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1. Introduction

CHAPTER 1
Introduction

The main theme of this thesis is the theoretical study of Gaussian processes as a tool
in Bayesian nonparametric statistics. We are interested in the frequentist properties
of Bayesian nonparametric techniques in an asymptotic regime.

This chapter will give a general introduction to Bayesian nonparametric statistics.
After a brief preamble on statistical science, we will compare the two main statistical
approaches: frequentism and Bayesianism. Our work will consist of a combination
of both, since we will study the Bayesian techniques from a frequentist perspective,
specifically consistency, convergence rates, uncertainty quantification and adaptation.
These properties will be studied in the context of non-parametric problems, that is
to say models with few modeling constraints. We will focus on the non-parametric
regression model and its idealized version, the signal-in-white-noise model.

One of the main theme of the thesis is scalability of Bayesian techniques. Indeed,
these computation-hungry techniques rapidly become intractable as the number of
observations grows. This issue led to the introduction of distributed Bayesian meth-
ods in order to decrease the computational complexity of the techniques. The later
chapters of this thesis will focus on such distributed methods and their properties.
They will also be briefly introduced in this chapter.

§1.1 Statistical science

Statistics can be defined as the study of data, which covers its collection, organiza-
tion, analysis, interpretation and presentation. The main focus of this thesis will be
mathematical statistics, which follows the framework of probability theory. Moreover,
the theoretical results will be illustrated with simulated data.

In order to understand both probability theory and statistics, it is useful to start
with a definition of modeling. A model describes and explains a system with the help
of mathematical concepts and language. Even though models are helpful in most
disciplines, they are all considered as oversimplification of the described system. As
George Box (Box, 1976) famously said “all models are wrong, but some are useful”.
While in probability theory, one studies the behavior of data following a specific and
known model, in theoretical statistics, one follows the opposite paths: one tries to
gather as much information from the data in order to make inference on the model.

More formally, one can think of a probability distribution P as a model for gener-
ating an observation X. The classical statistical approach is to assume that our model
P is a collection of probability distributions, and the end goal is to infer properties
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1. Introduction

of an element of P which could best describe the observation.

§1.2 Frequentist and Bayesian inference

Inference in statistics consists of establishing and evaluating propositions about the
process by which the data is generated. Different paradigms of statistical inference
coexist. This section will focus on two important paradigms: frequentist inference
and Bayesian inference.

§1.2.1 Frequentist inference

Frequentist inference is associated with the frequentist interpretation of probability;
we consider that the probability of an event is the frequency of appearance of this
event if it were possible to repeat the same experiment independently ad infinitum.
One of the main characteristics of frequentism is that frequentist modeling views
the data X as the realization of a random variable following some fixed probability
distribution P0 belonging to some model P. Often, the statistical model P is defined
as

P = {Pθ : θ ∈ Θ},

where the probability distributions are indexed by a parameter θ and Θ is the set of
all possible parameters, and we suppose the existence of a θ0 such that P0 = Pθ0 .
Basically, if θ0 were known, the work of a frequentist statistician would be finished.

Among the most widely used tools of frequentist inference, one can think of the
likelihood function. The likelihood function is a function of the parameter which
measures how well a particular parameter of the model fits a given sample of data.
Heuristically, it makes sense that parameters whose likelihoods are large are prefer-
able, since they verify that the probability of the observed data occurring is high.

§1.2.2 Bayesian inference

The Bayesian approach is quite different from the frequentist one. It is based on the
Bayesian interpretation of probability which stipulates that a probability is merely a
quantification of a personal belief or a reasonable expectation. Bayesian statisticians
generally believe that there is no fixed underlying parameter, but that the parameter
itself is the realization of a random variable. More formally, the parameter θ has
a probability distribution Π on the parameter space Θ called the prior distribution.
This distribution represents the degree of belief the statistician attaches to possible
parameters explaining the model. Then, the distribution Pθ describes the distribution
of the data X conditionally on the value of the parameter θ. This belief is then
updated once we have access to the data. If the model is dominated, which means all
possible distributions Pθ are absolutely continuous with respect to a common measure
µ and have corresponding densities pθ, then this operation gives us the posterior
distribution of the parameter

A 7→ Π(θ ∈ A|X) =

∫
A
pθ(X)dΠ(θ)∫

Θ
pθ(X)dΠ(θ)

,
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§1.2. Frequentist and Bayesian inference

for a measurable set A ⊂ Θ. The integrand in the numerator of the previous fraction
represents the joint distribution of the parameter and the data, which can be obtained
by multiplying the prior distribution of the parameter by the likelihood function, while
the denominator represents the marginal distribution of the data.

Even though the Bayesian approach is quite different from the frequentist ap-
proach, it can be useful in certain situations. Indeed, Bayesian techniques benefit
from conceptual simplicity in practice; after assigning a prior to the parameter, one
needs only to compute the posterior to make relevant inference. Besides, previous
expertise on a problem can be incorporated in the prior distribution of a parame-
ter. Although this implied subjectivity can be seen as a drawback compared to the
frequentist approach, subjectivity can never be completely absent from statistical
modeling and Bayesian subjectivity might appear more natural. Moreover, once the
statistician has access to the posterior distribution, all inference can be done exhaus-
tively. Finally, from a decision theoretical point of view, there is a Bayesian procedure
(or a limit of Bayesian procedures) which performs uniformly better than any other
procedure according to the “complete class theorem”, and only those procedures are
admissible, see for instance (Balder et al., 1983) and references therein. For a more
exhaustive introduction to Bayesian methods, see the books (Bernardo and Smith,
1994), (Robert, 2001), and (Ghosal and Van der Vaart, 2017).

One of the advantages of the Bayesian framework is the simplicity with which
we can quantify uncertainty. As the parameter is a random variable whose posterior
distribution depends on the data, we can construct sets containing the parameter with
high posterior probability. It is interesting to note that this is a probability statement
about the unknown parameter; thus, those sets are quite different from frequentist
confidence sets which provide a probability statement about the sets themselves.

After the introduction of both paradigms, the following section will be focused
on a hybrid approach where Bayesian methods are used, but given a frequentist
interpretation.

§1.2.3 Frequentist Bayes

Since Bayesian inference always starts with the choice of a prior which represents sub-
jective belief of an expert, if two experts do not share the exact same subjective belief,
the outcomes of their analyses can vary even if they shared the methodology. This
situation seldom occurs within the frequentist community, because of the shared as-
sumption that there exists a single true distribution explaining how the data has been
generated. Although the Bayesian paradigm differs significantly from the frequentist
one, it can be interesting to see Bayesian inference as a mere different frequentist
method. Indeed, one can still assume that the data X follows a fixed probability
distribution P0 belonging to some model P, and then study the posterior distribution
Π(·|X) of the parameter θ as a random measure which depends on the prior and the
“true” distribution P0. On one hand, this hybrid view allows statisticians to enjoy the
relative simplicity of implementation of Bayesian methods, for instance the built-in
uncertainty quantification; on the other hand, it gives frequentist guarantees for those
same methods.

In the parametric case, where the parameter θ describing the model has a finite
dimensional structure, the well-known Bernstein-von Mises theorem establishes that

9



1. Introduction

under mild regularity conditions Bayesian inference is asymptotically equivalent to
frequentist inference. More precisely, the theorem states that the posterior becomes
asymptotically normal centered around the maximum likelihood or any efficient es-
timator with variance equal to the inverse of the Fisher information. Despite the
strength of this result, its limitation to the parametric and semi-parametric case re-
quires statisticians to find other ways to study non-parametric Bayesian methods.

§1.3 Non-parametric asymptotic statistics

As established, non-parametric statistical techniques are based on models with as
few assumptions as possible. Technically, a non-parametric model does rely on a
parameter θ, but this parameter is infinite dimensional; it can for instance be an
infinite sequence or a function. Non-parametric models are attractive thanks to their
flexibility and robustness. The books (Wasserman, 2006), (Tsybakov, 2009) and (Giné
and Nickl, 2016) provide a more detailed introduction to non-parametric statistics.

In non-parametric statistics, it is common to consider some assumption on the
smoothness or regularity of the parameter θ ∈ Θ. In this thesis, we consider frequently
used smoothness spaces: the Sobolev and the Hölder spaces. These spaces will be
defined for functions defined on [0, 1], but the idea can be expanded to functions on
other domains as well.

Let (ϕi)i≥1 denote an orthonormal basis of L2([0, 1]) (i.e. measurable functions
that are square-integrable in [0, 1]) and consider functions on L2([0, 1]) in the form

θ =

+∞∑
i=1

θiϕi,

where θi is the ith coefficient in the series expansion. The Sobolev ball Sβ(M) with
smoothness parameter β > 0 and radius M > 0 is defined as

Sβ(M) =

{
θ ∈ L2([0, 1]) :

∑
i

αiθ
2
i ≤M2

}
,

where αi ≍ i2β . In this thesis, we will also consider a related regularity space of
function: hyper-rectangles

Θβ(M) = {θ ∈ L2([0, 1]) : sup
i
i2βθ2i ≤M}.

For integer regularity parameters β and the classical Fourier basis, it is also possible
to represent the Sobolev class as the set of β − 1 times differentiable functions [0, 1]
with absolute continuous derivatives and with a βth derivative satisfying∫ 1

0

(θβ(t))2dt ≤Mπ2β .

The Hölder space of smoothness β > 0 on [0, 1] denoted by Cβ([0, 1]), on the other
hand, contains all functions θ with ⌊β⌋ (the integer part of β) derivatives and their
last continuous derivatives verifies the Hölder condition

sup
x,y∈[0,1]

|θ⌊β⌋(x)− θ⌊β⌋(y)| ≤M |x− y|α
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§1.3. Non-parametric asymptotic statistics

with α = β − ⌊β⌋ and M > 0. The corresponding Hölder ball with radius M > 0 is
defined as

Hβ(M) =

{
θ ∈ Cβ([0, 1]) : supx,y∈[0,1] |θ⌊β⌋(x)− θ⌊β⌋(y)| ≤M |x− y|β−⌊β⌋,

supk≤β ∥θ(k)∥∞ ≤M

}
.

The asymptotic approach to assess the performance of a statistical technique can
be described intuitively. Indeed, the outcomes of any statistical procedure can be ar-
ranged in a sequence indexed by the size of the sample used during this procedure. The
theoretical study of this sequence allows to understand the behavior of the procedure
when the size of the data grows, and ideally the larger our data sample is, the better
the procedure performs. Mathematically, if we observe the data X(n), generated from
the distribution Pθ0 , and our outcome is a random variable called point estimator
T (X(n)), given by a measurable function T , then we are interested in the study of the
sequence (T (X(n)))n∈N. Since this thesis focuses on the frequentist Bayes approach,
we will introduce some frequentist properties of Bayesian asymptotics: consistency,
contraction rates and coverage of credible sets.

§1.3.1 Consistency

The first frequentist property one could check when applying Bayesian techniques
is the consistency of the posterior. Posterior consistency simply means that the
posterior distribution Π(.|X(n)) puts most of its mass around a smaller and smaller
neighborhood of the true parameter θ0. Formally, it means that for all ε > 0,

Π(θ : d(θ, θ0) < ε|X(n))
Pθ0→ 1,

where d is a given metric and the convergence is in probability under the true parame-
ter. Posterior consistency is a necessary frequentist property to assess the performance
of a Bayesian method, but it is relatively weak and non-informative.

In non-parametric models, posterior consistency is not always satisfied even if
the prior distribution covers the true parameter; it is possible that some posterior
distribution does not concentrate around the true parameter even when any neigh-
borhood of this parameter has positive mass, see for instance (Freedman, 1963), (Di-
aconis and Freedman, 1986) and (Kim and Lee, 2001). Fortunately, Doob’s theorem
and Schwartz’s theorem provide a robust result to assess the consistency of non-
parametric Bayesian models. Doob’s consistency theorem (Doob, 1949) states that
if the true parameter θ0 is not in some null-set of the prior, then the posterior dis-
tribution is consistent. While topologically, prior null-sets can be large, Schwartz’s
theorem (Schwartz, 1965) gives a more extensive result. It assesses that posterior con-
sistency over the whole parameter space is verified under two conditions: the prior
mass condition which requires that the prior assigns sufficiently large probabilities
to neighborhoods of the true parameter, and the test condition which necessitates
the existence of a sequence of tests which separates the true parameter from the
complements of neighborhoods around the parameter.

Although consistency is important in evaluating non-parametric Bayesian tech-
niques, since it is not considered strong enough, we will focus on a more descriptive
property: rate of contraction.
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1. Introduction

§1.3.2 Contraction rates

When estimating a parameter θ, the frequentist asymptotic way to evaluate the es-
timation θ̂n, which is a measurable function of the data, is not only to verify that
the sequence (θ̂n)n∈N converges (in probability or almost surely) to the true value θ0
uniformly over the possible ”truths”, but also to evaluate the risk of this estimator.
Mathematically, we first choose a loss function L : Θ × Θ → (0,∞) and then define
the maximum risk of our estimator as

r(θ̂n) = sup
θ∈Θ

EθL(θ̂n, θ),

where the expectation Eθ is taken with respect to the probability measure Pθ. This
function represents the amount an estimator deviates from the true parameter in the
worst case scenario. The choice of a loss function impacts directly the choice of the
best estimator. Once the maximum risk over the class Θ has been defined, the goal
is to find an estimator which minimizes this risk. Such an estimator is called the
minimax estimator, and the risk associated to it is the minimax risk

Rn = inf
θ̂n

r(θ̂n),

where the infimum is taken over all measurable functions of the data. Thanks to
Markov’s and Chebyshev’s inequality, it can be shown that the minimax estimator θ̂∗n
has the best convergence rate ε2n := Rn, which means that

sup
θ∈Θ

Pθ

(
d(θ̂∗n, θ) > Mnεn

)
→ 0,

for any Mn → +∞, and that for all δn such that δn = o(εn) there exists at least one
θ∗ ∈ Θ such that

Pθ∗
(
d(θ̂∗n, θ

∗) > Lδn

)
↛ 0

for all L > 0. The minimax risk and estimators have been studied for a large variety
of problems. We refer to (Lehmann and Casella, 1998) for more details about the
topic.

The analogous property to convergence rate for Bayesian techniques is the rate of
contraction. The contraction rate εn of a Bayesian procedure is a sequence converging
to 0 in n such that

Πn

(
θ : d(θ, θ0) ≤ εn|X(n)

)
Pθ0→ 1.

This rate quantifies how quickly the posterior mass concentrates around the true
parameter θ0. In regular parametric models, the posterior contraction rate can always
achieve the same order of the optimal frequentist convergence rate. This result follows
from the Bernstein-von Mises theorem. However, it is not yet clear if such a result
could also exist in the non-parametric case.

(Ghosal et al., 2000), (Ghosal and van der Vaart, 2007), (van der Vaart and van
Zanten, 2008) and (Ghosal and Van der Vaart, 2017) address this issue. Let us
consider the iid case where X1, ..., Xn are n random variable distributed according to
Pθ0 . We consider the Hellinger metric d on the parameter space given by

d2(θ, θ′) =

∫
(
√
pθ −

√
pθ′)

2dµ,
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§1.3. Non-parametric asymptotic statistics

where pθ and pθ′ are the densities of Pθ and Pθ′ with respect to the measure µ. We
also define the entropy number (denoted by N(ε,B, d)), which represents the number
of ε-radius balls required to cover the set B with respect to a given metric d.

Theorem 1.3.1 (Theorem 2.1 of (Ghosal et al., 2000)). Suppose that for a sequence
εn with εn → 0 and nε2n → ∞, a constant C > 0 and subsets Θn ⊂ Θ of the parameter
set, we have

logN(εn,Θn, d) ≤ nε2n,

Π(θ /∈ Θn) ≤ exp(−(C + 4)nε2n),

Π
(
θ : Pθ0 log

pθ
pθ0

≤ ε2n, Pθ0 log
2 pθ
pθ0

≤ ε2n

)
≥ exp(−Cnε2n).

Then for sufficiently large M , we have that Π(θ : d(θ, θ0) ≥ Mεn|X(n)) → 0 in
Pθ0-probability.

The conditions can be understood as follows: the first condition, the entropy con-
dition, implies that the sets Θn are not too large; the second condition, the remaining
mass condition, implies that prior distribution puts enough mass on these sets; the
last condition, the prior mass condition, requires the prior to put enough mass in a
small neighborhood of the true distribution.

We consider that the contraction rate is optimal if it is equal to the minimax
convergence rate. It is relatively easy to construct an estimator θ̂ from the posterior
which attains the same convergence rate as the posterior construction. Indeed, we can
for instance take the center of the smallest ball with posterior mass greater than 1/2,
see (Ghosal et al., 2000) and (Ghosal and Van der Vaart, 2017). Therefore, finding
a posterior achieving optimal contraction rate leads directly to a Bayesian estimator
with minimax convergence rate.

§1.3.3 Bayesian uncertainty quantification

Once the posterior distribution is computed, one can derive Bayesian point estimates.
Those are simply functions of the data which minimize an integrated loss function
with respect to the posterior measure. Despite their usefulness, point estimates do
not provide information about the uncertainty of our inference on θ0. For that reason,
it is also interesting to generate a set of possible values for our parameter.

In the frequentist case, these sets are known as confidence sets. Confidence sets are
set-valued estimators Ĉn(X

(n)) to which the true parameter is most likely to belong,
according to the data. More formally, we define a confidence set Ĉn of level 1− α as

inf
θ∈Θ

Pθ(θ ∈ Ĉn) ≥ 1− α.

Asymptotically, confidence sets should also verify

lim inf
n→∞

inf
θ∈Θ

Pθ(θ ∈ Ĉn) ≥ 1− α.

These sets have asymptotically uniform confidence level 1− α. In other words, they
have the same confidence level asymptotically even in the worst case scenario for the
true parameter.
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1. Introduction

Nonetheless, the construction of confidence sets is not easy when the model is
computationally complex. In the Bayesian approach, we talk instead of credible sets,
which accumulate most of the posterior probability mass. Since it is possible to sample
from the posterior, the construction of approximate credible sets thanks to Markov
chain Monte-Carlo (MCMC) methods is relatively simpler than the construction of
confidence sets. Formally, credible sets C̃n of level 1− α are sets such that

Πn(θ ∈ C̃n|X(n)) ≥ 1− α.

Contrary to confidence sets, credible sets are subjective in nature because of the
influence of the prior distribution in the posterior. Although confidence sets and
credible sets are asymptotically equivalent in the parametric case under some regu-
larity assumptions thanks to the Bernstein-von Mises theorem, the question of their
equivalence in the non-parametric case has not been entirely answered.

Actually, it is known through several negative examples that Bayesian credible sets
do not converge automatically to frequentist confidence sets when the model is infinite-
dimensional, see for instance (Cox, 1993). This phenomenon encourages a further
analysis of the behavior of credible sets from a frequentist point of view. It appears
in (Knapik et al., 2011), (Castillo and Nickl, 2013), (Szabo et al., 2015), (Sniekers
and van der Vaart, 2015b), (Belitser, 2017) and (Szabo et al., 2017) that in some
situations, Bayesian credible sets ensure good coverage of the true parameter, that is
to say that the credible sets are asymptotically likely to contain the true parameter
according to the true distribution. Moreover, (Rousseau and Szabo, 2020) studied the
asymptotic coverage of Bayesian credible sets in a general non-parametric framework.
The general intuition is that Bayesian credible sets have good coverage when the prior
generates parameters that are slightly less smooth than the true parameter.

§1.4 Gaussian processes

The examination of Bayesian techniques from a frequentist perspective requires a
good understanding of the prior distribution because it influences heavily the out-
come of a Bayesian statistical procedure. In this work, we mainly treat Gaussian
process priors. Gaussian processes are stochastic processes, i.e. collections of random
variables indexed by time or space which can be viewed as random elements in a func-
tion space verifying the following condition: every finite collection of the evaluation
of the process at different times has a multivariate normal distribution. We refer to
(Rasmussen and Williams, 2006) for a more comprehensive introduction to Gaussian
processes and their applications.

A Gaussian process W = {Wt : t ∈ T} indexed by a set T is characterized by its
mean µ : T → R and its covariance function K : T ×T → R given by µ(t) = EWt and
K(s, t) = Cov(Wt,Ws), respectively. Generally, the set T is a subset of Rd so that
the function t 7→ Wt belongs to the space of real-valued functions on T . As priors,
we typically take centered Gaussian processes, i.e. their mean µ(t) is set to be zero;
thus, their behaviors can be understood entirely through their covariance functions.
Moreover, thanks to Mercer’s theorem (Mercer, 1909), we can see that the covariance

14



§1.4. Gaussian processes

function of a Gaussian process can be represented as follows

K(s, t) =

+∞∑
j=1

λjϕj(s)ϕj(t),

because the covariance is a symmetric non-negative definite kernel. Here, the ϕj ’s
are eigenfunctions representing an orthonormal basis of L2(T ), the λj ’s are the corre-
sponding non-negative eigenvalues and the convergence of the series is absolute and
uniform when the kernel is continuous and T is compact. In addition to Mercer’s the-
orem, the Karhunen-Loève theorem, (Karhunen, 1947) and (Loève, 1978), provides a
nice representation of the random variable Wt for any t ∈ T :

Wt =

+∞∑
j=1

√
λjZjϕj(t),

where the Zj ’s are independent standard normal random variables and the conver-
gence is almost sure.

In this thesis, we will focus on the following specific Gaussian processes (GP):

• the GP with a Matérn covariance kernel

K(s, t) =
21−α

Γ(α)

( |s− t|
√
2α

a

)α
Kα

( |s− t|
√
2α

a

)
,

where Γ is the gamma function, Kα is the modified Bessel function, a is a
rescaling parameter and α is the smoothness parameter. The sample paths
t 7→Wt of a GP with Matérn covariance function are ⌊α⌋ times differentiable.

• the GP with a squared-exponential covariance kernel

K(s, t) = exp
( (s− t)2

2a2

)
,

where a is a scaling parameter. The squared-exponential covariance kernel can
be seen as the limit of Matérn covariance kernels with α going to infinity. A GP
with squared-exponential covariance function has infinitely differentiable sample
paths.

• the Brownian motion and its primitives, the Brownian motion has covari-
ance kernel

K(s, t) = min(s, t).

Since the sample paths of a Brownian motion are Lipschitz continuous of any
order α < 1/2 but not differentiable anywhere, it is common to integrate this
process k times in order to have a GP with a smoothness order k + 1/2. More-
over, the k-fold integrated Brownian motion has vanishing derivatives at zero;
hence, it is common to ”release” this process by adding a polynomial process
t 7→

∑k
j=0 Zjt

j/j! where the Zj ’s are independent standard normal random
variables. Thus, the k-fold integrated Brownian motion can be written as

Gt =

k∑
j=0

Zjt
j

j!
+ IkWt,
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1. Introduction

where Ik = Ik−1I and If(t) =
∫ t
0
f(s)ds.

Both the GP with Matérn and with squared-exponential covariance kernel are station-
ary; Cov(Wt,Ws) only depends on the distance between the two points t and s, and
not on their position. On the other hand the Brownian motion, while not stationary,
has independent and stationary increments, which means the consecutive increments
of this process over the same distance are iid random variables.

Gaussian processes appear to be good priors of choice in the statistical models
studied in this thesis. For more detailed investigations on these processes, we give
a non-exhaustive list of work and references therein: (Tokdar and Ghosal, 2005),
(Choudhuri et al., 2007), (van der Vaart and van Zanten, 2007), (van der Vaart and
van Zanten, 2008) and (van der Vaart and van Zanten, 2009b).

§1.5 Models

The main non-parametric models investigated in this thesis are the signal in Gaussian
white noise model and the non-parametric regression model.

§1.5.1 Signal-in-white-noise model

Let the random function Y (n)(t) be defined as follows

Y (n)(t) :=

∫ t

0

θ0(s)ds+
1√
n
Wt, t ∈ [0, 1],

where θ0 ∈ L2[0, 1] is the parameter of interest and Wt is the Brownian motion. This
problem can also be interpreted as observing n independent realizations of a random
variable defined as

Yj(t) :=

∫ t

0

θ0(s)ds+Wj,t, j ∈ {1, ..., n}, t ∈ [0, 1],

where the Wj,t are n independent Brownian motions.
It is usual for practicality to convert the problem into the spectral domain using

an orthonormal basis (ϕi)i≥1 of L2[0, 1]. The random function Y (n)(t) becomes a
sequence (Yi)i≥1 defined as

Yi = θ0,i +
1√
n
Zi, i ∈ N,

where (θ0,i)i≥1 ∈ ℓ2 is an infinite sequence and (Zi)i≥1 are independent standard
normal random variables. The relative simplicity of the model and its relation to
non-parametric regression (Brown and Low, 1996) and (Nussbaum, 1996) makes it
an important benchmark model in the literature; see for instance (Donoho, 1994),
(Tsybakov, 2009) and (Giné and Nickl, 2016).

In the case θ0 ∈ Sβ with regularity parameter β > 0, the minimax convergence
rate to estimate the parameter is proportional to n−β/(1+2β) with respect to the L2-
loss; see (Tsybakov, 2009) and reference therein. One way to achieve this rate is to
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§1.6. Adaptation

simply estimate the Fourier coefficients of θ0 with the first n1/(1+2β) coefficients of
(Yi)i≥1. Furthermore, it has also been shown in (Knapik et al., 2011) and (Ghosal
and Van der Vaart, 2017) that using an appropriately smooth GP prior (for instance

a squared-exponential GP with rescaling an := n1/(1+2β)/ log2/(1+2β) n) leads to op-
timal posterior contraction rates (up to a multiplicative logarithmic factor).

§1.5.2 Non-parametric regression

Let (Xi, Yi)
n
i=1 be n iid pairs of random variables such that

Yi = θ0(Xi) + Zi, i ∈ {1, ..., n}

where the Xi’s are in a set X (e.g. [0, 1]), the Zi’s are iid centered random variables
(generally taken as standard normal) and θ0 ∈ L2 is the functional parameter of
interest. When Xi is deterministic, we talk about regression with fixed design, for
instance the regular grid Xi = i/n on X = [0, 1], while in the case of random Xi, we
talk about regression with random design. Generally, θ0 is assumed to belong to a
certain class of smoothness with regularity β > 0, for instance a Sobolev or Hölder
class. The corresponding minimax rate for both classes is, up to a constant multiplier,
n−β/(1+2β) with respect to the empirical L2-norm in the fixed design case and the
usual L2-norm in the uniformly random design case.

Among the estimators achieving the minimax convergence rate, we can present
the Nadaraya-Watson estimator introduced in (Nadaraya, 1964) and (Watson, 1964)

θ̂n(x) =

∑n
i=1K(x−Xi

h )Yi∑n
i=1K(x−Xi

h )
,

which uses a kernel K, a non-negative integrable function, as a weight function and
h > 0 is a smoothing parameter called the bandwidth. In (Bickel and Doksum, 1977),
we can see that if the bandwidth is well chosen, namely h ≍ n−1/(2β+1), then both
the point-wise and integrated mean-square errors are proportional to the optimal
convergence rate n−β/(1+2β). In this model as well, (van der Vaart and van Zanten,
2008), (Knapik et al., 2011), (Ghosal and Van der Vaart, 2017) and (Bhattacharya
et al., 2017) have shown that using a GP prior can result in a posterior density which
contracts around the true parameter at an optimal rate in L2-norm up to a possible
logarithmic factor.

§1.6 Adaptation

In the previous section, we have seen that some estimators are minimax for the dis-
cussed models. However, these estimators require the knowledge of the exact regu-
larity of the true parameter. In practice, this might not be realistic since the true
regularity is seldom known in advance; thus, it is desirable to have procedures which
do not rely on the true smoothness hyper-parameters, but adapt to them. In math-
ematical words, we can consider that the parameter of interest θ0 belongs to a pa-
rameter space Θ seen as a collection of subspaces Θβ indexed by a hyper-parameter
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1. Introduction

β. We would like to find an estimator θ̂n ∈ Θ which attains the minimax rate Rn,β
corresponding to Θβ whatever the true smoothness β is

sup
θ∈Θβ

EθL(θ̂n, θ) ≤ CβRn,β ,

where Cβ > 0 is a positive constant depending only on β and Rn,β is defined as

Rn,β = inf
θ̂n∈Θβ

sup
θ∈Θβ

EθL(θ̂n, θ).

Although the theory of adaptation is fairly developed in frequentist statistics; see
for instance (Bickel, 1982), (Lepski and Spokoiny, 1997), and (Goldenshluger and
Nemirovski, 1997), its Bayesian counterpart is relatively recent, and has been getting
more attention, see the monograph (Ghosal and Van der Vaart, 2017) and reference
therein.

The idea is to construct a prior distribution reaching the optimal contraction rate
for a set of possible regularities. In the non-parametric case, the oracle choice, the
tuning parameter of the prior associated with the true smoothness, is impossible to
select in practice. This encourages us in most cases to make a data-driven selection
of this parameter. The two adaptive Bayesian techniques discussed in this thesis are
the empirical Bayes and the hierarchical Bayes methods.

§1.6.1 Empirical Bayes

One possible way to proceed is to estimate the tuning parameter from the data. Al-
though not fully Bayesian, since the parameter of interest is estimated using frequen-
tist techniques, this method can be computationally convenient in some statistical
settings. This approach is known as the empirical Bayes method in the literature.
Basically, if the prior distribution is tuned by a parameter α such that we can denote
it by Πα, we first need to estimate this parameter by maximizing the marginal likeli-
hood

∫
Θ
Pθ(X)dΠα(θ) seen as a function of α to obtain an estimator α̂ with X being

our observation, then plug α̂ into the posterior used in our inference. In other words,
the maximum marginal likelihood estimator (MMLE) is

α̂ = argmax
α

∫
Θ

Pθ(X)dΠα(θ),

and the corresponding posterior would be Πα̂(·|X) = Πα(·|X)
∣∣∣
α=α̂

.

We consider the following toy-example to demonstrate the idea. Let X(n) be a
sample of n iid observation from a Bernoulli distribution with unknown mean θ. We
endow θ with a Beta prior with parameters a, b > 0, which are also unknown. We will
first estimate the hyper-parameter a and b by maximizing the marginal likelihood

(ân, b̂n) = arg max
a,b>0

1

B(a, b)
θa+

∑
iXi−1(1− θ)b+n−

∑
iXi−1,

where B(a, b) is the normalizing Beta function. Then, we plug ân and b̂n in the
posterior distribution of the parameter θ

Πân,b̂n(·|X
(n)) = Πa,b(·|X(n))

∣∣∣
a=ân,b=b̂n

∼ Beta
(
ân +

∑
i

Xi, b̂n + n−
∑
i

Xi

)
.
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§1.7. Distributed computation

The approach benefits from the fact that once the estimators of the hyper-parameters
are computed, the posterior distribution generally becomes simple to compute. Fur-
thermore, the choice of the hyper-parameters makes sense intuitively for the frequen-
tist community, since it removes part of the subjectivity tied to the prior. For a
more comprehensive overview of the use of Empirical Bayes in practice and theoreti-
cal properties thereof, see (Johnstone and Silverman, 2005), (Belitser and Enikeeva,
2008), (Jiang and Zhang, 2009) (Szabo et al., 2013) and (Rousseau and Szabo, 2017).

§1.6.2 Hierarchical Bayes

On the other hand, the hierarchical Bayes method is more appealing to Bayesian
statisticians. In this approach we treat the hyper-parameter α as a random vari-
able, similarly to the parameter θ, and we endow it with a hyper-prior distribution.
Formally,

X|θ ∼ Pθ, θ|α ∼ Πα, α ∼ Λ,

where Λ is a hyper-prior distribution, Πα is the prior distribution of the parameter
of interest θ conditionally on α and Pθ is the distribution of our data conditionally
on the parameter θ. This creates a multilevel, hierarchical Bayesian procedure. We
are then interested in the marginal posterior distribution Π(·|X) =

∫
Πα(·|X)dΛ(α).

This fully Bayesian method has been studied in different models, and it has been
shown in, among other papers, (Huang, 2004), (Lember and van der Vaart, 2007),
(de Jonge and van Zanten, 2009), (van der Vaart and van Zanten, 2009a) and (Arbel
et al., 2013) that if the hyper-prior is chosen appropriately, the posterior distribution
contracts at an optimal rate adaptively.

Considering our previous toy-example, in a hierarchical Bayes procedure, we would
put a hyper-prior on a, b > 0, for instance two independent Gamma distributions with
parameters k, γ > 0. Formally, we would have

X(n)|θ ∼ Ber(θ), θ|a, b ∼ B(a, b), a, b
ind∼ Γ(k, γ).

In some cases, it is possible to compute the marginal posterior θ|X(n) straightfor-
wardly; however, in most cases, only approximation techniques (like MCMC methods)
can be applied.

One of the reasons hierarchical Bayes procedures are popular is that they ensue
directly from the Bayesian philosophy. Indeed, once a suitable sampling method is
found for the parameters of interest, most questions about the data-generating process
can be answered from a Bayesian point of view.

§1.7 Distributed computation

An asymptotic assessment of a statistical procedure requires the size n of the data to
be large; paradoxically, the optimal procedures suffer from having larger and larger
data set, consequently increasing computation time. On one hand, a larger sample
size is appreciated because it leads to more precise statistical statements, and on
the other hand, increasing the number of observations results in more computational
burden. Among the statistical procedures showcasing this phenomenon, we can give
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the GP non-parametric regression as an example. In this statistical model, we endow
the functional parameter θ with a GP prior θ ∼ GP(0,K) where K is a covariance

kernel. When the noise is also Gaussian with (Zi)
n
i=1

ind∼ N(0, σ2), the corresponding

posterior becomes easy to compute and we have θ|(Xi, Yi)
n
i=1 ∼ GP(θ̂, K̂), where the

parameters θ̂ and K̂ have closed forms:

θ̂(x) = K(x,X)T (K+ σ2In)
−1Y, (1.7.1)

K̂(x, x′) = K(x, x′)−K(x,X)T (K+ σ2In)
−1K(x′,X), (1.7.2)

where Y = (Yi)
n
i=1, K(x,X) = (K(x,Xi))

n
i=1 and K = (K(Xi, Xj))

n
i,j=1 for all

x, x′ ∈ X where X is a compact space (generally [0, 1]d). Even though it is possible to
compute the parameters of the posterior directly, they require the inversion of a n×n
matrix, which scales the computational complexity to O(n3) and requires a memory
of order O(n2).

Against the background of the high computational complexity, methods based on
distributed computation have emerged. Distributed methods partition the data over
several machines called experts, see for instance (Jordan and Jacobs, 1994), (Minsker
et al., 2014), (Ng and Deisenroth, 2014), (Cao and Fleet, 2014), (Srivastava et al.,
2015) and (Scott et al., 2016). The experts process their share of the data locally,
solving smaller versions of the problem. Then, all the local results are aggregated on
a central machine to produce a final outcome of the statistical analysis. To formalize
these ideas, let us partition the data (Xi, Yi)

n
i=1 into m batches (Xj

i , Y
j
i )
nj

i=1 with j ∈
{1, ...,m}, such that

∑
j nj = n. So as to keep the simplicity of the GP non-parametric

regression problem, we assume that each machine endows the parameter with a GP
prior. Once the local posterior distributions θ|(Xj

i , Y
j
i )
nj

i=1 are computed, we can
sample from the global posterior by aggregating each sample from the local posterior
distributions. There exist different types of distributed computation methods based
on the manner the data is partitioned, the way the local posterior or its modification
is computed and the aggregation technique used in the process. We provide here a
short description of these methods, but more details will be given in Chapters 3 and
4.

§1.7.1 Uniformly random partitioning

The data can be partitioned uniformly randomly among the machines. For simplicity,
we assume that n ≡ 0 mod m. Each machine will receive n/m data points chosen
randomly among (Xi, Yi)

n
i=1 such that no data point simultaneously belongs to two

machines or more.

Although in the classical Bayesian approach, the posterior is merely proportional
to the likelihood multiplied by the prior, it is sometimes beneficial in distributed
computation to modify the local posteriors. For instance, in order to tone down the
effect of the prior, it can be useful to raise the prior to a power decreasing in m, the
number of machines, for instance 1/m. Another technique would be to increase the
effect of the likelihood by raising it to a higher power, for instance m.

Furthermore, the aggregation of the local posteriors also affects the quality of the
global posterior. In the case the data has been partitioned uniformly randomly, one
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can either simply average the local posterior distributions or compute their Wasser-
stein barycenter, which is based on the Wasserstein distance between probability
measures.

§1.7.2 Spatial partitioning

It is also possible to partition the data spatially. In this case, we partition the design
space X into m sub-regions called Dj with j ∈ {1, ...,m}, and the jth machine will
deal with the data points {(Xi, Yi)

n
i=1, Xi ∈ Dj}.

In this scenario, we will see that no modification of the local posteriors is needed.
Moreover, even though each machine only receives observations with Xi in Dj , it can
produce a posterior mean and covariance for all x ∈ X . Then, it is possible to draw
from the local posterior and compute a weighted average of these draw, subsequently
constructing a global posterior. Mathematically, if θj is a sample from the local
posterior Πj , then

θ =

m∑
j=1

ωjθj ,

is a draw from the global posterior Π∗. The functions ωj are defined on X such
that

∑m
j=1 ωj(x) = 1 for all x ∈ X . The most naive approach would be to take

ωj = 1Dj
, ”gluing” in a sense the local GP posteriors. However, this approach leads

to discontinuous samples from the global posterior. In order to avoid discontinuities,
continuous data-driven weight functions concentrating around Dj are favored.

§1.8 Overview

This thesis focuses on frequentist properties of Bayesian techniques. The first chap-
ter examines how adaptation affects uncertainty quantification using exponentially
decaying covariance kernel. The two following chapters (Chapter 3-4) focuses on dis-
tributed computation in the Bayesian non-parametric regression model. In Chapter
3, we derive contraction rates and coverage for uniformly randomly partitioned dis-
tributed methods when the smoothness of the true function is known. On the other
hand, Chapter 4 deals with adaptive optimal recovery for spatially partitioned dis-
tributed methods. Finally, the last chapter is an extensive comparative simulation
study of the aforementioned distributed methods.

§1.9 Notations

For two positive sequences an, bn we use the notation an ≲ bn if there exists an
universal positive constant C such that an ≤ Cbn. Along the lines an ≍ bn denotes
that an ≲ bn and bn ≲ an hold, simultaneously. For θ ∈ L2[0, 1] we denote the

standard L2-norm as ∥θ∥22 =
∫ 1

0
θ(x)2dx and let diam(S) denote the ℓ2-diameter of

the set S ⊂ ℓ2. Throughout the thesis, c and C denote global constants whose value
may change one line to another. The dependence of the constants c, C on the model
parameters we denote by sub-indexes, e.g. cβ , Cβ,m,M .
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