the first
systolic blood pressure measurement was available. A 10 mmHg increase in systolic blood
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pressure was associated with a 1.18 𝜇mol/L (95% CI 0.14;2.23) increase in serum creatinine.
Random measurement error, however, could have been suspected in the single systolic
blood pressure measurement and suppose the sensitivity of the results to the measurement
error was studied. Suppose it was assumed that the variance of the measurement error
in systolic blood pressure was equal to 48 mmHg, with a minimum of 37 mmHg and a
maximum of 59 mmHg. Additionally, suppose a triangular distribution was assumed for
the measurement error variance, meaning that most weight was put on 48 mmHg, and the
weight was gradually reduced until it reached the assumed minimum and maximum level.
The triangular distribution was sampled in accordance with Lash et al. [30].
Figure 7.9 shows the results of the application of regression calibration and
simulation-extrapolation informed by the triangular distribution. For regression
calibration, a clear pattern was obtained. The corrected effect estimates increased
for larger values of the measurement error variance, with the effect estimates ranging from
1.75 - 2.38, with a median of 2.03. In addition, the associated lower limits of the confidence
intervals consistently suggest an association between blood pressure and creatinine. In
comparison, simulation-extrapolation did not show a clear pattern in the corrected effect
estimates. The corrected effect estimates ranged from 1.43 - 1.88, with a median of 1.70.
Figure 7.9 shows that the sampling variability that is inherent to simulation-extrapolation
causes more variability in the effect estimates compared to the variability due to random
measurement error. Nevertheless, the lower limits of the associated confidence intervals
again consistently suggest an association between blood pressure and creatinine levels.
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Figure 7.9: Sensitivity analysis for the association between blood pressure and kidney function in pregnant women
(example 1, [32]) by application of regression calibration (panel A) and simulation-extrapolation (panel B). The
uncorrected association and 95% confidence interval are depicted with a diamond and a solid black line, the
measurement error corrected associations and 95% confidence intervals are depicted with a square and a solid
gray line. The distribution of the measurement error variance is triangular. For reference, the measurement error
corrected association and 95% confidence interval using the replicates data is depicted with a star and a dashed
black line.

In the sensitivity analysis described here, results were presented graphically, and no
summary estimate was shown. In the presented plots, the variability around the corrected
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estimates was shown graphically. Alternatively, one can incorporate the variability around
the corrected estimates in a so-called probabilistic bias analysis, by repeatedly sampling the
corrected estimate from a distribution. Typically, it is assumed that the corrected estimate
is normally distributed with mean equal to the point estimate and standard deviation equal
to the standard error of the estimate. The sampled values can be presented by plotting the
distribution of corrected estimates. There is a close resemblance between a probabilistic
bias analysis and a Bayesian bias analysis with an uninformative prior for the association
under study. We refer to MacLehose et al. for a thorough discussion of this issue [36].
More information about probabilistic bias analysis can be found in e.g., the book by Lash
et al. [30] and more details about a Bayesian analysis for measurement error can be found
in e.g., the book by Gustafson et al. [16].

7.5. Discussion
This chapter compared regression calibration and simulation-extrapolation for sensitivity
analysis for random measurement error in an exposure variable. A simulation study
showed that with correct assumptions about the measurement error variance, regression
calibration was generally unbiased for linear and logistic regression when the reliability of
the error-prone measurement was greater than 0.2. The bias in the regression calibration
corrected analysis for linear regression for low reliability was unexpected, but may be
explained by the instability of regression calibration when the correction factor is close to
null. The bias in the regression calibration corrected analysis for logistic regression for low
reliability was expected as Kuha showed that regression calibration for logistic regression
is only approximately unbiased when the effect of the exposure on the outcome is ‘small to
moderate’ and/or the measurement error variance ‘small’ [31]. Moreover, the uncorrected
and simulation-extrapolation corrected analysis were generally biased, with higher bias for
lower reliability of the error-prone exposure. Confidence interval coverage for regression
calibration was generally close to the nominal level of 95% for linear and logistic regression.
On the contrary, the confidence interval coverage of the simulation-extrapolation corrected
and uncorrected analysis were subnominal.

The uncorrected analysis was shown more efficient than the corrected analyses for
linear regression in settings where reliability was low (i.e., 0.2) or sample size small (i.e.,
125). This observation is the result of the substantially smaller variance of the uncorrected
analysis compared to the corrected analyses, which outweighs the larger bias for the
uncorrected analysis. This is sometimes referred as the bias–variance trade off, we refer to
chapter 3 of the book by Carroll et al. for a detailed discussion [13]. The same pattern was
obtained for logistic regression. In addition, simulation-extrapolation showed a small gain
in efficiency over regression calibration for linear regression in settings where reliability
was low (i.e., 0.2) or sample size small (i.e., 250 and 125), and similar efficiency otherwise.
The efficiency gain of simulation-extrapolation over regression calibration obtained for
linear regression was not seen in logistic regression because of the large bias in the
simulation-extrapolation analysis in most settings.

The results of our simulation study were in line with the results of three previous
simulation studies: the corrected analyses showed lower percentages bias compared
to the uncorrected analysis and the simulation-extrapolation corrected analysis showed
higher percentage bias compared to regression calibration [5, 28, 29]. However, important
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differences were observed. First, simulation-extrapolation showed a small gain in efficiency
over regression calibration for linear regression in some settings, which was not found in
the previous simulation studies. The sample sizes for which this gain in efficiency for
simulation-extrapolation was observed (i.e., 125, 250 and 500) were smaller than those
assumed by Perrier et al. [5] and Batistatou et al. [28] (i.e., 3,000 and 1,000, respectively),
which may explain the found difference. Second, our simulation showed no effect of the
number of replicates on bias. While the simulation study by Perrier et al. showed that an
increasing number of replicates reduced bias in the corrected analyses [5]. This difference
is explained by the fact that in the study by Perrier et al., the replicate measures were
pooled before applying measurement error correction. By pooling the replicate measures
with random measurement error, the measurement error variance is reduced. Therefore,
bias decreased in the study by Perrier et al. with the availability of more replicate measures.
This effect however is solely due to pooling the replicates measures and not due to a more
precise estimate of the measurement error variance, as was shown by our results. Third, the
simulation study by Fung et al. [29] showed that by increasing the correlation between the
exposure and a covariate, the attenuation in the uncorrected analysis increased toward the
null value. In comparison, our simulation study showed no effect of covariate dependency
on bias in the uncorrected analysis. This is explained by the fact that in our simulation
study, the variance of the exposure given the covariate was kept constant, while the total
variance of the exposure was varied by introducing the covariate dependency (i.e., changing
𝛾 in the data generating mechanism). In comparison, in the simulation study by Fung et
al., the variance of the exposure given the covariate was varied, resulting in an increase in
the attenuation factor.

Our simulation study showed that percentage bias in the uncorrected analysis was
equal to 1 minus the reliability of the error-prone measure times 100, in line with theory
[8, 9]. The reliability of an error-prone measure equals the variance of the error-free
measure divided by the variance of the error-pronemeasure. For example, in Figure 7.1, bias
in the uncorrected analysis was equal to 80% for a reliability equal to 0.2. The uncorrected
effect estimate is equal to 0.2 times the estimand 0.2, i.e., 0.04. From that, it follows that the
bias is equal to 0.2−0.04 = 0.16, which is 80% of 0.2. It is, however, important to note that the
percentage bias is not equal to 1 minus the reliability of the error-prone measure when the
total variance of the error-free measure depends on a covariate that is also included in the
outcome model. For example, in our simulation study, the association between creatinine
and systolic blood pressure given age was estimated. When a dependency between systolic
blood pressure and age was introduced, the reliability increased to a maximum of 0.98
while the percentage bias in the uncorrected analysis was constant at 62.5%. A formula for
the attenuation in the effect estimate due to random measurement error in multivariable
models can be found in e.g. [13].

In our simulation study, the measurement error variance used to correct for the random
measurement error was estimated using replicate measures. However, we assumed that
these replicate measures were solely available to estimate the measurement error variance,
to mimic a setting where such validation data are not available, yet unbiased information
is available about the measurement error variance. In future studies, this work could be
extended to settings where the measurement error is estimated with bias, and to settings
where the measurement error model is misspecified. Also non-random measurement error,
e.g., systematic measurement error and differential measurement error, which was not the
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topic of this study, could be considered in future work. Simulation-extrapolation is not
suited for the correction of measurement other than random measurement error, and for
regression calibration, the full calibration model needs to be specified. We refer to Nab et
al. [23] for a specification of the calibration model in case of systematic measurement error
and what validation data can be used to estimate the calibration model. In addition, in our
simulation study, models with one covariate and normal distributed measurement error
were considered. The results of our study can be extended to settings with more covariates
and measurement error with a skewed or heavy-tailed distribution. The covariate in our
data generating mechanism can be viewed as a summary of a larger set of variables. What
is more, transformations can turn a skewed or heavy-tailed measurement error distribution
into a distribution that is closer to the normal distribution, as proposed by Carrol et al. [13].
Alternatively, adopted versions of regression calibration for heteroscedastic measurement
error could be used [37].

Our study discussed measurement error correction methods for sensitivity analysis
of random measurement error in a continuous exposure. For a categorical exposure,
measurement error will lead to misclassification of the exposure. In this setting, different
measurement error correction methods can be used. For example, the misclassification
simulation-extrapolation [38], available in the R package simex [25]. Or alternatively, the
probabilistic sensitivity analysis of misclassified binary variables described by Fox et al.
[39].

Our study explored the performance of regression calibration and
simulation-extrapolation for the correction of random measurement error in a linear
regression model and a logistic regression model. For a survival model, the effects of
random measurement error cannot be derived exactly as shown in chapter 14 of the
book by Carroll et al. [13]. In particular, regression calibration gives approximately
consistent estimates only in cases of a rare outcome, and for a hazard ratio of ‘small to
moderate’ size or ‘small’ measurement error variance [40]. Xie et al. proposed a more
flexible regression calibration approach for Cox regression that is referred to as ‘risk set
regression calibration’ [41]. Alterations of the simulation-extrapolation method have been
proposed for proportional hazard models [42] and accelerated failure time models [43]. For
Poisson regression, regression calibration only provides estimates that are approximately
unbiased, and usually works well, when the effect of the exposure on the outcome is
‘small to moderate’ or the measurement error variance ‘small’ [13]. Fung et al. compare
regression calibration and simulation-extrapolation for Poisson regression and concluded
that regression calibration performed best in all scenarios considered [44].

The Achilles heel of simulation-extrapolation is the extrapolation step [3]. Our
simulation study uses a quadratic extrapolation. Lockwood et al. demonstrate the use
of a quartic extrapolation, that may reduce bias in the simulation-extrapolation estimator
[45].

In the example presented in section 7.4, the five steps of a sensitivity analysis
for random exposure measurement error were described: 1) quantify the measurement
error variance and its uncertainty; 2) specify the distribution of the measurement error
variance; 3) perform measurement error correction by means of regression calibration or
simulation-extrapolation; 4) visualise the results, and 5) draw conclusions. A sensitivity
analysis using regression calibration showed that the higher the measurement error
variance, the more the corrected effect estimate departs from the null, which is in line
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with the literature [8, 9]. In the sensitivity analysis using simulation-extrapolation, the
variability in the corrected effect estimates due to the sampling variability inherent to
simulation-extrapolation exceeded the variability in the corrected effect estimates due
to the assumed measurement error variance. Our simulation results showed that the
regression calibration estimator is generally unbiased while the simulation-extrapolation
estimator is. In contrast, simulation-extrapolation showed a small efficiency gain over
regression calibration. Despite the efficiency gain for simulation-extrapolation, we
recommend the use of regression calibration for sensitivity analysis. In a sensitivity
analysis, focus is on the quantification of the impact of measurement error on the point
estimate, and the confidence interval width may be of lesser importance.

In conclusion, regression calibration and simulation-extrapolation are suited for
sensitivity analysis for random measurement error. It is difficult to say anything definite
about the behavior of regression calibration and simulation-extrapolation based on a
handful of simulation studies. We have, however, covered many aspects in our simulation
study, i.e., reliability, sample size, number of replicates, explained variance of the outcome
model and covariate dependency. The pattern is so pronounced and in accordance
with findings of former simulation studies [5, 28, 29], that we think it is safe to say
that regression calibration may be preferred over simulation-extrapolation. Nevertheless,
if researchers want to compare simulation-extrapolation with regression calibration in
simulation settings that are closer to their intended field of application, then we provided
our simulation code, which can be modified easily to allow for investigation of such
scenarios.
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8
Quantitative bias analysis for a

misclassified confounder in
marginal structural models

Observational data are increasingly used with the aim of estimating causal effects of treatments, through
careful control for confounding. Marginal structural models estimated using inverse probability weighting
(MSMs-IPW), like other methods to control for confounding, assume that confounding variables are
measured without error. The average treatment effect estimator in a MSM-IPW may however be biased
when a confounding variable is error-prone. Using the potential outcome framework, we derive expressions
for the bias due to confounder misclassification in analyses that aim to estimate the average treatment
effect using a MSM-IPW. We compare this bias with the bias due to confounder misclassification in
analyses based on a conditional regression model. Focus is on a point-treatment study with a continuous
outcome. Compared to bias in the average treatment effect estimator from a conditional model, the bias
in MSM-IPW can be different in magnitude, but is equal in sign. Also, we use a simulation study to
investigate the finite sample performance of MSM-IPW and conditional models when a confounding
variable is misclassified. Simulation results indicate that confidence intervals of the treatment effect
obtained from MSM-IPW are generally wider and coverage of the true treatment effect is higher
compared to a conditional model, ranging from over-coverage if there is no confounder misclassification
to under-coverage when there is confounder misclassification. We illustrate in a study of blood pressure
lowering therapy, how the bias expressions can be used to inform a quantitative bias analysis to study the
impact of confounder misclassification, supported by an online tool.

This chapter is based on: L. Nab, R.H.H. Groenwold, M. van Smeden and R.H. Keogh, Quantitative bias analysis for
a misclassified confounder: A comparison between marginal structural models and conditional models for point
treatments, Epidemiology, 31 (6) (2020) 796–805. doi:10.1097/EDE.0000000000001239
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8.1. Introduction

The aim of many observational epidemiologic studies is to estimate a causal relation
between an exposure and an outcome, through careful control for confounding. In the
case of a point-treatment, that is estimating the effect of a treatment at a single time point
on a subsequent outcome, many methods exist that aim to estimate average treatment
effects. These include traditional conditional regression analysis as well as marginal
structural models estimated using inverse probability weighting (MSMs-IPW) [1, 2]. Unlike
conditional regression, MSMs extend to estimation of joint treatment effects over multiple
time points in longitudinal settings with time-dependent confounding [1, 3].

To obtain valid inference, MSMs-IPW, like other methods to control for confounding,
assume that confounding variables are measured without error, an assumption hardly
ever warranted in observational epidemiologic research [4–7]. A type of measurement
error is classification error, which occurs when categorical variables are misclassified. For
instance, smoking status (smoker vs non-smoker) is prone to classification error, but has
been used as a confounding variable in studies investigating dialysis on mortality [8] and
iron supplement use during pregnancy on anemia at delivery [9]. Another example of the
use of a potentially misclassified confounding variable is alcohol use during pregnancy (yes
vs no) in studies investigating associations between exposure to triptans during fetal life
and risk of externalizing and internalizing behaviors in children [10]. In all aforementioned
examples, MSMswere used to estimate the exposure–outcome relation, but the assumption
of error-free confounding variables is possibly violated andmay lead to bias in the treatment
effect estimator.

There is a substantial literature on bias due to measurement error in confounding
variables in conditional regression analyses [11–15], but the impact of measurement error
in confounding variables in causal inference methods, such as MSMs-IPW, has not received
much attention. One exception is a study by Regier et al. that showed by means
of a simulation study that measurement error in continuous confounding variables can
introduce bias in the ATE in a point-treatment study [16]. McCaffrey et al. proposed a
weighting method to restore the treatment effect estimator when covariates are measured
with error [17].

We provide a discussion of measurement error in a confounding variable. In
addition, we derive expressions that quantify the bias in the average treatment effect if
a dichotomous confounding variable is misclassified, focusing on a point-treatment study
with a continuous outcome. These expressions allow us 1) to quantify the bias due to
classification error in a confounding variable in MSMs-IPW, and to compare this with
the bias from a conditional regression analysis and 2) to inform quantitative bias analyses
[18–20]. We use simulation results to study the finite sample performance of a MSM-IPW
compared to that of conditional regression models if classification error in a confounding
variable is present. We illustrate our quantitative bias analysis in a study of the effect of
blood pressure lowering drugs on blood pressure.
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8.2. Settings and impact of measurement error, notation and
assumptions

Let 𝐴 denote the treatment indicator and 𝑌 the outcome. Let there be a variable 𝐿 that
confounds the association between treatment and outcome and suppose that, instead of
confounding variable 𝐿, the error-prone confounding variable 𝐿∗ is observed. We consider
two settings in which measurement error in confounding variables may occur and discuss
the impact of measurement error in both settings.

Settings and impact of measurement error. The directed acyclic graph (DAG)
in Figure 8.1a illustrates setting 1. In this setting, treatment initiation is based on
the error-prone confounding variable. Consider for example a study investigating the
relation between the use of antidepressant drugs (𝐴) and the risk of a hip fracture (𝑌 )
[21]. Benzodiazepine use may be a confounding variable, but is prone to classification
error since only prescription information may be available and over-the-counter use is
often unknown. The clinician initiating the antidepressant drugs might not know their
patient’s over-the-counter use and initiates treatment based on the observed error-prone
benzodiazepine use (𝐿∗) instead of actual use (𝐿), as depicted in Figure 8.1a. Here,
conditioning on the error-prone 𝐿∗ will block the backdoor path from treatment 𝐴 to
outcome 𝑌 . Thus, it is sufficient to control for the error-prone confounding variable to
estimate the causal effect of treatment on outcome. This means that measurement error
in a confounding variable will not always lead to bias.

𝐿

𝐿∗𝜀

𝐴 𝑌
(a) Setting 1: treatment 𝐴 is initiated based
on the error-prone confounding variable 𝐿∗

𝐿

𝐿∗𝜀

𝐴 𝑌
(b) Setting 2: treatment 𝐴 is initiated based
on confounding variable 𝐿

Figure 8.1: Two settings of measurement error 𝜀 in variable 𝐿 that confounds the association between treatment
𝐴 and outcome 𝑌 illustrated in directed acyclic graphs

The DAG in Figure 8.1b illustrates setting 2, in which treatment initiation is based on 𝐿,
but only a proxy of 𝐿 is observed (𝐿∗). An example here might be a study investigating the
effect of influenza vaccination (𝐴) on mortality (𝑌 ) in the elderly population [22]. Frailty
(𝐿) possibly confounds the association between influenza vaccination andmortality. Frailty
is observed by a clinician, but only a proxy of frailty (𝐿∗) may be available in electronic
health records, as depicted in Figure 8.1b. Here, conditioning on 𝐿∗ will not fully adjust for
confounding by 𝐿, because conditioning on 𝐿∗ does not block the backdoor path from 𝐴 to
𝑌 via 𝐿.
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Notation and assumptions. We will now continue investigating the impact of
classification error in setting 2, by focusing on the setting where 𝐿 is a dichotomous
confounding variable and 𝑌 a continuous outcome. We use the potential outcomes
framework [23, 24]. Let 𝑌 𝑎=0 denote the outcome that an individual would have had if
treatment 𝐴 was set to 𝑎 = 0, and let 𝑌 𝑎=1 denote the outcome if treatment 𝐴 was set to
𝑎 = 1. We assume that 𝐿∗ is non-differentially misclassified with respect to the outcome
(𝐿∗ ⊧𝑌 |𝐿) and to the treatment (𝐿∗ ⊧𝐴|𝐿). Let 𝑝1 denote the sensitivity of 𝐿∗ and 1 − 𝑝0 the
specificity of 𝐿∗ (i.e., 𝑃(𝐿∗|𝐿 = 𝑙) = 𝑝𝑙 ). We also denote the probability of treatment given the
level of 𝐿 by 𝑃(𝐴 = 1|𝐿 = 𝑙) = 𝜋𝑙 and the prevalence of 𝐿 by 𝑃(𝐿 = 1) = 𝜆. Here, we assume
that 0 < 𝜆 < 1 since we are not interested in populations where 𝐿 is present or absent in
everyone. Finally, we assume no measurement error in exposure and outcome.

We also assume that the following causal assumptions are satisfied to recover the causal
effect of treatment on the outcome. Under the consistency assumption, we require that we
observe 𝑌 = 𝑌 𝑎=0 if the individual is not exposed, or 𝑌 = 𝑌 𝑎=1 if the individual is exposed
[25]. Further, we assume that the potential outcome 𝑌 𝑎 for an individual does not depend
on treatments received by other individuals and that there are not multiple versions of
treatment, also referred to as Stable-Unit-Treatment-Value-Assumption [26]. Additionally,
we assume conditional exchangeability, i.e., given any level of 𝐿, if the untreated group had
in fact received treatment, then their expected outcome would have been the same as that
in the treated, and vice versa [25]. In notation, 𝐴 ⊧𝑌 𝑎 |𝐿, for 𝑎 = 0, 1. Finally, we assume
𝜋𝐿 > 0 for 𝐿 = 0, 1 (positivity) [27].

For causal contrasts, we compare expected potential outcomes (i.e., counterfactual
outcomes) under the two different treatments. The average causal effect of the treatment
on the outcome is 𝛽 = E[𝑌 𝑎=1] − E[𝑌 𝑎=0]. Under the above defined assumptions, the
conditional effect of treatment 𝐴 on outcome 𝑌 can be defined through the following linear
model:

E[𝑌 𝑎 |𝐿] = E[𝑌 |𝐴 = 𝑎, 𝐿] = 𝛼 + 𝛽𝑎 + 𝛾𝐿. (8.1)

Estimates for 𝛽 in the abovemodel can be obtained by fitting a conditional regressionmodel.
Alternatively, the effect of treatment 𝐴 on outcome 𝑌 may be estimated by fitting a MSM:

E[𝑌 𝑎] = 𝛼msm + 𝛽𝑎, where 𝛼msm = 𝛼 + 𝛾E[𝐿]. (8.2)

Estimates for 𝛽 in the above model can be obtained by IPW estimation: by fitting a linear
regression model for 𝑌 on 𝐴 where the contribution of each individual is weighted by 1
over the probability of that individual’s observed treatment given 𝐿 [28], estimating the
marginal treatment effect. Since our focus is on linear models and we make the simplifying
assumption that the effect of 𝐴 on 𝑌 does not vary between strata of 𝐿, the conditional and
marginal treatment effects, denoted by 𝛽 in model (8.1) and (8.2), respectively, are equal.
This is not generally true for non-linear models due to non-collapsibility [28]. We assume
that the effect of 𝐴 on 𝑌 does not vary between strata of 𝐿, to derive bias expressions that
are easier to use in practice and require fewer parameters [29].

8.3. Quantification of bias due to classification error in a
confounding variable

Our aim is to study the effect of using the misclassified confounding variable 𝐿∗ in place
of the confounding variable 𝐿 in the conditional regression model or in the model for the
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weights used to fit the MSM on the average treatment effect estimator in the setting where
𝐿, not 𝐿∗, influences treatment initiation (setting 2 above).

Conditionalmodel. By the law of total expectation, the expected value of the outcome
𝑌 given treatment 𝐴 and 𝐿∗ is (see S8.1 section Conditional model for further detail),

E[𝑌 |𝐴 = 𝑎, 𝐿∗] = E𝐿|𝐴=𝑎,𝐿∗[E[𝑌 |𝐴 = 𝑎, 𝐿∗, 𝐿]] = {𝛼 + 𝛾𝜙00 + 𝛿𝑢0}
+ {𝛽 + 𝛾(𝜙10 − 𝜙00) + 𝛿𝑢𝐴}𝑎
+ {𝛾(𝜙01 − 𝜙00) + 𝛿𝑢𝐿∗ }𝐿∗,

where 𝜙𝑎𝑙∗ = 𝑃(𝐿 = 1|𝐴 = 𝑎, 𝐿∗ = 𝑙∗), 𝛿 = E[𝑌 |𝐴 = 1, 𝐿∗ = 1] = 𝛾(𝜙11 − 𝜙10 − 𝜙01 + 𝜙00) and
𝑢0, 𝑢𝐴, 𝑢𝐿∗ represent the coefficients of the linear model E[𝐴𝐿∗|𝐴, 𝐿∗] = 𝑢0 + 𝑢𝐴𝐴 + 𝑢𝐿∗𝐿∗,
modelling the mean of 𝐴 times 𝐿∗ (i.e., 𝐴𝐿∗) given 𝐴 and 𝐿∗ (see next paragraph for an
explanation of why these appear). The coefficient for treatment 𝐴 in the above model is
𝛽 + 𝛾(𝜙10 − 𝜙00) + 𝛿𝑢𝐴, and is therefore biased for the parameter of interest (i.e., 𝛽). By
rewriting 𝑢𝐴 in terms of 𝜆, 𝜋0, 𝜋1, 𝑝0 and 𝑝1 (see S8.1 section Conditional model), we find
that the bias due to classification error in 𝐿∗ in the average treatment effect in a conditional
regression model is,

Biascm(𝛽) = 𝛾(𝜙10 − 𝜙00) (1 − ℓ × { 𝜋 ∗1(1 − 𝜋 ∗1)
𝜋 ∗1(1 − 𝜋 ∗1)ℓ + 𝜋 ∗0(1 − 𝜋 ∗0)(1 − ℓ) })

+𝛾(𝜙11 − 𝜙01) (ℓ × { 𝜋 ∗1(1 − 𝜋 ∗1)
𝜋 ∗1(1 − 𝜋 ∗1)ℓ + 𝜋 ∗0(1 − 𝜋 ∗0)(1 − ℓ) }) , (8.3)

where 𝜋 ∗𝑙∗ = 𝑃(𝐴 = 1|𝐿∗ = 𝑙∗), ℓ = 𝑃(𝐿∗ = 1) (see S8.1 section Conditional model for a
derivation).

We focused on a model for 𝑌 conditional on 𝐴 and 𝐿∗ which includes only main effects
of 𝐴 and 𝐿∗, as this is typically done in practice when replacing 𝐿 with 𝐿∗. In fact, it can be
shown that when the model for 𝑌 given 𝐴 and 𝐿 includes only main effects of 𝐴 and 𝐿, the
implied correctly specified model for 𝑌 given 𝐴 and 𝐿∗ also includes an interaction between
𝐴 and 𝐿∗, explaining the appearance of 𝑢0, 𝑢𝐴 and 𝑢𝐿 in the above since the interaction
is not modeled. See S8.1 section Conditional model for the bias in case an interaction is
modelled.

MSM-IPW. A MSM-IPW proceeds by fitting a linear regression for outcome 𝑌 on
treatment 𝐴where the contribution of each individual is weighted by 1 over the probability
of that individual’s observed treatment given misclassified 𝐿∗ [28]. An estimator for the
average treatment effect 𝛽 is,

̂𝛽 =
∑𝑛

𝑖=1
1

𝑃(𝐴𝑖 |𝐿∗𝑖 )
(𝑌𝑖 − 𝑌𝑤)(𝐴𝑖 − 𝐴𝑤)

∑𝑛
𝑖=1

1
𝑃(𝐴𝑖 |𝐿∗𝑖 )

(𝐴𝑖 − 𝐴𝑤)2
where, 𝑌𝑤 = ∑𝑛

𝑖=1 𝑌𝑖/𝑃(𝐴𝑖 |𝐿∗𝑖)
∑𝑛

𝑖=1 1/𝑃(𝐴𝑖 |𝐿∗𝑖)

and, 𝐴𝑤 = ∑𝑛
𝑖=1 𝐴𝑖/𝑃(𝐴𝑖 |𝐿∗𝑖)

∑𝑛
𝑖=1 1/𝑃(𝐴𝑖 |𝐿∗𝑖)

.

It can be shown that E[ ̂𝛽] = 𝛽 + 𝛾(𝜙10 − 𝜙00)(1 − ℓ) + 𝛾(𝜙11 − 𝜙01)ℓ. Consequently, the bias
in the average treatment effect 𝛽 in a MSM-IPW is,

Biasmsm(𝛽) = 𝛾(𝜙10 − 𝜙00)(1 − ℓ) + 𝛾(𝜙11 − 𝜙01)ℓ. (8.4)
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We refer to S8.1 section Marginal structural model estimated using inverse probability
weighting for a derivation of the above formula.

8.3.1. Exploration of bias
To study the bias due to misclassification from the conditional model and MSM-IPW, we
explore bias expressions (8.3) and (8.4).

Null-bias. To confirm the derived bias expressions, we consider three trivial conditions
where bias in the average treatment effect is expected to be null, in line with general
understanding of causal inference [30]. (1) If there is no classification error in 𝐿∗, i.e.,
specificity is 1 (𝑝0 = 0) and sensitivity is 1 (𝑝1 = 1), it follows that 𝐿 corresponds to 𝐿∗,
irrespective of treatment level (i.e., 𝜙10 = 0, 𝜙00 = 0, 𝜙11 = 1 and 𝜙01 = 1). (2) If the true
relation between 𝐿 and 𝑌 is null (i.e., 𝛾 is zero, thus there is no arrow from 𝐿 to 𝑌 in Figure
(8.1b)). (3) If 𝐿 does not affect the probability of receiving treatment (i.e., 𝜋0 = 𝜋1, thus there
is no arrow from 𝐿 to 𝐴 in Figure (8.1b)), the probability that 𝐿 is 1 depends on the value
of 𝐿∗ but no longer on 𝐴 (i.e., 𝜙00 = 𝜙10 and 𝜙01 = 𝜙11). Bias is null under these conditions
for both models (MSM-IPW and conditional model). Since the bias expressions are strictly
monotonic, the bias in a MSM-IPW cannot be negative if the bias in the conditional model
is positive and vice versa (i.e., the bias will be in the same direction for both models).

Equal biases. The bias in the average treatment effect from the conditional regression
analysis is equal to that from the MSM-IPW if bias in both models is null (see above). We
also see that bias expressions (8.3) and (8.4) show that bias for the two methods is equal if
the term between curly brackets in equation (8.3) is equal to 1, which is the case if: (i) ℓ = 1;
(ii) 𝜋 ∗0 = 𝜋 ∗1; (iii) 𝜋 ∗0 = 1 − 𝜋 ∗1. If conditions i and/or ii are met, there is no bias in a MSM-IPW
nor in a conditional model. Under condition iii, bias is generally non-null (except if for
example 𝛾 = 0, see null-bias).

Sign and magnitude of bias. Figures 8.2-8.4 illustrate the contributions to bias in
the average treatment effect estimator due to misclassification components (sensitivity
and specificity) and due to confounding components (prevalence of confounding variable,
strength of association between confounding variable and treatment and outcome) in a
conditional model and a MSM-IPW, obtained by using the bias expressions.

Figure 8.2 shows that: (1) the bias is positive if both the association between 𝐿 and
treatment and, 𝐿 and outcome are positive (i.e., 𝜋1 > 𝜋0 and 𝛾 = 2, respectively), and (2)
the bias is greater if the difference between 𝜋1 and 𝜋0 is greater (i.e., if the strength of the
association between 𝐿 and treatment is greater). In contrast, the bias is negative if 𝜋1 < 𝜋0,
while 𝛾 is positive. In case 𝛾 = −2, Figure 8.2 is mirrored in 𝑦 = 0 and consequently, bias is
negative if 𝜋1 > 𝜋0 and positive if 𝜋1 < 𝜋0. An increment in 𝛾 will result in greater bias and
steeper curves in Figure 8.2. Figure 8.3 shows that the magnitude of the bias depends on the
prevalence of 𝐿. Further, it shows that bias is greater if the strength of association between 𝐿
and treatment is greater. Figure 8.4 shows that, generally, the bias is greater if 𝐿∗ has lower
specificity and sensitivity. Moreover, for a fixed sensitivity, bias is minimal if specificity
equals 1 and is maximal if 1 minus specificity equals sensitivity; by fixing specificity, bias
is minimal if sensitivity equals 1 and is maximal if sensitivity equals 1 minus specificity.
Figure 8.4 shows that the bias is greater if the strength of the association between 𝐿 and
treatment is greater. An increment in 𝛾 will result in greater bias and steeper curves in
Figure 8.4. An online application can be used to obtain bias plots for other combinations of
the parameters available at: https://lindanab.shinyapps.io/SensitivityAnalysis.

https://lindanab.shinyapps.io/SensitivityAnalysis
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Figure 8.2: Visualisation of the direction and magnitude of the bias in the average treatment effect in relation
to the prevalence of treatment among individuals with the confounding variable present. In this visualisation,
the confounding variable 𝐿 is misclassified with a sensitivity of 0.9 and specificity of 0.95. Consequently, the
average treatment effect estimated in a MSM-IPW or conditional regression model is biased, independent of
true average treatment effect. The prevalence of 𝐿 is 50% (i.e., 𝑃(𝐿 = 1) = 0.5). The direction and magnitude
of the bias depend on: (1) the strength and direction of the association between 𝐿 and treatment (denoted by
𝜋1 = 𝑃(treatment = 1|𝐿 = 1) and 𝜋0 = 𝑃(treatment = 1|𝐿 = 0), here set at 𝜋0 = 0.5 in the left-hand-side plot
and 𝜋0 = 0.8 in the right-hand-side plot); and (2) the strength and direction of the association between 𝐿 and the
outcome (denoted by 𝛾 in the text and here set at 𝛾 = 2). Larger values of 𝛾 will result in steeper curves; 𝛾 = −2
will mirror the graph in 𝑦 = 0.
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Figure 8.3: Visualisation of the magnitude of the bias in the average treatment effect in relation to the prevalence
of a confounding variable. In this visualisation, the confounding variable 𝐿 is misclassified with a sensitivity of
0.9 and specificity of 0.95. Consequently, the average treatment effect estimated in a MSM-IPW or conditional
regression model is biased, independent of true average treatment effect. The confounding variable is positively
associated with treatment (i.e., here 𝜋1 > 𝜋0, where 𝜋1 = 𝑃(treatment = 1|𝐿 = 1) and 𝜋0 = 𝑃(treatment = 1|𝐿 = 0)),
and outcome (denoted by 𝛾 in the text and here set at 𝛾 = 2). The magnitude of the bias depends on the prevalence
of the confounding variable (i.e., 𝑃(𝐿 = 1)). Larger values of 𝛾 will result in steeper curves.
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Figure 8.4: Visualisation of the magnitude of the bias in the average treatment effect in relation to specificity and
sensitivity of a misclassified confounding variable. In this visualisation, the prevalence of the confounding variable
𝐿 is 50% (i.e., 𝑃(𝐿 = 1) = 0.5), the association between 𝐿 and treatment (denoted by 𝜋1 = 𝑃(treatment = 1|𝐿 = 1)
and 𝜋0 = 𝑃(treatment = 1|𝐿 = 0)) and outcome is positive (denoted by 𝛾 in the text and here set at 𝛾 = 2).
Given these values, if 𝐿 is misclassified, the average treatment effect estimated in a MSM-IPW or conditional
regression model is biased, independent of true average treatment effect. The magnitude of the bias depends on
the specificity and sensitivity of 𝐿 and is maximal if sensitivity equals 1 minus specificity. The strength of the
association between 𝐿 and treatment is greater in the right-hand-side plot (𝜋0 = 0.25, 𝜋1 = 0.75) compared to the
left-hand-side plot (𝜋0 = 0.5, 𝜋1 = 0.75) and consequently, bias is greater. Larger values of 𝛾 will result in steeper
curves.
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8.3.2. Simulation study
We conducted a simulation study to study the finite sample properties of MSMs-IPW and
conditionalmodels if there is classification error in the confounding variable. Five-thousand
data sets were generated with sample sizes of 1,000 and 100, using the following data
generating mechanisms:

𝐿 ∼ Bern (𝜆) , 𝐴|𝐿 ∼ Bern (𝜋 (1−𝐿)0 𝜋𝐿1 ) ,
𝐿∗|𝐿 ∼ Bern (𝑝(1−𝐿)0 𝑝𝐿1) and, 𝑌 |𝐴, 𝐿 ∼ N(1 + 𝛽𝐴 + 𝛾𝐿, 1).

We studied five different scenarios, of which the parameters values can be found in Table
8.1. In all scenarios, the average treatment effect 𝛽 (estimand) is 1 and the association
between the confounding variable 𝐿 and outcome 𝑌 is 2 (i.e., 𝛾 = 2). In scenario 0, we
assume no classification error. In scenarios 1-4, we assume that 𝐿∗ has a specificity of 0.95
(i.e., 𝑝0 = 0.05) and a sensitivity of 0.90 (i.e., 𝑝1 = 0.9). In scenario 1, bias in the average
treatment effect 𝛽 is expected to be negative since the probability of receiving treatment
given that 𝐿 is not present is greater than receiving treatment given that 𝐿 is present, and
the association between 𝐿 and 𝑌 is positive (i.e., 𝜋0 > 𝜋1 and 𝛾 = 2). In contrast, in scenario
2 and 3, bias in the average treatment effect is expected to be positive, since 𝜋0 < 𝜋1 and
𝛾 = 2. Further, after investigation of Figure 8.3, we expect that bias in the average treatment
effect estimated in a conditional model is greater than that in a MSM-IPW in scenario 2
and 3. Finally, in scenario 4, we expect that bias in the average treatment effect from the
conditional model is equal to that in a MSM-IPW.

Model estimation and performance measures. We obtained the average treatment
effect 𝛽 (estimand) by fitting a conditional model using conditional regression and by
fitting a MSM-IPW, both using the misclassified 𝐿∗ instead of 𝐿 from the data generating
mechanism. For the MSM-IPW analysis we used the R package ipw [31] [32]. Performance
of both models was evaluated in terms of the bias, the mean squared error of the estimated
treatment effect (MSE), the percentages of 95% confidence intervals that contain the
true value of the estimand (coverage), the empirical standard deviation of the estimated
treatment effects (empSE) andmeanmodel based standard error of the estimated treatment
effect. We estimated robust model based standard errors of the average treatment effect
in a MSM-IPW using the R package survey [33]. We calculated Monte Carlo standard
errors for all performance measures [34], using the R package rsimsum [35]. Additionally,
we calculated the theoretical bias of the average treatment effect in both methods based
on the bias expressions (8.3) and (8.4).

Table 8.1: Values of the parameters in the five different simulation scenarios

Scenario Parameters
Number 𝑝0 𝑝1 𝜆 𝜋0 𝜋1 𝛽 𝛾
0 0 1 0.50 0.50 0.75 1 2
1 0.05 0.90 0.50 0.90 0.45 1 2
2 0.05 0.90 0.80 0.25 0.75 1 2
3 0.05 0.90 0.80 0.50 0.75 1 2
4 0.05 0.90 0.45 0.50 0.75 1 2



8

162 Quantitative bias analysis for a misclassified confounder

Table
8.2:

R
esults

of
sim

ulation
study

studying
the

finite-sam
ple

properties
of

a
m
arginalstructuralm

odels
estim

ated
using

inverse
probability

w
eighting

(M
SM

-IP
W

)and
a
conditionalm

odel(C
M

)if
there

is
classification

error
in

the
confounding

variable.
B
ias

form
ula

indicates
the

bias
based

on
bias

expressions
(8.3)and

(8.4)in
the

text,M
SE

m
ean

squared
error,Em

pSE
em

piricalSE
and

M
odelSE

m
odelbased

SE.

M
ethod

Sam
ple

Scen-
B
ias

B
ias

M
SE

C
overage

Em
pSE

M
odelSE

Size
arioa

Form
ula

M
SM

-
1,000

0
0.00

0.00
(0.001)

0.00
(0.000)

0.99
(0.001)

0.07
(0.001)

0.10
(0.000)

IP
W

1
-0.42

-0.42
(0.001)

0.18
(0.001)

0.03
(0.002)

0.10
(0.001)

0.11
(0.000)

2
0.14

0.14
(0.001)

0.03
(0.000)

0.67
(0.007)

0.08
(0.001)

0.09
(0.000)

3
0.29

0.29
(0.001)

0.09
(0.001)

0.08
(0.004)

0.08
(0.001)

0.09
(0.000)

4
0.15

0.15
(0.001)

0.03
(0.000)

0.68
(0.007)

0.08
(0.001)

0.10
(0.000)

100
0

0.00
0.00

(0.003)
0.05

(0.001)
0.99

(0.001)
0.22

(0.002)
0.31

(0.000)
1

-0.42
-0.42

(0.005)
0.29

(0.005)
0.78

(0.006)
0.34

(0.003)
0.37

(0.001)
2

0.14
0.14

(0.004)
0.08

(0.002)
0.94

(0.003)
0.25

(0.003)
0.29

(0.000)
3

0.29
0.29

(0.004)
0.15

(0.002)
0.84

(0.005)
0.26

(0.003)
0.28

(0.000)
4

0.15
0.15

(0.004)
0.08

(0.002)
0.95

(0.003)
0.25

(0.002)
0.31

(0.000)
C
M

1,000
0

0.00
0.00

(0.001)
0.00

(0.000)
0.95

(0.003)
0.07

(0.001)
0.07

(0.000)
1

-0.34
-0.34

(0.001)
0.12

(0.001)
0.02

(0.002)
0.09

(0.001)
0.08

(0.000)
2

0.16
0.16

(0.001)
0.03

(0.000)
0.46

(0.007)
0.08

(0.001)
0.08

(0.000)
3

0.32
0.32

(0.001)
0.11

(0.001)
0.02

(0.002)
0.08

(0.001)
0.08

(0.000)
4

0.15
0.15

(0.001)
0.03

(0.000)
0.49

(0.007)
0.08

(0.001)
0.07

(0.000)
100

0
0.00

0.00
(0.003)

0.05
(0.001)

0.95
(0.003)

0.22
(0.002)

0.22
(0.000)

1
-0.34

-0.33
(0.004)

0.19
(0.003)

0.73
(0.006)

0.29
(0.003)

0.27
(0.000)

2
0.16

0.16
(0.004)

0.09
(0.002)

0.90
(0.004)

0.25
(0.003)

0.25
(0.000)

3
0.32

0.32
(0.004)

0.17
(0.003)

0.74
(0.006)

0.26
(0.003)

0.25
(0.000)

4
0.15

0.15
(0.003)

0.08
(0.002)

0.90
(0.004)

0.24
(0.002)

0.24
(0.000)

aIn
allscenarios,the

average
treatm

ent
eff

ect
(estim

and)is
1
(𝛽=1)and

the
eff

ect
of

the
confounding

variable
on

the
outcom

e
is

2
(𝛾

=2).
Five-thousand

data
sets

w
ere

generated.
M

onte
C
arlo

standard
errors

are
show

n
betw

een
brackets.

In
scenario

0,there
is

no
classification

error
(specificity

and
sensitivity

of
the

m
isclassified

confounding
variable

are
1,i.e.,𝑝0 =

0
and𝑝1 =1).

In
scenarios

1-4,the
specificity

of
the

m
isclassified

confounding
variable

is
0.95

(i.e.,𝑝0 =0.05)
and

the
sensitivity

is
0.9

(i.e.,𝑝1 =0.9).The
prevalence

ofthe
confounding

variable
(𝜆),and

the
probability

ofreceiving
treatm

entifthe
confounding

is
notpresent

or
present

(𝜋0
and𝜋1 ,respectively)are

set
as

follow
s
in

the
scenarios:

scenario
0:𝜆=0.5,𝜋0 =0.5,𝜋1 =0.75;scenario

1:𝜆=0.5,𝜋0 =0.9,𝜋1 =0.45;scenario
2:

𝜆=0.8,𝜋0 =0.25,𝜋1 =0.75;scenario
3:𝜆=0.8,𝜋0 =0.5,𝜋1 =0.75;scenario

4:𝜆=0.45,𝜋0 =0.5,𝜋1 =0.75.
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Results. Table 8.2 shows the results of the simulation study. Bias found in the
simulation study corresponds to the theoretical bias derived from the bias expressions.
The empirical standard deviation of the average treatment effect estimates (empSE) from
the MSM-IPW is equal to or greater than that from the conditional model. Yet, in the
scenarios where bias in the average treatment effect in theMSM-IPWwas smaller than bias
in the conditional model (scenarios 2 and 3), empSE of both methods was equal, and hence,
MSE is smaller for one method if also bias is smaller. Furthermore, the (robust) model
based standard errors of the average treatment effect in a MSM-IPW are conservative
and greater than the empirical standard errors, since the uncertainty in estimating the
treatment weights is not taken into account. Allowing for the estimation of the weights
will shrink the standard errors [2, 28]. We chose not to use a less conservative standard
error estimation for MSM-IPW, such as bootstrapping, since our goal was to frame this
simulation as investigating the properties of the commonly used MSM-IPW estimation
procedure. Consequently, confidence intervals of the treatment effect obtained in a
MSM-IPW are generally wider and coverage of the true treatment effect is higher compared
to a conditional model, ranging from over coverage if there is no classification error to
smaller under coverage when there is classification error.

8.4. Illustration: quantitative bias analysis
Quantitative bias analysis provides a tool to incorporate uncertainty in study results due
to systematic errors [18, 20]. Using an example study of blood pressure lowering therapy,
we illustrate how the bias expressions (8.3) and (8.4) can be used to perform a quantitative
bias analysis for misclassification of a confounding variable.

Application. For our illustration we use data of the National Health And Nutritional
Examination Survey (NHANES) [36, 37], more details can be found in the supplementary
material section S8.2. Specifically, we study the effect of diuretic use (𝐴 = 1) in
comparison to beta blocker use (𝐴 = 0) on systolic blood pressure (𝑌 ) using two
approaches: by inverse weighting with the propensity for diuretic or beta blocker use
given self-reported categorical body mass index (BMI) (𝐿∗), and using a conditional linear
regression with adjustment for self-reported categorical BMI. For this illustration, we
categorize self-reported BMI into two distinct categories: underweight/normal weight (BMI
< 25 (𝐿∗ = 0)) and overweight/obese (BMI ≥ 25 (𝐿∗ = 1)). However, we stress that one should
preferably not categorise BMI in most practical applications [38]. Moreover, we assume
that dichotomizing self-reported BMI does not introduce differential misclassification [7].

We assume that blood pressure lowering therapy is initiated based on the true BMI
(𝐿) instead of the observed self-reported BMI (setting 2, Figure 8.1b). Further, we consider
BMI the only confounding variable, and treatment and outcome to be measured without
error, which is a simplification of reality. Additionally, we assume that the classification
error in self-reported BMI category is non-differential for the subject’s treatment or blood
pressure (given true BMI category). Expert knowledge is needed to inform this assumption.
To quantify how large the bias in the average treatment effect is expected to be due to
classification error in self-reported BMI category, we perform a quantitative bias analysis
using the bias expressions (8.3) and (8.4).

Average treatment effect. Table 8.3 shows the average treatment effect of diuretics
use in comparison to beta blocker use on mean systolic blood pressure. In a MSM-IPW,
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Table 8.3: Average treatment effect of diuretics use compared to beta blocker use on mean systolic blood pressure
in NHANES [36, 37]. CI indicates confidence interval.

Model Effect Size (95% CI)
Unadjusted −4.03(−6.30; −1.76)
Marginal Structural Modela −3.52(−5.74; −1.21)
Conditional Modelb −3.48(−5.76; −1.27)
a Estimated in a marginal structural model, by inverse weighting with the
propensity for diuretic or beta blocker use given self-reported categorised
body mass index (BMI).
b Estimated in a conditional regression model with adjustment for
self-reported categorical BMI.

we estimated an average treatment effect (95 % CI) of −3.52 (−1.21; −5.74). In a conditional
regressionmodel, we estimated an average treatment effect (95 %CI) of −3.48 (−1.27; −5.76).

Quantitative bias analysis. To inform the quantitative bias analysis, we need to
make assumptions on the sensitivity and specificity of the self-reported BMI as well as
that classification errors are non-differential with respect to blood pressure and treatment.
For the purpose of this illustration, we speculate ranges for the sensitivity and specificity of
self-reported BMI category of 0.90 to 0.98. In practice, these parameters should be informed
by reports in the literature and/or a researcher’s expert experience. Researchers may also
decide to investigate how extreme the misclassification (measured using sensitivity and
specificity) would need to be to change the conclusions of their study. We refer to the Shiny
application (introduced in the subsequent section) for other choices for the sensitivity and
specificity of self-reported BMI category.

By uniformly sampling from the range of plausible values of 𝑝0 and 𝑝1 and using the bias
expressions (8.3) and (8.4), a distribution of possible biases is obtained (see supplementary
material section S8.2 for further details). The solid line in Figure 8.5 shows the distribution
of bias in a MSM-IPW. Mean bias is -0.31 and median bias is -0.30 (interquartile range -0.40
to -0.20). We also considered sampling 𝑝0 and 𝑝1 from a trapezoidal (with modes at one
third and two thirds between the minimum and maximum) or a symmetrical triangular
distribution. Sampling from these distributions results in mean bias approximately equal
to when uniform sampling is applied, but with less spread (panels B and C in Figure 8.5).
This result suggests that the results in Table 8.3 are not affected much by the classification
error in self-reported BMI category. In the NHANES, anthropometric measures were also
taken by trained technicians. See S8.2 for the average treatment effect when BMI measures
taken by trained technicians were used instead of self-reported BMI measures.

8.5. Shiny application: an online tool
We developed an online tool for creating bias plots (Figure 8.2-8.4) and performing
quantitative bias analyses (illustrated in the previous section), available at
https://lindanab.shinyapps.io/SensitivityAnalysis. The bias plots can be used to
predict the implications of classification error in a confounding variable in specific
study settings by varying: the strength of association between the confounding variable
and treatment and between the confounding variable and outcome; prevalence of the
confounding variable; specificity and sensitivity of the misclassified confounding variable.
The quantitative bias analysis can be used for studying the impact of classification error

https://lindanab.shinyapps.io/SensitivityAnalysis
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Figure 8.5: Density of predicted bias due to classification error in self-reported BMI category in NHANES [37].
Bias in the average treatment effect of diuretics use compared to beta blocker use on mean systolic blood pressure
by inverse weighting with the propensity for diuretic or beta blocker use given self-reported categorical BMI
(MSM-IPW), and using a conditional linear regression with adjustment for self-reported categorical BMI. The
specificity and sensitivity of self-reported BMI category range from 0.90 to 0.98 and are sampled from a uniform
distribution, trapezoidal (with modes on one-third and two-third), and symmetrical triangular distribution.

in a confounding variable at the analysis stage of a study, and to investigate how sensitive
conclusions are to the assumption of no classification error. These bias plots can also be
used to inform decisions about measurement methods or choice of variables to be extracted
in the planning stage of studies.

8.6. Discussion
Inverse probability weighting and conditional models are both important and frequently
used tools to adjust for confounding variables in observational studies. In this article,
we derived expressions for the bias in the average treatment effect in a MSM-IPW and
a conditional model. These expressions can inform quantitative bias analyses for bias due
to a misclassified confounding variable.

Quantitative bias analysis of misclassified confounding variables is one example of
quantitative bias analyses for observational epidemiologic studies. Several approaches exist
to assess sensitivity of causal conclusions to unmeasured confounding [29, 39, 40]. These
aim to quantify the impact of violations of the assumption of no unmeasured confounding,
while our approach aims to quantify the impact of violations of the assumption that all
confounding variables are measured without error.

Several methods have been proposed to adjust for measurement error in covariates
in MSMs-IPW. Pearl developed a general framework for causal inference in the presence
of error-prone covariates, which yields weighted estimators in the case of a dichotomous
confounding variable measured with error [41]. The framework relies on a joint distribution
of the outcome and the confounding variable. Conversely, the weighting method proposed
by McCaffrey et al. does not require a model for the outcome [17]. Additionally, regression
calibration [42], simulation-extrapolation [43, 44] and multiple imputation [45] have been
proposed for correcting for measurement error in covariates of MSMs. These methods
assume that the measurement error model is known, which may often be unrealistic. In
this context it is also important to mention previous studies of the impact of measurement
error in the exposure or the endpoint in MSMs, which has been studied by Babanezhad et
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al. [46] and Shu et al. [47], respectively.
If treatment is allocated based on an error-prone confounding variable, the treatment

effect will not be biased (see DAG in Figure 8.1a). However, investigators should be careful
in concluding that covariate measurement error will not affect their analysis. Suppose
that there is an unmeasured variable 𝑈 that acts as a confounding variable between the
error-prone covariate 𝐿∗ and treatment𝐴. Conditioning on 𝐿∗ will then open a path between
𝐴 and 𝐿 via 𝑈 and thus confound the relation between 𝐴 and 𝑌 .

This article considered classification error in a dichotomous confounding variable
in a point-treatment study with a continuous outcome. The same principles apply to
measurement error in a categorical or continuous confounding variable or when multiple
confounding variables are considered, although more elaborate assumptions should then
be made [48]. Moreover, we assumed that the relation between exposure and outcome does
not vary between strata of the confounding variable, i.e. that there is no treatment effect
modification. Future research could extend our bias expressions by relaxing this simplifying
assumption, therefore extending our results to more general settings.

MSMs-IPW are increasingly applied to longitudinal data to estimate the joint effects
of treatment at multiple time points on a subsequent outcome, including time-dependent
outcomes, addressing the problem of time-dependent confounding [1, 3]. There has
been little work to understand or correct for the impact of misclassified or mismeasured
confounding variables in this more complex setting. Our results extend directly to the
time-dependent setting when the aim is to estimate the effect of a current treatment on
a time-dependent outcome measured at the next time point [49]. An area for future work
is to extend our results to the setting in which the aim is to estimate the joint effects of
treatment at multiple time points. and to the time-dependent setting with time varying
treatments and confounding variables. An additional factor to consider in the time-varying
setting is the impact of stabilized vs unstabilized weights on the bias if both numerator and
denominator of the stabilized weights involve conditioning on an error-prone covariate.

The bias expressions derived in this paper can be used to assess bias due to classification
error in a dichotomous confounding variable. If classification error in confounding variables
is suspected, a quantitative bias analysis provides an opportunity to quantitatively inform
readers on the possible impact of such errors on causal conclusions.
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9
Summary and general discussion

9.1. Summary
Measurement error is common in epidemiologic research and may affect the validity of
research results. It is therefore important to scrutinise the effects of measurement error
in epidemiologic research. Even simple forms of measurement error, for instance random
measurement error in an exposure, can introduce bias in exposure-outcome associations.
And even though there are situations in which measurement error does not introduce
bias in the exposure-outcome association, for instance in case of random measurement
error in a continuous outcome, it nearly always affects the precision and power of a
study. In addition, other forms of measurement error, for example systematic measurement
error or differential measurement error in an exposure, covariate or outcome, can affect
exposure-outcome associations in complex ways that may not easily be anticipated.
Adjusting for measurement error using measurement error correction methods may thus
be necessary to obtain reliable estimates of exposure-outcome associations.

To facilitate measurement error correction, information about the underlying
measurement error mechanism (i.e., model) and its parameters is needed. The
measurement error model can sometimes be estimated from internal or external validation
data, replicates data or calibration data. Collection and the use of such measurement error
mechanism data will likely improve the quality of epidemiologic analyses in the presence
of measurement error. This can be done through the application of measurement error
correction methods, which adjust the analyses taking into account the information from
themeasurement error mechanism. Alternatively, in the absence of concrete data about the
mechanisms or the parameters of measurement error, sensitivity analysis for measurement
error can be used, in which the impact on the epidemiologic analyses of one or a range of
hypothesized measurement error mechanisms or their parameters can be investigated.

The studies described in the thesis were set out to improve the understanding of
the impact of measurement error, to facilitate the application of measurement error
correction methods, to improve the design of epidemiologic studies when measurement
error in a variable is suspected and, to develop tools to quantitatively assess the impact of
measurement error in epidemiologic research.

171
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InChapter 2, consequenceswere studied ofmeasurement error in a continuous outcome
in a randomized trial. Using an example of the efficacy of a low-dose iron supplement
on haemoglobin levels in pregnant women, different forms of measurement error were
discussed (i.e., random, systematic and differential measurement error). Using the example
trial, it was shown that random measurement error in a trial outcome does not lead to
bias in the effect estimator but can lead to a reduced precision and power. It was shown
that systematic measurement error and differential measurement error in an outcome can
lead to bias in the effect estimator and consequently, a null-hypothesis significance test
for the treatment effect can deviate substantially from the nominal level. Subsequently,
a regression calibration-like method was proposed to reduce bias in the treatment effect
estimator and obtain confidence intervals with nominal coverage and tested in a Monte
Carlo simulation study. The proposed method made use of external validation data to
estimate the measurement error model and its parameters and four different methods for
confidence interval construction were proposed. Different parameters for themeasurement
error model (i.e., systematic and differential measurement error) and explained variance of
the measurement error model were tested. In our simulation study, it was shown that
the regression calibration-like method was effective in improving trial inferences when an
external validation dataset with at least 15 subjects was available.

In Chapter 3 the R package mecor for measurement error correction was introduced.
The package facilitates measurement error correction in linear models with a continuous
outcome if there is measurement error in the outcome or in a continuous covariate. The
package accommodates measurement error correction methodology for a wide range of
data structures: internal and external validation studies, replicates studies, and calibration
studies. Various measurement error correction methods were implemented in the package:
regression calibration, method of moments and correction based on maximum likelihood
estimation. For standard error estimation and construction of confidence intervals,
the delta method and bootstrap were implemented for all methods. The package also
facilitates sensitivity analysis, when no data are available to estimate the parameters of the
measurement error model. The package contains synthetic data based on examples from
epidemiology following the structure of internal validation data, replicates data, calibration
data and external validation data.

In Chapter 4 settings were studied in which application of regression calibration for
exposure measurement error correction may not be appropriate. This was illustrated in
a study of the association between active energy expenditure and lean body mass. A
simulation study, based on the case study, showed that particularly in small samples
the regression calibration estimator may be less efficient in terms of mean squared error
than an estimator not correcting for the exposure measurement error. This phenomenon
is an example of the commonly known bias–variance trade off. Particularly, when the
measurement error is relatively large and sample sizes small, the simulation study showed
that the performance of regression calibration was poor, indicated by biased estimates,
large mean squared errors and large empirical standard errors in these settings.

In Chapter 5 three internal validation sampling strategies (i.e., random, stratified
random and extremes sampling) were investigated in conjunction with regression
calibration to correct for measurement error in a continuous covariate. This was illustrated
in an example study of the investigation of the association between visceral adipose tissue
and insulin resistance. The exposure measure visceral adipose tissue was only available in
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40% of the population. Waist circumference was measured in all individuals and assumed
an error-prone substitute measure of the reference measure visceral adipose tissue. In a
setting where the reference measure is obtained in only 40% of the whole study, it was
studied which individuals should be included in that subset and which not by means of
Monte Carlo simulation. The simulation study showed a small efficiency gain in terms of
mean squared error of stratified random and extremes sampling over a random sampling
strategy for the internal validation restricted and regression calibration analyses, but only
when measurement error was non-differential. For regression calibration, this gain in
efficiencywas at the cost of higher percentages bias and lower confidence interval coverage.
It was therefore recommended that, in general, regression calibration using randomly
sampled validation samples are preferred over stratified or extremes sampled samples.

The study described in Chapter 6 showed that studies on venous thromboembolism
(VTE) incidence in Coronavirus disease 2019 (COVID-19) patients report highly
heterogeneous results. Different sources of the observed heterogeneity were identified,
notably, clinical and methodological sources, and illustrated using various examples.
Clinical sources included the characteristics of study participants and testing for VTE.
Methodological sources included inclusion types of the VTE endpoint, data quality and data
analysis. Careful description was recommended of the elements that potentially affect VTE
incidence and thus may cause heterogeneity in future VTE incidence studies and guidance
was provided in the form of a list with reporting recommendations.

In Chapter 7 regression calibration and simulation-extrapolation were compared for
sensitivity analysis for random measurement error in an exposure variable. These two
random exposure measurement error correction methods were illustrated in two example
studies. The first example study investigated the relation between the exposure blood
pressure and , and the second example study investigated the relation between the exposure
sodium intake and hypertension. These relations were modelled using linear and logistic
regression, respectively. In both example studies the exposure variable was an error-prone
version of an error-free exposure variable. Based on these two examples, a simulation
study was conducted to study the relative performance of regression calibration and
simulation-extrapolation in linear and logistic regression models. The simulation study
showed that without extra data, but with correct assumptions about the variance of the
measurement error, regression calibration was generally unbiased for linear and logistic
regression, while simulation-extrapolation was biased. A small gain in efficiency in terms
of mean squared error was seen for simulation-extrapolation in linear regression but not
for logistic regression. The use of regression calibration for sensitivity analysis for random
exposuremeasurement error was recommended and its use illustrated in the example study
of the association between blood pressure and kidney function.

Inverse probabilityweighting and conditionalmodels are both important and frequently
used tools to adjust for confounding variables in observational studies. In Chapter 8,
expressions were derived for the bias in the average treatment effect in amarginal structural
model estimated using inverse probability weighting and a conditional model when a
confounding variable is measured with error. Compared to bias in the average treatment
effect estimator from a conditional model, the bias in amarginal structural model estimated
using inverse probability weighting can be different in magnitude but is equal in sign. The
derived bias expressions informed a quantitative bias analysis for bias due to amisclassified
confounding variable. The use of a quantitative bias analysis was demonstrated in an
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example study of the effect of using diuretics versus beta-blockers on blood pressure
adjusted for the error-prone confounding variable self-reported body mass index category.

9.2. Discussion
This thesis provides an overview of correction methods for measurement error in
epidemiologic research. The studies described in the thesis were set out to improve the
understanding of the impact of measurement error and to facilitate the application of
measurement error correction methods in epidemiologic studies. Guidance was provided
to improve the design of epidemiologic studies when measurement error is suspected,
and reporting guidelines proposed. All methods were demonstrated in case studies using
empirical data (for an overview of case studies, see Table 9.1). Special attention was
paid to sensitivity analysis for measurement error in settings where measurement error
is suspected, but data about measurement error structure and its parameters, essential
for measurement error correction methods, were not available. Here, we discuss the
contribution of our work to this field and set out directions for future research.

9.2.1. Impact of measurement error in epidemiologic studies
The impact of measurement error often goes beyond the simple heuristic of ‘attenuation to
the null’ [1]. This heuristic wrongfully suggests that estimates of effects in epidemiologic
studies will only become smaller due to the measurement error. Unfortunately, this myth
remains persistent despite a vast body of literature arguing against it [2–5]. Particularly,
depending on the target of the analysis and the type of measurement error, the effects
of measurement error can go in either direction and are therefore often unpredictable, as
shown by Keogh et al. [6].

This thesis aimed at improving the understanding of the impact of measurement error
in epidemiologic research. To evaluate the impact of measurement error in a specific study,
four considerations are; i) what statistical model is used; ii) which of the variable(s) of the
model is (are) error-prone and what is their role in the model; iii) what is the structure
of the measurement error model; and iv) what are the parameters of the measurement
error model (see Figure 9.1). All these components may affect if an epidemiologic study
is affected by measurement error and if so, how an epidemiologic study is affected by
measurement error. For example, random exposure measurement error introduces bias
in the effect estimator of a linear regression model [4], and a logistic regression model
[7] and leads to a so-called ‘induced hazard function’ for a Cox regression model [8]. In
contrast, random measurement error in a continuous outcome does not introduce bias
but reduces precision and power at a chosen sample size, and systematic and differential
measurement error in such outcomes introduce bias in the effect estimator of a linear
regression model that can go in either direction (Chapter 2). When exposure measurement
error is suspected, restricting the analysis to the subset of individuals for whom the
error-free exposure measurement is obtained, does not lead to biased inference. Yet,
when that subset is sampled using information about an error-prone substitute exposure
(e.g., when for all individuals exceeding a specific threshold of the substitute exposure,
the error-free exposure is obtained), bias is introduced in the complete case analysis if
the error in the substitute exposure is differential, but not if the error in the substitute
exposure is non-differential (Chapter 5). When a confounding variable is misclassified,
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marginal structural models estimated using inverse probability weighting were shown to be
biased but affected differently than conditional models (Chapter 8). There are innumerable
combinations of the considerations displayed in Figure 9.1 and, therefore, measurement
error can affect estimated exposure-outcome associations in complex ways that may not
easily be anticipated and need to be evaluated from one setting to another.

9.2.2. Measurement error correction methods in epidemiologic studies
There is an abundance of texts on measurement error correction methods [2–5].
Yet, correction methods remain seldomly applied in epidemiologic research [9–11].
Methods for measurement error corrections include, regression calibration [12, 13],
simulation-extrapolation [14], moment reconstruction [15], non-parametric maximum
likelihood estimation [16], imputation-based methods [17, 18] and Bayesian methods
[5, 19]. Regression calibration is among themost commonly usedmethods in epidemiologic
research [10, 11].

This thesis facilitated the application of measurement error correction in epidemiologic
research with the development of the software package mecor for measurement error
correction in linear models with a continuous outcome. In this software package
for R, regression calibration [20], validation regression calibration, efficient regression
calibration [21], method of moments [2] and maximum likelihood-based methods [22]
were implemented for a wide range of validation data structures (Table 9.1). Notably,
different methods for variance estimation of the corrected estimators were implemented
in mecor. An informed choice for the variance estimation of the measurement error
corrected estimators is important as was shown that the Zero Variance, Delta, Fieller
and bootstrap methods had different performance in terms of coverage and average
confidence interval width (Chapter 2 and 4). The methods implemented in mecor are
consistent but not necessarily more statistically efficient than the uncorrected estimator
nor unbiased. Particularly in small samples, the estimator not correcting for measurement
error may be more efficient in terms of mean squared error compared to the regression
calibration estimator (Chapter 4). A phenomenon referred to as the bias–variance trade
off. Particularly when measurement error is relatively large, the performance of regression
calibration can be poor in small samples, as was shown by high percentages bias and large
mean squared errors in these settings. However, compared to regression calibration, the
simulation-extrapolation estimator was even more prone to bias (Chapter 7). Regression
calibration relies on the assumption of non-differential measurement error, and large biases
can occur in the estimator if this assumption is not warranted, as was shown in Chapter 5.
In conclusion, measurement error correction methods can correct for measurement error
when extra data are available to estimate the measurement error model and its parameters
provided sufficiently large sample size of the validation set and measurement error that is
not extremely large. What constitutes ‘sufficiently large’ and ‘not extremely large’ will be
study specific and can be informed by statistical simulation studies, as presented in Chapter
4.

9.2.3. Design of epidemiologic studies affected by measurement error
For measurement error correction, validation data are needed to estimate themeasurement
errormodel and its parameters. Collection of such data should preferably be included in the
design of an epidemiologic study. Considerations include the data structure, size and the
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sampling strategy of the validation data. For such considerations, the different components
shown in Figure 9.1 needed to evaluate the impact of measurement error need to be
taken into account. Particularly, certain structures of validation data (internal, external,
replicates data or calibration data) are not suited for certain measurement error structures
(e.g., replicates data can only be used if random measurement error is suspected). After
making assumptions about the measurement error model structure and its parameters
and deciding what type of validation data is suited, Monte Carlo simulation can be used
to inform sample size and sampling strategy of the validation data. An example of a
Monte Carlo simulation study to examine the optimal sampling strategy of an internal
validation data set in the Netherlands Epidemiology of Obesity study [24] was described
in Chapter 5. Here, sampling the extremes or stratified randomly showed a small gain in
efficiency, but at the cost of bias and confidence interval coverage and should only be used
when measurement error is strictly non-differential. A difficulty here is, however, that in
studies like the Netherlands Epidemiology of Obesity study, the first two components that
influence the impact of measurement error (described in first two columns in Figure 9.1)
may differ across studies. Specifically, a variable can be an outcome in one study and an
exposure in another study.

9.2.4. Sensitivity analysis for measurement error in epidemiologic studies
In epidemiologic research, it is commonly assumed (often implicitly) that all variables are
measured without error; an assumption that is often not justified. Yet, when measurement
error is suspected or anticipated, methods to correct for the measurement error rely on the
availability of data on the measurement error mechanisms and parameters. Such data may
not be available, maybe incomplete or be itself unreliable, in which case sensitivity analysis
for measurement error can help to assess the sensitivity of research results to measurement
error. In epidemiology, a sensitivity analysis may alternatively be referred to as quantitative
bias analysis [25].

Sensitivity analysis for measurement error should be included in study protocols and
valued independent of the outcome of the sensitivity analysis (i.e., results should not only be
shown if the sensitivity analysis shows research results are not sensitive to the assumption
of no measurement error). Sensitivity analysis can be informed by expert knowledge about
the structure of the measurement error model and its parameters. Distributions of these
parameters can be used to put more weight on the assumed most plausible values [25].

The sensitivity of research results to random exposure measurement error can be
checked using regression calibration or simulation-extrapolation, of which regression
calibration was shown most suited in Chapter 7. Graphical presentation of the results of a
sensitivity analysis allows readers to judge the sensitivity of research results for the whole
distribution of assumed parameters of the measurement error model, and may be preferred
over a single summary number (see for example Figure 7.9 in Chapter 7). Alternatively,
interactive tools may be designed to allow readers to test the sensitivity of research results
to their own assumed parameters of the measurement error model, as was facilitated by
the Shiny application demonstrated in Chapter 8.

9.2.5. Future research
The studies presented in the thesis aimed to improve the (application of) methods to
limit the impact of measurement error in epidemiologic research. The application of
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measurement error correction methods was facilitated through the development of the
R package mecor. To aid the application of measurement error correction methods in
epidemiology, numerous methods were illustrated in empirical data (Table 9.1). Extensive
Monte Carlo studies were set up to study the performance of measurement error correction
methods in epidemiologic studies based on the empirical data and have been made
publicly available. The simulation code can easily be adapted by researchers to settings of
intended use to improve the design and statistical analysis of epidemiologic studies when
measurement error is suspected. However, we are not there yet. There are several topics
that require future research to further develop the field of measurement error methodology.

First, the main focus of this thesis was on linear models with a continuous outcome and
measurement error in one of the continuous variables of those models. In epidemiologic
studies, measurement error may, however, be anticipated in more than one variable. In
addition, other statistical models (e.g., logistic and survival analysis) are commonly used
in epidemiologic research. For models with binary outcomes, the impact of covariate
measurement error and classification error in the binary outcome has been studied by
Carroll et al. in [7] and [26], respectively. Also, correction methods have been proposed
for situations where one or multiple variables in a logistic regression model are measured
with error [20]. For survival outcomes, the impact of covariate measurement error has been
studied by Prentice et al. [8] and an investigation of measurement errors in the failure time
outcome and correction methods for this setting were examined by Oh et al. [27]. Yet,
the implications of a combination of complex forms of outcome measurement error and
covariate measurement error need further study.

Second, this thesis only investigated the use of parametric measurement error models
and it was generally assumed that the measurement error model was well specified. Future
research may examine methods to test for the structure of the measurement error model in
empirical data and study the impact of misspecification of the measurement error model
structure on measurement error correction methods.

Third, the validation data structures discussed in the thesis that aid measurement error
correction methods rely on certain assumptions. For an external data set, it is assumed
that the measurement error model and its parameters are transportable from the main
study to the external study. For a replicates study, it is assumed that measurement error
in the subsequent replicate measurements is independent. Investigations are needed if
information about the reliability of e.g., biomarkers can be transported to studies where
these biomarkers are used and if the assumption of independent measurement error in
such biomarkers is warranted.

Fourth, this thesis presents measurement error correction methods for measures of
which a clear concept about the ‘true’ measure of a variable is needed and is in most
instances assumed observable (except when random measurement is assumed in which
case repeated measures of the error-prone measure are adequate). This assumption might
be reasonable and applicable for measures such as an individual’s weight in kilo grams or
blood pressure, but may be difficult or even impossible to establish for constructs such
as patient well-being or pain [28]. Future research may pay specific attention to the
applicability of latent class analysis for the analysis of error-prone epidemiologic data,
which does not rely on the assumption of observable ‘true’ measures. Instead, it is assumed
that the true variable can be estimated by combining multiple imperfect measurements of
the variable. These methods are widespread in psychology and the social sciences [29],
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but received relatively little attention in epidemiologic research (exceptions include e.g.,
[30, 31]).

9.2.6. Conclusion
Measurement error in epidemiologic research is not uncommon and can hamper the validity
of research results if ignored. The old saying “to prevent is better than to cure” also applies
here, and therefore actions to improve the overall quality of measurement in epidemiologic
analyses are likely to have a larger effect on the validity of epidemiologic studies than
widespread application of measurement error correction methods. However, in settings
where measurement error cannot be avoided, measurement error correction methods and
sensitivity analysis for measurement error provide tools to correct for or quantitatively
assess the impact ofmeasurement error. In combinationwith reliable information about the
measurement error model and its parameters, these methods can help to estimate relevant
epidemiologic parameters that are more reliable than what would be obtained if estimated
without taking account of possible measurement error.
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Supplementary material Chapter 2

These are the supplementary materials accompanying Chapter 2. The supplementary
materials are structured as follows. In section S2.1 we discuss two more example trials for
illustration of measurement error in an endpoint. In section S2.2 we explain why and under
which assumptions ignoring measurement error will lead to incorrect inference. Section
S2.3 provides an explanation of corrected effect estimators (and why these are consistent)
and explains the methods used for confidence interval estimation. In section S2.4 a proof is
given that measurement error depending on prognostic factors does not introduce bias in
the treatment effect estimator. In section S2.5 an approximation for the bias and variance
of the corrected estimator is derived.

S2.1. Illustrative examples
We introduce here two additional example trials from literature, hypothesize that these
trial could also have used endpoints measured with error to illustrate how the use of an
endpoint that is contaminated with error would affect trial inference. We assume that the
original endpoints used in our example trials are measurement error free.

S2.1.1. Example trial 2: energy expenditure
Poehlman and colleagues [1] studied the effects of endurance and resistance training
on total daily energy expenditure in a randomised trial of young sedentary women.
Participants were randomized to one of three six-month during exercise programmes:
endurance training, resistance training or the control arm. Some controversy regarding
the effect of exercise training on total energy expenditure (TEE) existed at the time of the
start of the trial, partly because of the difficulty to assess daily energy expenditure [1].
Starting 72 hours after completion of the training program, TEE of the participants was
measured by doubly labelled water during a ten day period, which is considered the gold
standard in measuring energy expenditure in humans [2]. In short, the study found no
evidence for an effect of resistance and endurance training (compared to placebo) on total
energy expenditure. Post-trial, measured TEE was higher in the control arm than in the
two intervention arms. Table 1 shows the decrease in TEE of the women exposed to the
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existence training programme versus the placebo arm.

S2.1.2. Example trial 3: rheumatoid arthritis disease activity
The U-Act-Early trial tested the efficacy of a new treatment strategy for rheumatoid
arthritis (RA) in patients with newly diagnosed RA [3] in a three-arm trial: tocilizumab plus
methotrexate versus tocilizumab only versus methotrexate only, all as initial treatment. For
endpoint assessment, this trial used a validated RA disease activity measure (the Disease
Activity Score 28, DAS28) [4]) which is commonly used and recommended to measure
endpoints in RA clinical trials [5, 6]. In short, the trial showed that immediate initiation
of tocilizumab with or without methotrexate is more effective than methotrexate alone to
achieve sustained remission in newly diagnosed RA patients. The difference inmean DAS28
score in the tocilizumab plus methotrexate versus methotrexate only group after 24 weeks
is shown in Table S2.1. The sample size of the former groups reported in Table S2.1 is based
on measurements available at 24 weeks of follow up.

A common alternative approach to measure energy expenditure (example trial 2) is
by a accelerometer, that measures body movement via motion sensors to assess energy
expenditure (e.g. [2]). As compared to double labelled water (example trial 2), the
accelerometer is cheaper, but less accurate [2]. Lastly, instead of endpoint assessment
by DAS28 (example trial 3), where assessment is done by trained medical staff [4], trials
could alternatively use the patient-based RA disease activity score (PDAS), where endpoint
assessment is done by the patient [7].

For the example trial in the paper and each of the aforementioned example trials here, in
Table S2.1 we show to what extent the Type-II of a test for treatment effect changes when a
hypothetical lower standard of endpoint measurement would have been used introducing
classical measurement error. The table clearly shows the anticipated increase in Type-II
error with increasing error at the same sample size.

S2.2.Measurement error structures
Consider a two-arm randomized controlled trial that compares the effects of two treatments
(𝑋 ∈ {0, 1}), where 0 may represent a placebo treatment or an active comparator. Let 𝑌
denote the true (or preferred) trial endpoint and 𝑌 ∗ an error prone operationalisation of 𝑌 .
We will assume that both 𝑌 and 𝑌 ∗ are measured on a continuous scale. Throughout, we
assume that 𝑌 ∗ is measured for all 𝑖 = 1, … , 𝑁 randomly allocated patients in the trial. We
assume that the effect of allocated treatment (𝑋 ∈ {0, 1}) on preferred endpoint 𝑌 is defined
by the linear model

𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀, (S2.1)

where 𝛽𝑌 defines the treatment effect on the endpoint, and 𝜀 has expected mean 0 and
variance 𝜎2. Throughout, we assume that 𝑋 is fixed. Further, we assume that model S2.1
is inestimable from the observed data because the endpoint 𝑌 ∗ instead of 𝑌 was measured.
We will assume that the relation between 𝑌 and 𝑌 ∗ is given by a linear model,

𝑌 ∗ = 𝜃0 + 𝜃1𝑌 + 𝑒, (S2.2)

where 𝑒 is a random variable whose distribution is independent of 𝜀, 𝑌 and 𝑋 . The
parameters 𝜃0 and 𝜃1 define the relation between 𝑌 and 𝑌 ∗, where it is assumed that 𝜃1
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Table S2.1: Impact of classical measurement error on Type-II error in the three
example trials. Effect estimates, standard errors and sample sizes are based on
results in the papers by Makridis et al. [8] (trial 1), Poehlman et al. [1] (trial 2)
and Bijlsma et al. [3] (trial 3)

Example Effect Standard Sample 𝜌a Type-II
Estimate Error Size Errorb

Trial 1 6.9 1.27 393 0 -
2.43 108 0 20%
2.71 108 1/5 29%
2.45 132 1/5 20%

Trial 2 −246.0 369.00 35 0 -
88.70 600 0 20%
109.00 600 1/3 38%
88.70 900 1/3 20%

Trial 3 −1.4 0.08 198 0 -
0.41 8 0 18%
0.50 8 3/7 41%
0.44 12 3/7 18%

a Proportion of observed variance in endpoints due to measurement error.
b Type-II error calculations are based on results provided in section 3.1.

does not equal 0. We assume that both parameters 𝜃0 and 𝜃1 are estimable only in the
external calibration sample comprising individuals not included in the trial (𝑗 = 1, … , 𝐾 ).

Simple OLS regression estimators for 𝛽𝑌 , 𝛼𝑌 and 𝜎2 (the variance of the errors 𝜀) in
(S2.1) are,

̂𝛽𝑌 ∗ = ∑𝑖(𝑋𝑖 − ̄𝑋 )(𝑌 ∗𝑖 − ̄𝑌 ∗)
∑𝑖(𝑋𝑖 − ̄𝑋 )2 , (S2.3)

�̂�𝑌 ∗ = ̄𝑌 ∗ − ̂𝛽𝑌 ∗ ̄𝑋 , (S2.4)

𝜔𝑖 = 𝑌 ∗𝑖 − �̂�𝑌 ∗ − ̂𝛽𝑌 ∗𝑋𝑖 , (S2.5)

𝑠2 = 1
𝑁 − 2 ∑

𝑖
𝜔2𝑖 , (S2.6)

respectively. In a two-arm trial, the interest is in making inferences about 𝛽𝑌 , which cannot
be directly estimated because in the trial the endpoint of interest 𝑌 was replaced by 𝑌 ∗. In
the following we will show: a) that ̂𝛽𝑌 ∗ may be a poor estimator for 𝛽𝑌 (section 3.1-3.4),
and b) how adjustments to ̂𝛽𝑌 ∗ using information from the calibration model described by
(𝑆2.2) can improve inference about the treatment effect (section 4). As a starting point,
in the following section relevant and known properties are defined for the special case
that 𝑌 ∗ = 𝑌 , which is then followed by the properties under different measurement error
structures for 𝑌 ∗ in subsequent sections.
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S2.2.1. No measurement error
Consider the hypothetical case that 𝑌 ∗ is a perfect proxy for 𝑌 , i.e. 𝑌 ∗ = 𝑌 . By using that
𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀, as defined in (S2.1), it follows that:

𝑌 ∗ = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀.

From standard regression theory (e.g. [9]), we know that if the errors 𝜀 satisfy the regular
Gauss-Markov assumptions [9] and their variance is defined by 𝜎2, the OLS estimators ̂𝛽∗𝑌 ,
�̂� ∗𝑌 , and 𝑠2 (defined by S2.3, S2.4, and S2.6, respectively) are Best Linear Unbiased Estimators
(BLUE) for 𝛽𝑌 , 𝛼𝑌 , and 𝜎2, respectively.

Moreover, if the 𝜀 are independently and identically (iid) normally distributed, the
OLS estimators ̂𝛽𝑌 ∗ and �̂�𝑌 ∗ (defined in S2.3 and S2.4, respectively) are the Maximum
Likelihood Estimators (MLE) of 𝛽𝑌 and 𝛼𝑌 , respectively. Note that the errors 𝜀 satisfy the
Gauss-Markov assumptions if we assume that they are iid normally distributed with mean
0 and constant variance 𝜎2.

Hypotheses for the treatment effect 𝛽𝑌 , can be defined by:

𝐻0 ∶ 𝛽𝑌 = 𝛽0,
𝐻𝐴 ∶ 𝛽𝑌 ≠ 𝛽0.

Under normality of the error terms 𝜀, the OLS estimator ̂𝛽∗𝑌 defined in (S2.3) is the MLE for
𝛽𝑌 and 𝑠2 is an unbiased estimator for 𝜎2, the following is known for the Wald test:

𝑇 =
̂𝛽𝑌 ∗ − 𝛽0

√V̂ar( ̂𝛽𝑌 ∗)
∼ 𝑡𝑁−2, (S2.7)

where,

V̂ar( ̂𝛽𝑌 ∗) = 𝑠2
∑𝑖(𝑋𝑖 − ̄𝑋 )2 . (S2.8)

Assuming no measurement error in 𝑌 and 𝑋 , under 𝐻0, 𝑇 follows a Student’s t distribution
with 𝑁 −2 degrees of freedom [9]. Under 𝐻𝐴, 𝑇 follows a Student’s t distribution with 𝑁 −2
degrees of freedom and non-centrality parameter (𝛽𝑌 − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗).

S2.2.2. Classical measurement error
There is classical measurement error in 𝑌 ∗ if 𝑌 ∗ is an unbiased proxy for 𝑌 [10]:

𝑌 ∗ = 𝑌 + 𝑒, (S2.9)

where E[𝑒] = 0 and Var(𝑒) = 𝜏2 and 𝑒 mutually independent of 𝑌 , 𝑋 , 𝜀 (in (S2.1)). By using
that 𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀 from (S2.1), it follows that:

𝑌 ∗ = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀 + 𝑒.

Given the aforementioned assumptions, the sum of 𝑒 and 𝜀, 𝛿1 = 𝑒+𝜀, has varianceVar(𝛿1) =
𝜎2 + 𝜏2. It follows that if the errors 𝛿1 satisfy the Gauss-Markov assumptions, ̂𝛽𝑌 ∗ in (S2.3)
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remains a BLUE estimator for 𝛽𝑌 . Also, �̂�𝑌 ∗ in (S2.4) and 𝑠2 in (S2.6) remain BLUE estimators
for 𝛼𝑌 and the variance of 𝛿1, respectively.

Further, if 𝛿1 is iid normally distributed with mean 0 and variance 𝜎2 + 𝜏2, then �̂�𝑌 ∗
is the MLE for 𝛼𝑌 and ̂𝛽𝑌 ∗ is the MLE for 𝛽𝑌 . Obviously, given that 𝜎2 > 0 and 𝜏2 > 0,
the variance of the OLS regression estimator ̂𝛽𝑌 ∗ is larger if there is classical measurement
error in the outcome compared to the case when there is no measurement error. Under
the null hypothesis, the Wald test-statistic 𝑇 defined in (S2.7) still follows a Student’s 𝑡
distribution with 𝑁 − 2 degrees of freedom. However, under the alternative hypothesis,

the non-centrality parameter of 𝑇 , (𝛽𝑌 − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗), will be smaller in the presence of
classical measurement error.

To summarize, in the presence of only classical measurement error, Type-II error for
detecting any given treatment effect increases, Type-I error is unaffected and the treatment
effect estimator is unbiased MLE under standard regularity conditions.

Heteroscedastic classical measurement error
In the preceding we assumed that the Gauss-Markov assumptions were met. But notably,
in the case that the variance of the errors 𝑒 in (S2.9) varies per treatment arm, the errors
are no longer homoscedastic (as needed to satisfy the Gauss-Markov assumptions) but
heteroscedastic. In the case of this type of heteroscedastic classical measurement error, it
can be shown that the variance of 𝛽𝑌 ∗ will be underestimated by the default estimator of
the variance of ̂𝛽𝑌 ∗ defined by (S2.8), affecting both Type-I and Type-II error.

S2.2.3. Systematic measurement error
There is systematic measurement error in 𝑌 ∗, if 𝑌 ∗ systematically depends on 𝑌 . Assuming
this dependence is linear, the relation between 𝑌 ∗ and 𝑌 can be defined as:

𝑌 ∗ = 𝜃0 + 𝜃1𝑌 + 𝑒, (S2.10)

where E[𝑒] = 0 and Var(𝑒) = 𝜏2. Throughout, we assume systematic measurement error
if 𝜃0 ≠ 0 or 𝜃1 ≠ 1 (and of course, 𝜃1 ≠ 0 in all cases). We assume mutual independence
between 𝑒 and 𝑌 , 𝑋 , 𝜀 ( in S2.1). Naturally, if 𝜃0 = 0 and 𝜃1 = 1 the measurement error is of
the classical form.

By using that 𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀 from (S2.1), it follows that:

𝑌 ∗ = 𝜃0 + 𝜃1𝛼𝑌 + 𝜃1𝛽𝑌𝑋 + 𝜃1𝜀 + 𝑒.
Given the aforementioned assumptions, 𝛿2 = 𝜃1𝜀 + 𝑒 with expected variance 𝜃21𝜎2 + 𝜏2. It
follows that under the Gauss-Markov assumptions, ̂𝛽𝑌 ∗ defined in (S2.3) is BLUE for 𝜃1𝛽𝑌 ,
and �̂�𝑌 ∗ defined in (S2.4) is BLUE for 𝜃0+𝛼𝑌 and 𝑠2 defined in (S2.6) is BLUE for the variance
of 𝛿2 (i.e. 𝜃21 𝜏2 + 𝜎2). Conversely, ̂𝛽𝑌 ∗ is no longer BLUE for 𝛽𝑌 . Note that in this case 𝑠2 is
BLUE for 𝜃21𝜎2 + 𝜏2, that is, depending on 𝜃1, smaller or larger than 𝜎2 (the variance of the
error terms if there is no measurement error).

If we further assume that 𝛿2 is iid normally distributed, we can conclude that �̂�𝑌 ∗ is the
MLE for 𝜃0 + 𝛼𝑌 and ̂𝛽𝑌 ∗ is the MLE for 𝜃1𝛽𝑌 . Conversely, ̂𝛽𝑌 ∗ is no longer the MLE for
𝛽𝑌 , if there is systematic measurement error in 𝑌 ∗. In the absence of a treatment effect, as
𝜃1𝛽𝑌 = 0 if 𝛽𝑌 = 0, 𝑇 defined in (S2.7) still follows a Student’s 𝑡 distribution with 𝑁 − 2
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degrees of freedom. In the presence of any given treatment effect, 𝑇 follows a non-central
Student’s 𝑡 distribution with 𝑁 − 2 degrees of freedom and non-centrality parameter

(𝜃1𝛽𝑌 − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗). Depending on the value of 𝜃1, the non-centrality parameter will be
smaller or larger than the non-centrality parameter in the absence of measurement error
(see section 3.2).

In summary, if there is systematic measurement error in the endpoints, the Type-I error
is unaffected under standard regularity conditions and hence testing whether there is no
effect is still valid under the null hypothesis [11]). Type-II, however, is affected (it may
increase or decrease) and the treatment effect estimator is a biased MLE.

S2.2.4. Differential measurement error
There is differential measurement error in 𝑌 ∗ when measurement error varies with 𝑋 .
Assuming a linear model for this variation, formally:

𝑌 ∗ = 𝜃00 + (𝜃01 − 𝜃00)𝑋 + 𝜃10𝑌 + (𝜃11 − 𝜃10)𝑋𝑌 + 𝑒𝑋 , (S2.11)

where E[𝑒𝑋 ] = 0 and Var(𝑒𝑋 ) = 𝜏2𝑋 and 𝑒𝑋 independent of the endpoint of interest 𝑌 , and 𝜀
in (S2.1). From the equations it becomes clear that systematic error (equation (S2.10)) can
be seen as a special case of differential error, where 𝜃00 = 𝜃01 and 𝜃10 = 𝜃11.

By using that 𝑌 = 𝛼𝑌 + 𝛽𝑌𝑋 + 𝜀 from (S2.1), it follows from equation (S2.11) that,

𝑌 ∗ = 𝜃00 + 𝜃10𝛼𝑌 + [𝜃01 − 𝜃00 + (𝜃11 − 𝜃10)𝛼𝑌 + 𝜃11𝛽𝑌 ]𝑋 + [𝜃10 + (𝜃11 − 𝜃10)𝑋]𝜀 + 𝑒𝑋 .
Let 𝛿3𝑋 = [𝜃10+(𝜃11−𝜃10)𝑋]𝜀 +𝑒𝑋 , with expected variance [𝜃210+(𝜃211−𝜃210)𝑋]𝜎2+𝜏2𝑋 . Since
the the error term 𝛿3𝑋 is no longer homoscedastic, the OLS estimators defined in (S2.3) and
(S2.4) are no longer BLUE. However, the OLS estimator ̂𝛽𝑌 ∗ in (S2.3) is consistent (although
not efficient) for 𝜃01 − 𝜃00 + (𝜃11 − 𝜃10)𝛼𝑌 + 𝜃11𝛽𝑌 . The OLS estimator �̂�𝑌 ∗ defined in (S2.4)
is consistent (although not efficient) for 𝜃00 + 𝜃10𝛼𝑌 . Nevertheless, the estimator for the
variance of ̂𝛽𝑌 ∗ defined in (S2.8) is no longer valid.

By using the residuals 𝜔𝑖 defined in (S2.6), a heteroscedastic consistent estimator for
the variance of ̂𝛽𝑌 ∗ is:

V̂ar( ̂𝛽𝑌 ∗) = ∑𝑖 [(𝑋𝑖 − ̄𝑋 )2𝜔2𝑖 ]
[∑𝑖 (𝑋𝑖 − ̄𝑋 )2]2 ,

which is known as the White estimator [12]. From standard regression theory, it is
known that using the above defined estimator, 𝑇 defined in (S2.7) is still valid. Yet,
under differential measurement error no longer [𝜃01 − 𝜃00 + (𝜃11 − 𝜃10)𝛼𝑌 + 𝜃11𝛽𝑌 ] = 0
if 𝛽𝑌 = 0. Thus, under the null hypothesis, 𝑇 defined in (S2.7) follows a Student’s 𝑡
distribution with 𝑁 − 2 degrees of freedom and non-centrality parameter ([𝜃01 − 𝜃00 +
𝜃11𝛼𝑌 − 𝜃10𝛼𝑌 + 𝜃11𝛽0] − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗). Consequently, Type-I error changes if there is
differential measurement error in 𝑌 ∗ and test about contrast under the null hypothesis
are invalid [11]. Moreover, under the alternative hypothesis, 𝑇 follows a non-central
Student’s 𝑡 distribution with 𝑁 − 2 degrees of freedom and non-centrality parameter

([𝜃01 − 𝜃00 + (𝜃11 − 𝜃10)𝛼𝑌 + 𝜃11𝛽𝑌 ] − 𝛽0)/√V̂ar( ̂𝛽𝑌 ∗). Depending on the values of the 𝜃 ’s and
𝛼𝑌 , the non-centrality parameters will be smaller or larger than 0 and the non-centrality
parameter if there is no measurement error, respectively (see section 3.2). Hence, Type-I
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error and Type-II error could increase or decrease if there is differential measurement error
in 𝑌 ∗.

To summarize, Type-I error is not expected nominal (𝛼) if there is differential
measurement error in 𝑌 ∗ (see also [11]). Also, similar to systematic error in 𝑌 ∗, Type-II
error is affected (may increase or decrease) and the treatment effect estimator is biased.

S2.3. Correction methods for measurement error in a
continuous trial endpoint

To accommodate measurement error correction, we assume that 𝑌 and 𝑌 ∗ are both
measured for a smaller set of different individuals not included in the trial (𝑗 = 1, … , 𝐾, 𝐾 <
𝑁 ), hereinafter referred to as the external calibration sample. In all but one case, it is
assumed that only 𝑌 ∗ and 𝑌 are measured in the external calibration sample. In the case
that the error in 𝑌 ∗ is different for the two treatment groups, it is assumed that the external
calibration sample is in the form of a small pilot study where both treatments are allocated
(i.e., 𝑌 ∗ and 𝑌 are both measured after assignment of 𝑋 ).

S2.3.1. Systematic measurement error
Using an external calibration set and assuming that the errors 𝑒 in (S2.10) are iid normal,
the MLE of the measurement error parameters in (S2.10) are:

̂𝜃1 =
∑𝑗(𝑌 (𝑐)

𝑗 − ̄𝑌 (𝑐))(𝑌 ∗(𝑐)
𝑗 − ̄𝑌 ∗(𝑐))

∑(𝑌 (𝑐)
𝑗 − ̄𝑌 (𝑐))2

, (S2.12)

̂𝜃0 = ̄𝑌 ∗(𝑐) − ̂𝜃1 ̄𝑌 (𝑐),
𝑡2 = 1

𝐾 − 2 ∑
𝑗
(𝑌 ∗(𝑐)

𝑗 − ̂𝜃0 − ̂𝜃1𝑌 (𝑐)
𝑗 )2.

The superscript (c) is used to indicate that the measurement is obtained in the calibration
set. From section 3.4, under systematic measurement error and assuming that 𝜀 in (S2.1)
and 𝑒 in (S2.10) iid normal and independent, the estimator ̂𝛽𝑌 ∗ defined in (S2.3) is the MLE
of 𝜃1𝛽𝑌 and, the estimator �̂�𝑌 ∗ defined in (S2.4) is the MLE of 𝜃0 + 𝜃1𝛼𝑌 . Natural sample
estimators for 𝛼𝑌 and 𝛽𝑌 are then

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃0)/ ̂𝜃1 and ̂𝛽𝑌 = ̂𝛽𝑌 ∗ / ̂𝜃1, (S2.13)

where ̂𝜃0 and ̂𝜃1 are the estimated error parameters from the calibration data set. From
equation (S2.13), it becomes apparent that ̂𝜃1 needs to be assumed bounded away from
zero for finite estimates of �̂�𝑌 and ̂𝛽𝑌 [13].

The first moment of estimators �̂�𝑌 and ̂𝛽𝑌 can be approximated by using multivariate
Taylor expansions and assuming that (�̂�𝑌 ∗ , ̂𝛽𝑌 ∗ , ̂𝜃0, ̂𝜃1) are normally distributed [13],

E[�̂�𝑌 ] ≈ 𝛼𝑌 + [𝛼𝑌 − ̄𝑦∗]𝜏2
𝜃21𝑆(𝑐)𝑦𝑦

and E[ ̂𝛽𝑌 ] ≈ 𝛽𝑌 + 𝛽𝑌 𝜏2
𝜃21𝑆(𝑐)𝑦𝑦

,
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where 𝑆(𝑐)𝑦𝑦 = ∑(𝑌 (𝑐)
𝑗 − ̄𝑌 (𝑐))2, the total sum of squares of 𝑌 (𝑐). In conclusion, the estimators

�̂�𝑌 and ̂𝛽𝑌 are consistent. Formal derivations for the presented formulas are provided in
section S2.5.

In the following we will focus on specifying confidence limits for the treatment effect
estimator ̂𝛽𝑌 defined in (S2.13). Wemake use of the fact that this estimator is a ratio, which
motivates the use of the Delta method, Fieller method and Zero-variance method [14]. We
also present a non-parametric bootstrap method for specifying confidence limits [15].

Delta method
Assuming that ̂𝛽𝑌 ∗ and ̂𝜃1 are both normally distributed and applying the Delta method,
the second moment of ̂𝛽𝑌 can be approximated [11]. Formal derivations of the presented
formulas are provided in section S2.5. The Delta method variance of ̂𝛽𝑌 is given by:

Var( ̂𝛽𝑌 ) ≈
1
𝜃21

[𝜃
21𝜎2 + 𝜏2
𝑆𝑥𝑥

+ 𝛽2𝑌 𝜏2
𝑆(𝑐)𝑦𝑦

],

where 𝑆𝑥𝑥 = ∑𝑖(𝑋𝑖 − ̄𝑋 )2, the total sum of squares of 𝑋 . An approximation of the above
defined variance, denoted by V̂ar( ̂𝛽𝑌 ), is provided by approximating 𝜃1, 𝜃21𝜎2 + 𝜏2, 𝜏2 and
𝛽𝑌 respectively by ̂𝜃1, 𝑠2, 𝑡2 and ̂𝛽𝑌 [11].

An approximate confidence interval for the estimator ̂𝛽𝑌 is then given by

̂𝛽𝑌 ± 𝑡(𝛼/2,𝑛−2)√V̂ar( ̂𝛽𝑌 ). (S2.14)

Fieller method
A secondmethod to construct confidence intervals for the estimator ̂𝛽𝑌 in (S2.13), described
by Buonaccorsi, is the Fieller method [11, 16]. In the case that ̂𝜃1 is significantly different

from zero at a significance level of 𝛼 (that is, ̂𝜃1/√𝑡2/𝑆(𝑐)𝑦𝑦 > 𝑡𝑁−2), the (1 − 𝛼) confidence
intervals of ̂𝛽𝑌 are defined by the Fieller method by:

𝑙𝑢𝑝𝑝𝑒𝑟,𝑙𝑜𝑤𝑒𝑟 =
̂𝛽𝑌 ∗ ̂𝜃1 ± √

̂𝛽2𝑌 ∗ ̂𝜃21 − ( 𝑡2
𝑆(𝑐)𝑦𝑦

𝑡2𝑞 − ̂𝜃21 )( 𝑠2
𝑆𝑥𝑥

𝑡2𝑞 − ̂𝛽2𝑌 ∗)
𝜏 2
𝑆(𝑐)𝑦𝑦

𝑡2𝑞 + ̂𝜃21
. (S2.15)

A formal derivation can be found in section S2.5.

Zero-variance method
The zero-variance method adjusts the observed endpoints 𝑌 ∗𝑖 by

̂𝑌𝑖 = (𝑌 ∗𝑖 − ̂𝜃0)/ ̂𝜃1,
where ̂𝜃0 and ̂𝜃1 are derived from (S2.10). The adjusted endpoints are regressed on the
treatment variable 𝑋 , which yields,

̂𝛽�̂� = ∑𝑖(𝑋𝑖 − ̄𝑋 )(�̂�𝑖 − ̄�̂� )
∑𝑖(𝑋𝑖 − ̄𝑋 )2 = ∑𝑖(𝑋𝑖 − ̄𝑋 )(𝑌 ∗𝑖 − ̄𝑌 ∗)/ ̂𝜃1

∑𝑖(𝑋𝑖 − ̄𝑋 )2 = ̂𝛽𝑌 ∗ / ̂𝜃1,
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�̂��̂� = ̄�̂� − ̂𝛽�̂� ̄𝑋 =
̄𝑌 ∗ − ̂𝛽𝑌 ∗ ̄𝑋 − ̂𝜃0

̂𝜃1
= (�̂�𝑌 ∗ − ̂𝜃0)/ ̂𝜃1,

𝑠2�̂� = 1
𝑁 − 2 ∑

𝑖
(�̂�𝑖 − �̂��̂� − ̂𝛽�̂�𝑋𝑖)2 =

1
̂𝜃21
𝑠2,

with ̂𝛽𝑌 ∗ , �̂�𝑌 ∗ and 𝑠2 as in equations (S2.3, S2.4 and S2.6), respectively. Thus, ̂𝛽�̂� equals ̂𝛽𝑌
and �̂��̂� equals �̂�𝑌 defined in (S2.13).

When the value of ̂𝜃1 (i.e. 𝜃1) is known, the variance of the estimator ̂𝛽�̂� is equal to:

Var( ̂𝛽�̂� ) = Var( ̂𝛽𝑌 ∗)/𝜃21 = 𝜎2 + 𝜏2/𝜃21
∑𝑖 (𝑋𝑖 − ̄𝑋 )2 .

Using the standard OLS regression framework the variance of ̂𝛽�̂� can be estimated by:

V̂ar( ̂𝛽�̂� ) =
𝑠2�̂�

∑𝑖(𝑋𝑖 − ̄𝑋 )2 = 𝑠2/ ̂𝜃21
∑𝑖(𝑋𝑖 − ̄𝑋 )2 . (S2.16)

By replacing ̂𝜃1 by 𝜃1 in the above, the quantity in (S2.16) is in expectation equal to
Var( ̂𝛽�̂� ) (defined above). The quantity in (S2.16) is used in the zero-variance method
to construct confidence intervals for ̂𝛽�̂� , by replacing V̂ar( ̂𝛽�̂� ) for V̂ar( ̂𝛽𝑌 ) in equation
S2.14. In conclusion, this zero-variance approach will provide confidence intervals for the
treatment effect estimator while assuming there is no variance in ̂𝜃1 (giving it its name
zero-variance method). Although the zero-variance approach wins in terms of simplicity,
it may underestimate the variability of the ratio since the variance in ̂𝜃1 is assumed zero.

Bootstrap
An alternative for defining confidence intervals for the corrected treatment effect estimator
̂𝛽𝑌 is by using a non-parametric bootstrap [15]. We propose the following stepwise

procedure:

1. Draw a random sample with replacement of size 𝐾 of the calibration sample
(𝑌 ∗(𝑐), 𝑌 (𝑐)) to estimate ̂𝜃1𝐵 defined in (S2.12).

2. Draw a random sample with replacement of size 𝑁 of the trial data (𝑌 ∗, 𝑋 ) to
calculate the corrected treatment effect estimate by ̂𝛽𝑌𝐵 = 𝛽𝑌 ∗𝐵 / ̂𝜃1𝐵 . Where 𝛽𝑌 ∗𝐵 is
defined in (S2.3).

3. Repeat step 1-2 𝐵 times, with 𝐵 large (e.g. 999 times).

4. Approximate confidence intervals are given by the (𝛼/2, 1 − 𝛼/2) percentile of the
distribution of ̂𝛽𝑌𝐵 .

S2.3.2. Differential measurement error
For corrections for endpoints that suffer from differential measurement error we will here
assume the existence of a pilot trial, which serves as an external calibration set, where both
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treatments are allocated at random that serves as an external calibration set to estimate
the measurement error model in (S2.11). For notational convenience we rewrite the linear
model in equation (S2.11) in matrix form as:

𝑌 ∗ = 𝑋𝜃 + 𝑒, (S2.17)

where E(𝑒) = 0 and E(𝑒𝑒′) = Σ, a positive definite matrix, with 𝜏2𝑋 on its diagonal. Further,
𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4) = (𝜃00, 𝜃01 − 𝜃00, 𝜃10, 𝜃11 − 𝜃10). In the external calibration set, the
measurement error parameters ̂𝜃 can be estimated by,

̂𝜃 = (𝑋 (𝑐)′𝑋 (𝑐))−1𝑋 (𝑐)′𝑌 (𝑐), (S2.18)

with variance,
Var( ̂𝜃) = (𝑋 (𝑐)′𝑋 (𝑐))−1𝑋 (𝑐)′Σ𝑋 (𝑐)(𝑋 (𝑐)′𝑋 (𝑐))−1.

See [12] for a discussion on different estimators for the above defined variance. From
section 2.5 it follows that natural estimators for 𝛼𝑌 and 𝛽𝑌 are,

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃00)/ ̂𝜃10 and ̂𝛽𝑌 = ( ̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01)/ ̂𝜃11 − �̂�𝑌 , (S2.19)

where ̂𝜃00, ̂𝜃10, ̂𝜃01 and ̂𝜃11 are estimated from the external calibration set. Here it is assumed
that both ̂𝜃10 and ̂𝜃11 are bounded away from zero (for reasons similar to those mentioned
in section 3.1).

By multivariate Taylor expansions, the first moments of the estimators �̂�𝑌 and ̂𝛽𝑌
defined in (S2.19) can be approximated [11], in the same way as the estimators for
systematic measurement error (section 4.1),

E[�̂�𝑌 ] ≈ 𝛼𝑌 + 1
𝜃210

[𝛼𝑌Var( ̂𝜃10) + Cov( ̂𝜃00, ̂𝜃10)],

E[ ̂𝛽𝑌 ] ≈ 𝛽𝑌 + 1
𝜃211

[(𝛽𝑌 + 𝛼𝑌 )Var( ̂𝜃11) + Cov( ̂𝜃01, ̂𝜃11)]

− 1
𝜃210

[𝛼𝑌Var( ̂𝜃10) + Cov( ̂𝜃00, ̂𝜃10)].

From this, it is apparent that the estimators �̂�𝑌 and ̂𝛽𝑌 defined in (S2.19) are consistent
(details are found in section S2.5). In the subsequent sections we review the Delta method,
zero-variance and propose a bootstrap for specifying confidence limits for the estimator of
the treatment effect under differential measurement error of the endpoints.

Delta method
The variance of the estimator ̂𝛽𝑌 defined in (S2.19) can be approximated by the Delta
method [11]:

Var( ̂𝛽𝑌 ) ≈
1
𝜃211

[(𝛽𝑌 + 𝛼𝑌 )
2
Var( ̂𝜃11) + Var( ̂𝛽𝑌 ∗) + Var(�̂�𝑌 ∗)+

2Cov(�̂�𝑌 ∗ , ̂𝛽𝑌 ∗) + Var( ̂𝜃01) + 2(𝛽𝑌 + 𝛼𝑌 )Cov( ̂𝜃11, ̂𝜃01)]+
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Var(�̂�𝑌 ),

where Var(�̂�𝑌 ) is approximated by:

Var( �̂�𝑌 ∗ − ̂𝜃00
̂𝜃10

) ≈ 1
𝜃210

[Var(�̂�𝑌 ∗) + 𝛼2𝑌Var( ̂𝜃10) + Var( ̂𝜃00) + 2𝛼𝑌Cov( ̂𝜃00, ̂𝜃10)].

An approximate confidence interval for the estimator ̂𝛽𝑌 in (S2.19) is:

̂𝛽𝑌 ± 𝑡(𝛼/2,𝑛−2)√Var( ̂𝛽𝑌 ). (S2.20)

An approximation of 𝜃11, 𝜃10, 𝜃211𝜎2+𝜏21 , 𝜃210𝜎2+𝜏20 , 𝜏21 , 𝜏20 , 𝛽𝑌 and 𝛼𝑌 in the above is provided
by: ̂𝜃11, ̂𝜃10, 𝑠21 , 𝑠20 , 𝑡21 , 𝑡20 , ̂𝛽𝑌 and �̂�𝑌 [11].

Zero-variance method
The zero-variance method adjusts the observed endpoints 𝑌 ∗𝑖 by

�̂�𝑖𝑥 = (𝑌 ∗𝑖𝑥 − ̂𝜃0𝑥 )/ ̂𝜃1𝑥 ,

for 𝑥 ∈ {0, 1} and ̂𝜃0𝑥 ) and ̂𝜃1𝑥 derived from (S2.18). In the zero-variance method the
above defined adjusted values are regressed on the treatment variable 𝑋 , yielding in
estimators �̂��̂� and ̂𝛽�̂� , which are, respectively, equal to the estimators �̂�𝑌 and ̂𝛽𝑌 defined
in (S2.19). The variance of these estimators can be approximated with a heteroscedastic
consistent covariance estimator (see [12] for an overview). Confidence intervals for ̂𝛽�̂� are
subsequently constructed by using formula S2.20. Similar to what is described in section
4.1.3 discussing the zero-variance method for systematic measurement error, this way of
constructing confidence intervals neglects the variance of the 𝜃 ’s from the calibration data
set, and will thus often yield in confidence intervals that are too narrow.

Bootstrap
We here alternatively propose a non-parametric bootstrap procedure to specify confidence
limits. This entails the following steps:

1. Draw a random sample with replacement of size 𝐾 of the calibration sample and
estimate ̂𝜃 as defined in (S2.18).

2. Draw a random sample (with replacement) of size 𝑁 of the study population and
calculate the effect estimate by �̂�𝑌𝐵 = (𝛼𝑌 ∗𝐵 − ̂𝜃00𝐵 )/ ̂𝜃10𝐵 and ̂𝛽𝑌𝐵 = (𝛽𝑌 ∗𝐵 + 𝛼𝑌 ∗𝐵 −
̂𝜃01𝐵 )/ ̂𝜃11𝐵 − �̂�𝑌𝐵 . Where 𝛽𝑌 ∗𝐵 and 𝛼𝑌 ∗𝐵 are defined in (S2.3) and (S2.4), respectively.

3. Repeat step 1-2 𝐵 times, with 𝐵 large (e.g. 999 times).

4. Approximate confidence intervals are given by the (𝛼/2, 1 − 𝛼/2) percentile of the
distribution of ̂𝛽𝑌𝐵 .
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S2.4.Measurement error depending on prognostic factors
Assume that, E[𝑌 |𝑋 , 𝑆] = 𝛼 + 𝛽𝑋 + 𝛾𝑆, E[𝑌 ∗|𝑌 , 𝑆] = 𝑌 + 𝜁 𝑆, 𝑌 ∗|𝑌 ⊧𝑋 (non-differential
measurement error) and 𝑆 ⊧𝑋 (randomization is well-performed).

Suppose that we want to estimate the effect of 𝑌 on 𝑋 (i.e., 𝛽), but instead of 𝑌 we
have only measured the with measurement error contaminated 𝑌 ∗. If one is aware that
there is a prognostic factor that confounds the relation between 𝑌 ∗ and 𝑌 (and this factor
is measured), one could decide to regress 𝑌 ∗ on 𝑋 and 𝑆. The regression of 𝑌 ∗ on 𝑋 and 𝑆
equals,

E[𝑌 ∗|𝑋 , 𝑆] = E𝑌 |𝑋 ,𝑆{EY∗ |X,S,Y[Y∗|X, S,Y]|X, S}
= E𝑌 |𝑋 ,𝑆{EY∗ |S,Y[Y∗|S,Y]|X, S}
= E𝑌 |𝑋 ,𝑆{Y + �S|X, S}
= 𝛼 + 𝛽𝑋 + (𝛾 + 𝜁 )𝑆.

Thus, using the with measurement error contaminated endpoint 𝑌 ∗ instead of the preferred
endpoint 𝑌 will provide an unbiased estimation of 𝛽 .

However, if one is not aware of the prognostic factor, one might naively regress 𝑌 ∗ on
𝑋 , which equals:

E[𝑌 ∗|𝑋 ] = E𝑆|𝑋 {E𝑌 |𝑋 ,𝑆 {EY∗ |X,S,Y[Y∗|X, S,Y]|X, S}|𝑋 }
= E𝑆|𝑋 {𝛼 + 𝛽𝑋 + (𝛾 + 𝜁 )𝑆|𝑋 }
= 𝛼 + 𝛽𝑋 + (𝛾 + 𝜁 )E[𝑆].

In conclusion, with ignoring the prognostic factor and using the with measurement error
contaminated endpoint 𝑌 ∗ instead of the preferred endpoint 𝑌 , the regression of 𝑌 ∗ on 𝑋
still results in an unbiased estimation of 𝛽 .

S2.5. Approximation of bias and variance in corrected estimator
S2.5.1. Systematic measurement error
Obvious estimators for 𝛼𝑌 and 𝛽𝑌 are:

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃0)/ ̂𝜃1 and ̂𝛽𝑌 = ̂𝛽𝑌 ∗ / ̂𝜃1.

These estimators can be approximated with a second order Taylor expansion by:

̂𝛽𝑌 ∗

̂𝜃1
≈ 𝛽𝑌 ∗

𝜃1
− 𝛽𝑌 ∗

𝜃21
( ̂𝜃1 − 𝜃1) +

1
𝜃1
( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)

+ 1
2! [

2𝛽𝑌 ∗

𝜃31
( ̂𝜃1 − 𝜃1)2 −

2
𝜃21

( ̂𝜃1 − 𝜃1)( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)],
�̂�𝑌 ∗

̂𝜃1
≈ 𝛼𝑌 ∗

𝜃1
− 𝛼𝑌 ∗

𝜃21
( ̂𝜃1 − 𝜃1) +

1
𝜃1
(�̂�𝑌 ∗ − 𝛼𝑌 ∗)

+ 1
2! [

2𝛼𝑌 ∗

𝜃31
( ̂𝜃1 − 𝜃1)2 −

2
𝜃21

( ̂𝜃1 − 𝜃1)(�̂�𝑌 ∗ − 𝛼𝑌 ∗)],
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̂𝜃0
̂𝜃1
≈ 𝜃0
𝜃1

− 𝜃0
𝜃21

( ̂𝜃1 − 𝜃1) +
1
𝜃1
( ̂𝜃0 − 𝜃0)

+ 1
2! [

2𝜃0
𝜃31

( ̂𝜃1 − 𝜃1)2 −
2
𝜃21

( ̂𝜃1 − 𝜃1)( ̂𝜃0 − 𝜃0)].

Simplifying these terms and substraction of the latter two, will lead to the following
approximations for �̂�𝑌 and ̂𝛽𝑌 :

̂𝛽𝑌 ∗

̂𝜃1
≈ 𝛽𝑌 ∗

𝜃1
+ 1
𝜃1
[ − 𝛽𝑌 ∗

𝜃1
( ̂𝜃1 − 𝜃1) + ( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)]

+ 1
𝜃21

[𝛽𝑌 ∗

𝜃1
( ̂𝜃1 − 𝜃1)2 − ( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)( ̂𝜃1 − 𝜃1)],

�̂�𝑌 ∗ − ̂𝜃0
̂𝜃1

≈ 𝛼𝑌 ∗ − 𝜃0
𝜃1

+ 1
𝜃1
[ − 𝛼𝑌 ∗ − 𝜃0

𝜃1
( ̂𝜃1 − 𝜃1) + (�̂�𝑌 ∗ − 𝛼𝑌 ∗) − ( ̂𝜃0 − 𝜃0)]

+ 1
𝜃21

[𝛼𝑌 ∗ − 𝜃0
𝜃1

( ̂𝜃1 − 𝜃1)2 − (�̂�𝑌 ∗ − 𝛼𝑌 ∗)( ̂𝜃1 − 𝜃1) + ( ̂𝜃0 − 𝜃0)( ̂𝜃1 − 𝜃1)].

Since E[ ̂𝜃1 − 𝜃1] = 0, E[ ̂𝜃0 − 𝜃0] = 0, E[�̂�𝑌 ∗ − 𝛼𝑌 ∗] = 0 and E[ ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗] = 0 an approximation
of the expected value of the estimator �̂�𝑌 is given by:

E[ �̂�𝑌 ∗ − ̂𝜃0
̂𝜃1

] ≈ 𝛼𝑌 ∗ − 𝜃0
𝜃1

+ 1
𝜃21

[𝛼𝑌 ∗ − 𝜃0
𝜃1

E[( ̂𝜃1 − 𝜃1)2]

− E[(�̂�𝑌 ∗ − 𝛼𝑌 ∗)( ̂𝜃1 − 𝜃1)] + E[( ̂𝜃0 − 𝜃0)( ̂𝜃1 − 𝜃1)]] =

= 𝛼𝑌 ∗ − 𝜃0
𝜃1

+ 1
𝜃21

[𝛼𝑌 ∗ − 𝜃0
𝜃1

Var( ̂𝜃1) − Cov(�̂�𝑌 ∗ , ̂𝜃1) + Cov( ̂𝜃0, ̂𝜃1)] =

= 𝛼𝑌 + 1
𝜃21

[ 𝜏2[𝛼𝑌 − ̄𝑌 (𝑐)]
∑(𝑌 (𝑐)

𝑗 − ̄𝑌 (𝑐))2
].

Congruently, an approximation of the expected value of the estimator ̂𝛽𝑌 is given by:

E[
̂𝛽𝑌 ∗

̂𝜃1
] ≈ 𝛽𝑌 ∗

𝜃1
+ 1
𝜃21

[𝛽𝑌 ∗

𝜃1
E[( ̂𝜃1 − 𝜃1)2] − E[( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)( ̂𝜃1 − 𝜃1)]] =

= 𝛽𝑌 ∗

𝜃1
+ 1
𝜃21

[𝛽𝑌 ∗

𝜃1
Var( ̂𝜃1)] =

= 𝛽𝑌 + 1
𝜃21

[ 𝜏2𝛽𝑌
∑(𝑌 (𝑐)

𝑗 − ̄𝑌 (𝑐))2
].

Only using the first order Taylor expansion of the estimators, approximations of the
variance of �̂�𝑌 and ̂𝛽𝑌 are respectively:

Var( �̂�𝑌 ∗ − ̂𝜃0
̂𝜃1

) ≈ 1
𝜃21

[𝛼2𝑌Var( ̂𝜃1) + Var(�̂�𝑌 ∗ − ̂𝜃0) − 2𝛼𝑌Cov( ̂𝜃1, �̂�𝑌 ∗ − ̂𝜃0)] =
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= 1
𝜃21

[𝛼2𝑌Var( ̂𝜃1) + Var(�̂�𝑌 ∗) + Var( ̂𝜃0) − 2Cov(�̂�𝑌 ∗ , ̂𝜃0)

− 2𝛼𝑌Cov( ̂𝜃1, �̂�𝑌 ∗) + 2𝛼𝑌Cov( ̂𝜃1, ̂𝜃0)] =

= 1
𝜃21

[ (𝜃
21𝜎2 + 𝜏2)∑𝑋 2𝑖
𝑁 ∑(𝑋𝑖 − ̄𝑋 )2 + 𝛼2𝑌

𝜏2
∑(𝑌 (𝑐)

𝑗 − ̄𝑌 (𝑐))2

+ 𝜏2∑(𝑌 (𝑐)
𝑗 )2

𝐾 ∑(𝑌 (𝑐)
𝑗 − ̄𝑌 (𝑐))2

+ 2𝛼𝑌
−𝜏2 ̄𝑌 (𝑐)

∑(𝑌 (𝑐)
𝑗 − ̄𝑌 (𝑐))2

] =

= 1
𝜃21

[ (𝜃
21𝜎2 + 𝜏2)∑𝑋 2𝑖
𝑁 ∑(𝑋𝑖 − ̄𝑥)2 + 𝛼2𝑌

𝜏2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2

+ 𝜏2(∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 + 𝐾( ̄𝑦(𝑐))2)
𝐾 ∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2

− 2𝛼𝑌
𝜏2 ̄𝑦(𝑐)

∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2
] =

= 1
𝜃21

[ (𝜃
21𝜎2 + 𝜏2)∑ 𝑥2𝑖
𝑁 ∑(𝑥𝑖 − ̄𝑥)2 + 𝜏2( 1𝐾 + ( ̄𝑦(𝑐) − 𝛼𝑌 )2

∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2
)],

Var(
̂𝛽𝑌 ∗

̂𝜃1
) ≈ 1

𝜃21
[ 𝜃21𝜎2 + 𝜏2
∑(𝑥𝑖 − ̄𝑥)2 + 𝛽2𝑌 𝜏2

∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2
].

Fieller method

Assume that ̂𝛽𝑌 ∗ and ̂𝜃1 are normally distributed (note that this assumption is satisfied
with large study samples (𝑁 ) and large calibration samples (𝐾 )). The sum of two normally
distributed variables is normally distributed, hence, ̂𝛽𝑌 ∗ − 𝛽𝑌 ̂𝜃1 is normally distributed.
Furthermore, we have,

Var( ̂𝛽𝑌 ∗ − 𝛽𝑌 ̂𝜃1) = Var( ̂𝛽𝑌 ∗) + 𝛽2𝑌Var( ̂𝜃1).

Where,

Var( ̂𝛽𝑌 ∗) = 𝜃21𝜎2 + 𝜏2
∑(𝑥𝑖 − ̄𝑥)2

Var( ̂𝜃1) = 𝜏2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2
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If we now divide the term ̂𝛽𝑌 ∗ − 𝛽𝑌 ̂𝜃1 by its standard deviation, we get:

𝑇0 =
̂𝛽𝑌 ∗ − 𝛽𝑌 ̂𝜃1

√
𝜃21𝜎2+𝜏 2
∑(𝑥𝑖− ̄𝑥)2 +

𝜏 2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 𝛽

2𝑌
(S2.21)

We are interested to find the set of 𝛽𝑌 values for which the corresponding 𝑇0 values lie
within the (1 − 𝛼) quantiles of the 𝑡-distribution with 𝑁 − 2 degrees of freedom (this only
holds approximately, see for details [14]). Let us denote these values by 𝑡𝑞 , from (S2.21) we
have,

( 𝜏2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2

𝑡2𝑞 − ̂𝜃21 )𝛽2𝑌 + 2 ̂𝛽𝑌 ∗ ̂𝜃1𝛽𝑌 + ( 𝜃
21𝜎2 + 𝜏2

∑(𝑥𝑖 − ̄𝑥)2 𝑡
2𝑞 − ̂𝛽2𝑌 ∗) = 0.

In the case that ̂𝜃1 is significantly different from zero at a significance level of 𝛼 (that is,

̂𝜃1/√
𝜏 2

∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 > 𝑡𝑞), solving this for 𝛽𝑌 results in the following (1−𝛼) confidence intervals:

𝛽𝑌 =
− ̂𝛽𝑌 ∗ ̂𝜃1 ± √

̂𝛽2𝑌 ∗ ̂𝜃21 − ( 𝜏 2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 𝑡

2𝑞 − ̂𝜃21 )( 𝜃21𝜎2+𝜏 2
∑(𝑥𝑖− ̄𝑥)2 𝑡2𝑞 − ̂𝛽2𝑌 ∗)

𝜏 2
∑(𝑦(𝑐)𝑗 − ̄𝑦(𝑐))2 𝑡

2𝑞 − ̂𝜃21
.

In the other case, the confidence intervals are unbounded, see for more details [14].

S2.5.2. Differential measurement error
Obvious estimators for 𝛼𝑌 and 𝛽𝑌 are:

�̂�𝑌 = (�̂�𝑌 ∗ − ̂𝜃00)/ ̂𝜃10 and ̂𝛽𝑌 = ( ̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01)/ ̂𝜃11 − �̂�𝑌 .
These estimators can be approximated with a second order Taylor expansion by:

�̂�𝑌 ∗ − ̂𝜃00
̂𝜃10

≈ 𝛼𝑌 ∗ − 𝜃00
𝜃10

+ 1
𝜃10

[ − 𝛼𝑌 ∗ − 𝜃00
𝜃10

( ̂𝜃10 − 𝜃10) + (�̂�𝑌 ∗ − 𝛼𝑌 ∗) − ( ̂𝜃00 − 𝜃00)]

+ 1
𝜃211

[𝛼𝑌 ∗ − 𝜃00
𝜃10

( ̂𝜃10 − 𝜃10)2 − (�̂�𝑌 ∗ − 𝛼𝑌 ∗)( ̂𝜃10 − 𝜃10)

+ ( ̂𝜃00 − 𝜃00)( ̂𝜃10 − 𝜃10)],
̂𝛽𝑌 ∗ − ̂𝜃01

̂𝜃11
≈ 𝛽𝑌 ∗ − 𝜃01

𝜃11
+ 1
𝜃11

[ − 𝛽𝑌 ∗ − 𝜃01
𝜃11

( ̂𝜃11 − 𝜃11) + ( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗) − ( ̂𝜃01 − 𝜃01)]

+ 1
𝜃211

[𝛽𝑌 ∗ − 𝜃01
𝜃11

( ̂𝜃11 − 𝜃11)2 − ( ̂𝛽𝑌 ∗ − 𝛽𝑌 ∗)( ̂𝜃11 − 𝜃11)

+ ( ̂𝜃01 − 𝜃01)( ̂𝜃11 − 𝜃11)],
�̂�𝑌 ∗

̂𝜃11
≈ 𝛼𝑌 ∗

𝜃11
+ 1
𝜃11

[ − 𝛼𝑌 ∗

𝜃11
( ̂𝜃11 − 𝜃11) + (�̂�𝑌 ∗ − 𝛼𝑌 ∗))]
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+ 1
𝜃211

[𝛼𝑌 ∗

𝜃11
( ̂𝜃11 − 𝜃11)2 − (�̂�𝑌 ∗ − 𝛼𝑌 ∗)( ̂𝜃11 − 𝜃11)].

Congruent to the results for the estimators under systematic measurement error, we can
conclude:

E[ �̂�𝑌 ∗ − ̂𝜃00
̂𝜃10

] ≈ 𝛼𝑌 + 1
𝜃210

[𝛼𝑌Var( ̂𝜃10) + Cov( ̂𝜃00, ̂𝜃10)].

Congruently, an approximation of the expected value of the estimator ̂𝛽𝑌 is given by:

E[
̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01

̂𝜃11
− �̂�𝑌 ] ≈ 𝛽𝑌 + 1

𝜃211
[(𝛽𝑌 + 𝛼𝑌 )Var( ̂𝜃11) + Cov( ̂𝜃01, ̂𝜃11)]

− 1
𝜃210

[𝛼𝑌Var( ̂𝜃10) + Cov( ̂𝜃00, ̂𝜃10)].

And the variance of the estimators is approximated by:

Var( �̂�𝑌 ∗ − ̂𝜃00
̂𝜃10

) ≈ 1
𝜃210

[Var(�̂�𝑌 ∗)

+ 𝛼2𝑌Var( ̂𝜃10) + Var( ̂𝜃00) + 2𝛼𝑌Cov( ̂𝜃00, ̂𝜃10)],

Var(
̂𝛽𝑌 ∗ + �̂�𝑌 ∗ − ̂𝜃01

̂𝜃11
− �̂�𝑌 ) ≈

1
𝜃211

[(𝛽𝑌 + 𝛼𝑌 )
2
Var( ̂𝜃11) + Var( ̂𝛽𝑌 ∗) + Var(�̂�𝑌 ∗)

+ 2Cov(�̂�𝑌 ∗ , ̂𝛽𝑌 ∗) + Var( ̂𝜃01)
+ 2(𝛽𝑌 + 𝛼𝑌 )Cov( ̂𝜃11, ̂𝜃01)]
+ Var(�̂�𝑌 ).

Note that in the case of differential measurement error, we assume that Cov( ̂𝜃11, ̂𝜃00) = 0,
Cov( ̂𝜃11, ̂𝜃10) = 0, Cov( ̂𝜃01, ̂𝜃00) = 0 and Cov( ̂𝜃01, ̂𝜃10) = 0.
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These are the supplementary materials accompanying Chapter 3. The supplementary
materials are structured as follows. In section S3.1, the variance of the regression calibration
estimator is derived. In section S3.2, the variance of the maximum likelihood estimator for
replicates study is derived.

S3.1. Variance estimation: standard regression calibration
Covariate measurement error. The variance–covariance matrix for the standard
regression estimator ̂𝛽RC can be approximated by using the multivariate delta method as
described by [1], given by

Σ̂𝛽RC(𝑗1, 𝑗2) = (�̂�′Σ̂𝛽∗�̂�)𝑗1,𝑗2 + ̂𝛽∗Σ̂𝐴,𝑗1,𝑗2 ̂𝛽∗′, 𝑗1, 𝑗2 = 1, … , (𝑘 + 2), (S3.1)

where �̂� is the inverse of the calibration model matrix Λ̂. Further, Σ̂𝛽∗ is the
variance–covariance matrix obtained from the naive regression defined in equation (3.2) in
the main chapter and Σ̂𝐴,𝑗1,𝑗2 is the (𝑘 +2)× (𝑘 +2)matrix relating the 𝑗1th and 𝑗2th column
of 𝐴 (we refer to Appendix of [1] for a derivation). Additionally, the so-called zero-variance
variance–covariance matrix for ̂𝛽 can be estimated by �̂�′Σ𝛽∗�̂� (i.e., by omitting the variance
in the calibration model matrix).

A 100(1 − 𝛼) percent confidence interval for the 𝑗th element of ̂𝛽RC is then

̂𝛽RC𝑗 ± √Var( ̂𝛽RC𝑗), (S3.2)

where Var( ̂𝛽RC𝑗) is the jth element on the diagonal of Σ̂𝛽RC . The variance–covariancematrix

Σ̂𝛽RC can be obtained by either using the delta variance–covariance matrix or zero-variance
variance–covariance matrix. In general, the zero-variance variance–covariance matrix will
underestimate the true variance–covariance matrix and thus lead to too narrow confidence
intervals.

Other methods to construct confidence intervals include stratified bootstrap [2] and
the Fieller method [3–6]. In case of covariate measurement error, the Fieller method can
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only be applied to construct a 100(1 − 𝛼) percent confidence interval for the first element
of ̂𝛽RC, i.e., ̂𝜙RC. From [6] we obtain:

{𝑓1 ± √𝑓 21 − 𝑓0𝑓2/𝑓2}, (S3.3)

where 𝑓0 = 𝑧2𝛼/2Var( ̂𝜙∗) − ̂𝜙∗, 𝑓1 = 𝑧2𝛼/2Cov( ̂𝜙∗, �̂�1) − ̂𝜙∗�̂�1, 𝑓2 = 𝑧2𝛼/2Var(�̂�1) − �̂�21 . Where it
is assumed that Cov( ̂𝜙∗, �̂�1) is null. If the (1 − 𝛼) × 100% confidence interval of �̂�1 includes
0, the Fieller method does not lead to bounded confidence intervals. Bootstrap confidence
intervals are obtained by sampling the people in the validation set separately from the
people not included in the validation set [2] and taking the (100 − 𝛼) percentiles of the
obtained distribution.

Outcome measurement error. The variance–covariance matrix for the standard
regression estimator ( ̂𝛽RC, 1) can be approximated by applying the multivariate delta
method similar to the variance obtained for the corrected estimator for covariate
maesurement error,

Σ̂(𝛽RC,1)(𝑗1, 𝑗2) = (𝐵′Σ̂(𝛽∗,1)𝐵)𝑗1,𝑗2 + ( ̂𝛽∗, 1)Σ̂𝐵,𝑗1,𝑗2( ̂𝛽∗, 1)′, 𝑗1, 𝑗2 = 1, … , (𝑘 + 3),

where �̂� is the inverse of the measurement error model matrix Θ̂. Σ̂(𝛽∗,1) is a (𝑘 + 3) × (𝑘 + 3)
matrix where the upper (𝑘 +2)× (𝑘 +2) comprises the variance–covariance matrix obtained
from the uncorrected regression defined bymodel (3.6) and the last row and column contain
zeros. Further, Σ̂𝐵,𝑗1,𝑗2 is the (𝑘 + 3) × (𝑘 + 3) matrix relating the 𝑗1th and 𝑗2th column
of 𝐵 (similar to [1]). The so-called zero-variance variance–covariance matrix for ̂𝛽 can be
estimated by 𝐵′Σ̂(𝛽∗,1)𝐵.

A 100(1 − 𝛼) percent confidence interval can be obtained from equation (S3.2). Further,
100(1 − 𝛼) percent confidence intervals for ̂𝜙 and ̂𝛾 can be approximated by the Fieller
method as defined in model S3.3, where 𝑓0 = ̂𝜙∗−𝑧2𝛼/2Var( ̂𝜙∗), 𝑓1 = ̂𝜙∗/ ̂𝜃1−𝑧2𝛼/2Cov( ̂𝜙∗, 1/ ̂𝜃1),
𝑓2 = 1/�̂�21 − 𝑧2𝛼/2Var(1/�̂�1) and idem for ̂𝛾 . Additionally, bootstrap can be used to construct
confidence intervals for ̂𝛽RC. Bootstrap confidence intervals are obtained by sampling the
individuals in the internal adjustment set separately from the individuals not included in
the internal adjustment set and taking the (100−𝛼) percentiles of the obtained distribution.

Differential outcome measurement error in univariable analyses. The
varia-nce–covariance matrix for the standard regression estimator ( ̂𝛽RC, 1) can be
estimated similar to non-differential outcome measurement error defined above (by using
the measurement error matrices for differential outcome measurement error). Confidence
intervals can then be obtained from equation (S3.2). Bootstrap confidence intervals are
obtained by sampling the individuals in the internal adjustment set separately from the
individuals not included in the internal adjustment set and taking the (100 − 𝛼) percentiles
of the obtained distribution.
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S3.2. Variance estimation: maximum likelihood for replicates
studies

The variance–covariance matrix for the maximum likelihood estimator ̂𝛽MLE can be
approximated by the multivariate delta method [7]. Denote
𝜁 ∗ = (𝛿0, 𝛿𝑍 , 𝜎2𝑌 |𝑍 , 𝜅0, 𝜅𝑌 , 𝜅𝑍 , 𝜎2𝑋 |𝑌 ,𝑍 ), leaving the 𝜏2 from 𝜁 in the main chapter (see
section 3.3.3) out as this parameter is not needed for the estimation of 𝛽 = (𝛼, 𝜙, 𝛾 ). A
standard result from linear mixed models is that the estimators of fixed parameters are
asymptotically uncorrelated with the estimators of the variance component parameters
[7]. If one further assumes that the estimators from the linear model of 𝑌 given 𝑍 are
uncorrelated with the parameters estimated in the linear mixed model, it follows for large
samples that ̂𝜁 ∗ is multivariate normal with mean 𝜁 and variance covariance matrix Var( ̂𝜁 )
equal to:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Var( ̂𝛿0) Cov( ̂𝛿0 , ̂𝛿𝑍 ) 0 0 0 0 0
Cov( ̂𝛿𝑍 , ̂𝛿0) Var( ̂𝛿𝑍 ) 0 0 0 0 0

0 0 Var(�̂�2
𝑌 |𝑍 ) 0 0 0 0

0 0 0 Var(�̂�0) Cov(�̂�0 , �̂�𝑌 ) Cov(�̂�0 , �̂�𝑍 ) 0
0 0 0 Cov(�̂�𝑌 , �̂�0) Var(�̂�𝑌 ) Cov(�̂�𝑌 , �̂�𝑍 ) 0
0 0 0 Cov(�̂�𝑍 , �̂�0) Cov(�̂�𝑍 , �̂�𝑌 ) Var(�̂�𝑍 ) 0
0 0 0 0 0 0 Var(�̂�2

𝑋 |𝑌 ,𝑍 )

⎞
⎟
⎟
⎟
⎟
⎟
⎠

If 𝑔 ∶ ℝ5+2𝑘 → ℝ2+𝑘 is the function that transforms 𝜁 ∗ to 𝛽ML = (𝛼ML, 𝜙ML, 𝛾ML), as
defined in the main chapter, then by the multivariate delta method it follows that in large
samples:

̂𝛽ML ∼ 𝑁 (𝛽ML, 𝐽 𝑔Var( ̂𝜁 )(𝐽 𝑔)′),
Where 𝐽 is the Jacobian matrix of 𝑔:

𝐽 𝑔 =
⎛
⎜
⎜
⎜
⎝

𝜕𝜙
𝜕𝛿0

𝜕𝜙
𝜕𝛿𝑍

𝜕𝜙
𝜕𝜎2

𝑌 |𝑍
… 𝜕𝜙

𝜕𝜎2
𝑋 |𝑌 ,𝑍𝜕𝛼

𝜕𝛿0
𝜕𝛼
𝜕𝛿𝑍

𝜕𝛼
𝜕𝜎2

𝑌 |𝑍
… 𝜕𝛼

𝜕𝜎2
𝑋 |𝑌 ,𝑍𝜕𝛾

𝜕𝛿0
𝜕𝛾
𝜕𝛿𝑍

𝜕𝛾
𝜕𝜎2

𝑌 |𝑍
… 𝜕𝛾

𝜕𝜎2
𝑋 |𝑌 ,𝑍

⎞
⎟
⎟
⎟
⎠

.

Confidence intervals can then be obtained from equation (S3.2). Bootstrap confidence
intervals are obtained by sampling the individuals in the internal adjustment set separately
from the individuals not included in the internal adjustment set and taking the (100 − 𝛼)
percentiles of the obtained distribution.
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These are the supplementary materials accompanying Chapter 5. The supplementary
materials are structured as follows. In section S5.1 we introduce notation, describe the
implications of exposure measurement error and describe the different analyses used in
the main chapter. In section S5.2 the parameters of the simulation study from the main
chapter are presented. Section S5.3 contains the additional results from the simulation
study in the main chapter that were left out for brevity there.

S5.1. Notation, impact of measurement error and different
analysis strategies

Throughout the main paper, our interest is the causal effect of the exposure VAT on the
outcome insulin resistance IR, adjusted for a predefined set of 𝑘 confounders, jointly written
as 𝑍 (e.g., age, sex and total body fat). We assume a linear model for the outcome without
interaction between exposure and covariates:

IR = intercept + 𝛽VAT + 𝛾 ′𝑍 + 𝜀. (S5.1)

Here, we assume that the residuals errors 𝜀 are independent of VAT and confounders 𝑍 , with
mean 0 and variance 𝜎2. Additionally, 𝛾 is assumed a 𝑘 ×1 vector of regression coefficients.
The parameter 𝛽 in equation (S5.1) is the parameter of interest. We consider the setting
that instead of the exposure of interest, VAT, WC is measured. The variable WC is the
error-prone substitute measure for VAT, where we assume that WC = 𝜃1VAT + 𝑈 , where
𝑈 is a random variable, with mean 0 and variance 𝜏2, and 𝑈 is assumed independent of
VAT. The factor 𝜃 is a scalar, used to scale VAT to the same scale as WC. We also assume
non-differential measurement error, i.e., WC|VAT ⊧𝑌 . This form of measurement error is
referred to as random (or sometimes classical) measurement error if 𝜃 = 1 and systematic
(or sometimes linear) measurement error otherwise [1, 2]. Since the substitute measure is
often measured on a different scale than the true measure, measurement error will often
be of the systematic form. Using WC instead of VAT in the linear model yields:

E[IR|WC, 𝑍 ] = intercept∗ + 𝛽∗WC + 𝛾 ∗′𝑍. (S5.2)
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Under this model, by the law of total expectation, we have E[IR|WC, 𝑍 ] = intercept +
𝛽 × E[VAT|WC, 𝑍 ] + 𝛾 ∗𝑍 , which relies on the assumption that the measurement error is
non-differential [3]. It follows that,

𝛽∗ = 𝛼𝛽 with 𝛼 = Var(WC,VAT|𝑍 )
Var(WC|𝑍 ) . (S5.3)

In conclusion, the ordinary least squared estimator for 𝛽∗ is biased for 𝛽 by a factor 𝛼 . This
factor is sometimes referred to as the attenuation factor in case of random measurement
error, because in that case Var(WC,VAT|𝑍 ) < Var(WC|𝑍 ) and hence, 𝛼 < 1.

S5.1.1.The different analyses with internal validation samples
When a study contains an internal validation sample for which information is available
on both WC and VAT, different analyses can be conducted. Five different estimators
are explained below. The variance of these estimators can be obtained from standard
output of statistical software when no further details on variance estimation are provided
below. The internal validation sample restricted analysis relies on the assumption
that the VAT measures in the main study are completely missing at random and the
regression calibration methods rely on the assumption that measurement error in WC is
non-differential.

Uncorrected analysis. The measurement error is ignored and the relation between
VAT and IR is estimated using the error-prone substitute measure WC. Under the
assumptions in section S5.1, as shown in equation (S5.3), this estimator is biased by a factor
𝛼 .

Internal validation sample restricted analysis. The association between VAT and
IR is determined using only the data from the internal validation sample (in which a direct
measure of VAT is available). This approach will naturally yield unbiased estimates if
measures of VAT are missing completely at random in the main study, but power of the
study will substantially decrease as only a part of the data available in the main study is
used.

Standard regression calibration. The basis of regression calibration is the
replacement ofWCby a corrected version ofWC, based on the regression of VAT onWCand
the confounders 𝑍 . In this way, the induced measurement error in the uncorrected analysis
is corrected by regressing the outcome IR on the confounders 𝑍 and E[VAT|WC, 𝑍 ] instead
of WC (i.e., by using the predicted values from regressing VAT on WC and 𝑍 , instead of
WC). This method is identical to dividing the least squares estimator 𝛽∗ in equation (S5.2)
by the correction factor 𝛼 defined in equation (S5.3) [2]. The variance of this estimator can
be estimated by applying the Delta method described by Rosner et al. [4].

Efficient regression calibration. This analysis pools the estimator of the internal
validation sample restricted analysis with the regression calibration estimator, by using
weights equal to the inverse of the variance of the two estimates, and was described by
Spiegelman et al. [5]. This approach is called efficient regression calibration since it makes
use of the fact that in the individuals included in the internal validation sample, VAT is
actually known and does not neglect this information. The variance of this estimator can
be estimated by taking the inverse of: the sum of the inverse of the variance of the internal
validation sample restricted estimator and the inverse of the variance of the regression
calibration estimator, as described by Spiegelman et al. [5].



S5

209

Validation regression calibration. This analysis uses the predicted values from
regressing VAT on WC and 𝑍 for individuals outside the internal validation sample and
VAT otherwise. We call this approach validation regression calibration approach since this
is the standard regression calibration approach in internal validation studies [1]. Validation
regression calibration treats the predicted values as if they were known and therefore
neglects their uncertainty.

S5.2. Simulation study parameters
In the simulation study presented in the main chapter, the measurement error variance 𝜏
and the parameter 𝜆 in the gamma distribution of the residual errors of VAT were varied
according to the R-squared of the measurement error model and skewness of the residuals
errors, respectively. The corresponding values for 𝜏 and 𝜆 in the data generatingmechanism
found in the main chapter can be found in Table S5.1.

Table S5.1: Values of the parameters R-squared and skewness varied in the simulation study in a full factorial
design.The values for 𝜏 and 𝜆 present the values for that parameter in the data generating mechanism that
corresponds to the given R-squared and skewness, respectively.

(a) R-squared and corresponding 𝜏
R-Squared 𝜏

0.2 1.8
0.4 1.1
0.6 0.7
0.8 0.4
0.9 0.3

(b) Skewness and corresponding 𝜆
Skewness 𝜆

0.1 65.6
1.0 0.7
1.5 0.3
3.0 0.1

S5.3. Simulation study results
The results of the simulation study that were left out themain chapter for brevity are shown
in the following subsections. Full results of the simulation study can also be found on
the online repository at https://github.com/LindaNab/me_neo. Specifically, Rds summary
files are available at https://github.com/LindaNab/me_neo/results/summaries. These
summary files contain more detailed information on e.g. model based standard errors,
empirical standard errors and Monte Carlo standard errors. Additionally, output of each
single run of the simulation study can be found at https://github.com/LindaNab/me_neo/
data/output and subsequent folders.

S5.3.1. Internal validation restricted analysis
The main results of the internal validation restricted analysis were shown in the main
chapter. Panels A and B in Figure S5.1 show the mean squared error of the association
between visceral adipose tissue and insulin resistance using an internal validation sample
of 25% of the main study’s sample size. Table S5.2 shows the mean squared error of the
association under study in the scenarios where R-squared was equal to 0.9 or skewness was
equal to 1.0, that were left out the main chapter for brevity. Tables S5.3 and S5.4 show the
percentage bias and coverage, respectively, of the association under study in the scenarios

https://github.com/LindaNab/me_neo
https://github.com/LindaNab/me_neo/results/summaries
https://github.com/LindaNab/me_neo/data/output
https://github.com/LindaNab/me_neo/data/output


S5

210 Supplementary material Chapter 5

where R-squared was equal to 0.9 or skewness was equal to 1.0.

S5.3.2. Validation regression calibration
The main results of validation regression calibration were shown in the main chapter.
Panels C and D in Figure S5.1 show the mean squared error of the association between
visceral adipose tissue and insulin resistance using an internal validation sample of 25% of
the main study’s sample size. Table S5.5 shows the mean squared error of the association
under study in the scenarios where R-squared was equal to 0.9 or skewness was equal to 1.0,
that were left out the main chapter for brevity. Tables S5.6 and S5.7 show the percentage
bias and coverage, respectively, show the percentage bias and coverage of the association
under study in the scenarios where R-squared was equal to 0.9 or skewness was equal to
1.0.

S5.3.3. Efficient regression calibration
The results of the application of efficient regression calibration for measurement error
correction were as follows. Figure S5.2 shows the mean squared error of the association
between visceral adipose tissue and insulin resistance using an internal validation sample
of 10%, or 40% of the main study’s sample size. Figure S5.3 shows the mean squared error
of the association between visceral adipose tissue and insulin resistance using an internal
validation sample of 25% of the main study’s sample size. Table S5.8 shows the mean
squared error of the association under study in the scenarios where R-squared was equal to
0.9 or skewness was equal to 1.0, that were left out Figure S5.2 and S5.3 for comparability
with Figure 5.5 and 5.6 in the main chapter. Table S5.9 and S5.10 show the percentage
bias in the association between visceral adipose tissue and insulin resistance using an
internal validation sample of 10%, 25% or 40% of the main study’s sample size for a linear
and non-linear measurement error model, respectively. Table S5.11 and S5.12 show the
coverage of the association between visceral adipose tissue and insulin resistance using an
internal validation sample of 10%, 25% or 40% of the main study’s sample size for a linear
and non-linear measurement error model, respectively.

S5.3.4. Standard regression calibration
The results of the application of standard regression calibration for measurement error
correction were as follows. Table S5.13 and S5.14 show the mean squared error of
the association between visceral adipose tissue and insulin resistance using an internal
validation sample of 10%, 25% or 40% of the main study’s sample size for a linear
and non-linear measurement error model, respectively. Table S5.15 and S5.16 show the
percentage bias in the association between visceral adipose tissue and insulin resistance
using an internal validation sample of 10%, 25% or 40% of the main study’s sample size for
a linear and non-linear measurement error model, respectively. Table S5.17 and S5.18 show
the coverage of the association between visceral adipose tissue and insulin resistance using
an internal validation sample of 10%, 25% or 40% of the main study’s sample size for a linear
and non-linear measurement error model, respectively.
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Figure S5.1: Nested loop plot of the mean squared errors in the analysis restricted to the internal validation sample
(panels A and B) and the validation regression analysis (panels C and D) for the three different sampling strategies.
A and C) Linear measurement error model and an internal validation sample of 25% of the main study; and B and
D) Non-linear measurement error model and an internal validation sample of 25% of the main study. Order
from outer to inner loops: Skewness of the residual errors of the gold standard measure (S, 3 levels, increasing);
R-squared of the measurement error model (𝑅2, 4 levels, increasing).
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Figure S5.2: Nested loop plot of the mean squared errors in the analysis using efficient regression calibration
to correct for the measurement error for the three different sampling strategies. A) Linear measurement error
model and an internal validation sample of 40% of the main study; B) Non-linear measurement error model and an
internal validation sample of 40% of themain study; C) Linear measurement error model and an internal validation
sample of 10% of the main study; and D) Non-linear measurement error model and an internal validation sample
of 10% of the main study. Order from outer to inner loops: Skewness of the residual errors of the gold standard
measure (S, 3 levels, increasing); R-squared of the measurement error model (𝑅2, 4 levels, increasing).
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Figure S5.3: Nested loop plot of the mean squared errors in the analysis using efficient regression calibration to
correct for the measurement error for the three different sampling strategies. A) Linear measurement error model
and an internal validation sample of 25% of the main study; and B) Non-linear measurement error model and an
internal validation sample of 25% of the main study. Order from outer to inner loops: Skewness of the residual
errors of the gold standard measure (S, 3 levels, increasing); R-squared of the measurement error model (𝑅2, 4
levels, increasing).
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aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
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Table
S5.6:Percentage

bias
in

the
estim

ated
association

betw
een

visceraladipose
tissue

and
insulin

resistance
in

the
validation

regression
calibration

analysis

Scenario
IV

S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
ness

R
SR

E
R

SR
E

R
SR

E
Yes

0.1
0.9

−0.1
0.0

0.0
0.0

0.0
0.0

0.3
0.3

0.3
1.0

0.2
0.0

−0.4
−0.2

−0.5
−1.0

−0.6
−1.2

−2.2
−1.6

0.4
−0.1

−1.5
−1.2

0.3
−2.5

−1.9
2.2

−3.9
−3.7

0.6
0.0

−2.1
−2.3

0.2
−3.7

−3.1
2.3

−6.2
−6.4

0.8
0.1

−2.2
−2.3

0.3
−3.5

−3.0
1.4

−5.6
−4.9

0 .9
0 .0

− 1. 5
− 1. 6

0 .1
− 2. 3

− 1. 9
0 .6

− 3. 7
− 2. 9

1.5
0.9

0.0
−3.1

−3.4
0.2

−4.6
−4.1

1.0
−6.8

−5.7
3.0

0.9
0.6

−5.5
−6.8

1.3
−8.2

−8.3
4.1

−11.9
−10.6

N
o

0 .1
0 .9

− 0. 1
− 1. 6

0 .1
− 0. 1

− 1. 1
2 .3

0 .7
0 .0

6 .4
1.0

0.2
−0.5

−0.1
−0.3

−1.5
−0.7

−0.9
−3.8

−1.7
−2.7

0.4
−0.6

−1.0
−0.9

−0.9
−1.5

−2.4
−0.2

−2.6
−6.1

0.6
0.5

−1.2
−2.0

0.8
−1.8

−4.4
3.1

−1.4
−6.2

0.8
0.3

−3.2
−2.7

0.7
−3.5

−3.0
2.5

−3.1
−0.4

0.9
0.2

−4.8
−2.1

0.5
−5.4

−1.3
1.8

−6.5
−0.6

1.5
0.9

0.2
−6.9

−4.3
0.7

−8.6
−4.4

2.5
−11.3

−5.6
3.0

0.9
0.7

−11.6
−9.6

1.8
−15.6

−11.6
6.7

−22.1
−17.4

aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
es
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Table
S5.8:M

ean
squared

error
ofthe

estim
ated

association
betw

een
visceraladipose

tissue
and

insulin
resistance

in
the

eff
icient

regression
calibration

analysis

Scenario
IV

S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
M
ean

Squared
Errorb

M
ean

Squared
Errorb

M
ean

Squared
Errorb

ness
R

SR
E

R
SR

E
R

SR
E

Yes
0.1

0.9
0.0012

0.0012
0.0012

0.0013
0.0013

0.0013
0.0014

0.0014
0.0014

1.0
0.2

0.0023
0.0022

0.0022
0.0033

0.0032
0.0032

0.0072
0.0059

0.0060
0.4

0.0020
0.0019

0.0019
0.0026

0.0025
0.0025

0.0049
0.0038

0.0038
0.6

0.0018
0.0016

0.0016
0.0022

0.0019
0.0019

0.0033
0.0026

0.0026
0.8

0.0014
0.0013

0.0012
0.0015

0.0014
0.0014

0.0020
0.0017

0.0016
0 .9

0 .0012
0 .0012

0 .0012
0 .0013

0 .0012
0 .0012

0 .0015
0 .0013

0 .0014
1.5

0.9
0.0012

0.0011
0.0011

0.0013
0.0012

0.0012
0.0015

0.0013
0.0013

3.0
0.9

0.0013
0.0011

0.0011
0.0014

0.0012
0.0012

0.0021
0.0014

0.0013
N
o

0 .1
0 .9

0 .0015
0 .0014

0 .0014
0 .0017

0 .0017
0 .0017

0 .0022
0 .0021

0 .0024
1.0

0.2
0.0023

0.0022
0.0022

0.0035
0.0033

0.0033
0.0082

0.0073
0.0069

0.4
0.0022

0.0021
0.0020

0.0031
0.0029

0.0029
0.0064

0.0053
0.0050

0.6
0.0019

0.0018
0.0018

0.0025
0.0023

0.0023
0.0043

0.0037
0.0034

0.8
0.0017

0.0015
0.0015

0.0020
0.0018

0.0018
0.0030

0.0024
0.0024

0.9
0.0014

0.0013
0.0013

0.0017
0.0015

0.0015
0.0022

0.0018
0.0019

1.5
0.9

0.0015
0.0013

0.0013
0.0017

0.0014
0.0014

0.0023
0.0019

0.0017
3.0

0.9
0.0016

0.0014
0.0013

0.0000
0.0016

0.0015
0.0037

0.0025
0.0020

aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
es
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−0
.6

0.0
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.1
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−1
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0.3

0.7
0.9
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0.1
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.1
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.1
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0.2
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0.3
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0.2
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−0
.8

−0
.5

−1
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−1
.7

−1
.1

−5
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.5
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.0
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0.7
−5

.3
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.6
0.8

0.1
−1
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.6
0.1

−2
.6

−2
.2

1.0
−4

.7
−3

.9
0.9

−0
.1

−1
.1

−1
.1

0.0
−1

.7
−1

.4
0.6

−3
.1

−2
.3

1.5
0.2

−1
.1

−1
.1

−0
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−1
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0.4
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Table
S5.10:

Percentage
bias

in
the

estim
ated

association
betw

een
visceral

adipose
tissue

and
insulin

resistance
in

the
eff

icient
regression

calibration
analysis

for
a

non-linear
m
easurem

ent
error

m
odel

Scenario
IV

S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
ness

R
SR

E
R

SR
E

R
SR

E
N
o

0.1
0.2

−0.9
−0.4

−0.3
−2.0

−1.2
−0.7

−7.9
−4.8

−2.8
0.4

−0.3
−0.3

−0.7
−0.9

−0.6
−1.4

−4.2
−1.9

−3.4
0.6

−0.3
−0.7

−1.2
−0.4

−0.4
−2.5

−2.2
0.3

−3.0
0.8

0.2
−0.1

0.3
0.4

0.6
1.0

0.7
2.7

4.9
0 .9

− 0. 2
− 1. 5

− 0. 1
− 0. 2

− 1. 3
1 .3

0 .3
− 0. 3

4 .5
1.0

0.2
−1.1

−0.4
−0.6

−2.8
−1.4

−1.6
−6.9

−4.2
−4.5

0.4
−1.4

−1.2
−1.2

−2.3
−1.9

−2.9
−5.4

−4.1
−6.8

0.6
0.2

−0.9
−1.7

−0.1
−1.4

−3.8
−0.7

−1.9
−5.9

0.8
0.3

−2.2
−2.1

0.3
−2.6

−2.5
1.0

−3.0
−0.9

0.9
0.3

−3.4
−1.4

0.5
−4.1

−1.2
1.4

−5.4
−0.5

1.5
0.2

−1.3
−0.6

−0.9
−2.3

−1.6
−1.6

−7.3
−4.8

−4.5
0.4

−1.4
−1.5

−1.8
−2.1

−2.5
−3.5

−5.5
−5.0

−9.0
0.6

−0.1
−1.9

−2.6
−0.2

−3.2
−5.5

−0.4
−5.5

−10.0
0.8

−0.1
−4.0

−3.7
0.2

−5.3
−5.1

1.5
−7.3

−5.6
0.9

0.0
−4.9

−3.1
0.4

−6.5
−3.4

1.9
−9.5

−4.3
3.0

0.2
−1.3

−0.8
−0.7

−2.7
−1.6

−1.5
−8.1

−4.6
−5.6

0.4
−0.9

−2.5
−2.7

−1.7
−4.4

−5.0
−4.2

−9.5
−12.8

0.6
−0.2

−4.4
−4.8

−0.1
−7.5

−9.3
1.1

−13.3
−18.0

0.8
0.8

−6.6
−6.4

1.4
−9.8

−9.5
5.3

−15.8
−13.7

0.9
0.6

−8.0
−6.8

1.6
−11.3

−8.6
5.6

−17.6
−12.8

aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
es
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C
overage
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association
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and

insulin
resistance

in
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eff
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regression
calibration

analysis
for

a
non-linear

m
easurem

ent
error

m
odelScenario

IV
S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
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𝑅 2
C
overage

(%)b
C
overage

(%)b
C
overage

(%)b
ness

R
SR

E
R

SR
E

R
SR

E
N
o

0.1
0.2

94.2
93.7

93.4
93.6

93.3
92.7

93.0
92.7

92.9
0.4

93.6
91.8

91.4
93

92.2
91.6

93.2
92.7

90.8
0.6

92.2
91.3

90.0
92.5

91.6
89.8

93.2
92.5

90.7
0.8

91.3
89.4

89.6
92.4

90.5
90.3

93.8
92.6

92.2
0 .9

90 .4
89 .1

88 .7
91 .3

89 .6
89 .1

93 .7
92 .2

92 .3
1.0

0.2
94.3

93.8
92.8

93.6
93.4

93.1
92.0

93.2
92.6

0.4
93.3

92.2
91.7

93.7
91.9

91.1
92.1

91.8
89.9

0.6
92.1

90.7
89.9

92.9
91.1

89.3
93.3

91.5
89.5

0.8
90.3

88.5
88.0

91.8
89.4

89.2
93.0

91.0
90.8

0.9
90.0

88.1
87.7

91.3
88.4

89.1
93.2

90.1
91.0

1.5
0.2

94.1
93.5

93.6
94.3

93.9
93.3

92.4
92.9

92.3
0.4

93.1
91.9

91.5
93.0

91.7
91.2

92.5
91.1

88.8
0.6

92.7
91.4

90.6
93.5

90.9
89.1

93.3
91.1

87.3
0.8

90.6
87.3

87.0
91.4

88.1
87.2

91.9
88.9

88.2
0.9

89.7
86.5

86.9
90.8

87.0
87.7

92.8
85.5

88.9
3.0

0.2
93.5

92.7
92.8

93.7
93.0

92.9
91.8

92.1
92.2

0.4
92.6

91.1
90.9

92.5
91.0

89.8
91.1

88.0
85.1

0.6
91.4

89.3
88.8

91.7
87.4

85.3
90.5

82.1
76.0

0.8
90.1

85.8
86.0

90.8
83.5

83.2
90.2

76.1
79.0

0.9
88.6

82.1
83.5

89.6
78.8

82.1
89.6

69.9
78.9

aInternalvalidation
sam

ple
bFor

varying
sam

pling
strategies

ofthe
internalvalidation

sam
ple,R

:random
,SR

:stratified
random

,E:extrem
es
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Table
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analysis
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0.167
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6.808
0.247
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0.4
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0.009

0.008
0.012
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0.009

0.143
0.014
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0.6

0.005
0.005

0.004
0.005

0.005
0.004

0.011
0.007

0.005
0.8

0.003
0.002

0.002
0.003

0.003
0.003

0.004
0.003

0.004
0 .9
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0 .002
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0 .002
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0 .002
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0 .003
1.0

0.2
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0.019

46.762
0.023
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0.003
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0.003
0.002
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0.003

0.002
0.002

0.005
0.003

0.003
0.9

0.002
0.002

0.002
0.002

0.002
0.002

0.003
0.002

0.002
3.0

0.2
0.036

0.022
0.020

0.402
0.029

0.022
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0.601
0.085

0.4
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0.007
0.007

0.019
0.008

0.007
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0.004

0.007
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aInternalvalidation
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Table
S5.16:

Percentage
bias

in
the

estim
ated

association
betw

een
visceral

adipose
tissue
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in
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for

a
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m
easurem

ent
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m
odel

Scenario
IV

S
40%

ofM
ain

Studya
IV

S
25%

ofM
ain

Studya
IV

S
10%

ofM
ain

Studya
Linear

Skew
-

𝑅 2
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
Percentage

B
ias

(%)b
ness

R
SR

E
R

SR
E

R
SR

E
N
o

0.1
0.2

5.6
1.9

0.0
16.4

4.1
1.3

45.8
16.7

7.1
0.4

3.0
1.2

−0.4
5.3

2.1
−0.9

16.4
6.7

−0.4
0.6

0.3
−0.2

−2.1
1.3

1.0
−3.3

6.5
5.2

−1.1
0.8

0.9
0.3

0.5
1.5

1.9
2.2

3.2
5.2

8.9
0 .9

0 .1
− 2. 0

0 .4
0 .2

− 1. 2
2 .9

1 .1
0 .3

7 .3
1.0

0.2
7.9

0.7
−0.3

−29.6
2.3

0.6
2.3

−5.5
−4.9

0.4
1.0

−2.8
−4.2

3.4
−2.9

−5.8
21.2

0.7
−7.9

0.6
1.9

−2.4
−3.9

2.9
−2.8

−6.8
9.0

−0.6
−7.3

0.8
0.8

−4.7
−4.0

1.5
−4.5

−4.0
3.7

−3.2
−0.2

0.9
0.6

−6.0
−2.7

0.8
−6.3

−1.5
2.1

−6.9
−0.5

1.5
0.2

9.8
0.3

−0.5
14.3

1.9
0.4

−79.8
39.5

4.5
0.4

1.0
−4.4

−5.4
3.7

−5.1
−7.8

−16.0
−3.0

−11.3
0.6

1.2
−5.7

−7.2
2.4

−7.1
−10.9

9.5
−6.9

−13.5
0.8

0.2
−8.3

−7.5
1.2

−9.1
−8.5

4.4
−9.5

−7.3
0.9

0.5
−8.8

−5.6
0.9

−10.0
−5.3

2.9
−11.9

−6.1
3.0

0.2
8.9

−1.5
−2.9

26.9
−0.5

−2.9
115.6

1.6
−1.5

0.4
3.3

−9.1
−9.2

8.8
−12.6

−13.4
29.2

−13.6
−22.0

0.6
2.3

−13.1
−13.9

5.1
−17.6

−20.0
20.1

−21.1
−28.0

0.8
1.9

−14.8
−14.1

3.7
−18.6

−17.5
12.3

−22.8
−21.2

0.9
1.0

−14.9
−12.7

2.3
−18.5

−14.1
7.6

−23.7
−19.0

aInternalvalidation
sam

ple
bFor

varying
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pling
strategies

ofthe
internalvalidation
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ple,R

:random
,SR

:stratified
random
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.8
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.0
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.0
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.9

96
.7
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.0

0.4
95
.9
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.9
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.8
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.4

95
.9
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.9
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.6
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.0
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.7

0.6
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.0
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.0
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25%
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C
overage

(%)b
C
overage

(%)b
C
overage

(%)b
ness

R
SR

E
R

SR
E

R
SR

E
N
o

0.1
0.2

97.3
97.2

97.2
96.9

97.3
97.3

94.7
96.6

97.0
0.4

97.2
96.9

96.6
97.4

97.2
96.9

95.6
97.1

96.5
0.6

96.7
96.3

96.1
96.6

96.3
96.0

95.4
96.8

96.3
0.8

95.8
95.9

96.1
95.9

96.1
96.1

96.4
96.4

96.6
0 .9

95 .6
95 .1

95 .5
95 .9

95 .1
95 .5

96 .1
96 .0

96 .3
1.0

0.2
97.4

97.3
97.2

97.0
97.3

97.1
94.8

96.7
96.7

0.4
96.4

96.3
96.1

96.5
96.2

95.7
94.3

95.4
94.3

0.6
96.5

96.2
96.0

96.5
95.9

95.0
95.7

95.4
94.1

0.8
95.7

94.8
95.1

95.5
95.2

94.9
95.3

94.4
95.5

0.9
95.6

94.1
95.1

95.7
94.2

95.5
95.9

92.9
95.5

1.5
0.2

97.4
97.3

97.5
96.4

97.0
97.3

94.4
95.9

96.4
0.4

96.5
96.2

96.2
96.0

95.9
95.5

94.1
94.0

92.9
0.6

96.4
95.7

95.4
96.5

95.3
94.2

95.0
93.9

91.5
0.8

94.9
93.6

93.7
94.9

92.7
93.4

94.2
91.1

93.2
0.9

95.2
92.5

94.6
95.1

91.5
94.5

94.8
88.4

93.1
3.0

0.2
97.2

97.2
97.1

96.6
96.6

97.0
93.9

94.9
95.4

0.4
96.5

95.1
95.7

95.9
93.6

94.1
92.9

88.9
86.1

0.6
95.2

92.9
92.5

94.5
88.9

87.4
92.8

80.5
75.1

0.8
94.6

89.2
90.1

93.6
84.1

85.9
91.6

73.5
79.5

0.9
94.1

86.1
89.3

93.3
80.0

87.1
90.4

66.1
78.7
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S8
Supplementary material Chapter 8

These are the supplementary materials accompanying Chapter 8. The supplementary
materials are structured as follows. In section S8.1, the bias formulas of a conditional model
and marginal structural model estimated using inverse probability weighting are derived.
Section S8.2 illustrates the application of the bias formulas in a quantitative bias analysis.

S8.1. Quantification of bias due to classification error in a
confounding variable

S8.1.1. Conditional model
Under the assumptions and notation described in section 8.2 of the main chapter and by
the law of total expectation, the expected value of the outcome 𝑌 given the covariates 𝐴
and 𝐿∗ is,

E[𝑌 |𝐴, 𝐿∗] = E𝐿|𝐴,𝐿∗[E[𝑌 |𝐴, 𝐿∗, 𝐿]] = E𝐿|𝐴,𝐿∗[𝛼 + 𝛽𝐴 + 𝛾𝐿]
= 𝛼 + 𝛽𝐴 + 𝛾E[𝐿|𝐴, 𝐿∗]
= 𝛼 + 𝛽𝐴 + 𝛾𝜙𝑎𝐿∗
= {𝛼 + 𝛾𝜙00} + {𝛽 + 𝛾(𝜙10 − 𝜙00)}𝐴
+ {𝛾(𝜙01 − 𝜙00)}𝐿∗
+ 𝛾(𝜙11 − 𝜙10 − 𝜙01 + 𝜙00)𝐴𝐿∗,

which relies on the assumption that 𝐿∗ is non-differentially misclassified with respect to
the outcome (i.e., 𝐿∗ ⊧𝑌 |𝐿) and includes an interaction between 𝐴 and 𝐿∗. Further, 𝜙𝑎𝑙∗ is
the probability that confounding variable 𝐿 is one, given that treatment 𝐴 is 𝑎 and that
misclassified confounding variable 𝐿∗ is 𝑙∗, or,

𝜙𝑎𝑙∗ = 𝑃(𝐿 = 1|𝐴 = 𝑎, 𝐿∗ = 𝑙∗)
= 𝑃(𝐴|𝐿 = 1, 𝐿∗ = 𝑙∗)𝑃(𝐿 = 1|𝐿∗ = 𝑙∗)

𝑃(𝐴 = 𝑎|𝐿∗ = 𝑙∗)

233
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= 𝑃(𝐴 = 𝑎|𝐿 = 1)𝑃(𝐿 = 1|𝐿∗ = 𝑙∗)
𝑃(𝐴 = 𝑎|𝐿∗ = 𝑙∗)

=
𝑃(𝐴 = 𝑎|𝐿 = 1) 𝑃(𝐿

∗=𝑙∗ |𝐿=1)𝑃(𝐿=1)
𝑃(𝐿∗=𝑙∗)

𝑃(𝐴 = 𝑎|𝐿∗ = 𝑙∗)
= 𝑃(𝐴 = 𝑎|𝐿 = 1)𝑃(𝐿∗ = 𝑙∗|𝐿 = 1)𝑃(𝐿 = 1)

𝑃(𝐴 = 𝑎|𝐿∗ = 𝑙∗)𝑃(𝐿∗ = 𝑙∗)

= 𝜆(1 − 𝜋1)(1−𝑎)𝜋𝑎1 (1 − 𝑝1)(1−𝑙∗)𝑝𝑙
∗
1

(1 − 𝜋 ∗𝑙∗)(1−𝑎)𝜋 ∗𝑙∗𝑎(1 − ℓ)(1−𝑙∗)ℓ𝑙∗ .

Here ℓ = 𝑃(𝐿∗ = 𝑙∗) = 𝑝0(1−𝜆)+𝑝1𝜆 and 𝜋 ∗𝑙∗ is the probability of receiving treatment 𝐴 given
that the misclassified confounding variable 𝐿∗ = 𝑙∗. Note that the above is only defined if
0 < ℓ < 1 and 0 < 𝜋 ∗𝑙∗ < 1. To satisfy that 0 < ℓ < 1, we use our assumption that 0 < 𝜆 < 1,
and additionally, we assume that if 𝑝0 = 1 then 𝑝1 ≠ 1, and if 𝑝0 = 0 then 𝑝1 ≠ 0 (and vice
versa). Under the assumption that 0 < ℓ < 1, it follows that,

𝜋 ∗𝑙∗ = 𝑃(𝐴 = 1|𝐿∗ = 𝑙∗)
= Σ𝑙𝑃(𝐴 = 1|𝐿∗ = 𝑙∗, 𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 𝑙∗)
= Σ𝑙𝑃(𝐴 = 1|𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 𝑙∗)
= Σ𝑙𝑃(𝐴 = 1|𝐿 = 𝑙)𝑃(𝐿

∗ = 𝑙∗|𝐿 = 𝑙)𝑃(𝐿 = 𝑙)
𝑃(𝐿∗ = 𝑙∗)

= Σ𝑙𝜋𝑙
(1 − 𝑝𝑙)(1−𝑙∗)𝑝𝑙

∗
𝑙 (1 − 𝜆)1−𝑙𝜆𝑙

(1 − ℓ)1−𝑙∗ℓ𝑙∗ ,

we find that 0 < 𝜋 ∗𝑙∗ < 1, if, again, 0 < 𝜆 < 1, and if 𝑝0 = 1 then 𝑝1 ≠ 1, and if 𝑝0 = 0 then
𝑝1 ≠ 0 (and vice versa) and 0 < 𝜋𝑙 < 1 (positivity assumption).

The bias in the regression based estimator of the effect of 𝐴 is 𝛾(𝜙10 − 𝜙00) if the
interaction between 𝐴 and 𝐿∗ is included in the model. However, in this model, the
coefficient for 𝐴 now represents the treatment effect given that 𝐿∗ is null. Typically, only
main effects of 𝐴 and 𝐿∗ are included in a regression model of 𝑌 conditional on 𝐴 and 𝐿∗:

E𝐴𝐿∗ |𝐴,𝐿∗ {E[𝑌 |𝐴, 𝐿∗]} = {𝛼 + 𝛾𝜙00} + {𝛽 + 𝛾(𝜙10 − 𝜙00)}𝐴 + {𝛾(𝜙01 − 𝜙00)}𝐿∗
+ 𝛾(𝜙11 − 𝜙10 − 𝜙01 + 𝜙00)E[𝐴𝐿∗|𝐴, 𝐿]
= {𝛼 + 𝛾𝜙00 + 𝛿𝑢0} + {𝛽 + 𝛾(𝜙10 − 𝜙00) + 𝛿𝑢𝐴}𝐴
+ {𝛾(𝜙01 − 𝜙00) + 𝛿𝑢𝐿∗ }𝐿∗,

where 𝑢0, 𝑢𝐴, and 𝑢𝐿∗ are the coefficients of the linear model E[𝐴𝐿∗|𝐴, 𝐿∗] = 𝑢0 +𝑢𝐴𝐴+𝑢𝐿∗𝐿∗
and 𝛿 = 𝛾(𝜙11 − 𝜙10 − 𝜙01 + 𝜙00). Here,

𝑢𝐴 = Var(𝐿∗)Cov(𝐴, 𝐴𝐿∗) − Cov(𝐴, 𝐿∗)Cov(𝐿∗, 𝐴𝐿∗)
Var(𝐿∗)Var(𝐴) − Cov(𝐴, 𝐿∗)2 ,

𝑢𝐿∗ = Var(𝐴)Cov(𝐿∗, 𝐴𝐿∗) − Cov(𝐴, 𝐿∗)Cov(𝐴, 𝐴𝐿∗)
Var(𝐿∗)Var(𝐴) − Cov(𝐴, 𝐿∗)2 ,

𝑢0 = 𝐴𝐿∗ − 𝑢𝐴𝐴 − 𝑢𝐿∗𝐿∗,



S8

235

where 𝐴𝐿∗, 𝐴, and 𝐿∗ denote the mean of 𝐴 times 𝐿∗, 𝐴, and 𝐿∗, respectively.
If we want to express 𝑢𝐴 and 𝑢𝐿∗ in terms of 𝜆, 𝜋0, 𝜋1, 𝑝0, and 𝑝1, we can write a linear

model for 𝐴 conditional on 𝐿∗ denoting that 𝑃(𝐴 = 1|𝐿∗ = 𝑙∗) = 𝜋 ∗𝑙∗ and using standard
regression theory to get an expression for Cov(𝐴, 𝐿∗):

E[𝐴|𝐿∗] = 𝜋 ∗0 + (𝜋 ∗1 − 𝜋 ∗0)𝐿∗, 𝜋 ∗1 − 𝜋 ∗0 =
Cov(𝐴, 𝐿∗)
Var(𝐿∗) ,

thus Cov(𝐴, 𝐿∗) = (𝜋 ∗1 − 𝜋 ∗0)Var(𝐿∗),
where Var(𝐿∗) = ℓ(1 − ℓ). Since E[𝐴𝐿∗|𝐿∗ = 0] = 0 and E[𝐴𝐿∗|𝐿∗ = 1] = E[𝐴|𝐿∗ = 1] = 𝜋 ∗1, it
follows,

E[𝐴𝐿∗|𝐿∗] = 𝜋 ∗1𝐿∗, 𝜋 ∗1 =
Cov(𝐴𝐿∗, 𝐿∗)

Var(𝐿∗) , thus Cov(𝐴𝐿∗, 𝐿∗) = 𝜋 ∗1Var(𝐿∗).

Equivalently, since E[𝐴𝐿∗|𝐴 = 0] = 0 and E[𝐴𝐿∗|𝐴 = 1] = E[𝐿∗|𝐴 = 1], it follows that,

E[𝐴𝐿∗|𝐴] = E[𝐿∗|𝐴 = 1]𝐴 = 𝑃(𝐴 = 1|𝐿∗ = 1)𝑃(𝐿∗ = 1)
𝑃(𝐴 = 1) 𝐴,

E[𝐿∗|𝐴 = 1] = 𝜋 ∗1ℓ
𝜔 , 𝜋 ∗1ℓ

𝑎 = Cov(𝐴𝐿∗, 𝐴)
Var(𝐴) , thus Cov(𝐴𝐿∗, 𝐴) = 𝜋 ∗1ℓ

𝜔 Var(𝐴).

Here, Var(𝐴) = 𝜔(1−𝜔), and Var(𝐿∗) = ℓ(1−ℓ). Denoting that 𝜔 = 𝑃(𝐴 = 1) = 𝜋 ∗0(1−ℓ)+𝜋 ∗1ℓ.
Combining the different expressions gives,

𝑢𝐴 = 𝜋 ∗1ℓ/𝜔Var(𝐴)Var(𝐿∗) − 𝜋 ∗1(𝜋 ∗1 − 𝜋 ∗0)Var(𝐿∗)2
Var(𝐴)Var(𝐿∗) − (𝜋1 − 𝜋0)2Var(𝐿∗)2

= 𝜋 ∗1ℓ/𝜔Var(𝐴) − 𝜋 ∗1(𝜋 ∗1 − 𝜋 ∗0)Var(𝐿∗)
Var(𝐴) − (𝜋1 − 𝜋0)2Var(𝐿∗)

= ℓ × 𝜋 ∗1(1 − 𝜔) − 𝜋 ∗1(𝜋 ∗1 − 𝜋 ∗0)(1 − ℓ)
𝜔(1 − 𝜔) − (𝜋 ∗1 − 𝜋 ∗0)2ℓ(1 − ℓ)

= ℓ × 𝜋 ∗1 − 𝜋 ∗21
(𝜋 ∗1 − 𝜋 ∗21 )ℓ + (𝜋 ∗0 − 𝜋 ∗20 )(1 − ℓ) ,

𝑢𝐿∗ = 𝜋 ∗1Var(𝐴)Var(𝐿∗) − 𝜋 ∗1ℓ/𝜔(𝜋 ∗1 − 𝜋 ∗0)Var(𝐴)Var(𝐿∗)
Var(𝐿∗)Var(𝐴) − ((𝜋 ∗1 − 𝜋 ∗0)Var(𝐿∗))2

= 𝜋 ∗1𝜔 − 𝜋 ∗1ℓ(𝜋 ∗1 − 𝜋 ∗0)
𝜔 − (𝜋 ∗1 − 𝜋 ∗0)2Var(𝐿∗)/(1 − 𝜔)

= 𝜋 ∗1𝜋 ∗0(1 − 𝜋 ∗21 )ℓ + 𝜋 ∗1𝜋 ∗0(1 − 𝜋 ∗20 )(1 − ℓ)
(𝜋 ∗1 − 𝜋 ∗21 )ℓ + (𝜋 ∗0 − 𝜋 ∗20 )(1 − ℓ) ,

𝑢0 = 𝐴𝐿∗ − 𝑢𝐴𝐴 − 𝑢𝐿∗𝐿∗.
The intercept, the coefficient for 𝐴 and the coefficient for 𝐿∗ of the conditional regression
model for 𝑌 given 𝐴 and 𝐿∗ which includes only main effects of 𝐴 and 𝐿∗ are, respectively:

𝛼 + 𝛾𝜙00 + 𝛿𝑢0,
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𝛽 + 𝛾(𝜙10 − 𝜙00)(1 − ℓ × { 𝜋 ∗1 − 𝜋 ∗21
(𝜋 ∗1 − 𝜋 ∗21 )ℓ + (𝜋 ∗0 − 𝜋 ∗20 )(1 − ℓ) })

+𝛾(𝜙11 − 𝜙01)(ℓ × { 𝜋 ∗1 − 𝜋 ∗21
(𝜋 ∗1 − 𝜋 ∗21 )ℓ + (𝜋 ∗0 − 𝜋 ∗20 )(1 − ℓ) }),

and 𝛾(𝜙01 − 𝜙00) + 𝛿𝑢𝐿∗ .

S8.1.2.Marginal structural model estimated using inverse probability
weighting

Under the assumptions described in section 8.2 of the main chapter, an MSM-IPW under
model (8.2) is estimated by fitting a linear regression model for 𝐴 on 𝑌 , where each
subject 𝑖 is weighted by 1 over the probability of that subject’s observed exposure given
the misclassified confounding variable 𝐿∗. Hence, an MSM-IPW proceeds by solving the
weighted regression model,

𝑛
∑
𝑖=1

1
𝑃(𝐴𝑖 |𝐿∗𝑖)

(𝑌𝑖 − 𝛼msm − 𝛽𝐴𝑖) = 0 and
𝑛
∑
𝑖=1

𝐴𝑖
𝑃(𝐴𝑖 |𝐿∗𝑖)

(𝑌𝑖 − 𝛼msm − 𝛽𝐴𝑖) = 0.

Solving these equations for 𝛼msm and 𝛽 result in the following estimators:

�̂�msm = 𝑌𝑤∗ − ̂𝛽msm𝐴𝑤∗ and ̂𝛽 =
∑𝑛

𝑖=1
1

𝑃(𝐴𝑖 |𝐿𝑖)
(𝑌𝑖 − 𝑌𝑤∗)(𝐴𝑖 − 𝐴𝑤∗)

∑𝑛
𝑖=1

1
𝑃(𝐴𝑖 |𝐿𝑖)

(𝐴𝑖 − 𝐴𝑤∗)2
,

where,

𝑌𝑤∗ = ∑𝑛
𝑖=1 𝑌𝑖/𝑃(𝐴𝑖 |𝐿∗𝑖)

∑𝑛
𝑖=1 1/𝑃(𝐴𝑖 |𝐿∗𝑖)

and 𝐴𝑤∗ = ∑𝑛
𝑖=1 𝐴𝑖/𝑃(𝐴𝑖 |𝐿∗𝑖)

∑𝑛
𝑖=1 1/𝑃(𝐴𝑖 |𝐿∗𝑖)

.

Let 𝑛∗𝑎𝑙 be the number of subjects with 𝐴 = 𝑎 and 𝐿∗ = 𝑙∗ and 𝑛𝑎𝑙 be the number of subjects
with 𝐴 = 𝑎 and 𝐿 = 𝑙. In a population of 𝑛 subjects,

𝑛∗00 = 𝑛𝑃(𝐴 = 0, 𝐿∗ = 0) = 𝑛𝑃(𝐴 = 0|𝐿∗ = 0)𝑃(𝐿∗ = 0)

= 𝑛
𝑙
∑𝑃(𝐴 = 0|𝐿 = 𝑙, 𝐿∗ = 0)𝑃(𝐿 = 𝑙|𝐿∗ = 0)𝑃(𝐿∗ = 0)

= 𝑛
𝑙
∑𝑃(𝐴 = 0|𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)𝑃(𝐿∗ = 0)

= 𝑛
𝑙
∑𝑃(𝐴 = 0|𝐿 = 𝑙)𝑃(𝐿 = 𝑙)𝑃(𝐿∗ = 0|𝐿 = 𝑙)

= 𝑛00(1 − 𝑝0) + 𝑛01(1 − 𝑝1),
which relies on the assumption that 𝐿∗ is non-differentially misclassified with respect tot
the exposure (i.e., 𝐿∗ ⊧𝐴|𝐿). Equivalently,

𝑛∗01 = 𝑛00𝑝0 + 𝑛01𝑝1, 𝑛∗10 = 𝑛10(1 − 𝑝0) + 𝑛11(1 − 𝑝1),
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and 𝑛∗11 = 𝑛10𝑝0 + 𝑛11𝑝1.
Hence,

𝑛
∑
𝑖=1

1/𝑃(𝐴𝑖 |𝐿∗𝑖) =
𝑛
∑
𝑖=1

1
∑𝑙[𝑃(𝐴𝑖 |𝐿∗𝑖 , 𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗𝑖)]

=
𝑛
∑
𝑖=1

1
∑𝑙[𝑃(𝐴𝑖 |𝐿 = 𝑙)𝑃(𝐿 = 𝑙|𝐿∗𝑖)]

=
𝑛∗00
∑ 1

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗01
∑ 1

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

+
𝑛∗10
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗11
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)] .

Here,

𝑛∗00
∑ 1

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)] =
𝑛00(1 − 𝑝0) + 𝑛01(1 − 𝑝1)

(1 − 𝜋0)𝑃(𝐿 = 0|𝐿∗ = 0) + (1 − 𝜋1)𝑃(𝐿 = 1|𝐿∗ = 0) =
𝑛00(1 − 𝑝0) + 𝑛01(1 − 𝑝1)

(1 − 𝜋0) 𝑃(𝐿
∗=0|𝐿=0)(1−𝜆)
𝑃(𝐿∗=0) + (1 − 𝜋1) 𝑃(𝐿

∗=0|𝐿=1)𝜆
𝑃(𝐿∗=0)

=

𝑛00(1 − 𝑝0) + 𝑛01(1 − 𝑝1)
𝑛00

𝑛𝑃(𝐿∗=0) (1 − 𝑝0) + 𝑛01
𝑛𝑃(𝐿∗=0) (1 − 𝑝1)

=

1
1/(𝑛𝑃(𝐿∗ = 0)) =

𝑛𝑃(𝐿∗ = 0) = 𝑛(1 − ℓ),
𝑛∗01
∑ 1

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)] =
𝑛𝑃(𝐿∗ = 1) = 𝑛ℓ,

𝑛∗10
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)] =
𝑛𝑃(𝐿∗ = 0) = 𝑛(1 − ℓ),

𝑛∗11
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)] =
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𝑛𝑃(𝐿∗ = 1) = 𝑛ℓ.
From these expressions it follows that,

𝑛
∑
𝑖=1

1/𝑃(𝐴𝑖 |𝐿∗𝑖) = 2𝑛(1 − ℓ) + 2𝑛ℓ = 2𝑛.

Further,

𝑛
∑
𝑖=1

E[𝑌𝑖]/𝑃(𝐴𝑖 |𝐿∗𝑖) =
𝑛∗00
∑ E[𝑌𝑖]

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗01
∑ E[𝑌𝑖]

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

+
𝑛∗10
∑ E[𝑌𝑖]

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗11
∑ E[𝑌𝑖]

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

=
𝑛∗00
∑ 𝛼 + 𝛾𝑃(𝐿 = 1|𝐴 = 0, 𝐿∗ = 0)

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗01
∑ 𝛼 + 𝛾𝑃(𝐿 = 1|𝐴 = 0, 𝐿∗ = 1)

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

+
𝑛∗10
∑ 𝛼 + 𝛽 + 𝛾𝑃(𝐿 = 1|𝐴 = 1, 𝐿∗ = 0)

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗11
∑ 𝛼 + 𝛽 + 𝛾𝑃(𝐿 = 1|𝐴 = 1, 𝐿∗ = 1)

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)]
= 𝑛𝛼(1 − ℓ) + 𝑛𝛾(1 − ℓ)𝜙00 + 𝑛𝛼ℓ + 𝑛𝛾𝜙01
+ 𝑛(𝛼 + 𝛽)(1 − ℓ) + 𝑛𝛾(1 − ℓ)𝜙10
+ 𝑛(𝛼 + 𝛽)ℓ + 𝑛𝛾𝜙11
= 2𝑛𝛼 + 𝑛𝛽 + 𝑛𝛾(1 − ℓ)(𝜙00 + 𝜙10) + 𝑛𝛾ℓ(𝜙01 + 𝜙11),

and,

𝑛
∑
𝑖=1

𝐴𝑖/𝑃(𝐴𝑖 |𝐿𝑖) =
𝑛∗10
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)] +
𝑛∗11
∑ 1

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)]
= 𝑛(1 − 𝑝0)(1 − 𝜆) + 𝑛(1 − 𝑝1)𝜆 + 𝑛𝑝0(1 − 𝜆) + 𝑛𝑝1𝜆 = 𝑛.

Combining these expressions leads to,

E[𝑌𝑤∗] = 𝛼 + 𝛽/2 + 𝛾/2(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/2ℓ(𝜙01 + 𝜙11)
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and 𝐴𝑤∗ = 𝑛/2𝑛 = 1/2, and

𝑛
∑
𝑖=1

(𝐴𝑖 − 𝐴𝑤∗)2
𝑃(𝐴𝑖 |𝐿∗𝑖)

=
𝑛∗00
∑ (−1/2)2

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗01
∑ (−1/2)2

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

+
𝑛∗10
∑ (1 − 1/2)2

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)]

+
𝑛∗11
∑ (1 − 1/2)2

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 1)]

= 1/4 ×
𝑛
∑
𝑖=1

1/𝑃(𝐴𝑖 |𝐿∗𝑖) = 𝑛/2.

Further,

𝑛
∑
𝑖=1

E[(𝑌𝑖 − 𝑌𝑤∗)](𝐴𝑖 − 𝐴�̃�)
𝑃(𝐴𝑖 |𝐿∗𝑖)

=

𝑛∗00
∑ 𝛽/4 − 𝛾/2𝜙00 + 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/4ℓ(𝜙01 + 𝜙11)

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 0)] +
𝑛∗01
∑ 𝛽/4 − 𝛾/2𝜙01 + 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/4ℓ(𝜙01 + 𝜙11)

∑𝑙[(1 − 𝜋𝑙)𝑃(𝐿 = 𝑙|𝐿∗ = 1)] +
𝑛∗10
∑ 𝛽/4 + 𝛾/2𝜙10 − 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) − 𝛾/4ℓ(𝜙01 + 𝜙11)

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)] +
𝑛∗11
∑ 𝛽/4 + 𝛾/2𝜙11 − 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) − 𝛾/4ℓ(𝜙01 + 𝜙11)

∑𝑙[𝜋𝑙𝑃(𝐿 = 𝑙|𝐿∗ = 0)] =
𝑛(1 − ℓ)(𝛽/4 − 𝛾/2𝜙00 + 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/4ℓ(𝜙01 + 𝜙11)) +

𝑛ℓ(𝛽/4 − 𝛾/2𝜙01 + 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) + 𝛾/4ℓ(𝜙01 + 𝜙11)) +
𝑛(1 − ℓ)(𝛽/4 + 𝛾/2𝜙10 − 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) − 𝛾/4ℓ(𝜙01 + 𝜙11)) +

𝑛ℓ(𝛽/4 + 𝛾/2𝜙11 − 𝛾/4(1 − ℓ)(𝜙00 + 𝜙10) − 𝛾/4ℓ(𝜙01 + 𝜙11)) =
𝑛/2(𝛽(1 − ℓ) + 𝛽ℓ − 𝛾(1 − ℓ)𝜙00 − 𝛾ℓ𝜙01 + 𝛾(1 − ℓ)𝜙10 + 𝛾ℓ𝜙11) =

𝑛/2(𝛽 + 𝛾(1 − ℓ)(𝜙10 − 𝜙00) + 𝛾ℓ(𝜙11 − 𝜙01).
The above mentioned leads to the following expression for the expected estimated value of
the effect of 𝐴, based on the MSM-IPW,

E[ ̂𝛽] = 𝛽 + 𝛾(𝜙10 − 𝜙00)(1 − ℓ) + 𝛾(𝜙11 − 𝜙01)ℓ and

E[�̂�msm] = 𝛼 + 𝛾/2 × [2(1 − ℓ)𝜙00 + 2ℓ𝜙01)] = 𝛼 + 𝛾𝜙00(1 − ℓ) + 𝛾𝜙01ℓ.
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S8.2. Illustration: quantitative bias analysis
Using an example study of blood pressure lowering therapy, we illustrate how the bias
expressions in section 8.3 of the main chapter can be used to perform a quantitative bias
analysis for misclassification of a confounding variable. For our illustration we use data of
the National Health And Nutritional Examination Survey (NHANES) [1, 2]. Specifically, we
study the average treatment effect of diuretic use (𝐴 = 1) in comparison to beta blocker
use (𝐴 = 0) on systolic blood pressure (𝑌 ) using two approaches: by inverse weighting with
the propensity for diuretic or beta blocker use given self-reported categorical body mass
index (BMI) (𝐿∗), and using a conditional linear regression with adjustment for self-reported
categorical BMI. This supplement comprises background material that complements the
motivating example in the main chapter. Additionally, equations are derived to inform the
quantitative bias analysis.

NHANES. The NHANES survey consists of questionnaires, followed by a standardized
health examination in specially equipped mobile examination centers. In the 2011-2014
sample 19,151 participants were physically examined. Of the 19,151 physically examined
people, 12,185 participants aged over 16 were asked to fill out a questionnaire, including
questions on self-reported weight and height, used to calculate self-reported BMI. For this
illustration, we used complete data on 585 users of diuretics and 824 users of beta blockers
(excluding non-users and people using both).

Parameters estimated in NHANES. In the NHANES data, it was found that the
prevalence of self-reported overweight/obese was 0.77 (ℓ), the probability of receiving
treatment given that one self-reports to be underweight/normal weight is 0.32 (𝜋 ∗0), the
probability of receiving treatment given that one self-reports to be overweight/obese is 0.44
(𝜋 ∗1). Finally, the association between 𝐿∗ and 𝑌 , given that 𝐴 = 0 estimated in a conditional
regression model including an interaction between A and L* was -6.63.

BMI measured by trained technicians. In the NHANES, anthropometric measures
were also taken by trained health technicians. By using these measures to calculate BMI
category, we found that the specificity of self-reported BMI category was 0.94 (𝑝1), and the
sensitivity was 0.92 (𝑝0 = 0.08). The average treatment effect (95 % CI) of diuretics use in
comparison to beta blocker use on mean blood pressure was -3.59 (-5.84; -1.35) estimated
using MSM-IPW (by inverse weighting with the propensity for diuretic or beta blocker use
given categorical BMI). Given that a subject is not overweight/obese, the fitted weights
were 1.48 and 3.09 for beta blocker and diuretics use, respectively. Given that a subject
is overweight/obese, the fitted weights were 1.77 and 2.30, respectively. In comparison, if
self-reported categorical BMI was used, the fitted weights slightly differed: 1.46, 3.17, 1.79
and 2.26, respectively. Consequently, estimates of the average treatment effect differed,
depending on the BMI measure that was used to calculate the inverse probability weights
(-3.59 using categorical BMI versus -3.52 using categorical self-reported BMI (Table 8.3, main
chapter)).

Performing a quantitative bias analysis. To inform a quantitative bias analysis, one
needs to specify the bias parameters for sensitivity (𝑝1) and specificity (1−𝑝0) using external
validation data, internal validation data, or an educated guess. From the data, one can
estimate the prevalence of misclassified confounding variable 𝐿∗ (i.e., ℓ), the probability of
receiving treatment given that 𝐿∗ is null (i.e., 𝜋 ∗0) and the probability of receiving treatment
given that 𝐿∗ is one (i.e., 𝜋 ∗1). We calculate the probability of receiving treatment given that
𝐿 is null or one (i..e, 𝜋0, and 𝜋1, respectively) using the data and the assumed values of 𝑝0
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and 𝑝1. Since,

𝜋 ∗0 =
𝜋0(1 − 𝑝0)(1 − 𝜆) + 𝜋1(1 − 𝑝1)𝜆

(1 − ℓ) , and 𝜋 ∗1 =
𝜋0𝑝0(1 − 𝜆) + 𝜋1𝑝1𝜆

ℓ ,

it follows that if 𝑝0 = 1, 𝜋1 = 𝜋 ∗0 and if 𝑝1 = 0, 𝜋0 = 𝜋 ∗1 (using that 0 < ℓ < 1, as used in S8.1
section S8.1.1). Further, if 𝑝0 = 1 and 0 < 𝑝1 < 1, we obtain,

𝜋1 = 𝜋 ∗0, and 𝜋0 =
𝜋 ∗0𝑝1𝜆 − 𝜋 ∗1ℓ
(1 − 𝜆) .

Additionally, if 𝑝1 = 0 and 0 < 𝑝0 < 1, we obtain

𝜋0 = 𝜋 ∗1, and 𝜋1 =
𝜋 ∗0(1 − ℓ) − 𝜋 ∗1(1 − 𝑝0)(1 − 𝜆)

𝜆 .

If we assume that 𝑝0 ≠ 1 and 𝑝1 ≠ 0 and use our assumption that 0 < 𝜆 < 1, it follows that,

𝜋0 =
𝜋 ∗0(1 − ℓ) − 𝜋1(1 − 𝑝1)𝜆

(1 − 𝑝0)(1 − 𝜆) , 𝜋1 =
𝜋 ∗1ℓ − 𝜋0𝑝0(1 − 𝜆)

𝑝1𝜆
. (S8.1)

By rewriting the expression for 𝜋1 using the expression for 𝜋0, it follows that,

𝜋1 = 𝜋 ∗1ℓ − 𝜋0𝑝0(1 − 𝜆)
𝑝1𝜆

=
𝜋 ∗1ℓ − 𝜋 ∗0(1−ℓ)−𝜋1(1−𝑝1)𝜆

(1−𝑝0)(1−𝜆)
𝑝0(1 − 𝜆)

𝑝1𝜆

=
𝜋 ∗1ℓ − (𝜋 ∗0(1 − ℓ) − 𝜋1(1 − 𝑝1)𝜆) 𝑝0

(1−𝑝0)
𝑝1𝜆

=
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
+ (1−𝑝1)𝑝0

(1−𝑝0)
𝜆𝜋1

𝑝1𝜆

=
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

+ (1 − 𝑝1)𝑝0
(1 − 𝑝0)𝑝1

𝜋1

=
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

+ (1 − 𝑝1)𝑝0
(1 − 𝑝0)𝑝1

𝜋1.

Consequently,

(1 − (1 − 𝑝1)𝑝0
(1 − 𝑝0)𝑝1

)𝜋1 =
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

,

𝜋1 =
𝜋 ∗1ℓ−𝜋 ∗0(1−ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

(1−𝑝0)𝑝1−(1−𝑝1)𝑝0
(1−𝑝0)𝑝1
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=
𝜋 ∗1ℓ − 𝜋 ∗0(1 − ℓ) 𝑝0

(1−𝑝0)
𝑝1𝜆

× (1 − 𝑝0)𝑝1
(1 − 𝑝0)𝑝1 − (1 − 𝑝1)𝑝0

. (S8.2)

From expression (S8.2) we now obtain a value for 𝜋1, which we use to obtain a value for 𝜋0
from expression (S8.1). We calculate the prevalence of 𝐿 (i.e., 𝜆) by,

𝜆 = 𝑝0, if 𝑝0 = 𝑝1 and 𝜆 = ℓ − 𝑝0
𝑝1 − 𝑝0

otherwise.

Subsequently, the expressions for 𝜋0, 𝜋1 and 𝜆 can be used to obtain estimates for 𝜙𝑎𝑙∗
using the expression in section Conditional model. Lastly, an estimate for 𝛾 can be obtained
by fitting a conditional regression model on 𝑌 given 𝐴 and 𝐿∗, including an interaction
between 𝐴 and 𝐿∗. The coefficient for 𝐿∗ from this model is then divided by (𝜙01 − 𝜙00) to
get an estimate for 𝛾 , holding that 𝜙01 ≠ 𝜙00. The inequality 𝜙01 ≠ 𝜙00 holds if 𝑝0 ≠ 𝑝1, in
the case that 𝑝0 = 𝑝1, 𝛾 is not identifiable from the data (and thus, bias is not identifiable).
The bias expressions (8.3) and (8.4) in the main chapter of the article can subsequently be
used to calculate bias in the average treatment effect estimator.



S8

243

References
[1] Centers for Disease Control and Prevention (CDC). National Center for Health

Statistics (NCHS), National health and nutrition examination survey data (2011).
URL https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?
BeginYear=2011

[2] Centers for Disease Control and Prevention (CDC). National Center for Health
Statistics (NCHS), National health and nutrition examination survey data (2013).
URL https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?
BeginYear=2013

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2011
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2011
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2011
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2013
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2013
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2013




A
Dutch summary

Meetfouten komen vaak voor in epidemiologisch onderzoek. Neem bijvoorbeeld een
epidemiologisch onderzoek waarin het verband tussen een bepaalde blootstelling en
uitkomst wordt onderzocht. Om dit verband te onderzoeken, zijn gegevens nodig: in een
groep mensen (de studiepopulatie) wordt dan bijvoorbeeld eerst de blootstelling gemeten
en vervolgens de uitkomst. Vaak worden er meetfouten gemaakt in deze metingen,
bijvoorbeeld omdat gegevens uit elektronische patiënten dossiers worden gebruikt voor het
epidemiologisch onderzoek. Deze dossiers zijn in eerste instantie niet bedoeld voor het doen
van epidemiologisch onderzoek en mogelijk zijn daarom de metingen niet met de gewenste
wetenschappelijke precisie gedaan. Zo zou het kunnen zijn dat het lichaamsgewicht dat
geregistreerd staat in deze dossiers gebaseerd is op de vraag “hoeveel weeg jij?” en niet
op een nauwkeurige meting van het lichaamsgewicht met een weegschaal. Figuur A.1
illustreert de discrepantie tussen zelfgerapporteerd lichaamsgewicht en lichaamsgewicht
gemeten met een nauwkeurige (gevalideerde) weegschaal in een Amerikaanse studie. Als
er geen meetfout zou zitten in het zelfgerapporteerde lichaamsgewicht in deze studie dan
hadden de puntjes in de grafiek allemaal op de 45 graden lijn gelegen.

In dit proefschrift wordt verslag gedaan van de invloed van meetfouten in de gegevens
(ook wel, data) die gebruikt worden in epidemiologisch onderzoek. Daarnaast wordt
beschreven hoe we voor deze meetfouten kunnen corrigeren in epidemiologisch onderzoek.
Voor het corrigeren van meetfouten is vaak informatie nodig over het ‘meetfoutmodel’: het
verband tussen de meting die gedaan wordt (de meting met meetfout) en de ‘ware’ waarde
van datgene dat de meting beoogd te meten.

Om in een epidemiologisch onderzoek een verband (of associatie) te schatten tussen een
blootstelling en een uitkomst, wordt meestal een statistisch model gebruikt. Parameters
van een statistisch model kunnen worden geschat bijvoorbeeld met lineaire of logistische
regressie-analyse. In een regressie-analyse wordt een regressiecoëfficiënt geschat: dit is
een numerieke waarde die het verband (of associatie) tussen de blootstelling en uitkomst
uitdrukt. Meetfouten kunnen bepaalde parameters van dit model beïnvloeden, zoals wordt
geïllustreerd in figuur A.2. Een statistisch model bestaat uit afhankelijke variabelen (de
uitkomst) en onafhankelijke variabelen (covariaten, waaronder de blootstelling en soms
ook zogenaamde ‘confounders’). In alle soorten variabelen kunnenmeetfouten voorkomen.
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Figuur A.1: Discrepantie tussen lichaamsgewicht in kilogram gemeten met een gekalibreerde weegschaal (ware
gewicht) and zelfgerapporteerd gewicht in de Amerikaanse ‘National Health and Nutrition Examination Survey’
studie in 2017-2018.

Afhankelijk van het ‘type’ meetfout, de grootte van de meetfout en in welke variabele(n)
de meetfout zit (de afhankelijke of onafhankelijke variabele(n)), kan een meetfout de af te
schatten regressiecoëfficiënt vertekenen: het verband (of associatie) tussen de blootstelling
en uitkomst kan bijvoorbeeld sterker of juist zwakker lijken dan dat deze daadwerkelijk is.

0 1

0

1

0 1

0

1

0 1

0

1

Correct verband Meetfouten in blootstelling Vertekend verband

Figuur A.2: Vereenvoudigde weergave van de invloed van meetfouten in de blootstelling op een lineaire
regressie-analyse die het verband tussen een blootstelling (horizontale as) en uitkomst (verticale as) schat.

De verschillende typen meetfouten die aan bod komen in dit proefschrift zijn
geïllustreerd in figuur A.3. Onderscheid wordt gemaakt tussen willekeurige meetfouten,
systematische meetfouten en differentiële meetfouten. Een willekeurige meetfout wordt
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gemaakt als de meting soms een beetje hoger en soms een beetje lager is dan de ‘ware’
waarde, waarbij de afwijking tussen de meting die gedaan wordt en de ‘ware’ waarde
willekeurig is. Een systematische meetfout wordt gemaakt als de afwijking tussen de
meting die wordt gedaan en de ‘ware’ waarde systematisch is: de meting is bijvoorbeeld
altijd lager. Een differentiële meetfout wordt gemaakt als de meetfout afhangt van een
andere factor, bijvoorbeeld als een uitkomst wordt gemeten met een meetfout en die
meetfout afhangt van de waarde van de blootstelling.

Systematische 
meetfout

Willekeurige 
meetfout

Geen
meetfout

Figuur A.3: Illustratie van verschillende soorten meetfouten. Willekeurige meetfout : de meting is soms een beetje
hoger en soms een beetje lager dan de ‘ware’ waarde; systematische meetfout : de meting is altijd lager dan de
‘ware’ waarde.

In figuur A.4 wordt een overzicht gegeven van de verschillende soorten data die gebruikt
kunnen worden voor het afschatten van het ‘meetfoutmodel’. Interne validatie data
zijn data waarbij in een deel van de studiepopulatie zowel de meting met meetfout als
de meting zonder meetfout wordt gedaan. In externe validatie data worden deze twee
metingen gedaan in een groepmensen die geen onderdeel uitmaken van de studiepopulatie.
Naast interne en externe validatie data, zijn er ook nog kalibratie data en data van
herhaalde metingen. In deze laatste twee soorten data is de ‘ware’ waarde voor niemand
uit de studiepopulatie bekend. Herhaalde metingen data kunnen gebruikt worden om
het ‘meetfoutmodel’ af te schatten van een meting met een willekeurige meetfout. In
iedereen of in een deel van de studiepopulatie wordt dan de meting met een willekeurige
meetfout minstens twee keer gedaan. Kalibratie data kunnen gebruikt worden om het
‘meetfoutmodel’ te schatten van een meting met een systematische meetfout. In een deel
van de studiepopulatie wordt dan naast de meting met systematische meetfout, een andere
meting gedaan (met een ander meetinstrument) met een willekeurige meetfout.

De meetfout correctiemethoden die het meest aan bod komen in dit proefschrift zijn
regressie kalibratie en simulatie-extrapolatie. Figuur A.5 en A.6 geven een schematische
weergave van hoe regressie kalibratie en hoe simulatie-extrapolatie werken, respectievelijk,
als er zich meetfouten in de blootstelling voordoen. Bij regressie kalibratie wordt de
regressie voor de te schatten associatie tussen een blootstelling en uitkomst gekalibreerd
naar de regressie wanneer er geen meetfout is. Deze kalibratie wordt gedaan door
niet de regressie van de blootstelling op de uitkomst te schatten, maar in plaats
daarvan de regressie van een afgeleide van de blootstelling op de uitkomst te schatten.
Simulatie-extrapolatie bestaat uit twee stappen. In de eerste stap, de ‘simulatie’ stap, wordt
er een twee keer zo grote meetfout als de initiële meetfout aan de blootstelling toegevoegd.
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Figuur A.4: Schematische weergave van verschillende soorten validatie data. Interne validatie data: in een deel van
de studiepopulatie wordt zowel eenmeting met meetfout als eenmeting zonder meetfout gedaan; externe validatie
data: in een groep mensen die geen onderdeel zijn van de studiepopulatie wordt zowel een meting met meetfout
als een meting zonder meetfout gedaan; herhaalde metingen data: in een deel van de studiepopulatie wordt de
meting met een willekeurige meetfout vier keer gedaan; kalibratie data: in een deel van de studiepopulatie wordt
de meting met systematische meetfout gedaan en drie keer een meting met willekeurige meetfout.

Dit wordt dan herhaald voor een drie keer zo grote meetfout, enzovoort. In de tweede stap,
de ‘extrapolatie’ stap, wordt er een lijn geschat door de nieuwe schattingen om vervolgens
met behulp van deze lijn terug te extrapoleren naar de situatie zonder meetfout.

Een simulatie studie is een experimentmet kunstmatige, door een computer gecreëerde,
data. Dit heeft als voordeel dat bijvoorbeeld in simulatiestudies naar methoden voor
correctie van meetfouten, de ‘ware’ regressiecoëfficiënt bekend is bij de onderzoekers
en dus dat op die manier kan worden onderzocht op welke manier meetfouten de
regressiecoëfficiënt ‘vertekenen’. Ook kan bijvoorbeeld interne of externe validatie data
eenvoudig worden gecreëerd. In het onderzoek beschreven in dit proefschrift is veelvuldig
gebruik gemaakt van simulatiestudies.

In hoofdstuk 2 worden de consequenties van meetfouten in eindpunten van
gerandomiseerde studies en een daarbij horende oplossingen beschreven. Dit wordt
geïllustreerd aan de hand van een gerandomiseerde studie naar het effect van de inname
van ijzertabletten op het hemoglobinegehalte in bloed in zwangere vrouwen. Het
hemoglobinegehalte kan in dit voorbeeld op verschillende manieren gemeten worden:
aan de hand van een bepaling in veneus bloed of op basis van een vingerprik. Hierbij
wordt aangenomen dat de meting in veneus bloed de ‘ware’ hemoglobinewaarde is en
de meting in bloed na een vingerprik de waarde met meetfout. Willekeurige meetfouten
in het eindpunt hebben invloed op de statistische ’power’ en ‘precisie’ van een studie,
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Blootstelling kalibreren Correct verband
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Figuur A.5: Schematische weergave van regressie kalibratie. De lineaire regressie-analyse voor het te schatten
verband tussen de blootstelling met meetfout (horizontale as) en uitkomst (verticale as) wordt gekalibreerd naar
de regressie wanneer er geen meetfout is in Figuur A.2.

Simulatie en extrapolatie
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Figuur A.6: Schematische weergave van simulatie-extrapolatie. In de simulatie stap wordt de regressie
coëfficiënten geschat als er twee, drie of vier keer zo grote meetfout op de blootstelling zit (horizontale as),
vervolgens wordt er een lijn geschat door de nieuwe schattingen en wordt er in de extrapolatie stap met behulp
van deze lijn terug geëxtrapoleerd naar de regressiecoëfficiënt (verticale as) wanneer er geen meetfout is in Figuur
A.2.

terwijl systematische en differentiële fouten ook de grootte van de associatie tussen de
blootstelling en het eindpunt kunnen vertekenen. Een manier om te corrigeren voor deze
vertekening is regressie kalibratie in combinatie met externe validatie data. We laten in
een simulatiestudie zien dat indien het ‘meetfoutmodel’ nauwkeurig kan worden geschat
in deze externe data, kan op basis van externe data van minimaal 15 metingen al de door
meetfout verstoorde associatie volledig worden gecorrigeerd.

In hoofdstuk 3 wordt het softwarepakket (’package’) mecor geïntroduceerd, geschreven
in de programmeertaal R. Met behulp van mecor kan worden gecorrigeerd voor meetfouten
in continue covariaten en continue uitkomsten. Mecor faciliteert correctie voor
willekeurige, systematische en differentiële meetfouten en kan gebruik maken van de
vier soorten data (interne, externe, kalibratie en herhaalde metingen data). Ook kan
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mecor meetfouten corrigeren in een zogeheten sensitiviteitsanalyse als er geen extra data
beschikbaar is om het ‘meetfoutmodel’ of te schatten.

In hoofdstuk 4 worden situaties beschreven waarin het gebruik van regressie kalibratie
niet goed werkt. We illustreren dit aan de hand van een studie naar de associatie tussen
actieve energie en de vetvrije massa van een persoon. In een simulatiestudie wordt
gedemonstreerd dat in het bijzonder in kleine studies het statistisch efficiënter kan zijn om
niet voor de meetfout te corrigeren dan wel. Het corrigeren van meetfouten introduceert
namelijk meer onnauwkeurigheid in de associatie die wordt geschat in de data. Soms kan
het dan statistisch voordeliger zijn om niet te corrigeren voor de meetfout. Verder blijkt dat
in kleine studies waar de meetfout relatief groot is, regressie kalibratie niet goed werkt.

In hoofdstuk 5 worden verschillende manieren voor het includeren van een deel van een
studiepopulatie in interne validatie data beschreven. De manieren die onderzocht worden
zijn het includeren op een volledige willekeurige manier, gestratificeerd willekeurig of het
includeren van de extremen. Dit wordt beschreven aan de hand van een voorbeeld uit de
Nederlandse Epidemiologie van Obesitas studie. In deze studie werd gekeken naar het
verband tussen visceraal vet en het insulinegehalte in bloed. Visceraal vet kan worden
gemeten door middel van een MRI scan, maar een grove meting kan ook worden gedaan
met behulp van een meting van de omtrek van de middel van een persoon. Omdat een
meting met een MRI scan heel kostbaar is, is de precieze meting van visceraal vet alleen
in een deel van de studiepopulatie gedaan. In het hoofdstuk wordt onderzocht of de grove
meting van de middelomtrek kan worden gebruikt voor het afschatten van de associatie
tussen visceraal vet en insulinegehalte in bloed. Hierbij wordt gebruik gemaakt van de
associatie tussen de middelomtrek en visceraal vet in een subgroep waarin beide metingen
beschikbaar zijn en onderzocht in welke mensen het beste beide metingen kunnen worden
gedaan. Een simulatiestudie laat zien dat het willekeurig kiezen van de mensen waarin alle
twee de metingen worden gedaan het beste blijkt te werken.

In hoofdstuk 6 wordt de heterogeniteit in studies naar de incidentie van veneuze
tromboses in COVID-19 patiënten beschreven. Verschillende oorzaken van deze
heterogeniteit worden onderzocht, waarbij onderscheid wordt gemaakt tussen klinische
bronnen en methodologische bronnen van heterogeniteit. Deze oorzaken worden
geïllustreerd met voorbeelden uit gepubliceerde incidentie studies. De klinische bronnen
die beschreven worden zijn verschillen in patiëntkarakteristieken en verschillen in de
redenen om een veneuze trombose uit te (kunnen) sluiten of niet. De methodologische
bronnen die beschreven worden zijn verschillen in de definitie voor de veneuze trombose
(wat wordt geteld als veneuze trombose en wat niet), de kwaliteit van de data en de
statistische analyse die gebruikt worden. We raden aan om in toekomstige studies naar
de incidentie van veneuze trombose in COVID-19 patiënten, deze elementen nauwkeurig
te beschrijven zodat dergelijke studies in de toekomst beter onderling kunnen worden
vergeleken en samengevat.

In hoofdstuk 7 wordt het gebruik van regressie kalibratie en simulatie-extrapolatie
vergeleken voor het doen van sensitiviteitsanalyses. Een simulatiestudie laat zien dat
zonder extra data om het ‘meetfoutmodel’ af te schatten, maar met de correcte assumpties
over het ‘meetfoutmodel’, regressie kalibratie de vertekening in de associatie verhelpt
terwijl simulatie-extrapolatie dat niet doet. Slechts in enkele gevallen was het gebruik van
simulatie-extrapolatie statistisch efficiënter.

Om causale verbanden te schatten in de epidemiologie, worden steeds vaker statistische
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modellen gebruikt die gewogen worden aan de hand van gewichten die de kans op een
blootstelling voorspellen. Omdat het nog relatief onbekend is wat het effect is van
misclassificatie in een ‘confounder’ in deze eerstgenoemde modellen, wordt in hoofdstuk 8
de invloed van meetfouten in deze modellen vergeleken met de invloed van meetfouten
in een meer traditioneel model. Ten opzichte van de invloed van een meetfout in het
traditionele model, is de vertekening in de associatie in dezelfde richting (door de meetfout
lijkt de associatie sterker of zwakker dan dat hij werkelijk is, ongeacht het statistische
model dat gebruikt wordt) maar niet altijd even groot.

Concluderend, meetfouten kunnen de resultaten van epidemiologisch onderzoek
vertekenen indien deze meetfouten worden genegeerd. Het gezegde “voorkomen is beter
dan genezen” gaat in deze situatie ook op. Het verbeteren van de kwaliteit van de metingen
die worden gebruikt voor epidemiologisch onderzoek is mogelijk beter dan het inzetten van
meetfoutcorrectiemethoden. Dat gezegd hebbende, in situaties waarin meetfouten niet
kunnen worden voorkomen kunnen de correctiemethoden uitkomst bieden en zou men
meetfouten niet moeten negeren.
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