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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

CHAPTER 3
Optimal recovery and coverage for

distributed Bayesian non-parametric
regression

Abstract. Gaussian Processes (GP) are widely used for probabilistic modeling and
inference for non-parametric regression. However, their computational complexity
scales cubicly with the sample size rendering them unfeasible for large data sets. To
speed up the computations various distributed methods were proposed in the litera-
ture. These methods have, however, limited theoretical underpinning. In our work
we derive frequentist theoretical guarantees and limitations for a range of distributed
methods for general GP priors in context of the non-parametric regression model,
both for recovery and uncertainty quantification. As specific examples we consider
covariance kernels both with polynomially and exponentially decaying eigenvalues.
We demonstrate the practical performance of the investigated approaches in a nu-
merical study using synthetic data sets.

§3.1 GP regression framework

In our analysis we consider the multivariate random design regression model. Let us
assume that we observe (Xi, Yi), i = 1, ..., n, i.i.d pairs of random variables satisfying

Yi = θ0 (Xi) + εi, εi
iid∼ N

(
0, σ2

)
, (3.1.1)

with design points Xi, i = 1, ..., n, belonging to some compact set X ⊂ Rd, obser-
vations Yi ∈ R, noise variance σ2 > 0, and functional parameter θ0 : X → R. For
simplicity we take X = [0, 1]d, assume that the design points are uniformly distributed,

i.e. Xi
iid∼ U [0, 1]d, and σ2 ≳ 1 to be known. We use the notation Dn = (Yi, Xi)i=1,...,n

for the observations and P0 and E0 for the probability measure and expected value
corresponding to the underlying regression function θ0.

In order to perform inference on the regression function θ0, we consider a non-
parametric Bayesian approach. We endow θ0 with a mean-zero Gaussian Process
(GP) prior GP (0,K), where K : Rd×Rd 7→ R is a positive definite stationary kernel.
For matrices A ∈ Rd×n and B ∈ Rd×n′

, let K(A,B), denote the n × n′ matrix of
(K(A·i, B·j))1≤i≤n, 1≤j≤n′ .
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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

By conjugacy the posterior distribution of θ is also a Gaussian process and by
the same conjugate computation as in Chapter 2 of (Rasmussen and Williams, 2006),

θ|Dn ∼GP(θ̂n, Ĉn), where for any x, x′ ∈ [0, 1]d

θ̂n (x) = K (x,X)
(
K (X,X) + σ2In

)−1 Y, (3.1.2)

Ĉn (x, x
′) = K (x, x′)−K (x,X)

(
K (X,X) + σ2In

)−1
K (X, x′) , (3.1.3)

where X ∈ [0, 1]d×n, Y ∈ Rn are the collection of design points and observations,
respectively, and In denotes the n× n identity matrix.

We assume that the eigenfunctions {ψj}j∈Nd of the above covariance kernel K
factorize, i.e.

ψj =

d∏
k=1

ψjk , j ∈ Nd, (3.1.4)

where {ψjk}jk∈N are the eigenfunctions corresponding to the one dimensional kernel
on [0, 1]. We further assume that the eigenfunctions of the kernel K are bounded.

Assumption 3.1.1. There exists a global constant Cψ > 0 such that the eigenfunc-
tions {ψj}j∈Nd of K satisfy |ψj(t)| ≤ Cψ for all j ∈ Nd, t ∈ X .

The corresponding eigenvalues of K are

µj =

d∏
k=1

µjk , j ∈ Nd, (3.1.5)

with {µjk}jk∈N the eigenvalues of the k-th component of the kernel (Berlinet and
C. Thomas-Agnan, 2004). Although our results hold more generally, as specific ex-
amples we consider polynomially and exponentially decaying eigenvalues

Assumption 3.1.2. The one dimensional eigenvalues µj, j ∈ N are either

• Polynomially decaying:

C−1j−2α/d−1 ≤ µj ≤ Cj−2α/d−1, (3.1.6)

for some α,C > 0, or

• Exponentially decaying:

C−1be−aj ≤ µj ≤ Cbe−aj , (3.1.7)

for some a, b, C > 0.

In non-parametric statistics, it is common to assume that the underlying functional
parameter of interest belongs to some regularity class. In our analysis we consider
Sobolev-type of regularity classes defined with the basis ψj , i.e. for any β > 0 and
B > 0, define as in (Bényi and Oh, 2013), (Hunter, 2013) and (Cobos et al., 2015)
the function space

Θβ (B) =

θ = ∑
j∈Nd

θjψj ∈ L2

(
[0, 1]d

)
:
∑
j∈Nd

(
d∑
k=1

jk

)2β

θ2j ≤ B2

 . (3.1.8)
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§3.2. Distributed GP regression

For the Fourier basis or the basis corresponding to the Matérn covariance kernel,
Θβ(B) is equivalent to β-smooth Sobolev balls and are known as isotropic Sobolev
spaces, see (Cobos et al., 2015).

The frequentist properties of Gaussian process priors for recovery are well under-
stood in the literature. It was shown in various specific examples and choices of priors
that for appropriately scaled Gaussian priors the corresponding posterior can recover
the underlying functional parameter of interest θ0 ∈ Θβ(B) with the optimal minimax
estimation rate n−β/(2β+d), see for instance (van der Vaart and van Zanten, 2007),
(van der Vaart and van Zanten, 2008) and (van der Vaart and van Zanten, 2011).
Another, from a practical perspective very appealing property of Bayesian methods is
the built-in uncertainty quantification. Bayesian credible sets accumulate prescribed
(typically 95%) posterior mass and can take various forms. In our analysis we consider

L2 credible balls, i.e. we define the credible set as B̂n = {θ : ∥θ− θ̂n∥ ≤ rγ}, satisfying
Π(θ ∈ B̂n|Dn) = 1 − γ, for some γ ∈ (0, 1). Credible sets do not provide automati-
cally valid confidence statements. In recent years the frequentist coverage properties
of Bayesian credible sets were widely studied and it was shown for appropriate choices
of the prior distribution the corresponding posterior can provide reliable frequentist
uncertainty quantification for functions satisfying certain regularity assumptions, see
for instance (Szabo et al., 2015), (Belitser, 2017), (Castillo and Nickl, 2014), (Serra
and Krivobokova, 2017), (Sniekers and van der Vaart, 2015a), (Yoo and Ghosal, 2016),
(Bhattacharya et al., 2017), (Ray, 2017), (Rousseau and Szabo, 2020) and (Hadji and
Szabo, 2021). However, our setting wasn’t covered by these results yet.

Despite the fact that the mean (3.1.2) and covariance (3.1.3) functions can be
explicitly computed, consequently solving the model, their computation requires in-
verting the matrix (K(X,X) + σ2In). The inversion of this n× n matrix is of O(n3)
computational complexity, which rapidly explodes as n grows. One way to speed up
the computations is to consider sparse approximations of the matrices, see for in-
stance (Gibbs et al., 1976), (Saad, 1990), (Quiñonero-Candela and Rasmussen, 2005)
and (Titsias, 2009). In this work we focus on a different, distributed approach to
decrease computational complexity.

§3.2 Distributed GP regression

In distributed methods, the data are divided among multiple local machines or servers,
and the computations are carried out locally, in parallel to each other. Then the
outcome of the computations are transmitted to a center machine or server where
they are aggregated somehow forming the final outcome of the distributed method.
In the random design regression model it means that we divide the data of size
n over m machines (we assume for simplicity that n mod m = 0), i.e. in each

machine k = 1, ...,m we observe iid pairs of random variables (X
(k)
i , Y

(k)
i ) ∈ [0, 1]d×R,

i = 1, ..., n/m, satisfying

Y
(k)
i = θ0

(
X

(k)
i

)
+ ε

(k)
i , ε

(k)
i

iid∼ N
(
0, σ2

)
, (3.2.1)

where θ0 : [0, 1]d 7→ R is the unknown functional parameter of interest, and σ2 > 0 the

known variance of the noise. For convenience, let us introduce the notations D(k)
n =
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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

(X
(k)
i , Y

(k)
i )i=1,...,ñ, X(k) = (X

(k)
i )i=1,...,ñ, Y(k) = (Y

(k)
i )i=1,...,ñ for the whole data set,

the design points, and observations in the k-th local machine, respectively. Similarly
to the non-distributed method (with only one local machine m = 1), we assume that
the true function belongs to some Sobolev-type of regularity class θ0 ∈ Θβ(B), for
given β,B > 0, see (3.1.8).

We consider distributed Bayesian approaches for recovering θ0. First, we endow
the function θ0 in each local machine k = 1, ...,m with a Gaussian process prior and

compute the corresponding local (adjusted) posterior distribution Π(k)(.|D(k)
n ). Then,

we transmit the m local posteriors into a central machine where we aggregate them

somehow into a global (adjusted) posterior Π†
n,m(·|Dn). We further denote by θ̂

(k)
n the

local (adjusted) posterior mean, and by θ̂n,m the global (adjusted) posterior mean.
For quantifying the uncertainty of the distributed Bayesian procedure we consider
L2-credible balls resulting in from the aggregated posterior distribution, i.e. let

B̂n,m,γ =
{
θ : ∥θ − θ̂n,m∥2 ≤ rn,m,γ

}
, satisfying

Π†
n,m

(
θ ∈ B̂n,m,γ |Dn

)
= 1− γ, (3.2.2)

for some prescribed γ ∈ (0, 1).
Distributed methods vary according to the way the local (adjusted) posterior

distributions are computed and aggregated to obtain the global posterior. The be-
havior of the aggregated posterior crucially depends on the applied techniques. To
demonstrate this let us consider a naive method where in each local machine we
endow θ0 ∈ Θβ(B) with a Gaussian process prior and compute the corresponding

unadjusted local posterior distribution Π∗
n(·|D

(k)
n ). We consider a centered GP with

polynomially decaying eigenvalues as in Assumption 3.1.2 with matching regularity
hyper-parameter α = β. Note that this choice of the hyper-parameter is optimal in
the non-distributed case (with only one local machine m = 1). Then the local pos-
teriors are aggregated to a global posterior Π†

n,m(·|Dn) in the following way: a draw
from the aggregated posterior is taken to be the average of a single draw from each
local posteriors. The theorem below shows that such method results in sub-optimal
concentration for the posterior mean and contraction rate for the whole posterior
distribution.

Theorem 3.2.1. Take β ≥ 2 and consider the function θ0 ∈ Θβ(L) of the form
θ0(x) = cL

∑∞
j=1 j

−1−2β(log j)−2ψj(x), x ∈ [0, 1], for sufficiently small cL > 0. Then
for the covariance kernel K with polynomially decaying eigenvalues (3.1.6) with α = β
and d = 1, and (log n)2 ≪ m ≲ n1/(1+2β) the corresponding naive aggregated posterior

mean θ̂n,m has sub-optimal concentration and the posterior itself achieves sub-optimal
contraction rate, i.e.

E0

∥∥∥θ̂n,m − θ0

∥∥∥2
2
≥ c (log n)

−2
(n/m)−β/(2β+1), (3.2.3)

E0Π
†
n,m

(
θ : ∥θ − θ0∥22 ≤ c (log n)

−2
(n/m)−β/(2β+1)|Dn

)
→ 0, (3.2.4)

for sufficiently small c > 0, where θ̂n,m is the mean of the global posterior Π†
n,m

obtained with the naive method.

The proof is given in Section 3.5.4.
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§3.2. Distributed GP regression

§3.2.1 Optimal Distributed Methods

In this paper we consider two methods, for which optimal performance were de-
rived in context of the Gaussian white noise setting, see (Szabó and van Zanten,
2019). We investigate these methods here in the practically more relevant and tech-
nically substantially more complex non-parametric regression model. We note that
in (Guhaniyogi et al., 2017) in context of the regression model an approach closely
related to Method II was derived and its contraction properties were investigated for
a rescaled covariance kernel with polynomially decaying eigenvalues. In our work we
consider more general kernel structures and in contrast to (Guhaniyogi et al., 2017) do
not require that the functional parameter belongs to the Reproducing Kernel Hilbert
Space (RKHS) of the Gaussian Process prior. Furthermore, we also derive guarantees
and limitations to uncertainty quantification. Therefore, our results are of different
nature requiring a different approach.

3.2.1.1 Method I

Rescaling the priors. In the first method, introduced by (Scott et al., 2016) in a
parametric setting, we consider raising the prior density to the power 1/m, which is
formally equivalent to multiplying the kernelK bym, i.e. the adjusted kernel takes the
form KI := mK. Then the eigenvalues of the kernel KI are {µIj}j∈Nd = {mµj}j∈Nd .
Hence, in view of (3.1.1) the posterior distribution, for each machine k = 1, ...,m, is

also a Gaussian process θ|D(k)
n ∼GP(θ̂

(k)
n , Ĉ

(k)
n ) with

θ̂(k)n (x) = K
(
x,X(k)

)(
K
(
X(k),X(k)

)
+m−1σ2Iñ

)−1

Y(k),

Ĉ(k)
n (x, x′) = m

(
K (x, x′)−K

(
x,X(k)

)(
K
(
X(k),X(k)

)
+m−1σ2Iñ

)−1

K(X(k), x′)

)
.

Averaging the local draws. A draw from the global posterior is generated by first
drawing a single sample from each local posteriors and then taking the averages of
these draws over all machines. Since the data sets and the priors in the local machines
are independent, the so generated average of the local posteriors is also a Gaussian pro-

cess with mean θ̂In,m = m−1
∑m
k=1 θ̂

(k)
n and covariance kernel ĈIn,m = m−2

∑m
k=1 Ĉ

(k)
n ,

where θ̂
(k)
n and Ĉ

(k)
n denote the posterior mean and covariance functions in the kth

local machine.

3.2.1.2 Method II

Rescaling the likelihood. In the second method proposed by (Srivastava et al.,
2015), we adjust the local likelihood by raising its power tom in every machine, which
is equivalent to rescaling the variance of the observations by a factor m−1. Then, by
elementary computations similar to (3.1.1), we obtain that for each machine, the
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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

posterior distribution is GP (θ̂
(k)
n , Ĉ

(k)
n ), with

θ̂(k)n (x) = K
(
x,X(k)

)(
K
(
X(k),X(k)

)
+m−1σ2Iñ

)−1

Y(k),

Ĉ(k)
n (x, x′) = K (x, x′)−K

(
x,X(k)

)(
K
(
X(k),X(k)

)
+m−1σ2Iñ

)−1

K
(
X(k), x′

)
.

Wasserstein barycenter. This approach consists in aggregating the local posteri-
ors by computing their Wasserstein barycenter. The 2-Wasserstein distance W 2

2 (µ, ν)
between two probability measures µ and ν is defined as

W 2
2 (µ, ν) := inf

γ

∫ ∫
∥x− y∥22γ(dx, dy),

where the infimum is taken over all measures γ with marginals µ and ν. The cor-
responding 2-Wasserstein barycenter of m probability measures µ1, ..., µm is defined
by

µ̄ = argmin
µ

1

m

m∑
k=1

W 2
2 (µ, µk),

where the minimum is taken over all probability measures with finite second moments.
In view of Theorem 4 in (Mallasto and Feragen, 2017), the global posterior is a

Gaussian process with mean θ̂IIn,m and covariance ĈIIn,m satisfying

θ̂IIn,m =
1

m

m∑
k=1

θ̂(k)n ,

ĈIIn,m =
1

m

m∑
k=1

((
ĈIIn,m

)1/2
Ĉ(k)
n

(
ĈIIn,m

)1/2)1/2

.

In particular, the posterior variance function is

VarIIn,m (f(x)|Dn) =
1

m

m∑
k=1

Var
(
f(x)|D(k)

n

)
for all x ∈ X .

§3.2.2 Posterior contraction rate

We show that the above proposed distributed methods (i.e. Methods I- II) provide
optimal recovery of the underlying functional parameter of interest. The methods
result in different global posteriors which can have different finite sample size behavior,
but their asymptotic properties are similar.

Theorem 3.2.2. Let β,B > 0, K a kernel with eigenvalues (µj)j∈Nd satisfying |{j ∈
Nd : µjn ≥ σ2}| ≤ n and corresponding eigenfunctions satisfying Assumption 3.1.1.
Furthermore, let

νj =
nµj

σ2 + nµj
, for all j ∈ Nd, (3.2.5)

74



§3.2. Distributed GP regression

and P̃ a linear operator defined as P̃ (θ) :=
∑
j∈Nd(1 − νj)θjψj for all θ ∈ L2(X ).

Then

E0∥θ̂n,m − θ0∥22 ≲ ∥P̃ (θ0)∥22 +
σ2

n

∑
j∈Nd

ν2j + δn, (3.2.6)

E0Π
†
n,m

(
∥θ − θ0∥22 > Mn

(
∥P̃ (θ0)∥22 +

σ2

n

∑
j∈Nd

νj + δn

)
|Dn

)
→ 0, (3.2.7)

for arbitrary sequence Mn tending to infinity, where θ̂n,m is the mean of the global
posterior Π†

n,m(.|Dn) obtained with either Methods I − II and

δn = inf
{
n
∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ : I ⊂ Nd, |I| ≤ n
(
m2 log n

∑
j∈Nd

ν2j
)−1
}

(3.2.8)

is a (typically) negligible technical term.

The proof of the theorem is deferred to Section 3.5.3.
First we note that the condition |{j ∈ Nd : µjn ≥ σ2}| ≤ N is very mild and

is satisfied by the eigenvalues considered in Assumption 3.1.2. The sequence (νj)j∈N
can be thought of as the population eigenvalues of the posterior. Next note that the
bound (3.2.6) has two main components. The first term ∥P̃ (θ0)∥22 measures how close
θ0 is (in L2-norm) to its convolution with the eigenvalues (νj)j∈Nd , hence it accounts
for the bias of the estimator. In the meanwhile the second term (σ2/n)

∑
j∈Nd ν2j can

be thought of as the variance term. In a similar fashion, the contraction rate (3.2.7)
has also two main components: ∥P̃ (θ0)∥22 and (σ2/n)

∑
j∈Nd νj , where the former is

the squared bias while the latter is the expected value of the posterior variance under
the true parameter. The remaining δn term is of technical nature. It bounds the tail
behavior of the eigen-decomposition of the variance of the posterior mean. This term
is shown to be negligible in our examples. Since all the above terms are related to
the kernel K, explicit bounds on the expectation of ∥θ̂n − θ0∥2, as well as explicit
posterior contraction rates of the global posterior Π†

n,m(.|Dn), can be achieved for
specific choices of the kernels.

Corollary 3.2.3. (Polynomial) For given B > 0 and β ≥ 3d/2, assume that the
covariance kernel K satisfies Assumptions 3.1.1 and (3.1.6) with α = β. Then for

m = o(n
2β−3d

4β ) the aggregated posterior distribution Π†
n,m(.|Dn) and the corresponding

aggregated posterior mean θ̂n,m resulting from either of the Methods I − II achieve
the minimax convergence rate up to a logarithmic factor, i.e.

sup
θ0∈Θβ(B)

E0∥θ̂n,m − θ0∥22 ≲ (n/σ2)−2β/(2β+d)(log(n/σ2))d−1

and for all sequences Mn → +∞,

sup
θ0∈Θβ(B)

E0Π
†
n,m(θ : ∥θ − θ0∥2 > Mn(n/σ

2)−β/(2β+d)(log(n/σ2))(d−1)/2|Dn) → 0.

The proof is given in Section 3.6.1.
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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

Corollary 3.2.4. (Exponential) For given B > 0 and β ≥ d/2 assume that the
covariance kernel K satisfies Assumptions 3.1.1 and (3.1.7) with rescaling parameter

a = (σ2/n)1/(2β+d) log(n/σ2) and b = 1. Then for m = o(n
2β−d

2(2β+d) ) the aggregated
posterior distribution Π†

n,m(.|Dn) and the corresponding aggregated posterior mean

θ̂n,m resulting from either of the methods I − II achieve the minimax convergence
rate, i.e.

sup
θ0∈Θβ(B)

E0

∥∥∥θ̂n,m − θ0

∥∥∥2
2
≲ (n/σ2)−2β/(2β+d),

and for all sequences Mn → +∞,

sup
θ0∈Θβ(B)

E0Π
†
n,m

(
θ : ∥θ − θ0∥2 > Mn(n/σ

2)−β/(2β+d)|Dn
)
→ 0.

The proof is given in Section 3.6.2. We note that the conditions on β and m in
both corollaries follow from the remaining technical term δn. These conditions are
not optimized and are of technical nature.

§3.3 Distributed uncertainty quantification

In the following, we study the frequentist coverage properties of the L2 credible balls
defined in (3.2.2) resulting from Method I. For convenience we allow some additional
flexibility by allowing the credible balls to be blown up by a constant factor L > 0,
i.e. we consider balls

B̂n,m,γ(L) =
{
θ ∈ L2(X ) :

∥∥∥θ − θ̂n,m

∥∥∥ ≤ Lrn,m,γ

}
,

where for the choice L = 1 we get back our original credible ball (3.2.2). The frequen-
tist validity of B̂n,m,γ(L) will be established in two steps: First we approximate the

centered posterior measure θ− θ̂n,m|Dn and second we study the asymptotic behavior
of the radius, the bias and the variance of the posterior mean corresponding to the
approximated posterior.

In the non-distributed case (i.e. m = 1), the posterior distribution can be ap-

proximated by an auxiliary GP. For the GP posterior θ − θ̂n|Dn ∼GP(0, Ĉn), the
covariance kernel Ĉn given in (3.1.3) is hard to analyze due to its dependence on X.
Against this background, following the idea of (Bhattacharya et al., 2017), we define
a population level GP Ŵ ∼GP(0, C̃n), where C̃n(x, x

′) = σ2/n
∑
j∈Nd νjψj(x)ψj(x

′),
and show that the two kernels are close with respect to the L2-norm. Then using this
result we can provide the following frequentist coverage results for the credible balls.

Theorem 3.3.1. Let β,B > 0, K be a kernel with eigenvalues (µj)j∈Nd satisfying
|{j ∈ Nd : nµj ≥ σ2}| ≤ n and corresponding eigenfunctions satisfying Assumption
3.1.1. Furthermore, assume that nδn/

∑
j∈Nd νj = o(1), where the (typically) negli-

gible term δn was defined in (3.2.8). Then in case the bias term ∥P̃ (θ0)∥2 satisfies
that

n

σ2

∥P̃ (θ0)∥22∑
j∈Nd νj

≤ c (3.3.1)
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§3.3. Distributed uncertainty quantification

for some c ≥ 0, the frequentist coverage of the (inflated) credible set resulting from
Method I tends to one, i.e. for arbitrary Ln → +∞

Pθ0

(
θ0 ∈ B̂n,m,γ (Ln)

)
n→∞→ 1.

On the other hand, if the bias term ∥P̃ (θ0)∥2 satisfies that

n

σ2

∥P̃ (θ0)∥22∑
j∈Nd νj

n→∞→ ∞, (3.3.2)

then the aggregated and inflated credible set resulting from Method I has frequentist
coverage tending to zero, i.e. for any L > 0,

Pθ0

(
θ0 ∈ B̂n,m,γ (L)

)
n→∞→ 0.

We briefly discuss the assumptions. Condition (3.3.1) requires that the squared
bias term is dominated by the posterior variance, which is a natural and standard
assumption for coverage. On the other hand condition (3.3.2) resulting in the lack
of coverage assumes that the squared bias dominates the variance which is again
natural and standard. The assumption nδn/

∑
j∈Nd νj = o(1) is of technical nature,

and is required to deal with the tail of the eigen-decomposition of the posterior.
This condition is not optimized but it is already sufficiently general to cover our
examples. The blow up constant of the credible sets are again of technical nature,
it can be equivalently replaced by slightly under-smoothing the priors, see (Knapik
et al., 2011).

Below we consider specific choices of the covariance kernel K, both with poly-
nomially and exponentially decaying eigenvalues. We show below that by not over-
smoothing the priors, Method I results in frequentist coverage tending to one in both
examples.

Corollary 3.3.2. (Polynomial) For given B > 0 and β ≥ 3d/2, assume that the
covariance kernel K satisfies Assumptions 3.1.1 and (3.1.6) with α ≤ β. Then for

m = o(n
2β−3d

4β ) and Ln tending to infinity arbitrarily slowly the aggregated posterior
credible set B̂n,m,γ(Ln) attains asymptotic frequentist coverage one, i.e.

inf
θ0∈Θβ(B)

P0

(
θ0 ∈ B̂n,m,γ (Ln)

)
→ 1.

The proof is given in Section 3.6.3.

Corollary 3.3.3. (Exponential) For given B > 0 and β ≥ d/2, let us take m =

o(n
2β−d

2(2β+d) ) and assume that the covariance kernel K satisfies Assumptions 3.1.1

and (3.1.7) with (m/n)1/(2d)(log n)1−1/(2d) ≲ a ≲
(
σ/n

)1/(2β+d)
log n and b = 1.

Then for Ln tending to infinity arbitrarily slowly the aggregated posterior credible set
B̂n,m,γ(Ln) obtains asymptotic frequentist coverage one, i.e.

inf
θ0∈Θβ(B)

P0

(
θ0 ∈ B̂n,m,γ (Ln)

)
→ 1.

The proof is given in Section 3.6.4. We note that in both examples the conditions
on β and m are of technical nature and they were not optimized.
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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

§3.4 Discussion

In this chapter, we have shown that distributed methods can be applied in the context
of Gaussian Process regression and give accurate results in terms of recovery and
uncertainty quantification. Although a naive averaging of the local posteriors will fail
to capture the true functional parameters, there exist techniques obtaining a global
posterior distribution which has similar asymptotic behavior as the non-distributed
posterior distribution. We demonstrate through various examples (including both
polynomially and exponentially decaying eigenvalues for the covariance kernel) that
the aggregated posterior distribution can achieve optimal minimax contraction rates
and good frequentist coverage.

One of the main contributions of our paper is that we do not need to assume
that the true functional parameter belongs to the Reproducing Kernel Hilbert Space
(RKHS) corresponding to the considered Gaussian Process prior, which is a typical
assumption in the literature. This way our results are less restrictive and can be
applied for a larger class of functions and priors. For instance squared exponential
covariance kernels contain analytic functions in their RKHS, hence assuming that
the truth belongs to that space would substantially reduce the applicability of the
method. Also, in case of Matérn kernels by relaxing this assumption we do not have
to introduce an (artificial) rescaling factor which is needed otherwise as the regularity
of the Matérn kernel can’t be chosen to match the regularity of the truth.

The optimal choice of the tuning hyper-parameter in the covariance kernel depends
on the regularity of the underlying function, which is typically unknown in practice.
In the non-distributed setting various adaptive techniques were proposed to solve
this problem, including hierarchical and empirical Bayes methods. However, in the
distributed setting standard approaches based on the (marginal) likelihood fail, as it
was demonstrated in the context of the Gaussian white noise model, see (Szabó and
van Zanten, 2019). An open and interesting line of research is to understand whether
adaptation is possible at all in the distributed regression framework (3.1) and if yes
to provide method achieving it.

§3.5 Proofs of the main results

§3.5.1 Kernel Ridge Regression in non-distributed
setting

Let us first consider the non-distributed case, i.e. take m = 1. We introduce some
notations and recall standard results for the kernel ridge regression method. The
posterior mean θ̂n coincides with the kernel ridge regression (KRR) estimator

θ̂n = θ̂KRR = argmin
θ∈H

[−ℓn (θ)] , −ℓn (θ) :=
n∑
i=1

(Yi − θ (Xi))
2
+ σ2 ∥θ∥2H , (3.5.1)

where the RKHS H corresponds to the prior covariance kernel K, see Chapter 6 in
(Rasmussen and Williams, 2006). The objective function of the KRR is composed of
the average squared-error loss and an RKHS penalty term. In view of the representer
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theorem for RKHSs, the solution to (3.5.1) is a linear combination of kernel functions,
which renders it equivalent to a quadratic program.

By the reproducing property, all functions θ in the RKHS H can be evaluated as
θ(Xi) = ⟨θ,KXi

⟩H with KXi
= K(Xi, ·), and ∥θ∥2H = ⟨θ, θ⟩H. The corresponding

log-likelihood function takes the form (up to an additive constant term)

−ℓn (θ) :=
n∑
i=1

(Yi − ⟨θ,KXi
⟩H)

2
+ σ2 ⟨θ, θ⟩H .

Performing a Fréchet derivation on ℓn : (H, ⟨·, ·⟩H) → R with respect to θ, one can
obtain the score function. By multiplying the score function with 1/(2n) we arrive at
the function Ŝn : H → H given as

Ŝn(θ) =
1

n

[
n∑
i=1

(Yi − θ (Xi))KXi
− σ2θ

]
. (3.5.2)

For simplicity we refer to Ŝn(θ) as the score function from now on and note that the

KRR estimate θ̂n = θ̂KRR then verifies

Ŝn

(
θ̂n

)
= 0.

Define also Sn(θ) := E0Ŝn(θ) to be the population version of the score function, i.e.

Sn (θ) =

∫
X
(θ0 (x)− θ (x))Kxdx− σ2

n
θ = F (θ0 − θ)− σ2

n
θ, (3.5.3)

where the operator F : L2(X ) → H is a convolution with the kernel K, in other words
F (θ) =

∫
θ(x)Kxdx. Considering θ =

∑
j∈Nd θjψj , a straightforward calculation

yields F (θ) =
∑
j∈Nd µjθjψj . We can then rewrite Sn(θ) as

Sn(θ) =
∑
j∈Nd

(
µjθ0,j −

σ2 + nµj
n

θj

)
ψj , (3.5.4)

which leads immediately to a solution of Sn(θ) = 0 with θj = νjθ0,j , where νj =
νn,j =

nµj

σ2+nµj
.

Let us define another operator F̃ : L2(X ) → H̃, with H̃ denoting the Hilbert space
with inner product ⟨θ, θ′⟩H̃ =

∑
j∈Nd ν

−2
j θjθ

′
j , as F̃ (θ) =

∑
j∈Nd νjθjψj (we omit the

dependence on n in the notation). Note that both operators F and F̃ are bijective
and linear, which allows us to rewrite (3.5.3) as

Sn (θ) = F (θ0)− F ◦ F̃−1 (θ) = F
(
θ0 − F̃−1 (θ)

)
.

Hence, using the notation ∆θ̂n = θ̂n − F̃ (θ0) we get

∆θ̂n = −F̃ ◦ F−1 ◦ Sn
(
θ̂n

)
. (3.5.5)

It will also be useful to define the operator P̃ = id− F̃ , where id denotes the identity
operator on L2(X ). Also note that Sn(F̃ (θ0)) = 0.

Table 3.1 provides a summary of the key above notations in order to help the
reader find a way in the proofs.
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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

Table 3.1: Notation references

Symbol Definition
Dn Data, {(Yi, Xi)

n
i=1}.

θ0 True function.
εi Gaussian error, εi = Yi − θ0(Xi) ∼ N (0, σ2).

θ̂n posterior mean function, EX [θ|Dn], equal to the KRR solution.

θ̂n = argminθ∈H

[
n−1

∑n
i=1(Yi − θ(Xi))

2 + n−1σ2∥θ∥2H
]
.

F Convolution with kernel K, F (θ) =
∑
j∈Nd µjθjψj .

F−1 Inverse of F , F−1(θ) =
∑
j∈Nd(θj/µj)ψj .

{νj}j∈Nd Eigenvalues of the equivalent kernel νj = nµj/(σ
2 + nµj).

F̃ Convolution with the equivalent kernel F̃ (θ) =
∑
j∈Nd νjθjψj .

F̃−1 Inverse of F̃ , F̃−1(θ) =
∑
j∈Nd(θj/νj)ψj .

P̃ P̃ = id− F̃ .

Ŝn Sample score function, Ŝn(θ) = n−1[
∑n
i=1(Yi − θ(Xi))KXi

− σ2θ].

Sn Population score function, Sn(θ) = F (θ0 − F̃−1(θ)).

§3.5.2 Kernel Ridge Regression in distributed set-
ting

In the distributed setting (both in Methods I and II), accordingly, the kth local sample
and population score functions are given (up to constant multipliers) by

Ŝ(k)
n (θ) =

1

n/m

n/m∑
i=1

(
Y

(k)
i − θ

(
X

(k)
i

))
K
X

(k)
i

− σ2

m
θ

 ,
S(k)
n (θ) =

∫
X
(θ0 (x)− θ (x))Kxdx− σ2

n
θ = Sn(θ), (3.5.6)

respectively. Analogously to (3.5.2), every local KRR estimate satisfies Ŝ
(k)
n (θ̂

(k)
n ) = 0.

In view of S
(k)
n = Sn we have S

(k)
n

(
F̃ (θ0)

)
= 0, hence for each machine, let ∆θ̂

(k)
n =

θ̂
(k)
n −F̃ (θ0) denote the difference between the empirical and the population minimizer
of the KRR.

§3.5.3 Proof of Theorem 3.2.2

In the proof we use ideas from the proof of Theorem 2.1 of (Bhattacharya et al.,
2017). The main differences between their and our results are that we are consid-
ering (various) distributed Bayesian methods (not just the standard posterior with
m = 1) and that we extend the results to general Gaussian process priors (including
kernel with polynomially decaying and exponentially decaying eigenvalues), while the
proof (Bhattacharya et al., 2017) only covered the rescaled version of the kernel with
polynomially decaying eigenvalues, with scaling factor depending on the sample size.
More specifically we do not require that the true function belongs to the RKHS of
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the GP prior, which substantially extends the applicability of our results. Finally in
our analysis we consider the multivariate d-dimensional case, work with L2-norm and
consider Sobolev type of regularity classes rather than L∞ norm and hyper-rectangles
induced by the series decomposition with respect to the eigenbasis ψj . These exten-
sions and conceptual differences required substantially different proof techniques than
in (Bhattacharya et al., 2017).

First note that in view of the inequality (a+ b)2 ≤ 2a2 + 2b2, we get

E0

∥∥∥θ̂n,m − θ0

∥∥∥2
2
≤ 2

∥∥∥θ0 − F̃ (θ0)
∥∥∥2
2
+ 2E0

∥∥∥θ̂n,m − F̃ (θ0)
∥∥∥2
2
,

where θ̂n,m is the mean of the global posterior Π†
n,m(.|Dn) obtained with either method

I or II. Then we show in Section 3.5.3.1 that for θ0 ∈ Θβ(B)

E0

∥∥∥θ̂n,m − F̃ (θ0)
∥∥∥2
2
≲

 1

n

∑
j∈Nd

ν2j

(∥P̃ (θ0)∥22 + σ2
)
+ δn, (3.5.7)

where

δn = inf

n
∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ : I ⊂ Nd, |I| ≤ n

m2

∑
j∈Nd

ν2j

−1


concluding the proof of the first statement.
For the contraction rate note that by using Markov’s and triangle inequalities we

get

E0Π
†
n,m (θ : ∥θ − θ0∥2 ≥Mnεn|Dn) ≤ 2

E0E
†
n,m

[∥∥∥θ − θ̂n,m

∥∥∥2
2
|Dn
]
+ E0

∥∥∥θ̂n,m − θ0

∥∥∥2
2

M2
nε

2
n

.

Therefore it is sufficient to show that

E0E
†
n,m

[∥∥∥θ − θ̂n,m

∥∥∥2
2
|Dn
]
= O

σ2

n

∑
j

νj

 .

In view of Fubini’s theorem the expected squared L2-norm of the process θ− θ̂n,m|Dn
is the integral of the aggregated posterior variance of θ(x) over X ,

E†
n,m

[∥∥∥θ − θ̂n,m

∥∥∥2
2
|Dn
]
=

∫
X
Var†n,m (θ (x) |Dn) dx.

In the non-distributed setting, the posterior variance only depends on the design
matrix X. The expectation of this integral is known as the learning curve in Chapter
7 of (Rasmussen and Williams, 2006). In Section 3.5.3.2 we prove that

E0

∫
X
Var†n,m (θ (x) |Dn) dx ≍ σ2

∑
j∈Nd

µj
σ2 + nµj

=
σ2

n

∑
j∈Nd

νj , (3.5.8)

concluding the proof of the statement.

81



3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

3.5.3.1 Proof of (3.5.7)

First note, that in view of the inequality (a+ b)2 ≤ 2a2 + 2b2,∥∥∥∆θ̂(k)n

∥∥∥2
2
≤ 2

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
+ 2

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
.

Then we show below that

E0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
≲

1

m
E0

∥∥∥∆θ̂(k)n

∥∥∥2
2
+ δn, (3.5.9)

which together with the preceding display implies

E0

∥∥∥∆θ̂(k)n

∥∥∥2
2
≤ (2 + o (1))

(
E0

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
+ Cδn

)
.

By combining the preceding two displays we arrive at

E0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2

≲
1

m
E0

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
+ δn.

For the aggregated estimator we get that

∥∥∥∆θ̂n,m∥∥∥2
2
≲

∥∥∥∥∥∆θ̂n,m − 1

m

m∑
k=1

F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥∥∥
2

2

+

∥∥∥∥∥ 1

m

m∑
k=1

F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥∥∥
2

2

.

Then in view of the preceding display, the independence of the data across machines

and E0

(
F̃ ◦ F−1 ◦ Ŝ(k)

n (F̃ (θ0))
)
= 0 we get that

E0

∥∥∥∆θ̂n,m∥∥∥2
2
≲

1

m
E0

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
+ δn.

Finally we verify below that

E0

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
≲

 1

n/m

∑
j∈Nd

ν2j

(∥∥∥P̃ (θ0)
∥∥∥2
2
+ σ2

)
, (3.5.10)

which together with ∥P̃ (θ0)∥22 ≤ ∥θ0∥22 ≤ B2 provides us (3.5.7).

Proof of (3.5.9): First note that the identity ∆θ̂
(k)
n = −F̃ ◦ F−1 ◦ S(k)

n (θ̂
(k)
n ) follows

from assertions (3.5.5) and (3.5.6). This implies together with the properties of Ŝ
(k)
n

and S
(k)
n , that(
Ŝ(k)
n

(
θ̂(k)n

)
− S(k)

n

(
θ̂(k)n

))
−
(
Ŝ(k)
n

(
F̃ (θ0)

)
− S(k)

n

(
F̃ (θ0)

))
= F ◦ F̃−1

(
∆θ̂(k)n

)
− Ŝ(k)

n

(
F̃ (θ0)

)
. (3.5.11)
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On the other hand, in view of (3.5.6),

Ŝ(k)
n (θ)− S(k)

n (θ) =
1

n/m

n/m∑
i=1

(
Y

(k)
i − θ

(
X

(k)
i

))
K
X

(k)
i

−
∫
X
(θ0 (x)− θ (x))Kxdx

for all functions θ ∈ H. Therefore, by applying the preceding display twice with

θ = θ̂
(k)
n and θ = F̃ (θ0), we get that

(
Ŝ(k)
n

(
θ̂(k)n

)
− S(k)

n

(
θ̂(k)n

))
−
(
Ŝ(k)
n

(
F̃ (θ0)

)
− S(k)

n

(
F̃ (θ0)

))
= − 1

n/m

n/m∑
i=1

∆θ̂(k)n (X
(k)
i )K

X
(k)
i

+

∫
X
∆θ̂(k)n (x)Kxdx.

Combining assertion (3.5.11) with the preceding display and then using Lemma 3.7.2

(with ϑ̂ = ∆θ̂
(k)
n , satisfying the boundedness assumption, see Lemma 3.7.9) together

with Lemma 3.7.7, we get for arbitrary index set I ⊂ Nd that

E0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ S(k)
n

(
F̃ (θ0)

)∥∥∥2
2

= E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

∆θ̂(k)n

(
X

(k)
i

)
K
X

(k)
i

−
∫
X
∆θ̂(k)n (x)Kxdx

∥∥∥∥∥∥
2

2

≲
|I| log n
n/m

∑
j∈Nd

ν2jE0

∥∥∥∆θ̂(k)n

∥∥∥2
2
+ n

∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ.

Taking the minimum over |I| ≤ n
m2 logn (

∑
j∈Nd ν2j )

−1, we get that

E0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ S(k)
n (F̃ (θ0))

∥∥∥2
2
≲

1

m
E0∥∆θ̂(k)n ∥22 + δn (3.5.12)

concluding the proof of (3.5.9).

Proof of (3.5.10). In view of the linearity of the operator F̃ ◦ F−1, the inequality
∥θ1 + θ2∥22 ≤ 2∥θ1∥22 + 2∥θ2∥22, and

Ŝ(k)
n

(
F̃ (θ0)

)
=

1

n/m

n/m∑
i=1

(
Y

(k)
i − θ0

(
X

(k)
i

))
K
X

(k)
i

+
1

n/m

n/m∑
i=1

P̃ (θ0)
(
X

(k)
i

)
K
X

(k)
i

− σ2

n
F̃ (θ0) ,
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the left hand side of (3.5.10) can be bounded from above as

E0

∥∥∥F̃ ◦ F−1
(
Ŝ(k)
n

(
F̃ (θ0)

)
− S(k)

n

(
F̃ (θ0)

))∥∥∥2
2

≤ 2E0

∥∥∥∥∥∥F̃ ◦ F−1

 1

n/m

n/m∑
i=1

P̃ (θ0)
(
X

(k)
i

)
K
X

(k)
i

−
∫
X
P̃ (θ0) (x)Kxdx

∥∥∥∥∥∥
2

2

+ 2E0

∥∥∥∥∥∥F̃ ◦ F−1

 1

n/m

n/m∑
i=1

ε
(k)
i K

X
(k)
i

∥∥∥∥∥∥
2

2

=: (T1 + T2).

We deal with terms T1 and T2 separately. In view of Lemma 3.7.1 (with ϑ = P̃ (θ0))

T1 ≤ 2C

n/m

∑
j∈Nd

ν2j

∥∥∥P̃ (θ0)
∥∥∥2
2
,

for some C > 0. Since the operator F̃ ◦ F−1 is linear, we get that

T2 =
2

(n/m)2

n/m∑
i=1

E0

((
ε
(k)
i

)2 ∥∥∥F̃ ◦ F−1
(
K
X

(k)
i

)∥∥∥2
2

)
+

4

(n/m)2

∑
1≤i<ℓ≤n

E0

(
ε
(k)
i ε

(k)
ℓ F̃ ◦ F−1

(〈
K
X

(k)
i
,K

X
(k)
ℓ

〉
2

))
=

2σ2

n/m
E0

∥∥∥F̃ ◦ F−1
(
K
X

(k)
1

)∥∥∥2
2
=

2σ2

n/m

∑
j∈Nd

ν2j ,

because the cross terms are equal to 0 due to independence of the noise ε
(k)
i , i =

1, ..., n/m, k = 1, ...,m.

3.5.3.2 Proof of (3.5.8)

In this section we give upper bounds for the learning curves in case of both distributed
methods.

Method I: Let us denote by µIj = mµj the eigenvalues of the local covariance kernel.
Then in view of Lemma 3.7.4, the expectations of the m local posterior variances are
all of the same order

E0EX Var
(
θ(X)|D(k)

n

)
≍ σ2

∑
j∈Nd

µIj
σ2 + (n/m)µIj

= σ2
∑
j∈Nd

mµj
σ2 + nµj

=
σ2

n/m

∑
j∈Nd

νj .

Since the variance of the global posterior distribution ΠIn,m(.|Dn) satisfies the following
equality

VarIn,m (θ(x)) = m−2
m∑
k=1

Var
(
θ(x)|D(k)

n

)
,
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one can see that

E0EX VarIn,m (θ(X)) ≍ σ2

n

∑
j∈Nd

νj .

Method II: First note that µIIj = µj the eigenvalues of the local covariance kernel.
Note that the expectations of the m local posterior variances are all of the same order

E0EX Var
(
θ(X)|D(k)

n

)
≍ σ2

m

∑
j∈Nd

µIIj
σ2/m+ (n/m)µIIj

=
σ2

n

∑
j∈Nd

νj ,

because the variance of the noise is σ2/m for each machine. The variance of the
aggregated posterior distribution ΠIIn,m(.|Dn) satisfies

E0EX VarIIn,m (θ(X)|Dn) ≍
σ2

n

∑
j∈Nd

νj

because we know that

VarIIn,m (θ(X)|Dn) = m−1
m∑
k=1

Var
(
θ(x)|D(k)

n

)
proving assertion (3.5.8).

§3.5.4 Proof of Theorem 3.2.1

The proof follows similar lines of reasoning as Theorem 3.2.2, where we provided
general upper bounds for the contraction rate of the distributed posterior.

First we prove (3.2.3). For the naive averaging method the local sample and
population score functions coincide to the non-distributed case given in Section 3.5.1
with sample size n/m, i.e.

Ŝ∗(k)
n (θ) =

1

n/m

n/m∑
i=1

(
Y

(k)
i − θ

(
X

(k)
i

))
K
X

(k)
i

− σ2θ

 ,
S∗(k)
n (θ) =

∫
X
(θ0(x)− θ(x))Kxdx− σ2

n/m
θ = F (θ0 − θ)− σ2

n/m
θ.

Note that the solution of the equation S
∗(k)
n (θ) = 0 is given by the coefficients θj =

ν∗j θ0,j , with ν
∗
j =

nµj

mσ2+nµj
, j ∈ Nd.

Then using the inequality a2 ≥ (a− b)2/2− b2 one can obtain that

E0

∥∥∥θ̂∗n,m − θ0

∥∥∥2
2
≥ 1

2

∥∥∥θ0 − F̃ ∗(θ0)
∥∥∥2
2
− E0

∥∥∥θ̂∗n,m − F̃ ∗(θ0)
∥∥∥2
2
,

where F̃ ∗(θ) =
∑
j∈N ν

∗
j θjψj and θ̂

∗
n,m is the mean of the global posterior Π†

n,m(.|Dn)
obtained with the naive averaging method.
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First note that∥∥∥θ0 − F̃ ∗(θ0)
∥∥∥2
2
=

∞∑
j=1

m

mσ2 + nµj
θ20,j ≥

cL
2

∑
(n/(mσ2))1/(2β+1)≤j

j−1−2β(log j)−2

≥ c0(n/m)−2β/(2β+1)(log(n/m))−2, (3.5.13)

for some small enough c0 > 0. We conclude the proof of (3.2.3) by showing below

that E0∥θ̂n,m − F̃ (θ0)∥22 = o((n/m)−2β/(2β+1)(log(n/m))−2).

Similarly to (3.5.7) we can derive (by replacing F̃ and ν with F̃ ∗ and ν∗, respec-
tively) that

E0

∥∥∥θ̂∗n,m − F̃ ∗(θ0)
∥∥∥2
2
≲

 1

n

∞∑
j=1

(ν∗j )
2

(∥∥∥P̃ ∗(θ0)
∥∥∥2
2
+ σ2

)
+ δ∗n, (3.5.14)

where δ∗n = n
∑∞
j=1(ν

∗
j )

2
∑∞
ℓ=I µℓ, with I = n

m2 logn (
∑∞
j=1(ν

∗
j )

2)−1. Note that ∥P̃ ∗(θ0)∥22 =

O(1) and in view of Lemma 3.7.5,
∑∞
j=1(ν

∗
j )

2 ≍ (n/m)1/(2β+1); hence

I ≍ (n/m)2β/(2β+1)

m log n
.

Therefore the first term on the right hand side of (3.5.14) is O(n−2β/(2β+1)m−1/(2β+1))
and

δ∗n ≲ n(n/m)1/(1+2β)I−2β ≍ n2−2βm−1+4β(log n)2β = o
(
(log(n/m))

−2
)
,

where the last step holds for large enough choice of β and not too large choice of m.
For instance taking β > 2 and m = o(n1/(2+2β)), we get that

δ∗n(n/m)2β/(2β+1) ≲ n−c0 log4 n = o
(
(log(n/m))−2

)
,

for some c1 > 0.
It remained to deal with (3.2.4). First note that by the computations above

combined with Markov’s inequality there exists a sequence ρn → 0 such that

P0

(∥∥∥θ̂∗n,m − F̃ ∗(θ0)
∥∥∥
2
≥ ρn(n/m)−β/(2β+1)(log(n/m))−1

)
→ 0.

Then by triangle inequality, (3.5.13) and Markov’s inequality we get for c < c0 that

E0Π
∗
n,m

(
θ : ∥θ − θ0∥2 ≤ c(n/m)−β/(2β+1)(log(n/m))−1|Dn

)
≤ E0Π

∗
n,m

(∥∥∥θ0 − F̃ ∗(θ0)
∥∥∥
2
−
∥∥∥θ̂∗n,m − F̃ ∗(θ0)

∥∥∥
2

− c(n/m)−β/(2β+1)(log(n/m))−1 ≤
∥∥∥θ − θ̂∗n,m

∥∥∥
2
|Dn
)

≤ E0Π
∗
n,m

(
(c0 − c− ρn)(n/m)−β/(2β+1)(log(n/m))−1 ≤

∥∥∥θ − θ̂∗n,m

∥∥∥
2
|Dn
)
+ o(1)

≲ (n/m)2β/(2β+1)(log(n/m))2E0E
∗
n,m

∥∥∥θ − θ̂∗n,m

∥∥∥2
2
.
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We conclude the proof by noting that

E0EX Var
(
θ(X)|D(k)

n

)
= σ2

∞∑
j=1

µj
σ2 + (n/m)µj

=
σ2

n/m

∞∑
j=1

ν∗j ,

for all k ∈ {1, ...,m}; hence

E0E
∗
n,m

∥∥∥θ − θ̂∗n,m

∥∥∥2
2
=

1

m2

m∑
k=1

E0EX Var
(
θ(X)|D(k)

n

)
=
σ2

n

∞∑
j=1

ν∗j ≲
σ2

m
(n/m)−2β/(2β+1).

§3.5.5 Proof of Theorem 3.3.1

We first consider the non-distributed case m = 1 for clearer presentation and then
extend our results to the distributed setting.

3.5.5.1 Non-distributed setting

Connection to KRR Similarly to the posterior mean, the posterior covariance
function Ĉn can be given as

Ĉn(x, x
′) = K(x, x′)− K̂n(x, x

′),

where K̂n(x, ·) = K(·,X)[K(X,X) + σ2In]
−1K(X, x), or equivalently

K̂x,n = K̂n(x, ·) = arg min
ϑ∈H

[
1

n

n∑
i=1

(K(x,Xi)− ϑ(Xi))
2
+
σ2

n
∥ϑ∥2H

]
, (3.5.15)

see assertion (8) of (Bhattacharya et al., 2017).

Then by taking the Fréchet derivative of the expression on the right hand side we
arrive to the (adjusted) score function and its expected value

ŜKx,n(ϑ) =
1

n

(
n∑
i=1

(Kx(Xi)− ϑ(Xi))KXi − σ2ϑ

)
,

SKx,n(ϑ) = EŜKx,n(ϑ) =

∫
X
(Kx(z)− ϑ(z))Kzdz −

σ2

n
ϑ.
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Then similarly to the posterior mean in Section 3.5.1 the following assertions hold

SKx,n(ϑ) = F (Kx)− F ◦ F̃−1(ϑ) = F
(
Kx − F̃−1(ϑ)

)
, (3.5.16)

∆K̂x,n = K̂x,n − F̃ (Kx) = −F̃ ◦ F−1 ◦ SKx,n

(
K̂x,n

)
, (3.5.17)

ŜKx,n

(
F̃ (Kx)

)
=

1

n

(
n∑
i=1

P̃ (Kx)(Xi)KXi
− σ2F̃ (Kx)

)
, (3.5.18)

F ◦ F̃−1
(
∆K̂x,n

)
− ŜKx,n

(
F̃ (Kx)

)
= − 1

n

n∑
i=1

∆K̂x,n(Xi)KXi
+

∫
X
∆K̂x,n(x

′)Kx′dx′, (3.5.19)

and note that K̂x,n and F̃ (Kx) are the zero points of the functions ŜKx,n and SKx,n,
respectively.

Under-smoothing Following from the triangle inequality, to obtain frequentist
coverage for the credible ball it is sufficient to show that for Ln → ∞

P0

(∥∥∥P̃ (θ0)∥∥∥
2
+
∥∥∥θ̂n − F̃ (θ0)

∥∥∥
2
≤ Lnrn,γ

)
→ 1.

The preceding display is implied by assumption (3.3.1) and assertions

P0

∥∥∥∆θ̂n∥∥∥2
2
≤ Ln

σ2

n

∑
j∈Nd

νj

→ 1, (3.5.20)

P0

r2n,γ ≥ 1

2C2
ψ

σ2

n

∑
j∈Nd

νj

→ 1, (3.5.21)

where ∆θ̂n := θ̂n − F̃ (θ0), verified below.

Proof of (3.5.20): In view of assertion (3.5.7) withm = 1 and Markov’s inequality
we get

P0

∥∥∥∆θ̂n∥∥∥2
2
≤ Ln

σ2

n

∑
j∈Nd

νj

 ≤
E0

∥∥∥∆θ̂n∥∥∥2
2

Ln
σ2

n

∑
j∈Nd νj

≲

(
1
n

∑
j∈Nd ν2j

)
+ δn

Ln
σ2

n

∑
j∈Nd νj

= O

(
1

Ln
+

nδn∑
j∈Nd νj

)
= o(1).

Proof of (3.5.21): The radius rn,γ is defined, conditionally on X, as P (∥Wn∥22 ≤
r2n,γ |X) = 1−γ, whereWn is a centered GP with covariance kernel Ĉn given in (3.1.3).
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In view of Chebyshev’s inequality

r2n,γ ≥ E
[
∥Wn∥22|X

]
− (1− γ)−1/2 Var

(
∥Wn∥22|X

)1/2
.

Using Fubini’s theorem, the first term on the right hand side of the preceding display
can be rewritten as

E
[
∥Wn∥22|X

]
= E

[
∥θ − θ̂n∥22|Dn

]
=

∫
X
Var (θ(x)|Dn) dx.

The integral on the right-hand side of the display, called the generalization error, see
Chapter 7 of (Rasmussen and Williams, 2006), is asymptotically bounded from below
almost surely by

σ2
∑
j∈Nd

µj

σ2 + nµjsupx∈X ψ
2
j (x)

≥
σ2C−2

ψ

n

∑
j∈Nd

νj , (3.5.22)

in view of assertion (12) of (Opper and Vivarelli, 1999) and Assumption 3.1.1. Fur-
thermore, the variance of ∥Wn∥22, conditional on the design X, is

Var
(
∥Wn∥22|X

)
= E

[
∥Wn∥42|X

]
− E2

[
∥Wn∥22|X

]
.

The first term on the right hand-side satisfies

E
[
∥Wn∥42|X

]
= E

[
∥θ − θ̂n∥42|Dn

]
(3.5.23)

=

∫ (∫
X

(
θ(x)− θ̂n(x)

)2
dx

∫
X

(
θ(x′)− θ̂n(x

′)
)2
dx′
)
Π(dθ|Dn)

=

∫
X

∫
X

∫ (
θ(x)− θ̂n(x)

)2 (
θ(x′)− θ̂n(x

′)
)2

Π(dθ|Dn)dxdx′

=

∫
X

∫
X

(
Var (θ(x)|Dn)Var (θ(x′)|Dn) + 2Ĉn(x, x

′)2
)
dx′dx

=

(∫
X
Var (θ(x)|Dn) dx

)2

+ 2

∫
X

∥∥∥Ĉn(x, .)∥∥∥2
2
dx

= E2
[
∥Wn∥22|X

]
+ 2

∫
X

∥∥∥Ĉn(x, .)∥∥∥2
2
dx, (3.5.24)

using Fubini’s theorem and the reduction formula EX2
1X

2
2 = V ar(X1)V ar(X2) +

2Cov(X1, X2)
2 for X1, X2 centered Gaussian random variables, see for instance page

189 of (Isserlis, 1916). Hence, again in view of Fubini’s theorem,

E0 Var
(
∥Wn∥22|X

)
= 2

∫
X
E0

∥∥∥Ĉn(x, .)∥∥∥2
2
dx. (3.5.25)

Recall that the covariance function Ĉn(x, x
′) = K(x, x′) − K̂n(x, x

′), where K̂x,n =

K̂n(x, .) is the solution to (3.5.15). We show below that for all x ∈ X

E0

∥∥∥Ĉn(x, .)∥∥∥2
2
≲
∥∥∥P̃ (Kx)

∥∥∥2
2
+ δ̃n, (3.5.26)
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for

δ̃n = inf


∑
j∈Nd

ν2j

2 ∑
ℓ∈Ic

µℓ : I ⊂ Nd, |I| = o

n
∑
j∈Nd

ν2j

−1

 .

In view of the definition of the linear operator P̃ and the eigenvalues νj , µj we get

P̃ (K(x, x′)) =
∑
j∈Nd

(1− νj)µjψj(x)ψj(x
′) =

σ2

n

∑
j∈Nd

νjψj(x)ψj(x
′), (3.5.27)

for all x, x′ ∈ X . Then by combining the last three displays

E0 Var
(
∥Wn∥22|X

)
= 2

∫
X
E0

∥∥∥Ĉn(x, .)∥∥∥2
2
dx

≲
∫
X

∥∥∥P̃ (K(x, .))
∥∥∥2
2
dx+ δ̃n

=

(
σ2

n

)2 ∫
X

∑
j∈Nd

ν2jψj(x)
2dx+ δn

∑
j∈Nd ν2j

n

=

(
σ2

n

)2 ∑
j∈Nd

ν2j + δn

∑
j∈Nd ν2j

n
. (3.5.28)

Therefore, by Markov’s inequality and Lemmas 3.7.5 and 3.7.6,

P0

Var
(
∥Wn∥22|X

)1/2 ≥ t
σ2

n

∑
j∈Nd

νj

 ≲ t−2

( ∑
j∈Nd ν2j

(
∑
j∈Nd νj)2

+
nδn

∑
j∈Nd ν2j

(
∑
j∈Nd νj)2

)
→ 0

for all t > 0. Hence by combining (3.5.22) and the preceding display (with t =
(1− γ)1/2C−2

ψ /2),

P0

E [∥Wn∥22|X
]
− (1− γ)−1/2 Var

(
∥Wn∥22|X

)1/2 ≥ (C−2
ψ /2)

σ2

n

∑
j∈Nd

νj

→ 1.

This implies that all the quantiles of ∥Wn∥22, conditionally on X, are of the order
(σ2/n)

∑
j∈Nd νj with P0-probability going to one, including r2n,γ .

Proof of (3.5.26): First note that by the inequality (a+ b)2 ≤ 2a2 + 2b2,∥∥∥Ĉn(x, .)∥∥∥2
2
≤ 2

∥∥∥P̃ (Kx)
∥∥∥2
2
+ 2

∥∥∥∆K̂x,n

∥∥∥2
2
,

where ∆K̂x,n = K̂x,n − F̃ (Kx).
Next we give an upper bound for the second term of the preceding display similarly

to Section 3.5.3.1. First note that∥∥∥∆K̂x,n

∥∥∥2
2
≲
∥∥∥∆K̂x,n − F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2
+
∥∥∥F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2
.
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Then by showing below that

E0

∥∥∥∆K̂x,n − F̃ ◦ F−1 ◦ ŜKx,n(F̃ (Kx))
∥∥∥2
2
≤ o

(
E0

∥∥∥∆K̂x,n

∥∥∥2
2

)
+ δ̃n, (3.5.29)

we arrive at

E0

∥∥∥∆K̂x,n

∥∥∥2
2
≲ E0

∥∥∥F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2
+ δ̃n.

Next, in view of (3.5.18),

E0

∥∥∥F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2
= E0

∥∥∥F̃ ◦ F−1
(
ŜKx,n

(
F̃ (Kx)

)
− SKx,n

(
F̃ (Kx)

))∥∥∥2
2

= E0

∥∥∥∥∥F̃ ◦ F−1

(
1

n

n∑
i=1

P̃ (Kx)(Xi)KXi
−
∫
X
P̃ (Kx)(x

′)Kx′dx′

)∥∥∥∥∥
2

2

≤

 1

n

∑
j∈Nd

ν2j

∥∥∥P̃ (Kx)
∥∥∥2
2
= o

(∥∥∥P̃ (Kx)
∥∥∥2
2

)
,

where the last line follows from Lemma 3.7.1 with ϑ = P̃ (Kx) (and m = 1), conclud-
ing the proof of (3.5.26).

Proof of (3.5.29): Similarly to (3.5.12), by using assertion (3.5.19), Lemma 3.7.2

(with ϑ̂ = ∆K̂x,n, sample size n) and Lemma 3.7.3 (with m = 1), we can show that
for all x ∈ X

E0

∥∥∥∆K̂x,n − F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2

= E0

∥∥∥∥∥(F̃ ◦ F−1)

(
1

n

n∑
i=1

∆K̂x,n(Xi)KXi
−
∫
X
∆K̂x,n(x

′)Kx′dx′

)∥∥∥∥∥
2

2

≲
|I| log n

∑
j∈Nd ν2j

n
E0

∥∥∥∆K̂x,n

∥∥∥2
2
+

∑
j∈Nd

ν2j

2 ∑
ℓ∈Ic

µℓ.

Taking the infimum over |I| = o
(
n/(log n

∑
j∈Nd ν2j )), we get that the left hand-

side of the preceding display is bounded from above by o(E0∥∆K̂x,n∥22)+ δ̃n, conclud-
ing the proof of the statement.

Over-smoothing By the definition of credible sets and using the triangle inequality,
we get that

P0

(
θ0 ∈ B̂n,γ(L)

)
≤ P0

(∥∥∥P̃ (θ0)∥∥∥
2
≤
∥∥∥θ̂n − F̃ (θ0)

∥∥∥
2
+ Lrn,γ

)
≤ P0

(∥∥∥P̃ (θ0)∥∥∥
2
≤ 2

∥∥∥θ̂n − F̃ (θ0)
∥∥∥
2

)
+ P0

(∥∥∥P̃ (θ0)∥∥∥
2
≤ 2Lrn,γ

)
and we show below that both probabilities on the right hand side tend to zero.
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The first term disappears in view of (3.5.20) and assumption (3.3.2). For the
second term note, that in view of Markov’s inequality and P0(∥Wn∥22 ≥ r2n,γ |X) = γ,

where Wn is a centered GP with covariance kernel Ĉn, we have γr2n,γ ≤ E[∥Wn∥22|X].
Then

P0

(
2Lr2n,γ ≥

∥∥∥P̃ (θ0)∥∥∥2
2

)
≤ P0

(
E
[
∥Wn∥22|X

]
≥ γ

2L

∥∥∥P̃ (θ0)∥∥∥2
2

)
≤

2LE0(
∫
X Var (θ(x)|Dn) dx)

γ
∥∥∥P̃ (θ0)∥∥∥2

2

. (3.5.30)

The expectation in the numerator, known as the learning curve, is of order (σ2/n)
∑
j∈Nd νj

according to Lemma 3.7.4; thus for all L > 0 not depending on n the right hand side
of the preceding display goes to 0 in view of assumption (3.3.2).

3.5.5.2 Distributed setting

Preliminary results. We start by introducing the distributed version of the nota-
tions introduced in Section 3.5.5.1. The aggregated posterior covariance function is

ĈIn,m(x, x′) = m−2
∑m
k=1 Ĉ

I,(k)
n (x, x′), where the local posterior covariance functions

can be given as Ĉ
I,(k)
n (x, x′) = KI

x(x
′)− K̂

I,(k)
x (x′) with

K̂I,(k)
x (·) = KI

(
·,X(k)

) [
KI
(
X(k),X(k)

)
+ σ2In/m

]−1

KI
(
X(k), x

)
= mK

(
·,X(k)

) [
K
(
X(k),X(k)

)
+m−1σ2In/m

]−1

K
(
X(k), x

)
.

Then in view of (3.5.15),

m−1K̂I,(k)
x = argmin

ϑ∈H

1

n/m

n/m∑
i=1

(
Kx(X

(k)
i )− ϑ(X

(k)
i )

)2
+
σ2

m
∥ϑ∥2H

 .
For convenience let us introduce the notation K̃

I,(k)
x = m−1K̂

I,(k)
x . Then the corre-

sponding score function (up to constant multipliers) is given by

Ŝ
I,(k)
Kx,n

(ϑ) =
1

n/m

n/m∑
i=1

(
Kx(X

(k)
i )− ϑ(X

(k)
i )

)
K
X

(k)
i

− σ2

m
ϑ


satisfying Ŝ

I,(k)
Kx,n

(K̃
I,(k)
x ) = 0. Furthermore the expected value of the score function is

SIKx,n(ϑ) = EŜ
I,(k)
Kx,n

(ϑ) =

∫
X
(Kx(z)− ϑ(z))Kzdz −

σ2

n
ϑ = SKx,n(ϑ),

hence SIKx,n
(F̃ (Kx)) = 0.
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Then similarly to the posterior mean in Section 3.5.1 the following assertions hold

∆K̃I,(k)
x = K̃I,(k)

x − F̃ (Kx) = −F̃ ◦ F−1 ◦ SIKx,n

(
K̃I,(k)
x

)
,

Ŝ
I,(k)
Kx,n

(
F̃ (Kx)

)
=

1

n/m

n/m∑
i=1

P̃ (Kx)
(
X

(k)
i

)
K
X

(k)
i

− σ2

m
F̃ (Kx)

 , (3.5.31)

F ◦ F̃−1
(
∆K̃I,(k)

x

)
− Ŝ

I,(k)
Kx,n

(
F̃ (Kx)

)
= − 1

n/m

n/m∑
i=1

∆K̃I,(k)
x

(
X

(k)
i

)
K
X

(k)
i

+

∫
X
∆K̃I,(k)

x (x′)Kx′dx′.

(3.5.32)

Main assertions. Similarly to the non-distributed case in Section 3.5.5.1, for the
coverage of the credible sets it is sufficient to show that

P0

r2n,m(γ) ≥ C2
σ2

n

∑
j∈Nd

νj

→ 1, (3.5.33)

P0

∥∥∥θ̂n,m − F̃ (θ0)
∥∥∥2
2
≤ Ln

σ2

n

∑
j∈Nd

νj

→ 1, (3.5.34)

where the radius rn,m(γ) is defined as P (∥Wn,m∥22 ≤ r2n,m(γ)|X) = 1− γ and Wn,m is

a centered GP with the same covariance kernel as Π†
n,m(.|Dn). Furthermore, the lack

of coverage under (3.3.2) follows from

P0

(
Lr2n,m(γ) ≥

∥∥∥P̃ (θ0)∥∥∥2
2

)
→ 0. (3.5.35)

We prove below the above assertions.

Proof of (3.5.33): Similarly to the proof of (3.5.21) we get by Chebyshev’s
inequality that

r2n,m(γ) ≥ E
[
∥Wn,m∥22|X

]
− (1− γ)−1/2 Var

(
∥Wn,m∥22|X

)1/2
.

Then in view of

VarIn,m (θ(x)) = m−2
m∑
k=1

VarI
(
θ(x)|D(k)

n

)
, for all x ∈ X , (3.5.36)

and Lemma 3.7.4 it holds almost surely that

E
[
∥Wn,m∥22|X

]
=

∫
x∈X

VarIn,m (θ(x)) dx ≳
σ2

n

∑
j∈Nd

νj . (3.5.37)

Furthermore, as in (3.5.25),

Var
(
∥Wn,m∥22|X

)
= 2

∫
X

∥∥∥ĈIn,m(x, .)
∥∥∥2
2
dx.
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Recall that the covariance function ĈIn,m(x, x′) = m−2
∑m
k=1 Ĉ

I,(k)
n (x, x′). Then in

view of (
∑m
i=1 ai)

2 ≤ m
∑m
i=1 a

2
i ,

∥∥∥ĈIn,m(x, .)
∥∥∥2
2
=

∥∥∥∥∥m−2
m∑
k=1

ĈI,(k)n (x, .)

∥∥∥∥∥
2

2

≤ m−3
m∑
k=1

∥∥∥ĈI,(k)n (x, .)
∥∥∥2
2
.

We show below that

E0

∥∥∥ĈI,(k)n (x, .)
∥∥∥2
2
≲ m2

(∥∥∥P̃ (Kx)
∥∥∥2
2
+ δ̃n

)
, (3.5.38)

for δ̃n = inf{(
∑
j∈Nd ν2j )

2
∑
ℓ∈Ic µℓ : |I| ≤ n/(m2 log n

∑
j∈Nd ν2j )} similarly to the

non-distributed case. Then in view of assertion (3.5.27), the variance of ∥Wn,m∥22,
similarly to (3.5.28), is bounded from above by

E0 Var
(
∥Wn,m∥22|X

)
= 2

∫
X
E0

∥∥∥ĈIn,m(x, .)
∥∥∥2
2
dx

≲

(∫
X

∥∥∥P̃ (KI
x)
∥∥∥2
2
dx+ δ̃n

)
=
σ4

n2

∑
j∈Nd

ν2j + δ̃n.

Hence for all t > 0 we get by Markov’s inequality and Lemmas 3.7.5 and 3.7.6 that

P0

Var
(
∥Wn,m∥22|X

)
≥ t

σ4

n2

∑
j∈Nd

νj

2


≲ t−2

 ∑
j∈Nd ν2j(∑
j∈Nd νj

)2 +
δ̃nn

2

σ4
(∑

j∈Nd νj

)2
 = o(1).

Hence with P0-probability tending to one E[∥Wn,m∥22|Xn] is of higher order than
Var(∥Wn,m∥22)1/2. Therefore, the quantiles of ∥Wn,m∥22 are of the order (σ2/n)

∑
j∈Nd νj

with P0-probability going to one, including r2n,m(γ).

Proof of (3.5.38): We adapt the proof of (3.5.26) to the distributed setting. First
note that

∥∥∥ĈI,(k)n (x, .)
∥∥∥2
2
≲ m2

(∥∥∥P̃ (Kx)
∥∥∥2
2
+
∥∥∥∆K̃I,(k)

x − F̃ ◦ F−1 ◦ ŜI,(k)Kx,n

(
F̃ (Kx)

)∥∥∥2
2

+
∥∥∥F̃ ◦ F−1 ◦ ŜI,(k)Kx,n

(
F̃ (Kx)

)∥∥∥2
2

)
,
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where ∆K̃
I,(k)
x = K̂

I,(k)
x /m− F̃ (Kx). Then for, in view of (3.5.31), we get that

E0

∥∥∥F̃ ◦ F−1 ◦ ŜI,(k)Kx,n

(
F̃ (Kx)

)∥∥∥2
2

= E0

∥∥∥F̃ ◦ F−1
(
Ŝ
I,(k)
Kx,n

(
F̃
(
Kx)

)
− S

I,(k)
Kx,n

(
F̃
(
Kx)

))∥∥∥2
2

= E0

∥∥∥∥∥∥F̃ ◦ F−1

 1

n/m

n/m∑
i=1

P̃ (Kx)
(
X

(k)
i

)
K
X

(k)
i

−
∫
X
P̃ (Kx)(x

′)Kx′dx′

∥∥∥∥∥∥
2

2

≤

 1

n/m

∑
j∈Nd

ν2j

 ∥P̃ (Kx)∥22 = o
(
∥P̃ (Kx)∥22

)
,

where the penultimate inequality follows from Lemma 3.7.1 with ϑ = P̃ (Kx).

Furthermore, similarly to the proof in Section 3.5.5.1, by using assertion (3.5.32),

Lemma 3.7.2 (with ϑ̂(k) = ∆K̃
I,(k)
x , sample size n/m) and Lemma 3.7.3, we can show

that for all x ∈ X

E0

∥∥∥∆K̃I,(k)
x − F̃ ◦ F−1 ◦ ŜI,(k)Kx,n

(
F̃ (Kx)

)∥∥∥2
2

= E0

∥∥∥∥∥∥(F̃ ◦ F−1)

 1

n/m

n/m∑
i=1

∆K̃I,(k)
x

(
X

(k)
i

)
K
X

(k)
i

−
∫
X
∆K̃I,(k)

x (x′)Kx′dx′

∥∥∥∥∥∥
2

2

≲
|I| log n

∑
j∈Nd ν2j

n/m
E0∥∆K̃I,(k)

x ∥22 + δ̃n.

Taking the infimum over |I| = o
(
n/(m log n

∑
j∈Nd ν2j )

)
we get that the left hand side

of the preceding display is bounded from above by o(E0∥∆K̃(k)
x,n∥22)+ δ̃n. We conclude

the proof of (3.5.38) by combining the above three displays.

Proof of (3.5.34): Exactly the same as the proof of (3.5.20).

Proof of (3.5.35): Similarly to assertion (3.5.30) we get in view of (3.5.36) and
Lemma 3.7.4 in the case where assumption (3.3.2) holds

P0

(
Lr2n,m(γ) ≥

∥∥∥P̃ (θ0)∥∥∥2
2

)
≤

2LE0

∫
X Varn,m (θ(x)) dx.

γ
∥∥∥P̃ (θ0)∥∥∥2

2

≲
σ2
∑
j∈Nd

mµj

σ2+nµj

m
∥∥∥P̃ (θ0)∥∥∥2

2

=
σ2
∑
j∈Nd νj

n
∥∥∥P̃ (θ0)∥∥∥2

2

= o(1).

95



3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

§3.6 Proof of the Corollaries

§3.6.1 Proof of Corollary 3.2.3

First note that for any N ⊂ Nd∥∥∥P̃ (θ0)∥∥∥2
2
=
∑
j∈Nd

(1− νj)
2θ20,j =

∑
j∈Nd

σ4

(σ2 + nµj)2
θ20,j

≤ (n/σ2)−2
∑
j∈N

1

µ2
j

θ20,j +
∑

j∈Nd/N

θ20,j . (3.6.1)

Consider eigenvalues satisfying (3.1.6) with α = β, i.e. µj ≍
(∏d

i=1 ji
)−2β/d−1

.

Let us take N = {j ∈ Nd : Πdi=1ji ≤ Jβ} with Jβ := (n/σ2)d/(d+2β) and note that in
view of (3.7.6) [with I = Jβ ] we have

|N | ≲ Jβ log
d−1 Jβ = o(n) (3.6.2)

Furthermore, we also get that

sup
θ0∈Θβ(B)

∥∥∥P̃ (θ0)∥∥∥2
2
≲ sup
θ0∈Θβ(B)

[
σ4

n2
max
j∈N

(
d∏
i=1

ji

)4β/d+2( d∑
i=1

ji

)−2β ∑
j∈N

(
d∑
i=1

ji

)2β

θ20,j

+ sup
j /∈N

(
d∑
i=1

jk

)−2β ∑
j /∈N

(
d∑
i=1

ji

)2β

θ20,j

]
≲ (n/σ2)−2J

2β/d+2
β B2 + J

−2β/d
β B2

≲ (n/σ2)−2β/(d+2β),

using Lemmas 3.7.10 [with r = 4β/d+2, s = 2β and J = Jβ ] and 3.7.11 [with s = 2β
and J = Jβ ].

Moreover, in view of Lemma 3.7.5 and νj ≤ 1

σ2

n

∑
j∈Nd

ν2j ≲
σ2

n
Jβ log

d−1 Jβ = (n/σ2)−2β/(d+2β)
(
log
( n
σ2

))d−1

.

Finally we show that the remaining term is δn = o(n−2β/(d+2β)) for the choice

I =

{
j ∈ Nd :

d∏
i=1

ji ≤ I

}
with I =

n

m2 logd(n/m)

( ∑
j∈Nd

ν2j

)−1

,

where n
m2 logd(n/m)

(∑
j∈Nd ν2j

)−1

≥ 1 holds because m is small enough. Note that in

view of Lemma 3.7.8 the cardinality of I satisfies |I| ≲ n
m2 logn

(∑
j∈Nd ν2j

)−1

, hence
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it satisfies the cardinality assumption on I. Then in view of Lemma 3.7.8 and Lemma
3.7.5

δn ≲ n
∑
j∈Nd

ν2j
∑

ℓ:
∏d

i=1 ℓi>I

µℓ ≲ n
∑
j∈Nd

ν2j I
−2β/d logd−1 I

≪ n1−2β/dm4β/d

∑
j∈Nd

ν2j

2β/d+1

(log n)2β+d−1

≲ n2−2β/dm4β/d(log n)2β+d−1.

The right hand side is of order o(n−2β/(2β+d)) for all m = o(n1/2−3d/(4β)) with β >
3d/2. Combining the above inequality with Theorem 3.2.2 concludes the proof for
the polynomially decaying eigenvalues.

§3.6.2 Proof of Corollary 3.2.4

For arbitrary index set N ⊂ Nd we get that

sup
θ0∈Θβ(B)

∥∥∥P̃ (θ0)∥∥∥2
2
≤ sup
θ0∈Θβ(B)

[
σ4

n2
max
j∈N

(
d∑
i=1

ji

)−2β

e2a
∑d

i=1 ji
∑
j∈N

(
d∑
i=1

ji

)2β

θ20,j

+ sup
j /∈N

(
d∑
i=1

ji

)−2β ∑
j /∈N

(
d∑
i=1

ji

)2β

θ20,j

]
. (3.6.3)

We deal with the two terms on the right hand side separately. Note that the function
x 7→ x−2βe2ax is convex on [1, Ja], for Ja = a−1 log(n/σ2) with a ≤ 1, and achieves its

maximum at one of the end points. Let us take the set N = {j ∈ Nd :
∑d
k=1 jk ≤ Ja}

and note that

|N | ≤ a−d logd n = o(n), (3.6.4)

, by the lower bound on a. Furthermore, by noting that (
∑d
i=1 ji)

2 ≤ d
∑d
i=1 j

2
i , the

maximum of the last display over N is bounded from above by

max
j∈N

(
d∑
i=1

ji

)−2β

e2a
∑d

i=1 ji ≲ 1 + J−2β
a e2aJa .

The second term in (3.6.3) is directly bounded from above by J−2β
a B2. Therefore,

by combining the inequalities above,∥∥∥P̃ (θ0)∥∥∥2
2
≲
σ4

n2
+
(
a−1 log(n/σ2)

)−2β
. (3.6.5)

Moreover, in view of Lemma 3.7.6

σ2

n

∑
j∈Nd

νj ≍
σ2

n
Jda =

σ2

n
a−d logd(n/σ2). (3.6.6)
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For a := (n/σ2)−1/(2β+d) log(n/σ2) both of the preceding displays are bounded from
above by a multiple of (n/σ2)−2β/(2β+d).

Finally we show that the remainder term δn is of lower order than (n/σ2)−2β/(2β+d).

We take I = {j ∈ Nd :
∑d
i=1 ji ≤ I}, with I = n1/d

(
m2 log n

∑
j∈Nd ν2j

)−1/d
.

Then it is easy to see that |I| ≤ Id ≤ n
(
m2 log n

∑
j∈Nd ν2j

)−1
holds. Note that

|I| ≥ 1 holds because m is small enough. Furthermore, in view of the upper bound
p(j, d) ≤ 1

2

(
j−1
d−1

)
+ 1/2 ≤ jd on the d partition of j ∈ N, we get that

δn = n
∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ ≤ n
∑
j∈Nd

ν2j
∑
ℓ≥I

ℓde−aℓ

≲ nIde−aI
∑
j∈Nd

ν2j ≲ (n/m)2e−aI(log n)−1 (3.6.7)

Since β ≥ d/2, we have

aI = (n/σ2)−1/(2β+d) log(n/σ2)n1/dm−2/d(log n)−1/2

∑
j∈Nd

ν2j

−1/d

≳ n
2β−d

d(2β+d)m−2/d(log n)1−1/d ≥ L log n.

Hence the right hand side of (3.6.7) is o(n−L), for arbitrary L > 0, when m =

o(n
2β−d

2(2β+d) ) concluding the proof of the corollary using Theorem 3.2.2.

§3.6.3 Proof of Corollary 3.3.2

We proceed by proving that the conditions of Theorem 3.3.1 hold for this choice of
the kernel and the parameters, which directly provides us the statements.

Let us take N = {j ∈ Nd : Πdk=1jk ≤ Jα} with Jα := (n/σ2)1/(2α+d) in (3.6.1).
The cardinality of this set is o(n), see (3.6.2). Furthermore, in view of α ≤ β,

sup
θ0∈Θβ(B)

∥∥∥P̃ (θ0)∥∥∥2
2
≲ sup
θ0∈Θβ(B)

[
σ4

n2
max
j∈N

(
d∏
i=1

ji

)4α/d+2( d∑
i=1

ji

)−2β ∑
j∈N

(
d∑
i=1

ji

)2β

θ20,j

+ sup
j /∈N

(
d∑
i=1

ji

)−2β ∑
j /∈N

(
d∑
i=1

ji

)2β

θ20,j

]
≲ (n/σ2)−2J4α/d−2β/d+2

α B2 + J−2β/d
α B2 ≲ (n/σ2)−2β/(2α+d).

Then, in view of Lemma 3.7.5, νj ≤ 1 and the preceding display,

σ2

n

∑
j∈Nd

νj ≍
σ2

n
Jα (log Jα)

d−1
= (n/σ2)−2α/(2α+d)

(
log(n/σ2)

)d−1
≳ sup
θ0∈Θβ(B)

∥∥∥P̃ (θ0)∥∥∥2
2
,

when α ≤ β. Finally in view of Corollary 3.2.3 we have that

δn = o
(
(n/σ2)−2α/(2α+d)

)
= o

σ2

n

∑
j∈Nd

νj

 ,
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finishing the proof of the corollary.

§3.6.4 Proof of Corollary 3.3.3

We again prove that the conditions of Theorem 3.3.1 hold in this setting.
In view of assertions (3.6.5) and (3.6.6), we get for a ≲ (σ2/n)1/(2β+d) log(n/σ2)

that ∥∥∥P̃ (θ0)∥∥∥2
2
≲
σ2

n

∑
j∈Nd

νj .

Furthermore, the cardinality of the set {j ∈ Nd : nµj ≥ σ2} is o(n), see (3.6.4). Fi-
nally, in view of Corollary 3.2.4, δn = o(n−c), hence the condition δn = o

(
σ2

n

∑
j∈Nd νj

)
of Theorem 3.3.1 also holds, concluding the proof.

§3.7 Technical lemmas

Lemma 3.7.1. Consider the local regression problem (3.1.1) for arbitrary k ∈ {1, ...,m}
and let ϑ ∈ L2(X ). Then there exists a universal constant C not depending on ϑ such
that

E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

ϑ(X
(k)
i )K

X
(k)
i

− EX [ϑ(x)Kxdx]

∥∥∥∥∥∥
2

2

≤ C

n/m
∥ϑ∥22

∑
j∈Nd

ν2j ,

(3.7.1)

where X is a uniform random variable on X , and νj’s are the eigenvalues of the

operator F̃ .

Proof. For simplicity we omit the reference to the local k machine in the proof by

writing Xi = X
(k)
i . Let ϑ =

∑
j∈Nd ϑjψj ∈ L2(X ). Since

ϑ(X)KX =
∑
j,k∈Nd

µjϑkψj(X)ψk(X)ψj ,

and (ψj)j∈Nd is an orthonormal basis of L2(X ), we have EX [ϑ(X)KX ] =
∑
j∈Nd µjϑjψj .

Furthermore, the linearity of the operator F̃ ◦F−1 implies that F̃ ◦F−1(ϑ(X)KX) =∑
j,k∈Nd νjϑkψj(X)ψk(X)ψj , providing

F̃ ◦ F−1 (EX [ϑ(X)KX ]) =
∑
j∈Nd

νjϑjψj ,

F̃ ◦ F−1

 1

n/m

n/m∑
i=1

ϑ(Xi)KXi

 =
1

n/m

n/m∑
i=1

F̃ ◦ F−1 (ϑ(Xi)KXi
)

=
1

n/m

n/m∑
i=1

∑
j,k∈Nd

νjϑkψj(Xi)ψk(Xi)ψj . (3.7.2)
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Then using the inequality (a+ b)2 ≤ 2(a2 + b2) we get

E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

ϑ(Xi)KXi
− EX [ϑ(X)KX ]

∥∥∥∥∥∥
2

2

= E0

∥∥∥∥∥∥
∑
j,k∈Nd

νjϑkψj

 1

n/m

n/m∑
i=1

ψj(Xi)ψk(Xi)− δjk

∥∥∥∥∥∥
2

2

=
∑
j∈Nd

ν2j
n/m

E0 (ϑ(Xi)ψj(Xi)− ϑj)
2

≤ 2
∑
j∈Nd

ν2j
n/m

(
E0ϑ

2(Xi)ψ
2
j (Xi) + ϑ2j

)
≤

2(C2
ψ + 1)∥ϑ∥22
n/m

∑
j∈Nd

ν2j ,

finishing the proof of the statement.

Lemma 3.7.2. Consider the local regression problem (3.2.1) for arbitrary k ∈ {1, ...,m}.
Then for any finite index set I ⊂ Nd, |I| ≤ nC and data dependent function ϑ̂(k) :

Xn/m 7→ R, ∥ϑ̂(k)∥2 ≤ nC , for some C > 0,

E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

ϑ̂(k)(X
(k)
i )K

X
(k)
i

− EX [ϑ̂(k)(X)KX ]

∥∥∥∥∥∥
2

2

≲
|I| log n
n/m

∑
j∈Nd

ν2jE0

∥∥∥ϑ̂(k)∥∥∥2
2
+ E0

∥∥∥ϑ̂(k)Ic

∥∥∥2
H

∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ + n−C0 , (3.7.3)

where X is a uniform random variable on X , νj’s are the eigenvalues of the operator

F̃ , C0 can be chosen arbitrarily large, and ϑ̂
(k)
Ic (·) =

∑
j∈Ic ϑ̂

(k)
j ψj(·).

Proof. For simplicity we omit the reference to the kth local problem and write Xi =

X
(k)
i and ϑ̂ = ϑ̂(k). Let us next define the set AI,j ⊂ Xn/m as

AI,j =


 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

2

≤
8C2

ψC log n

n/m
, ℓ ∈ I

 . (3.7.4)

Note that by Hoeffding’s inequality, for arbitrary ℓ ∈ I,

P
(
Ac

I,j
)
≤ |I|P


 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

2

>
8C2

ψC log n

n/m


≤ 2|I| exp

{
−
4C2

ψC log n

C2
ψ

}
≤ O(|I|n−3C).
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Then using (a+ b)2 ≤ 2a2 + 2b2 and Cauchy-Schwarz inequality

E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

ϑ̂(Xi)KXi
− EX [ϑ̂(X)KX ]

∥∥∥∥∥∥
2

2

= E0

∥∥∥∥∥∥
∑
j∈Nd

∑
ℓ∈Nd

νj ϑ̂ℓψj

 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

∥∥∥∥∥∥
2

2

≲ E0

∑
j∈Nd

ν2j

∑
ℓ∈I

ϑ̂ℓ

 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

2

+ E0

∑
j∈Nd

ν2j

(∑
ℓ∈Ic

|ϑ̂ℓ|(C2
ψ + 1)

)2

≲ E0

∑
j∈Nd

ν2j |I|
∑
ℓ∈I

ϑ̂2ℓ

 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

2

+
∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓE0

∑
ℓ∈Ic

ϑ̂2ℓµ
−1
ℓ

≤
∑
j∈Nd

ν2jE0∥ϑ̂∥22

(
8C2

ψC|I| log n
n/m

+ 1Ac
j,I

|I|

)
+ E0∥ϑ̂Ic∥2H

∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ

≲
|I| log n
n/m

∑
j∈Nd

ν2jE0

∥∥∥ϑ̂∥∥∥2
2
+ E0

∥∥∥ϑ̂Ic

∥∥∥2
H

∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ +O(n−C),

where C can be chosen arbitrarily large, concluding the proof of our statement.

Lemma 3.7.3. There exists C > 0 such that

E0∥K̂I,(k)
x,n /m− F̃ (Kx)∥2H ≤ C

∑
j∈Nd

ν2j .

Proof. First note that

∥K̂I,(k)
x,n /m− F̃ (Kx)∥2H ≤ 2m−2∥K̂I,(k)

x,n ∥2H + 2∥F̃ (Kx)∥2H.

The second term on the right hand is bounded by

∥F̃ (Kx)∥2H =
∑
j∈Nd

µ−1
j ν2j µ

2
jψj(x)

2 ≤ C2
ψ

∑
j∈Nd

µjν
2
j ≲

∑
j∈Nd

ν2j .
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Since K̂
I,(k)
x,n is a KRR estimator, we get that

E0σ
2∥K̃(k)

x,n∥2H ≤ E0

n/m∑
i=1

(K̃(k)
x,n(X

(k)
i )−Kx(X

(k)
i ))2 + σ2∥K̃(k)

x,n∥2H


≤ E0

n/m∑
i=1

(F̃ (Kx)(X
(k)
i )−Kx(X

(k)
i ))2 + σ2∥F̃ (Kx)∥2H


≤
n/m∑
i=1

E0P̃ (Kx)
2(X

(k)
i ) + σ2∥F̃ (Kx)∥2H = O(

∑
j∈Nd

ν2j ),

where the last inequality follows from (3.5.27).

Lemma 3.7.4. Assume that the eigenvalues µj of the covariance kernel K satisfy∑
j∈Nd µj < ∞, |{j ∈ Nd : nµj ≥ σ2}| ≤ n, and σ2 ≥ c > 0. Then the expectation of

the posterior variance is of the following order

E0EX Var (θ(X)|Dn) ≍ σ2
∑
j∈Nd

µj
σ2 + nµj

,

where the expectation EX corresponds to the random variable X ∼ U [0, 1]d and the
multiplicative constant depends on

∑
j∈Nd µj and c.

Proof. It is shown in Section 6 of (Opper and Vivarelli, 1999) that the expectation
of the posterior variance, named “generalization error”, is bounded from below as
follows

E0EX Var (θ(X)|Dn) ≥ σ2
∑
j∈Nd

µj
σ2 + nµjEXψ2

j (X)
= σ2

∑
j∈Nd

µj
σ2 + nµj

.

In (Ferrari-Trecate et al., 1998), it has been shown that for stationary GPs, for
any J ⊂ Nd, with |J | ≤ n, the learning curve is bounded from above by

E0EX Var (θ(X)|Dn) ≤
∑
j∈Nd

µj − n
∑
j∈J

µ2
j

cj
,

where

cj = (n− 1)µj + σ2 +
∑
j∈Nd

µj .

Let us take J = {j ∈ Nd : nµj ≥ σ2} and by assumption its cardinality is
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bounded by n. Then∑
j∈Nd

µj − n
∑
j∈J

µ2
j

cj
=
∑
j∈J

µj
cj − nµj

cj
+
∑
j /∈J

µj

=
∑
j∈J

µj

∑
j∈Nd µj + σ2 − µj∑

j∈Nd µj + σ2 + (n− 1)µj
+
∑
j /∈J

µj

≤ σ2
∑
j∈J

µj

∑
j∈Nd µj/σ

2 + 1

σ2 + nµj
+ 2σ2

∑
j /∈J

µj
σ2 + nµj

≲ σ2
∑
j∈Nd

µj
σ2 + nµj

,

concluding our proof.

Lemma 3.7.5. For νj, j ∈ Nd, defined in (3.2.5) with eigenvalues µj polynomially
decaying according to Assumption 3.1.2 and k ∈ N,∑

j∈Nd

νkj ≍ Jα log
d−1 Jα,

where Jα = (n/σ2)d/(2α+d).

Proof. Let N := {j ∈ Nd : nµj ≥ σ2} = {j ∈ Nd :
∏d
i=1 ji ≤ CJα} and we apply

Lemma 3.7.8 [with I=N , I=CJα and γ = k(2α/d+1)−1]. First, we prove the upper
bound, ∑

j∈Nd

νkj =
∑
j∈Nd

(nµj)
k

(σ2 + nµj)k

≤
∑
j∈N

1 + (n/σ2)k
∑
j /∈N

µkj

≲ Jα log
d−1 Jα + (n/σ2)kJ−k(2α/d+1)+1

α logd−1 Jα

≲ Jα log
d−1 Jα.

The lower bound follows similarly,∑
j∈Nd

νkj ≥
( n

2σ2

)k ∑
j /∈N

µkj ≳ (n/σ2)kJ−k(2α/d+1)+1
α logd−1 Jα ≳ Jα log

d−1 Jα.

Lemma 3.7.6. For νj, j ∈ Nd, defined in (3.2.5) with eigenvalues µj exponentially
decaying according to Assumption 3.1.2 with b = 1, a < 1 and k ∈ N,∑

j∈Nd

νkj ≍ Jda ,

where Ja = a−1 log(n/σ2).
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Proof. Let Nd := {j ∈ Nd : nµj ≥ σ2} = {j ∈ Nd :
∑d
i=1 ji ≤ Ja + c/a} with c > 0

a positive constant. Then it is easy to see that |Nd| ≤ 2dJda . Moreover, we will show
by induction on d that∑

j /∈Nd

e−ak
∑d

i=1 ji ≲ a−d(n/σ2)−k logd−1(n/σ2).

Let us start with the case d = 1. We can directly see that

∑
j>Ja

e−akj ≤ Ce−akJa
eak

eak − 1
≲ a−1(n/σ2)−k.

Now, assume that our assumption holds for d and consider the case d+ 1, then∑
j /∈Nd+1

e−ak
∑d+1

i=1 ji ≲
∑

j1:d∈Nd

e−ak
∑d

i=1 ji
∑

jd+1>max(Ja−
∑d

i=1 ji,0)

e−akjd+1

≲
∑

j1:d∈Nd

(e−ak
∑d

i=1 ji ∧ e−akJa) eak

eak − 1

≲
∑

j1:d∈Nd

a−1e−akJa +
∑

j1:d /∈Nd

a−1e−ak
∑d

i=1 ji

≲ a−1|Nd|(n/σ2)−k + a−d−1(n/σ2)−k logd−1(n/σ2)

≲ a−d−1(n/σ2)−k logd(n/σ2),

which concludes the induction proof.
Using these two results, we can easily show that∑
j∈Nd

νkj ≲
∑
j∈Nd

1 + (n/σ2)k
∑
j /∈Nd

e−ak
∑d

i=1 ji ≲ |Nd|+ a−d logd−1(n/σ2) ≲ Jda .

On the other hand, we can show by induction that for all J > d, the cardinality
of Nd := {j ∈ Nd :

∑d
i=1 ji ≤ J} is bounded from below as follows

|Nd| ≥ (J − d)d/d!.

Note that it holds trivially for d = 1. Now assume it holds for d, then we can write
Nd+1 as a partition as follows

Nd+1 =

{
j ∈ Nd+1 :

d+1∑
k=1

jk ≤ J

}
=

J−d⋃
i=1

{
j ∈ Nd+1 : jd+1 = i;

d∑
k=1

jk ≤ J − i

}
.

According to our induction assumption, the cardinality of all these subsets are bounded
from below by (J − d− i)d/d!, hence we have

|Nd+1| ≥
J−d∑
i=1

(J − d− i)d

d!
≥
∫ J−d

1

(J − d− t)d

d!
dt =

(J − d− 1)d+1

(d+ 1)!
,
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which concludes our induction proof. Using this result, we can now show that∑
j∈Nd

νkj ≥
∑
j∈Nd

1 = |Nd| ≳ Jda ,

concluding the proof.

Lemma 3.7.7. For arbitrary θ0 ∈ ℓ2(L) we get that

E0∥∆θ̂(k)n ∥2H ≤ Cn,

for some universal constant C > 0.

Proof. First note that

∥∆θ̂(k)n ∥2H ≤ 2∥θ̂(k)n ∥2H + 2∥F̃ (θ0)∥2H.

For θ0 ∈ ℓ2(L) the second term on the right hand is bounded by

∥F̃ (θ0)∥2H =
∑
j∈Nd

µ−1
j ν2j θ

2
0,j ≤

∑
j∈Nd

n2µj
(σ2 + nµj)2

θ20,j ≤ nL2/σ2.

Then by the definition of θ̂
(k)
n we get that

σ2∥θ̂(k)n ∥2H ≤
n/m∑
i=1

(
θ̂(k)n (X

(k)
i )− Y

(k)
i

)2
+ σ2∥θ̂(k)n ∥2H

≤

n/m∑
i=1

(
F̃ (θ0)(X

(k)
i )− θ0(X

(k)
i )− ε

(k)
i

)2
+ σ2∥F̃ (θ0)∥2H


≤ 2

n/m∑
i=1

P̃ (θ0)
2(X

(k)
i ) + 2

n/m∑
i=1

(ε
(k)
i )2 + σ2∥F̃ (θ0)∥2H. (3.7.5)

We conclude the proof by taking the expectation of both sides

σ2E0∥θ̂(k)n ∥2H ≲
n/m∑
i=1

E0P̃ (θ0)
2(X

(k)
i ) +

n/m∑
i=1

E0(ε
(k)
i )2 + σ2∥F̃ (θ0)∥2H = O(n).

Lemma 3.7.8. The cardinality of the set

II,d =

{
j ∈ Nd+ :

d∏
i=1

ji ≤ I

}
(3.7.6)

satisfies that |II,d| ≤ 2dI logd−1 I. Furthermore,

∑
j∈Ic

I,d

d∏
i=1

j−γ−1
i ≍ I−γ (log I)

d−1
, (3.7.7)

for some large enough constant Cγ,d.
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Proof. We prove both statements by induction, starting with the first one. For d = 1
it is trivial. Let us assume that it holds for d and consider the case d + 1. We
distinguish cases according the value of jd+1. If jd+1 = 1, then

∏d
i=1 ji ≤ I holds, if

jd+1 = 2, then
∏d
i=1 ji ≤ I/2 holds, and so on. Hence we can write that

|II,d+1| ≤
I∑

jd+1=1

∣∣II/jd+1,d+1

∣∣ ≤ 2d
I∑

jd+1=1

I

jd+1
logd−1 I

jd+1
< 2d+1I logd I,

where in the last inequality we have used that
∑n
i=1 1/i < 1 + log n < 2 log n.

Note again that for d = 1 the second statement holds trivially (using Riemann
sums for instance). Then assume that it holds for d and consider the case d+1. First
we deal with the upper bound, where we note that

∑
j∈Ic

I,d+1

d+1∏
i=1

j−γ−1
i =

I∑
jd+1=1

j−γ−1
d+1

∑
j∈Ic

I/jd+1,d

d∏
i=1

j−γ−1
i

+

∞∑
jd+1=I

j−γ−1
d+1

d∏
k=1

∞∑
jk=1

j−γ−1
k

≲
I∑

jd+1=1

1

jd+1
I−γ (log I/jd+1)

d−1
+

∞∑
jd+1=I

j−γ−1
d+1

≤ I−γ logd−1 I

I∑
jd+1=1

1

jd+1
+ I−γ ≤ I−γ logd I.

Finally, it remained to deal with the lower bound. First, note that it is sufficient
to show the result for I ≥ C, for some C large enough (depending only on d and
γ). Then by noting that for x ≥ ed−1 the function x 7→ x−1 logd−1 x is monotone
decreasing, we get that

∑
j∈Ic

I,d+1

d+1∏
i=1

j−γ−1
i ≥

I∑
jd+1=1

j−γ−1
d+1

∑
j∈Ic

I/jd+1,d

d∏
i=1

j−γ−1
i

≳ I−γ

 I∑
jd+1=1

j−1
d+1 log

d−1 I −
I∑

jd+1=1

j−1
d+1 log

d−1 jd+1


≥ I−γ

(
logd−1 I

∫ I

1

x−1dx−
ed−1∑
jd+1=1

j−1
d+1 log

d−1 jd+1

−
∫ I

ed−1

x−1 logd−1 xdx
)

≥ I−γ
(
logd I − Cd,γ − logd I/2)

)
≳ I−γ logd I,

concluding the proof of our statement.
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Lemma 3.7.9. There exists an event A
(k)
n such that for any θ0 ∈ L∞(L) and n ≤

(n/m)C1 , for some C1 ≥ 1 there exist constants C2, C3 > 0 such that∥∥∥∆θ̂(k)n

∥∥∥
2
1
A

(k)
n

≤ (n/m)C2 ,

Eθ0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
1
(A

(k)
n )c

= e−C3n/m.

Proof. Let us take A
(k)
n = {

∑n/m
i=1 (ε

(k)
i )2 ≤ (n/m)C0}, for arbitrary C0 > 1. Then in

view of (3.7.5) we have on the event A
(k)
n that∥∥∥∆θ̂(k)n

∥∥∥
2
≤
∥∥∥θ̂(k)n

∥∥∥
2
+ ∥F̃ (θ0)∥2 ≲ n1/2 + (n/m)C0 + L ≲ (n/m)C0∨C1/2.

Furthermore, note that∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
≲
∥∥∥∆θ̂(k)n

∥∥∥2
2
+
∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)

n (F̃ (θ0))
∥∥∥2
2

≲ n+

n/m∑
i=1

(ε
(k)
i )2 + n2

∥∥∥Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
.

Furthermore from the definition of Ŝ
(k)
n , the boundedness of X and ∥K∥∞ = O(1)

we get that

∥∥∥Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
≤
∥∥∥Ŝ(k)

n (F̃ (θ0))
∥∥∥2
∞

≲

 1

n/m

n/m∑
i=1

|ε(k)i |

2

+ ∥θ0∥2∞

≲
1

n/m

n/m∑
i=1

(ε
(k)
i )2 + 1.

Since Wn = (n/m)−1
∑n/m
i=1 (ε

(k)
i )2 ∼ χ2

n/m, note that for n/m large enough

Eθ0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
1
(A

(k)
n )c

≲ Eθ0
(
(n/m)2C1Wn + (n/m)2C1

)
1Wn>(n/m)C0 = O(e−n/m),

concluding the proof of the lemma.

Lemma 3.7.10. Let r, s > 0 such that r > s/d and f : [1,∞)d → R defined as

f(x) =

(
d∏
i=1

xi

)r ( d∑
i=1

xi

)−s

.

Then f is bounded from above by d−sJr−s/d on the set N := {x ∈ [1,∞)d :
∏d
i=1 xi ≤

J} with J > 1.
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Proof. From the inequality of arithmetic and geometric means, we know that for all
x ∈ [1,∞)d

d∑
i=1

xi ≥ d

(
d∏
i=1

xi

)1/d

.

Thus, we can bound f from above by

f(x) ≤ d−s

(
d∏
i=1

xi

)r−s/d
≤ d−sJr−s/d,

on N concluding the proof.

Lemma 3.7.11. Let s > 0 and f : [1,∞)d → R defined as

f(x) = (

d∑
i=1

xi)
−s.

Then f is bounded from above by d−sJ−s/d on the set N := {x ∈ [1,∞)d :
∏d
i=1 xi ≥

J} with J > 1.

Proof. Since f is differentiable on its domain, we can compute its gradient

(∇f)ℓ = −s(
d∑
k=1

xk)
−s−1 < 0,

for all ℓ ∈ {1, ..., d}. Thus, the function attains its maximum at
∏d
i=1 xi = J . At

the maximum point, in view of the inequality of arithmetic and geometric means,∑d
i=1 xi ≥ d

(∏d
i=1 xi

)1/d
= dJ1/d. The statement of the lemma follows by raising

both sides to the −s power.
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