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1. Introduction

CHAPTER 1
Introduction

The main theme of this thesis is the theoretical study of Gaussian processes as a tool
in Bayesian nonparametric statistics. We are interested in the frequentist properties
of Bayesian nonparametric techniques in an asymptotic regime.

This chapter will give a general introduction to Bayesian nonparametric statistics.
After a brief preamble on statistical science, we will compare the two main statistical
approaches: frequentism and Bayesianism. Our work will consist of a combination
of both, since we will study the Bayesian techniques from a frequentist perspective,
specifically consistency, convergence rates, uncertainty quantification and adaptation.
These properties will be studied in the context of non-parametric problems, that is
to say models with few modeling constraints. We will focus on the non-parametric
regression model and its idealized version, the signal-in-white-noise model.

One of the main theme of the thesis is scalability of Bayesian techniques. Indeed,
these computation-hungry techniques rapidly become intractable as the number of
observations grows. This issue led to the introduction of distributed Bayesian meth-
ods in order to decrease the computational complexity of the techniques. The later
chapters of this thesis will focus on such distributed methods and their properties.
They will also be briefly introduced in this chapter.

§1.1 Statistical science

Statistics can be defined as the study of data, which covers its collection, organiza-
tion, analysis, interpretation and presentation. The main focus of this thesis will be
mathematical statistics, which follows the framework of probability theory. Moreover,
the theoretical results will be illustrated with simulated data.

In order to understand both probability theory and statistics, it is useful to start
with a definition of modeling. A model describes and explains a system with the help
of mathematical concepts and language. Even though models are helpful in most
disciplines, they are all considered as oversimplification of the described system. As
George Box (Box, 1976) famously said “all models are wrong, but some are useful”.
While in probability theory, one studies the behavior of data following a specific and
known model, in theoretical statistics, one follows the opposite paths: one tries to
gather as much information from the data in order to make inference on the model.

More formally, one can think of a probability distribution P as a model for gener-
ating an observation X. The classical statistical approach is to assume that our model
P is a collection of probability distributions, and the end goal is to infer properties
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1. Introduction

of an element of P which could best describe the observation.

§1.2 Frequentist and Bayesian inference

Inference in statistics consists of establishing and evaluating propositions about the
process by which the data is generated. Different paradigms of statistical inference
coexist. This section will focus on two important paradigms: frequentist inference
and Bayesian inference.

§1.2.1 Frequentist inference

Frequentist inference is associated with the frequentist interpretation of probability;
we consider that the probability of an event is the frequency of appearance of this
event if it were possible to repeat the same experiment independently ad infinitum.
One of the main characteristics of frequentism is that frequentist modeling views
the data X as the realization of a random variable following some fixed probability
distribution P0 belonging to some model P. Often, the statistical model P is defined
as

P = {Pθ : θ ∈ Θ},

where the probability distributions are indexed by a parameter θ and Θ is the set of
all possible parameters, and we suppose the existence of a θ0 such that P0 = Pθ0 .
Basically, if θ0 were known, the work of a frequentist statistician would be finished.

Among the most widely used tools of frequentist inference, one can think of the
likelihood function. The likelihood function is a function of the parameter which
measures how well a particular parameter of the model fits a given sample of data.
Heuristically, it makes sense that parameters whose likelihoods are large are prefer-
able, since they verify that the probability of the observed data occurring is high.

§1.2.2 Bayesian inference

The Bayesian approach is quite different from the frequentist one. It is based on the
Bayesian interpretation of probability which stipulates that a probability is merely a
quantification of a personal belief or a reasonable expectation. Bayesian statisticians
generally believe that there is no fixed underlying parameter, but that the parameter
itself is the realization of a random variable. More formally, the parameter θ has
a probability distribution Π on the parameter space Θ called the prior distribution.
This distribution represents the degree of belief the statistician attaches to possible
parameters explaining the model. Then, the distribution Pθ describes the distribution
of the data X conditionally on the value of the parameter θ. This belief is then
updated once we have access to the data. If the model is dominated, which means all
possible distributions Pθ are absolutely continuous with respect to a common measure
µ and have corresponding densities pθ, then this operation gives us the posterior
distribution of the parameter

A 7→ Π(θ ∈ A|X) =

∫
A
pθ(X)dΠ(θ)∫

Θ
pθ(X)dΠ(θ)

,
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§1.2. Frequentist and Bayesian inference

for a measurable set A ⊂ Θ. The integrand in the numerator of the previous fraction
represents the joint distribution of the parameter and the data, which can be obtained
by multiplying the prior distribution of the parameter by the likelihood function, while
the denominator represents the marginal distribution of the data.

Even though the Bayesian approach is quite different from the frequentist ap-
proach, it can be useful in certain situations. Indeed, Bayesian techniques benefit
from conceptual simplicity in practice; after assigning a prior to the parameter, one
needs only to compute the posterior to make relevant inference. Besides, previous
expertise on a problem can be incorporated in the prior distribution of a parame-
ter. Although this implied subjectivity can be seen as a drawback compared to the
frequentist approach, subjectivity can never be completely absent from statistical
modeling and Bayesian subjectivity might appear more natural. Moreover, once the
statistician has access to the posterior distribution, all inference can be done exhaus-
tively. Finally, from a decision theoretical point of view, there is a Bayesian procedure
(or a limit of Bayesian procedures) which performs uniformly better than any other
procedure according to the “complete class theorem”, and only those procedures are
admissible, see for instance (Balder et al., 1983) and references therein. For a more
exhaustive introduction to Bayesian methods, see the books (Bernardo and Smith,
1994), (Robert, 2001), and (Ghosal and Van der Vaart, 2017).

One of the advantages of the Bayesian framework is the simplicity with which
we can quantify uncertainty. As the parameter is a random variable whose posterior
distribution depends on the data, we can construct sets containing the parameter with
high posterior probability. It is interesting to note that this is a probability statement
about the unknown parameter; thus, those sets are quite different from frequentist
confidence sets which provide a probability statement about the sets themselves.

After the introduction of both paradigms, the following section will be focused
on a hybrid approach where Bayesian methods are used, but given a frequentist
interpretation.

§1.2.3 Frequentist Bayes

Since Bayesian inference always starts with the choice of a prior which represents sub-
jective belief of an expert, if two experts do not share the exact same subjective belief,
the outcomes of their analyses can vary even if they shared the methodology. This
situation seldom occurs within the frequentist community, because of the shared as-
sumption that there exists a single true distribution explaining how the data has been
generated. Although the Bayesian paradigm differs significantly from the frequentist
one, it can be interesting to see Bayesian inference as a mere different frequentist
method. Indeed, one can still assume that the data X follows a fixed probability
distribution P0 belonging to some model P, and then study the posterior distribution
Π(·|X) of the parameter θ as a random measure which depends on the prior and the
“true” distribution P0. On one hand, this hybrid view allows statisticians to enjoy the
relative simplicity of implementation of Bayesian methods, for instance the built-in
uncertainty quantification; on the other hand, it gives frequentist guarantees for those
same methods.

In the parametric case, where the parameter θ describing the model has a finite
dimensional structure, the well-known Bernstein-von Mises theorem establishes that
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1. Introduction

under mild regularity conditions Bayesian inference is asymptotically equivalent to
frequentist inference. More precisely, the theorem states that the posterior becomes
asymptotically normal centered around the maximum likelihood or any efficient es-
timator with variance equal to the inverse of the Fisher information. Despite the
strength of this result, its limitation to the parametric and semi-parametric case re-
quires statisticians to find other ways to study non-parametric Bayesian methods.

§1.3 Non-parametric asymptotic statistics

As established, non-parametric statistical techniques are based on models with as
few assumptions as possible. Technically, a non-parametric model does rely on a
parameter θ, but this parameter is infinite dimensional; it can for instance be an
infinite sequence or a function. Non-parametric models are attractive thanks to their
flexibility and robustness. The books (Wasserman, 2006), (Tsybakov, 2009) and (Giné
and Nickl, 2016) provide a more detailed introduction to non-parametric statistics.

In non-parametric statistics, it is common to consider some assumption on the
smoothness or regularity of the parameter θ ∈ Θ. In this thesis, we consider frequently
used smoothness spaces: the Sobolev and the Hölder spaces. These spaces will be
defined for functions defined on [0, 1], but the idea can be expanded to functions on
other domains as well.

Let (ϕi)i≥1 denote an orthonormal basis of L2([0, 1]) (i.e. measurable functions
that are square-integrable in [0, 1]) and consider functions on L2([0, 1]) in the form

θ =

+∞∑
i=1

θiϕi,

where θi is the ith coefficient in the series expansion. The Sobolev ball Sβ(M) with
smoothness parameter β > 0 and radius M > 0 is defined as

Sβ(M) =

{
θ ∈ L2([0, 1]) :

∑
i

αiθ
2
i ≤M2

}
,

where αi ≍ i2β . In this thesis, we will also consider a related regularity space of
function: hyper-rectangles

Θβ(M) = {θ ∈ L2([0, 1]) : sup
i
i2βθ2i ≤M}.

For integer regularity parameters β and the classical Fourier basis, it is also possible
to represent the Sobolev class as the set of β − 1 times differentiable functions [0, 1]
with absolute continuous derivatives and with a βth derivative satisfying∫ 1

0

(θβ(t))2dt ≤Mπ2β .

The Hölder space of smoothness β > 0 on [0, 1] denoted by Cβ([0, 1]), on the other
hand, contains all functions θ with ⌊β⌋ (the integer part of β) derivatives and their
last continuous derivatives verifies the Hölder condition

sup
x,y∈[0,1]

|θ⌊β⌋(x)− θ⌊β⌋(y)| ≤M |x− y|α

10



§1.3. Non-parametric asymptotic statistics

with α = β − ⌊β⌋ and M > 0. The corresponding Hölder ball with radius M > 0 is
defined as

Hβ(M) =

{
θ ∈ Cβ([0, 1]) : supx,y∈[0,1] |θ⌊β⌋(x)− θ⌊β⌋(y)| ≤M |x− y|β−⌊β⌋,

supk≤β ∥θ(k)∥∞ ≤M

}
.

The asymptotic approach to assess the performance of a statistical technique can
be described intuitively. Indeed, the outcomes of any statistical procedure can be ar-
ranged in a sequence indexed by the size of the sample used during this procedure. The
theoretical study of this sequence allows to understand the behavior of the procedure
when the size of the data grows, and ideally the larger our data sample is, the better
the procedure performs. Mathematically, if we observe the data X(n), generated from
the distribution Pθ0 , and our outcome is a random variable called point estimator
T (X(n)), given by a measurable function T , then we are interested in the study of the
sequence (T (X(n)))n∈N. Since this thesis focuses on the frequentist Bayes approach,
we will introduce some frequentist properties of Bayesian asymptotics: consistency,
contraction rates and coverage of credible sets.

§1.3.1 Consistency

The first frequentist property one could check when applying Bayesian techniques
is the consistency of the posterior. Posterior consistency simply means that the
posterior distribution Π(.|X(n)) puts most of its mass around a smaller and smaller
neighborhood of the true parameter θ0. Formally, it means that for all ε > 0,

Π(θ : d(θ, θ0) < ε|X(n))
Pθ0→ 1,

where d is a given metric and the convergence is in probability under the true parame-
ter. Posterior consistency is a necessary frequentist property to assess the performance
of a Bayesian method, but it is relatively weak and non-informative.

In non-parametric models, posterior consistency is not always satisfied even if
the prior distribution covers the true parameter; it is possible that some posterior
distribution does not concentrate around the true parameter even when any neigh-
borhood of this parameter has positive mass, see for instance (Freedman, 1963), (Di-
aconis and Freedman, 1986) and (Kim and Lee, 2001). Fortunately, Doob’s theorem
and Schwartz’s theorem provide a robust result to assess the consistency of non-
parametric Bayesian models. Doob’s consistency theorem (Doob, 1949) states that
if the true parameter θ0 is not in some null-set of the prior, then the posterior dis-
tribution is consistent. While topologically, prior null-sets can be large, Schwartz’s
theorem (Schwartz, 1965) gives a more extensive result. It assesses that posterior con-
sistency over the whole parameter space is verified under two conditions: the prior
mass condition which requires that the prior assigns sufficiently large probabilities
to neighborhoods of the true parameter, and the test condition which necessitates
the existence of a sequence of tests which separates the true parameter from the
complements of neighborhoods around the parameter.

Although consistency is important in evaluating non-parametric Bayesian tech-
niques, since it is not considered strong enough, we will focus on a more descriptive
property: rate of contraction.
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1. Introduction

§1.3.2 Contraction rates

When estimating a parameter θ, the frequentist asymptotic way to evaluate the es-
timation θ̂n, which is a measurable function of the data, is not only to verify that
the sequence (θ̂n)n∈N converges (in probability or almost surely) to the true value θ0
uniformly over the possible ”truths”, but also to evaluate the risk of this estimator.
Mathematically, we first choose a loss function L : Θ × Θ → (0,∞) and then define
the maximum risk of our estimator as

r(θ̂n) = sup
θ∈Θ

EθL(θ̂n, θ),

where the expectation Eθ is taken with respect to the probability measure Pθ. This
function represents the amount an estimator deviates from the true parameter in the
worst case scenario. The choice of a loss function impacts directly the choice of the
best estimator. Once the maximum risk over the class Θ has been defined, the goal
is to find an estimator which minimizes this risk. Such an estimator is called the
minimax estimator, and the risk associated to it is the minimax risk

Rn = inf
θ̂n

r(θ̂n),

where the infimum is taken over all measurable functions of the data. Thanks to
Markov’s and Chebyshev’s inequality, it can be shown that the minimax estimator θ̂∗n
has the best convergence rate ε2n := Rn, which means that

sup
θ∈Θ

Pθ

(
d(θ̂∗n, θ) > Mnεn

)
→ 0,

for any Mn → +∞, and that for all δn such that δn = o(εn) there exists at least one
θ∗ ∈ Θ such that

Pθ∗
(
d(θ̂∗n, θ

∗) > Lδn

)
↛ 0

for all L > 0. The minimax risk and estimators have been studied for a large variety
of problems. We refer to (Lehmann and Casella, 1998) for more details about the
topic.

The analogous property to convergence rate for Bayesian techniques is the rate of
contraction. The contraction rate εn of a Bayesian procedure is a sequence converging
to 0 in n such that

Πn

(
θ : d(θ, θ0) ≤ εn|X(n)

)
Pθ0→ 1.

This rate quantifies how quickly the posterior mass concentrates around the true
parameter θ0. In regular parametric models, the posterior contraction rate can always
achieve the same order of the optimal frequentist convergence rate. This result follows
from the Bernstein-von Mises theorem. However, it is not yet clear if such a result
could also exist in the non-parametric case.

(Ghosal et al., 2000), (Ghosal and van der Vaart, 2007), (van der Vaart and van
Zanten, 2008) and (Ghosal and Van der Vaart, 2017) address this issue. Let us
consider the iid case where X1, ..., Xn are n random variable distributed according to
Pθ0 . We consider the Hellinger metric d on the parameter space given by

d2(θ, θ′) =

∫
(
√
pθ −

√
pθ′)

2dµ,
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§1.3. Non-parametric asymptotic statistics

where pθ and pθ′ are the densities of Pθ and Pθ′ with respect to the measure µ. We
also define the entropy number (denoted by N(ε,B, d)), which represents the number
of ε-radius balls required to cover the set B with respect to a given metric d.

Theorem 1.3.1 (Theorem 2.1 of (Ghosal et al., 2000)). Suppose that for a sequence
εn with εn → 0 and nε2n → ∞, a constant C > 0 and subsets Θn ⊂ Θ of the parameter
set, we have

logN(εn,Θn, d) ≤ nε2n,

Π(θ /∈ Θn) ≤ exp(−(C + 4)nε2n),

Π
(
θ : Pθ0 log

pθ
pθ0

≤ ε2n, Pθ0 log
2 pθ
pθ0

≤ ε2n

)
≥ exp(−Cnε2n).

Then for sufficiently large M , we have that Π(θ : d(θ, θ0) ≥ Mεn|X(n)) → 0 in
Pθ0-probability.

The conditions can be understood as follows: the first condition, the entropy con-
dition, implies that the sets Θn are not too large; the second condition, the remaining
mass condition, implies that prior distribution puts enough mass on these sets; the
last condition, the prior mass condition, requires the prior to put enough mass in a
small neighborhood of the true distribution.

We consider that the contraction rate is optimal if it is equal to the minimax
convergence rate. It is relatively easy to construct an estimator θ̂ from the posterior
which attains the same convergence rate as the posterior construction. Indeed, we can
for instance take the center of the smallest ball with posterior mass greater than 1/2,
see (Ghosal et al., 2000) and (Ghosal and Van der Vaart, 2017). Therefore, finding
a posterior achieving optimal contraction rate leads directly to a Bayesian estimator
with minimax convergence rate.

§1.3.3 Bayesian uncertainty quantification

Once the posterior distribution is computed, one can derive Bayesian point estimates.
Those are simply functions of the data which minimize an integrated loss function
with respect to the posterior measure. Despite their usefulness, point estimates do
not provide information about the uncertainty of our inference on θ0. For that reason,
it is also interesting to generate a set of possible values for our parameter.

In the frequentist case, these sets are known as confidence sets. Confidence sets are
set-valued estimators Ĉn(X

(n)) to which the true parameter is most likely to belong,
according to the data. More formally, we define a confidence set Ĉn of level 1− α as

inf
θ∈Θ

Pθ(θ ∈ Ĉn) ≥ 1− α.

Asymptotically, confidence sets should also verify

lim inf
n→∞

inf
θ∈Θ

Pθ(θ ∈ Ĉn) ≥ 1− α.

These sets have asymptotically uniform confidence level 1− α. In other words, they
have the same confidence level asymptotically even in the worst case scenario for the
true parameter.
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1. Introduction

Nonetheless, the construction of confidence sets is not easy when the model is
computationally complex. In the Bayesian approach, we talk instead of credible sets,
which accumulate most of the posterior probability mass. Since it is possible to sample
from the posterior, the construction of approximate credible sets thanks to Markov
chain Monte-Carlo (MCMC) methods is relatively simpler than the construction of
confidence sets. Formally, credible sets C̃n of level 1− α are sets such that

Πn(θ ∈ C̃n|X(n)) ≥ 1− α.

Contrary to confidence sets, credible sets are subjective in nature because of the
influence of the prior distribution in the posterior. Although confidence sets and
credible sets are asymptotically equivalent in the parametric case under some regu-
larity assumptions thanks to the Bernstein-von Mises theorem, the question of their
equivalence in the non-parametric case has not been entirely answered.

Actually, it is known through several negative examples that Bayesian credible sets
do not converge automatically to frequentist confidence sets when the model is infinite-
dimensional, see for instance (Cox, 1993). This phenomenon encourages a further
analysis of the behavior of credible sets from a frequentist point of view. It appears
in (Knapik et al., 2011), (Castillo and Nickl, 2013), (Szabo et al., 2015), (Sniekers
and van der Vaart, 2015b), (Belitser, 2017) and (Szabo et al., 2017) that in some
situations, Bayesian credible sets ensure good coverage of the true parameter, that is
to say that the credible sets are asymptotically likely to contain the true parameter
according to the true distribution. Moreover, (Rousseau and Szabo, 2020) studied the
asymptotic coverage of Bayesian credible sets in a general non-parametric framework.
The general intuition is that Bayesian credible sets have good coverage when the prior
generates parameters that are slightly less smooth than the true parameter.

§1.4 Gaussian processes

The examination of Bayesian techniques from a frequentist perspective requires a
good understanding of the prior distribution because it influences heavily the out-
come of a Bayesian statistical procedure. In this work, we mainly treat Gaussian
process priors. Gaussian processes are stochastic processes, i.e. collections of random
variables indexed by time or space which can be viewed as random elements in a func-
tion space verifying the following condition: every finite collection of the evaluation
of the process at different times has a multivariate normal distribution. We refer to
(Rasmussen and Williams, 2006) for a more comprehensive introduction to Gaussian
processes and their applications.

A Gaussian process W = {Wt : t ∈ T} indexed by a set T is characterized by its
mean µ : T → R and its covariance function K : T ×T → R given by µ(t) = EWt and
K(s, t) = Cov(Wt,Ws), respectively. Generally, the set T is a subset of Rd so that
the function t 7→ Wt belongs to the space of real-valued functions on T . As priors,
we typically take centered Gaussian processes, i.e. their mean µ(t) is set to be zero;
thus, their behaviors can be understood entirely through their covariance functions.
Moreover, thanks to Mercer’s theorem (Mercer, 1909), we can see that the covariance
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§1.4. Gaussian processes

function of a Gaussian process can be represented as follows

K(s, t) =

+∞∑
j=1

λjϕj(s)ϕj(t),

because the covariance is a symmetric non-negative definite kernel. Here, the ϕj ’s
are eigenfunctions representing an orthonormal basis of L2(T ), the λj ’s are the corre-
sponding non-negative eigenvalues and the convergence of the series is absolute and
uniform when the kernel is continuous and T is compact. In addition to Mercer’s the-
orem, the Karhunen-Loève theorem, (Karhunen, 1947) and (Loève, 1978), provides a
nice representation of the random variable Wt for any t ∈ T :

Wt =

+∞∑
j=1

√
λjZjϕj(t),

where the Zj ’s are independent standard normal random variables and the conver-
gence is almost sure.

In this thesis, we will focus on the following specific Gaussian processes (GP):

• the GP with a Matérn covariance kernel

K(s, t) =
21−α

Γ(α)

( |s− t|
√
2α

a

)α
Kα

( |s− t|
√
2α

a

)
,

where Γ is the gamma function, Kα is the modified Bessel function, a is a
rescaling parameter and α is the smoothness parameter. The sample paths
t 7→Wt of a GP with Matérn covariance function are ⌊α⌋ times differentiable.

• the GP with a squared-exponential covariance kernel

K(s, t) = exp
( (s− t)2

2a2

)
,

where a is a scaling parameter. The squared-exponential covariance kernel can
be seen as the limit of Matérn covariance kernels with α going to infinity. A GP
with squared-exponential covariance function has infinitely differentiable sample
paths.

• the Brownian motion and its primitives, the Brownian motion has covari-
ance kernel

K(s, t) = min(s, t).

Since the sample paths of a Brownian motion are Lipschitz continuous of any
order α < 1/2 but not differentiable anywhere, it is common to integrate this
process k times in order to have a GP with a smoothness order k + 1/2. More-
over, the k-fold integrated Brownian motion has vanishing derivatives at zero;
hence, it is common to ”release” this process by adding a polynomial process
t 7→

∑k
j=0 Zjt

j/j! where the Zj ’s are independent standard normal random
variables. Thus, the k-fold integrated Brownian motion can be written as

Gt =

k∑
j=0

Zjt
j

j!
+ IkWt,
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1. Introduction

where Ik = Ik−1I and If(t) =
∫ t
0
f(s)ds.

Both the GP with Matérn and with squared-exponential covariance kernel are station-
ary; Cov(Wt,Ws) only depends on the distance between the two points t and s, and
not on their position. On the other hand the Brownian motion, while not stationary,
has independent and stationary increments, which means the consecutive increments
of this process over the same distance are iid random variables.

Gaussian processes appear to be good priors of choice in the statistical models
studied in this thesis. For more detailed investigations on these processes, we give
a non-exhaustive list of work and references therein: (Tokdar and Ghosal, 2005),
(Choudhuri et al., 2007), (van der Vaart and van Zanten, 2007), (van der Vaart and
van Zanten, 2008) and (van der Vaart and van Zanten, 2009b).

§1.5 Models

The main non-parametric models investigated in this thesis are the signal in Gaussian
white noise model and the non-parametric regression model.

§1.5.1 Signal-in-white-noise model

Let the random function Y (n)(t) be defined as follows

Y (n)(t) :=

∫ t

0

θ0(s)ds+
1√
n
Wt, t ∈ [0, 1],

where θ0 ∈ L2[0, 1] is the parameter of interest and Wt is the Brownian motion. This
problem can also be interpreted as observing n independent realizations of a random
variable defined as

Yj(t) :=

∫ t

0

θ0(s)ds+Wj,t, j ∈ {1, ..., n}, t ∈ [0, 1],

where the Wj,t are n independent Brownian motions.
It is usual for practicality to convert the problem into the spectral domain using

an orthonormal basis (ϕi)i≥1 of L2[0, 1]. The random function Y (n)(t) becomes a
sequence (Yi)i≥1 defined as

Yi = θ0,i +
1√
n
Zi, i ∈ N,

where (θ0,i)i≥1 ∈ ℓ2 is an infinite sequence and (Zi)i≥1 are independent standard
normal random variables. The relative simplicity of the model and its relation to
non-parametric regression (Brown and Low, 1996) and (Nussbaum, 1996) makes it
an important benchmark model in the literature; see for instance (Donoho, 1994),
(Tsybakov, 2009) and (Giné and Nickl, 2016).

In the case θ0 ∈ Sβ with regularity parameter β > 0, the minimax convergence
rate to estimate the parameter is proportional to n−β/(1+2β) with respect to the L2-
loss; see (Tsybakov, 2009) and reference therein. One way to achieve this rate is to
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simply estimate the Fourier coefficients of θ0 with the first n1/(1+2β) coefficients of
(Yi)i≥1. Furthermore, it has also been shown in (Knapik et al., 2011) and (Ghosal
and Van der Vaart, 2017) that using an appropriately smooth GP prior (for instance

a squared-exponential GP with rescaling an := n1/(1+2β)/ log2/(1+2β) n) leads to op-
timal posterior contraction rates (up to a multiplicative logarithmic factor).

§1.5.2 Non-parametric regression

Let (Xi, Yi)
n
i=1 be n iid pairs of random variables such that

Yi = θ0(Xi) + Zi, i ∈ {1, ..., n}

where the Xi’s are in a set X (e.g. [0, 1]), the Zi’s are iid centered random variables
(generally taken as standard normal) and θ0 ∈ L2 is the functional parameter of
interest. When Xi is deterministic, we talk about regression with fixed design, for
instance the regular grid Xi = i/n on X = [0, 1], while in the case of random Xi, we
talk about regression with random design. Generally, θ0 is assumed to belong to a
certain class of smoothness with regularity β > 0, for instance a Sobolev or Hölder
class. The corresponding minimax rate for both classes is, up to a constant multiplier,
n−β/(1+2β) with respect to the empirical L2-norm in the fixed design case and the
usual L2-norm in the uniformly random design case.

Among the estimators achieving the minimax convergence rate, we can present
the Nadaraya-Watson estimator introduced in (Nadaraya, 1964) and (Watson, 1964)

θ̂n(x) =

∑n
i=1K(x−Xi

h )Yi∑n
i=1K(x−Xi

h )
,

which uses a kernel K, a non-negative integrable function, as a weight function and
h > 0 is a smoothing parameter called the bandwidth. In (Bickel and Doksum, 1977),
we can see that if the bandwidth is well chosen, namely h ≍ n−1/(2β+1), then both
the point-wise and integrated mean-square errors are proportional to the optimal
convergence rate n−β/(1+2β). In this model as well, (van der Vaart and van Zanten,
2008), (Knapik et al., 2011), (Ghosal and Van der Vaart, 2017) and (Bhattacharya
et al., 2017) have shown that using a GP prior can result in a posterior density which
contracts around the true parameter at an optimal rate in L2-norm up to a possible
logarithmic factor.

§1.6 Adaptation

In the previous section, we have seen that some estimators are minimax for the dis-
cussed models. However, these estimators require the knowledge of the exact regu-
larity of the true parameter. In practice, this might not be realistic since the true
regularity is seldom known in advance; thus, it is desirable to have procedures which
do not rely on the true smoothness hyper-parameters, but adapt to them. In math-
ematical words, we can consider that the parameter of interest θ0 belongs to a pa-
rameter space Θ seen as a collection of subspaces Θβ indexed by a hyper-parameter
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1. Introduction

β. We would like to find an estimator θ̂n ∈ Θ which attains the minimax rate Rn,β
corresponding to Θβ whatever the true smoothness β is

sup
θ∈Θβ

EθL(θ̂n, θ) ≤ CβRn,β ,

where Cβ > 0 is a positive constant depending only on β and Rn,β is defined as

Rn,β = inf
θ̂n∈Θβ

sup
θ∈Θβ

EθL(θ̂n, θ).

Although the theory of adaptation is fairly developed in frequentist statistics; see
for instance (Bickel, 1982), (Lepski and Spokoiny, 1997), and (Goldenshluger and
Nemirovski, 1997), its Bayesian counterpart is relatively recent, and has been getting
more attention, see the monograph (Ghosal and Van der Vaart, 2017) and reference
therein.

The idea is to construct a prior distribution reaching the optimal contraction rate
for a set of possible regularities. In the non-parametric case, the oracle choice, the
tuning parameter of the prior associated with the true smoothness, is impossible to
select in practice. This encourages us in most cases to make a data-driven selection
of this parameter. The two adaptive Bayesian techniques discussed in this thesis are
the empirical Bayes and the hierarchical Bayes methods.

§1.6.1 Empirical Bayes

One possible way to proceed is to estimate the tuning parameter from the data. Al-
though not fully Bayesian, since the parameter of interest is estimated using frequen-
tist techniques, this method can be computationally convenient in some statistical
settings. This approach is known as the empirical Bayes method in the literature.
Basically, if the prior distribution is tuned by a parameter α such that we can denote
it by Πα, we first need to estimate this parameter by maximizing the marginal likeli-
hood

∫
Θ
Pθ(X)dΠα(θ) seen as a function of α to obtain an estimator α̂ with X being

our observation, then plug α̂ into the posterior used in our inference. In other words,
the maximum marginal likelihood estimator (MMLE) is

α̂ = argmax
α

∫
Θ

Pθ(X)dΠα(θ),

and the corresponding posterior would be Πα̂(·|X) = Πα(·|X)
∣∣∣
α=α̂

.

We consider the following toy-example to demonstrate the idea. Let X(n) be a
sample of n iid observation from a Bernoulli distribution with unknown mean θ. We
endow θ with a Beta prior with parameters a, b > 0, which are also unknown. We will
first estimate the hyper-parameter a and b by maximizing the marginal likelihood

(ân, b̂n) = arg max
a,b>0

1

B(a, b)
θa+

∑
iXi−1(1− θ)b+n−

∑
iXi−1,

where B(a, b) is the normalizing Beta function. Then, we plug ân and b̂n in the
posterior distribution of the parameter θ

Πân,b̂n(·|X
(n)) = Πa,b(·|X(n))

∣∣∣
a=ân,b=b̂n

∼ Beta
(
ân +

∑
i

Xi, b̂n + n−
∑
i

Xi

)
.
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The approach benefits from the fact that once the estimators of the hyper-parameters
are computed, the posterior distribution generally becomes simple to compute. Fur-
thermore, the choice of the hyper-parameters makes sense intuitively for the frequen-
tist community, since it removes part of the subjectivity tied to the prior. For a
more comprehensive overview of the use of Empirical Bayes in practice and theoreti-
cal properties thereof, see (Johnstone and Silverman, 2005), (Belitser and Enikeeva,
2008), (Jiang and Zhang, 2009) (Szabo et al., 2013) and (Rousseau and Szabo, 2017).

§1.6.2 Hierarchical Bayes

On the other hand, the hierarchical Bayes method is more appealing to Bayesian
statisticians. In this approach we treat the hyper-parameter α as a random vari-
able, similarly to the parameter θ, and we endow it with a hyper-prior distribution.
Formally,

X|θ ∼ Pθ, θ|α ∼ Πα, α ∼ Λ,

where Λ is a hyper-prior distribution, Πα is the prior distribution of the parameter
of interest θ conditionally on α and Pθ is the distribution of our data conditionally
on the parameter θ. This creates a multilevel, hierarchical Bayesian procedure. We
are then interested in the marginal posterior distribution Π(·|X) =

∫
Πα(·|X)dΛ(α).

This fully Bayesian method has been studied in different models, and it has been
shown in, among other papers, (Huang, 2004), (Lember and van der Vaart, 2007),
(de Jonge and van Zanten, 2009), (van der Vaart and van Zanten, 2009a) and (Arbel
et al., 2013) that if the hyper-prior is chosen appropriately, the posterior distribution
contracts at an optimal rate adaptively.

Considering our previous toy-example, in a hierarchical Bayes procedure, we would
put a hyper-prior on a, b > 0, for instance two independent Gamma distributions with
parameters k, γ > 0. Formally, we would have

X(n)|θ ∼ Ber(θ), θ|a, b ∼ B(a, b), a, b
ind∼ Γ(k, γ).

In some cases, it is possible to compute the marginal posterior θ|X(n) straightfor-
wardly; however, in most cases, only approximation techniques (like MCMC methods)
can be applied.

One of the reasons hierarchical Bayes procedures are popular is that they ensue
directly from the Bayesian philosophy. Indeed, once a suitable sampling method is
found for the parameters of interest, most questions about the data-generating process
can be answered from a Bayesian point of view.

§1.7 Distributed computation

An asymptotic assessment of a statistical procedure requires the size n of the data to
be large; paradoxically, the optimal procedures suffer from having larger and larger
data set, consequently increasing computation time. On one hand, a larger sample
size is appreciated because it leads to more precise statistical statements, and on
the other hand, increasing the number of observations results in more computational
burden. Among the statistical procedures showcasing this phenomenon, we can give
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the GP non-parametric regression as an example. In this statistical model, we endow
the functional parameter θ with a GP prior θ ∼ GP(0,K) where K is a covariance

kernel. When the noise is also Gaussian with (Zi)
n
i=1

ind∼ N(0, σ2), the corresponding

posterior becomes easy to compute and we have θ|(Xi, Yi)
n
i=1 ∼ GP(θ̂, K̂), where the

parameters θ̂ and K̂ have closed forms:

θ̂(x) = K(x,X)T (K+ σ2In)
−1Y, (1.7.1)

K̂(x, x′) = K(x, x′)−K(x,X)T (K+ σ2In)
−1K(x′,X), (1.7.2)

where Y = (Yi)
n
i=1, K(x,X) = (K(x,Xi))

n
i=1 and K = (K(Xi, Xj))

n
i,j=1 for all

x, x′ ∈ X where X is a compact space (generally [0, 1]d). Even though it is possible to
compute the parameters of the posterior directly, they require the inversion of a n×n
matrix, which scales the computational complexity to O(n3) and requires a memory
of order O(n2).

Against the background of the high computational complexity, methods based on
distributed computation have emerged. Distributed methods partition the data over
several machines called experts, see for instance (Jordan and Jacobs, 1994), (Minsker
et al., 2014), (Ng and Deisenroth, 2014), (Cao and Fleet, 2014), (Srivastava et al.,
2015) and (Scott et al., 2016). The experts process their share of the data locally,
solving smaller versions of the problem. Then, all the local results are aggregated on
a central machine to produce a final outcome of the statistical analysis. To formalize
these ideas, let us partition the data (Xi, Yi)

n
i=1 into m batches (Xj

i , Y
j
i )
nj

i=1 with j ∈
{1, ...,m}, such that

∑
j nj = n. So as to keep the simplicity of the GP non-parametric

regression problem, we assume that each machine endows the parameter with a GP
prior. Once the local posterior distributions θ|(Xj

i , Y
j
i )
nj

i=1 are computed, we can
sample from the global posterior by aggregating each sample from the local posterior
distributions. There exist different types of distributed computation methods based
on the manner the data is partitioned, the way the local posterior or its modification
is computed and the aggregation technique used in the process. We provide here a
short description of these methods, but more details will be given in Chapters 3 and
4.

§1.7.1 Uniformly random partitioning

The data can be partitioned uniformly randomly among the machines. For simplicity,
we assume that n ≡ 0 mod m. Each machine will receive n/m data points chosen
randomly among (Xi, Yi)

n
i=1 such that no data point simultaneously belongs to two

machines or more.

Although in the classical Bayesian approach, the posterior is merely proportional
to the likelihood multiplied by the prior, it is sometimes beneficial in distributed
computation to modify the local posteriors. For instance, in order to tone down the
effect of the prior, it can be useful to raise the prior to a power decreasing in m, the
number of machines, for instance 1/m. Another technique would be to increase the
effect of the likelihood by raising it to a higher power, for instance m.

Furthermore, the aggregation of the local posteriors also affects the quality of the
global posterior. In the case the data has been partitioned uniformly randomly, one
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can either simply average the local posterior distributions or compute their Wasser-
stein barycenter, which is based on the Wasserstein distance between probability
measures.

§1.7.2 Spatial partitioning

It is also possible to partition the data spatially. In this case, we partition the design
space X into m sub-regions called Dj with j ∈ {1, ...,m}, and the jth machine will
deal with the data points {(Xi, Yi)

n
i=1, Xi ∈ Dj}.

In this scenario, we will see that no modification of the local posteriors is needed.
Moreover, even though each machine only receives observations with Xi in Dj , it can
produce a posterior mean and covariance for all x ∈ X . Then, it is possible to draw
from the local posterior and compute a weighted average of these draw, subsequently
constructing a global posterior. Mathematically, if θj is a sample from the local
posterior Πj , then

θ =

m∑
j=1

ωjθj ,

is a draw from the global posterior Π∗. The functions ωj are defined on X such
that

∑m
j=1 ωj(x) = 1 for all x ∈ X . The most naive approach would be to take

ωj = 1Dj
, ”gluing” in a sense the local GP posteriors. However, this approach leads

to discontinuous samples from the global posterior. In order to avoid discontinuities,
continuous data-driven weight functions concentrating around Dj are favored.

§1.8 Overview

This thesis focuses on frequentist properties of Bayesian techniques. The first chap-
ter examines how adaptation affects uncertainty quantification using exponentially
decaying covariance kernel. The two following chapters (Chapter 3-4) focuses on dis-
tributed computation in the Bayesian non-parametric regression model. In Chapter
3, we derive contraction rates and coverage for uniformly randomly partitioned dis-
tributed methods when the smoothness of the true function is known. On the other
hand, Chapter 4 deals with adaptive optimal recovery for spatially partitioned dis-
tributed methods. Finally, the last chapter is an extensive comparative simulation
study of the aforementioned distributed methods.

§1.9 Notations

For two positive sequences an, bn we use the notation an ≲ bn if there exists an
universal positive constant C such that an ≤ Cbn. Along the lines an ≍ bn denotes
that an ≲ bn and bn ≲ an hold, simultaneously. For θ ∈ L2[0, 1] we denote the

standard L2-norm as ∥θ∥22 =
∫ 1

0
θ(x)2dx and let diam(S) denote the ℓ2-diameter of

the set S ⊂ ℓ2. Throughout the thesis, c and C denote global constants whose value
may change one line to another. The dependence of the constants c, C on the model
parameters we denote by sub-indexes, e.g. cβ , Cβ,m,M .
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CHAPTER 2
Adaptive credible sets with a
squared-exponential GP prior

This chapter has been published as: A. Hadji, B. Szabó, “Can we trust Bayesian
uncertainty quantification from Gaussian process priors with squared exponential co-
variance kernel?” (2021) in SIAM/ASA Journal on Uncertainty Quantification, (9),
1, 185-230

Abstract. We investigate the frequentist coverage properties of credible sets result-
ing in from Gaussian process priors with squared exponential covariance kernel. First
we show that by selecting the scaling hyper-parameter using the maximum marginal
likelihood estimator in the (slightly modified) squared exponential covariance ker-
nel the corresponding credible sets will provide overconfident, misleading uncertainty
statements for a large, representative subclass of the functional parameters in con-
text of the Gaussian white noise model. Then we show that by either blowing up
the credible sets with a logarithmic factor or modifying the maximum marginal like-
lihood estimator with a logarithmic term one can get reliable uncertainty statement
and adaptive size of the credible sets under some additional restriction. Finally we
demonstrate on a numerical study that the derived negative and positive results ex-
tend beyond the Gaussian white noise model to the non-parametric regression and
classification models for small sample sizes as well. The performance of the squared
exponential covariance kernel is also compared to the Matérn covariance kernel.

§2.1 Main results

§2.1.1 Model description

We consider the Gaussian white noise model

Y (t) =

∫ t

0

θ0(s)ds+
1√
n
Wt, t ∈ [0, 1], (2.1.1)

where θ0 ∈ L2[0, 1] is the unknown function of interest and Wt denotes the Brownian
motion. Let P0, E0, and V0 denote the corresponding probability measure, expected
value, and variance, respectively. In the Bayesian approach we endow the unknown
function of interest θ0 with a prior distribution representing our initial belief. In our
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work we investigate the popular Gaussian process prior with rescaled squared expo-
nential kernel. Let us consider the sequence representation of the Gaussian white noise
model. For an orthonormal basis ψi, i = 1, 2, ... (e.g. the Fourier basis) let us denote
the sequence decomposition of the functions θ0(t), Y (t), andWt by Yi = ⟨Y (t), ψi(t)⟩2,
θ0,i = ⟨θ0, ψi(t)⟩2, and Zi = ⟨Wt, ψi(t)⟩2

iid∼ N(0, 1), i = 1, 2, ..., respectively. Then
the equivalent sequence model can be given in the form

Yi = θ0,i +
1√
n
Zi, i = 1, 2, ....

Slightly abusing our notations we denote by θ0 both the functional parameter in the
Gaussian white noise model and the sequential parameter θ0 = (θ0,1, θ0,2, ...) in the
sequence model. It is common to assume that the true function θ0 belongs to a
hyper-rectangle regularity class, i.e.

θ0 ∈ Θβ(M) =

{
θ ∈ ℓ2 : sup

i≥1
θ2i i

2β+1 ≤M

}
,

for some (typically unknown) β,M > 0. The class Θβ(M) is closely related to Sobolev
type of regularity classes Sβ(M) = {θ ∈ ℓ2 :

∑
i≥1 θ

2
i i

2β ≤M} and the derived results
can (typically) easily be extended to them, see for instance (Szabo et al., 2015). We
note that the minimax estimation rate for the above hyper-rectangle regularity class
is n−β/(2β+1), i.e. there exists Cβ > 0 such that

inf
θ̂

sup
θ∈Θβ(M)

E0∥θ − θ̂∥2 ≥ Cβn
−β/(2β+1),

where the infimum is taken over all estimators, see for instance (Donoho, 1994).
In view of Mercel’s theorem we can represent the Gaussian process prior with

squared exponential kernel as

Gt =

∞∑
i=1

λiξiψi(t),

where λi, ψi, i = 1, 2, ... are the eigenvalues and eigenfunctions of the squared expo-
nential covariance kernel, and ξi are iid standard normal random variables, see for
instance Chapter 4.3 of (Rasmussen, 2004). The corresponding coefficients λi can be
approximated as λ2i ≈ a−1e−i/a for X = R and with respect to the Gaussian dom-
inated measure, see for instance (Rasmussen, 2004). In the rest of the chapter we
(mainly) work with the prior

θ|a ∼
∞⊗
i=1

N(0, a−1e−i/a) (2.1.2)

in the sequence model, for convenience. Note that in view of Y |θ0 ∼
⊗∞

i=1N(θ0,i, n
−1)

and the choice of the prior Πa(·) in (2.1.2), the corresponding posterior Πa(·|Y ) takes
the form

θ|a, Y ∼
∞⊗
i=1

N
(

nYi
aei/a + n

,
1

aei/a + n

)
. (2.1.3)
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§2.1. Main results

The behavior of the posterior distribution is very sensitive on the choice of the
hyper-parameter a. Since the optimal choice of a depends on the (typically) unknown
regularity parameter β of the underlying functional parameter of interest θ0 in practice
one uses data driven procedures for selecting a. The two most commonly applied
Bayesian techniques for selecting the hyper-parameter are the hierarchical Bayes and
the marginal likelihood empirical Bayes methods. In the hierarchical Bayes method
the hyper-parameter a is endowed with a prior distribution π (also called hyper-prior
distribution), resulting in a two-level, hierarchical prior distribution

Π(·) =
∫ ∞

0

Πa(·)π(a)da.

For technical reasons, we introduce the following assumptions on the hyper-prior
density function π(·) supported on [1, An].

Assumption 2.1.1. Let us assume that for some c1 > 0 there exist c2, c6 ≥ 0 and
c3, c4, c5 > 0 such that

c−1
4 a−c3 exp(−c2a) ≤ π(a) ≤ c4a

−c5 exp(−c6a), (2.1.4)

for all c1 ≤ a ≤ An.

Note that among others the exponential, the gamma, and the inverse gamma
distributions (restricted to [1, An]) satisfy Assumption 2.1.1.

In contrast to this in the empirical Bayes approach we take the maximum marginal
likelihood estimator (MMLE), i.e.

ân := arg max
a∈[1,An]

ℓn(a), (2.1.5)

where the marginal log-likelihood function (with respect to the measure
⊗∞

i=1N(0, 1))
is

ℓn(a) = −1

2

∞∑
i=1

(
log
(
1 +

n

aei/a

)
− n2Y 2

i

aei/a + n

)
and the parameter An = o(n) restricts the parameter space to a compact interval,
which is advantageous both from practical and analytical perspective. Then the
estimator ân is plugged in into the posterior distribution (2.1.3), resulting in the
empirical Bayes posterior Πân(·|Y ).

We show in Section 2.4.2 that both of these methods result in optimal recovery
for the functional parameter of interest θ0. These results are of interest on their own
right, but our main focus lies on the reliability of Bayesian uncertainty quantification
resulting both from the hierarchical and the empirical Bayes procedures, hence we
have deferred the contraction rate results to the Section 2.4.2.

§2.1.2 Uncertainty quantification

In our work we investigate the reliability of the built-in uncertainty quantification
of the above data-driven posterior distributions. For convenience let Πn(·|Y ) denote
both the hierarchical and the empirical Bayes posterior distributions in the following.
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2. Adaptive credible sets with a squared-exponential GP prior

In Bayesian methods the remaining uncertainty of the procedure is visualized by the
credible set. We consider ℓ2-credible balls centered around the posterior mean, i.e.
we analyze credible sets in the form

Ĉn,α =
{
θ ∈ ℓ2 : ∥θ − θ̂∥2 ≤ rα

}
(2.1.6)

where θ̂ is the posterior mean and the radius rα is chosen such that Π(θ ∈ Ĉn,α|Y ) =
1− α, for some prescribed significance level α > 0.

We are interested in the frequentist properties of ℓ2-credible balls resulting from
the data driven credible balls. Then let us denote by rα the radius of the ℓ2-ball
centered around the posterior mean θ̂ and accumulating 1−α fraction of the posterior
mass, i.e.

Π(θ : ∥θ − θ̂∥2 ≤ rα|Y ) = 1− α.

In our analysis we introduce some additional flexibility by considering inflated credible
balls, i.e.

Ĉn(Ln) =
{
θ ∥θ − θ̂∥2 ≤ Lnrα

}
, (2.1.7)

for some blown up factor Ln ≥ 1, possibly depending on n. As a first step we note that
the size of the credible set for both the empirical and hierarchical Bayes procedures
adapts to the minimax rate (actually the diameter of the set is even a logarithmic
factor faster than the minimax rate in case of the empirical Bayes procedure).

Corollary 2.1.2. Both the hierarchical and the empirical Bayes credible sets defined
in (2.1.7) have rate adaptive size, i.e. for every β0 > 0 and M > 0

sup
β≥β0

sup
θ∈Θβ(M)

P0

(
diam(Ĉn(1)) ≥Mnn

−β/(2β+1)(log n)−1/(2β+1)
)
→ 0,

where the sequence Mn goes to infinity arbitrary slowly in case of the empirical Bayes
method and Mn ≫ log n in case of the hierarchical Bayes method.

Proof. The proof is given in Sections 2.7 and 2.10 respectively.

2.1.2.1 Coverage of credible sets - negative results

Next we investigate how much we can trust the above derived data-driven Bayesian
uncertainty quantification from a frequentist perspective. We would like to know
whether the true function θ0 is included in the (blown up) credible set, i.e. if any
fixed β0 > 0

inf
θ0∈∪β≥β0

Θβ(M)
P0(θ0 ∈ Ĉn(Ln)) ≥ 1− α

holds for some sufficiently large choice of Ln. Since it is impossible to construct honest
confidence sets with rate adaptive size and in view of the adaptive size of the credible
sets, see Corollary 2.1.2, they must have poor frequentist coverage properties at least
for certain functional parameters θ0. Actually the radius of the credible sets decays
even faster than the minimax rate, which already implies impossibility of coverage.
Nevertheless it is of interest to quantify the set of functions for which the Bayesian
uncertainty quantification is truth-worthy.
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§2.1. Main results

First we note that a representative subset of the hyper-rectangle Θβ(M) is the set

Θβs (m,M) =

{
θ ∈ Θβ(M) : min

i≥1
i1+2βθ2i ≥ m

}
, (2.1.8)

for some parameters 0 < m ≤M . Let us refer to this subclass of sequential parameters
as self-similar signals following the similar terminology of (Giné and Nickl, 2010)
and (Szabo et al., 2015). It was shown in the later paper that the minimax rate
over Θβs (m,M) is the same as over Θβ(M). The next theorem shows that both of
the hierarchical and the empirical Bayes procedures provide unreliable uncertainty
quantification over this representative sub-class of functions unless it is blown up
with at least a logarithmic factor.

Theorem 2.1.3. Let us take arbitrary Ln = o(
√
log n). Then the empirical and

hierarchical Bayes credible sets blown up by Ln have frequentist coverage tending to
zero for every self-similar signal, i.e. for every 0 < m ≤M ,

sup
θ0∈Θβ

s (m,M)

Pθ0(θ0 ∈ Ĉn(Ln)) → 0.

Proof. See Section 2.7.

This negative result draws a dark picture as it tells us that one can not trust
Bayesian uncertainty quantification resulting from the investigated prior, even if one
allows certain amount of adjustment (i.e. by blowing up the set with a sequence
tending to infinity, not too fast). Since the prior used is very closely related to the
Gaussian process with squared exponential covariance kernel this gives the intuition
that one has to be very cautious working with squared exponential kernel as the
corresponding Bayesian uncertainty statement are (typically) unreliable. In the next
subsection we will be touching the corners by deriving some positive results on the
coverage properties of the credible sets. First we show that for analytic functions the
(slightly inflated) credible sets provide reliable uncertainty quantification and second
we show that by blowing up the credible sets by a logarithmic factor or by slightly
adjusting the maximum marginal likelihood estimator, one gets reliable uncertainty
statements for a large subclass of functions, including the self-similar functions.

2.1.2.2 Coverage of credible sets - positive results

Let us consider the set of analytic-type functions defined as

θ0 ∈ Aγ(M) =

{
θ ∈ ℓ2 :

∞∑
i=1

θ2i e
2iγ ≤M

}
,

for some γ > 0. Note that the investigated prior (2.1.2) is more suitable for this
class of functions due to the exponential decay of the variances. We show below that,
indeed, for the class Aγ(M) both the empirical and the hierarchical Bayes procedures
provide reliable uncertainty quantification. Note, however, that the present class of
functions is substantially smaller than Θβ(M), for any β > 0.
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2. Adaptive credible sets with a squared-exponential GP prior

Theorem 2.1.4. The inflated empirical and hierarchical Bayes credible sets Ĉn(L)
have frequentist coverage tending to one over the class θ0 ∈ Aγ(M) for any γ ≥ 1/2
and sufficiently large constant L > 0, i.e.

inf
θ0∈Aγ(M)

P0(θ0 ∈ Ĉn(L)) → 1.

Furthermore, the size of the credible set is (nearly) optimal, i.e. for some sufficiently
large constant C > 0,

inf
θ0∈Aγ(M)

P0

(
diam(Ĉn(1)) ≤ Cn−1/2 log n

)
→ 1.

Proof. See Section 2.6.

Next we investigate the behavior of the credible sets by allowing a logarithmic
inflating factor. Since the size of the inflated credible sets are still nearly minimax,
the credible sets fail to cover all functional parameter θ0 of interest, in view of the non-
existence result of adaptive confidence sets seen in (Cai and Low, 2004) and (Robins
and van der Vaart, 2006). Therefore we restrict the investigated class of functions to
the so called polished tail class, introduced in (Szabo et al., 2015) and (Rousseau and
Szabo, 2020). We say that a sequential parameter θ ∈ ℓ2(M) belongs to the class of
polished tail signals denoted by Θpt(L0, N0, ρ), for some L0, ρ,N0 > 0 if

∞∑
i=N

θ2i ≤ L0

ρN∑
i=N

θ2i , for all N ≥ N0.

The above assumption basically requires that knowing the sequential parameter θ up
to a certain coordinate enables us to draw conclusion about the tail of the sequence.
We require that the energy (sum of the squared coefficients) of the tail is dominated
by the energy of a finitely large block of coefficients. This condition makes also
sense intuitively as in the stochastic model the signal can be observed only up to
some limit, the fluctuation in the later coordinates can equally likely be caused by
the noise. Therefore to make reliable uncertainty statement we have to assume that
the tail behavior of the signal hidden by the noise is not substantial and can be
extrapolated by information available at given signal-to-noise ratio. In (Szabo et al.,
2015) it was shown that the above assumption is mild from statistical, topological
and Bayesian point of view as well.

The next theorem states that when the sequential parameter θ0 is restricted to
polished tail sequences, then both the empirical and the hierarchical Bayes credible
balls blown up by a log n factor (i.e Ĉn(L log3/2 n)) are honest frequentist confidence
set, for large enough L.

Theorem 2.1.5. For any L0, N0, ρ ≥ 1 there exists a constant L such that

inf
θ0∈Θpt(L0,N0,ρ)

P0(θ0 ∈ Ĉn(L(log n)
3/2)) → 1,

where Ĉn denotes either the empirical or the hierarchical Bayes credible sets under
Assumption 2.1.1.
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§2.2. Numerical analysis

Proof. See Sections 2.5 and 2.10.3 respectively.

Hence one can achieve reliable uncertainty quantification on an arguably large
subset of the function space by blowing up the standard credible set with a slowly
varying term. This, however, is not very appealing as a practitioner would righteously
hesitate introducing the artificial logarithmic blow up. Therefore, we propose another
method, where one does not have to introduce a logarithmic blow up factor, but
instead adjust the maximum marginal likelihood estimator. Investigating the proof
of Theorem 2.1.3 one can see that the MMLE ân, given in (2.1.5), is too small, the
empirical Bayes procedure is basically oversmoothing. One can compensate for this by
undersmoothing the procedure. We propose to adjust the MMLE by a multiplicative
logarithmic factor

ãn = log(n)ân. (2.1.9)

Then the corresponding empirical Bayes credible set (blown up by a sufficiently large
constant L > 0) results in reliable uncertainty quantification for self-similar functions
Θβs (m,M).

Theorem 2.1.6. For any 0 < m ≤M there exists a constant L > 0 such that

inf
θ0∈Θβ

s (m,M)
P0(θ0 ∈ C̃n(L)) → 1,

where C̃n(1) denotes the credible set resulting from the empirical Bayes posterior with
hyper-parameter ãn.

Proof. The proof of the theorem is deferred to Section 2.9.

§2.2 Numerical analysis

In this section we investigate the numerical properties of the Gaussian process prior
with (approximately) squared exponential covariance kernel. First we consider the
Gaussian white noise model and the prior (2.1.2). We show that the correspond-
ing Bayesian uncertainty quantification is misleading for various regularly behaving
functions. We also demonstrate that a different choice of the covariance kernel or
a modified version of the empirical Bayes procedure results in more accurate uncer-
tainty statements. Then we consider the (from practical point of view) more relevant
non-parametric regression and classification models, where we also demonstrate the
sub-optimal behavior of the (standard) empirical Bayes method with squared expo-
nential covariance kernel and show that the proposed modification results in superior
performance compared to it. We also consider GP priors with Matérn covariance ker-
nels and show that although they poses good recovery and uncertainty quantification
properties, their run times are substantially slower than using squared exponential
kernels.
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2. Adaptive credible sets with a squared-exponential GP prior

§2.2.1 Gaussian white noise model

First we demonstrate the sub-optimal performance of the Gaussian process with (ap-
proximately) squared exponential covariance kernel (2.1.2) compared to modified ver-
sions of the empirical Bayes procedure and to the Gaussian process prior with poly-
nomially decaying variances in the series representation, see (Knapik et al., 2016) and
(Szabo et al., 2015). Let us consider the function θ1 ∈ L2[0, 1] given by their Fourier
coefficients θ1,i = i−3/2 sin(i), for i = 1, 2, ..., respectively, relative to the Fourier
eigenbasis ψi(t) =

√
2 cos(π(i−1/2)t). Note that although the function lies outside of

the self-similar function class (2.1.8), it has essentially the same behavior. In Figure
2.1 we visualize the 95% credible sets (light blue or light red), the posterior mean
(blue or red) and the true function (black), by simulating 2000 draws from the em-
pirical Bayes posterior distribution and plotting the closest 95% of them in L2-norm
to the posterior mean. We note that all credible sets were constructed without any
inflation factor, i.e. Ln = 1 was taken (except of the case where the choice Ln = log n
was pre-specified). The credible sets are drawn for signal-to-noise ratio n = 100,
500, 1000 and 5000, respectively. We also plot the same credible sets blown-up by
a log n factor, the credible sets obtained by the modified empirical Bayes procedure
(where the MMLE ân of the scaling parameter a was multiplied by log n) and the
empirical Bayes credible sets corresponding to the prior θ ∼ ⊗∞

i=1N(0, i−1−2α), with
hyper-parameter α estimated by the MMLE. One can see that the standard marginal
likelihood empirical Bayes method provides too narrow credible sets failing to cover
the underlying true function. Also note that both modifications of the empirical
Bayes credible sets and using the prior with polynomially decaying variances provide
good coverage, but in contrast to the overly conservative approach of inflating the
credible sets with a logarithmic factor the modification of the MMLE results in more
informative uncertainty statement (i.e. smaller credible sets).

§2.2.2 Non-parametric regression and classification

In this section we demonstrate on a simulation study that the results derived for
the Gaussian white noise model generalize to more complicated statistical models as
well. We consider the popular non-parametric regression and classification models
specifically. The empirical Bayes posteriors, posterior means and credible sets are
computed in both cases using the MatLab package “gpml”.

In the non-parametric regression model we assume to observe pairs of random
variables (X1, Y1), (X2, Y2), ...(Xn, Yn), where

Yi = θ0(Xi) + εi, εi
iid∼ N(0, σ2), Xi

iid∼ U(0, 1), i = 1, ..., n,

and the aim is to estimate the unknown non-parametric regression function θ0. In
the Bayesian approach we endow θ0 with a Gaussian process prior with squared
exponential kernel and estimate the tuning parameter using the MMLE.

In this simulation study we take the Fourier coefficients of the underlying true
function θ2 to be θ2,i = i−3/2 cos(i), i = 1, 2, .... We take σ2 = 1/2, but in the proce-
dure it is considered to be unknown and estimated with the MMLE σ̂2. We plot the
true function (black), the posterior mean (blue), and the posterior point-wise credible
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§2.2. Numerical analysis

Figure 2.1: Empirical Bayes credible sets for the function θ1 (drawn in black) zoomed in to the interval
x ∈ [0.25, 0.4]. First line: credible set (in light blue) and posterior mean (blue curve) corresponding to the
prior with exponentially decaying variance. Second line: credible set (in light blue) blown-up by a logn
factor (Ln = logn) and posterior mean (blue curve) corresponding to the prior with exponentially decaying
variance. Third line: credible set (in light blue) and posterior mean (blue curve) corresponding to the prior
with exponentially decaying variance and modified empirical Bayes procedure (rescaling factor multiplied
by logn). Last line: credible set (in light red) and posterior mean (red curve) corresponding to the prior
with polynomially decaying variance. From left to right the signal to noise ratio is n = 100, 500, 1000, 5000.

intervals (dashed blue) [θ̂(x) − q0.025
√
ĉ(x, x), θ̂(x) + q0.025

√
ĉ(x, x)], where θ̂ is the

posterior mean, qα the α-th quantile of the standard normal distribution and ĉ(., .)
the posterior covariance kernel. We consider the MMLE empirical Bayes method with
and without the log n inflation factor for the credible set, the modified empirical Bayes
method (where the MMLE was multiplied by log n), and finally the empirical Bayes
method for Matérn covariance kernel with estimating either the regularity or the scale
tuning parameter from the data. We take the sample size to be n = 100, 500, 1000,
and 2000. Observe in Figure 2.2 that the standard MMLE empirical Bayes method
provides unreliable uncertainty quantification in certain points, while the two modi-
fied squared exponential credible sets and the empirical Bayes credible sets from the
Matérn kernel (with data-driven choice of the regularity hyper-parameter) capture
the underlying functional parameter of interest better. Also note that by multiplying
the MMLE of the scaling parameter by a log n factor in the squared exponential ker-
nel case we do not get an overly conservative credible set, unlike in the case when the
radius is inflated with a logarithmic factor. Finally, we note that the computation
time using the squared exponential kernel is much smaller than working with the
Matérn kernel. We note that the computational times corresponding to the Matérn
kernel are higher than for the squared exponential kernel. Estimating the regularity
hyper-parameter of the kernel is time consuming as the eigenfunctions depend on it.
Alternatively, one can consider a rescaled Matérn covariance kernel with fixed regu-
larity. This method is typically faster, however, optimal recovery of the underlying
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2. Adaptive credible sets with a squared-exponential GP prior

function is possible only up to the smoothness level α + d/2, where α denotes the
regularity of the prior, see for instance Szabo et al. (2013). Therefore, we choose
α large enough (α = 10), which then seemingly slows down the computations. The
different running times can be found in Table 2.3. The running time is based on the
time spent computing the MMLE, the posterior mean and the point-wise posterior
variance using the MatLab package “gpml” in a personal computing environment.

We also investigate empirically the frequentist coverage probabilities of the point-
wise credible sets by repeating the experiment 100 times and reporting the frequency
that the function at given points (we consider x = (0.25, 0.3188, 0.75) with 0.3188 =
argmaxx∈[0,1]θ2(x)) is included in the credible interval, see Table 2.1. Moreover, Table

2.2 shows the average size of the point-wise credible intervals (i.e. 2q0.025
√
ĉ(x, x))

depending on the sample size n and the procedure used to compute the credible sets.
One can observe similar behavior to what we have described above.

Note that Table 2.1 does not quite illustrate the results of Section 2.1.2 since the
table shows the point-wise credible intervals whereas most of our theoretical results
concern the L2 credible balls. However, they still give an indication of the reliability
of Bayesian uncertainty quantification. The point x = 0.3188, at which the maximum
of θ2 is achieved, is seen as one of the clearest way to illustrate our negative results,
whereas our positive results could be accepted only if the probability of θ2(x) being
inside of the corresponding credible interval goes to one for all point x ∈ [0, 1].

Figure 2.2: Empirical Bayes credible sets for the regression function θ2 (drawn in black), zoomed in to
the interval x ∈ [0.25, 0.5]. The posterior means are drawn by solid blue line, while the 95% point-wise
credible sets by dashed blue curves. In the first row we plot the MMLE empirical Bayes method, in the
second row the MMLE empirical Bayes method with a logn blow up factor, the third row the modified
MMLE empirical Bayes method using squared exponential Gaussian process prior, while in the fourth row
we plot the empirical Byes credible sets using a Matérn kernel with data-driven choice for the regularity
hyper-parameter. From left to right the sample size is n = 100, 500, 1000, 2000.

Next we consider the non-parametric classification problem. Let us assume that
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x = 0.25 x = 0.3188 x = 0.75
n = 100 500 1000 100 500 1000 100 500 1000

Method 1 0.84 0.69 0.57 0.01 0.01 0.00 0.98 0.92 0.97
Method 2 1.00 1.00 1.00 0.96 0.98 1.00 1.00 1.00 1.00
Method 3 0.98 0.98 0.97 0.35 0.55 0.50 0.99 0.96 0.98
Method 4 0.99 1.00 1.00 0.12 0.35 0.51 1.00 1.00 1.00
Method 5 0.98 1.00 1.00 0.08 0.30 0.47 0.99 1.00 1.00

Table 2.1: Frequencies that θ2(x) is inside of the corresponding credible interval for the squared expo-
nential and Matérn Gaussian process prior at given points x ∈ {0.25, 0.3188, 0.75}. Method 1: SE kernel
MMLE empirical Bayes procedure, Method 2: SE kernel empirical Bayes procedure with logn blow up
factor, Method 3: SE kernel modified empirical Bayes procedure (MMLE multiplied by logn), Method 4:
Matérn kernel with smoothness MMLE empirical Bayes, Method 5: Matérn kernel with rescaling MMLE
empirical Bayes and α = 10. From left to right the sample size is n = 100, 500, 1000.

n = 100 500 1000
Method 1 0.3956 0.2367 0.1814
Method 2 1.8218 1.4711 1.2533
Method 3 0.7541 0.5279 0.4262
Method 4 0.6346 0.4308 0.3446
Method 5 0.5151 0.3338 0.263

Table 2.2: Average size of the pointwise credible intervals (i.e. 2q0.025
√
ĉ(x, x)) for θ2(x) in the re-

gression model. Method 1: SE kernel MMLE empirical Bayes procedure, Method 2: SE kernel empirical
Bayes procedure with logn blow up factor, Method 3: SE kernel modified empirical Bayes procedure
(MMLE multiplied by logn), Method 4: Matérn kernel with smoothness MMLE empirical Bayes, Method
5: Matérn kernel with rescaling MMLE empirical Bayes and α = 10. From left to right the sample size is
n = 100, 500, 1000.

n = 100 500 1000 5000 10000 200000
Method 1 0.74 s 2.75 s 10.84 s 3.7 m 25.2 m 1.2 h
Method 4 1.48 s 13.93 s 43.83 s 16.7 m 3.8 h 12.5 h
Method 5 1.37 s 11.15 s 33.5 s 12.3 m 2.8 h 10.5 h

Table 2.3: Average run time of the EB methods for θ2 in the regression model. Method 1: SE covariance
kernel, Method 4: Matérn covariance kernel and MMLE for the regularity hyper-parameter, Method 5:
Matérn covariance kernel and MMLE for the scaling hyper-parameter with fixed regularity α = 10. From
left to right the sample size is n = 100, 500, 1000, 5000

we observe the binary random variables Y1, Y2, ..., Yn ∈ {0, 1}, with

P (Yi = 1) = p(Xi), Xi
iid∼ U(0, 1), i = 1, ..., n,

for some non-parametric function p(x) : [0, 1] 7→ [0, 1]. We write p(x) in the form
p(x) = ψ(θ(x)), with ψ(x) = ex/(1 + ex), for some function θ(x) : [0, 1] 7→ R. In the
Bayesian approach we endow the functional parameter θ(x) with a Gaussian process
prior with squared exponential or Matérn covariance kernel.

We design similar experiments for the non-parametric classification model as for
the non-parametric regression model above, with sample sizes n = 100, 500, 1000 and
2000 and the same θ2 as above. We plot the point-wise credible intervals for θ2 corre-
sponding to the empirical Bayes procedure, with and without a log n inflation factor,
and to the modified empirical Bayes procedure (where the MMLE is multiplied by
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2. Adaptive credible sets with a squared-exponential GP prior

a log n factor), see Figure 2.3. One can observe that the standard MMLE empirical
Bayes procedure produces unreliable uncertainty statements, while by blowing up the
credible sets with a logarithmic factor we get overly conservative uncertainty quan-
tification. These problems are resolved by considering the modified empirical Bayes
method, which captures the shape of the underlying functional parameter better and
provides more reliable uncertainty statements. We also collect the empirical estima-
tion of the frequentist coverage probabilities of the underlying functional parameter
θ2(x) at points x = (0.25, 0.3188, 0.75) in Table 2.4 and the computation time for dif-
ferent methods in Table 2.6, underlying the conclusions drawn from the figures above.
Note that, similarly to Table 5.2, Table 2.4 does not quite illustrate our theoretical
results, but is linked to it in a similar fashion as Table 5.2. Moreover, Table 2.5 shows
the size of the average credible interval.

Figure 2.3: Empirical Bayes credible sets using squared exponential Gaussian process priors in the
classification model for the function θ2 (drawn in black). The posterior means are drawn by solid blue
line, while the 95% point-wise credible intervals by dashed blue curves. In the first row we plotted the
MMLE empirical Bayes method, in the second row the MMLE empirical Bayes method with a logn blow
up factor, while in the the third row the modified MMLE empirical Bayes method. From left to right the
sample size is n = 100, 500, 1000, 2000.

§2.3 Discussion

We have shown that the MMLE empirical Bayes method for Gaussian process prior
with (a slightly modified version of the) squared exponential covariance kernel pro-
duces misleading uncertainty statement in context of the Gaussian white noise model.
The derived negative results were demonstrated on a simulation study in context of
the Gaussian white noise model and extended to the non-parametric regression and
classification models as well. Hence we can conclude that one has to be very cau-
tious when applying empirical Bayes methods with squared exponential Gaussian
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x = 0.25 x = 0.3188 x = 0.75
n = 100 200 500 100 200 500 100 200 500

Method 1 0.90 0.90 0.89 0.29 0.16 0.12 0.92 0.88 0.85
Method 2 1.00 1.00 1.00 0.98 0.98 1.00 1.00 1.00 1.00
Method 3 0.91 0.94 0.95 0.42 0.36 0.45 0.94 0.94 0.95
Method 4 0.94 0.96 0.95 0.32 0.27 0.42 0.95 0.96 0.96
Method 5 0.94 0.94 0.96 0.30 0.32 0.35 0.96 0.96 0.96

Table 2.4: Frequencies that θ2(x) is inside of the corresponding credible interval for squared exponential
and Matérn Gaussian process prior in the logistic regression model. Method 1: SE kernel MMLE empirical
Bayes procedure, Method 2: SE kernel empirical Bayes procedure with logn blow up factor, Method 3:
SE kernel modified empirical Bayes procedure (MMLE multiplied by logn), Method 4: Matérn kernel with
MMLE for the smoothness, Method 5: Matérn kernel with MMLE for the scaling and taking α = 10. From
left to right the sample size is n = 100, 200, 500.

n=100 n=200 n=500
Method 1 3.2672 0.8209 0.3485
Method 2 15.0461 4.3495 2.1661
Method 3 3.6777 1.2675 0.7575
Method 4 3.5409 1.1186 0.6212
Method 5 3.4040 0.9698 0.4848

Table 2.5: Average size of the pointwise credible intervals 2q0.025
√
ĉ(x, x) for θ2 in the logistic regression

model. The methods and the sample sizes are the same as in Table 2.4.

n = 100 500 1000 5000
Method 1 2.23 s 30.81 s 5.9 m 2.8 h
Method 4 4.77 s 3.1 m 23.9 m 11.1 h
Method 5 4.42 s 3 m 15.1 m 8.2 h

Table 2.6: Average run time of the EB methods for θ2 in the logistic regression model. Method 1: SE
covariance kernel, Method 4: Matérn covariance kernel and MMLE for the regularity hyper-parameter,
Method 5: Matérn covariance kernel and MMLE for the scaling hyper-parameter with fixed regularity
α = 10. From left to right the sample size is n = 100, 500, 1000, 5000

processes for uncertainty quantification as typically they provide misleading confi-
dence statements, due to over-smoothing behavior of the MMLE. We note that the
bad performance of the prior (2.1.2) is not due to the rescaling factor a−1 in the
variance, because similar (but easier) computations show that the prior without the
a−1 factor behaves sub-optimally as well.

One can compensate the haphazard uncertainty statements by blowing up the
credible sets with a log n factor, however, this approach is not appealing from a
practical perspective, as demonstrated in our simulation study as well. Instead we
propose to modify the MMLE by multiplying it with log n to compensate for the
over-smoothing. This procedure is less conservative than the previous one and hence
provides more accurate information about the uncertainty of the method. One can
also consider different covariance kernels, with polynomially decaying eigenvalues, like
the Matérn kernel, however, these procedures can be computationally less appealing,
as demonstrated in the simulation study.
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2. Adaptive credible sets with a squared-exponential GP prior

§2.4 Some properties of the MMLE

§2.4.1 Deterministic bounds

As a first step we provide deterministic bounds for the marginal maximum likelihood
estimator ân of the rescaling hyper-parameter a. Let us introduce the following
functions for a ∈ [1,∞):

hn(a, θ0) :=
1

log2
(
n
a

) ∞∑
i=1

n2iei/aθ20,i
a(aei/a + n)2

, (2.4.1)

gn(a, θ0) :=
1

log2
(
n
a

) ∞∑
i=2a

n2(i− a)ei/aθ20,i
a(aei/a + n)2

. (2.4.2)

These functions are derived from the expected value of the score function, see Section
Then let us define the deterministic bounds an and an for ân with the help of the
functions hn and gn as

an := sup{a ∈ [1, An] : gn(a, θ0) ≥ B log n},
an := sup{a ∈ [K0, An] : hn(a, θ0) ≥ b}, (2.4.3)

with some b, B,K0 > 0 to be specified later and An = o(n) given in (2.1.5). Then we
show that these bounds sandwich ân with high probability.

Theorem 2.4.1. The MMLE ân satisfies

inf
θ0∈ℓ2(M)

P0(an ≤ ân ≤ an) → 1, (2.4.4)

for an, an defined in (2.4.3).

Proof. See Section

We also derive upper bounds for an, in the case the true function belongs to the
hyper-rectangle with regularity hyper-parameter β or or to the analytic function class
Aγ and a lower bound for an in the case of self similar functions θ0 ∈ Θβ(m,M).

Proposition 2.4.2. For every β ≥ β0 and γ > 0 there exist Cβ,b,M , Cγ,b,M > 0 such
that

sup
θ0∈Θβ(M)

an ≤ Cβ,b,Mn
1/(2β+1)(log n)−1−1/(2β+1),

sup
θ0∈Aγ(M)

an ≤ Cγ,b,M ,

inf
θ0∈Θβ(m,M)

an ≥ Cβ,B,mn
1/(2β+1)(log n)−1−2/(2β+1).

Proof. Let us start with the proof of the first inequality. We show that for any
b > 0 the inequality hn(a, θ0) < b holds for a ≥ Cβ,b,Mn

1/(2β+1)(log n)−1−1/(2β+1).
Let us introduce the notation Ia ≡ a log(n/a). Note that by using the inequalities
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aei/a+n ≥ n and aei/a+n ≥ aei/a, for all a ≥ 1, and the sum of geometric series we
get

hn(a, θ0) ≤
M

log2
(
n
a

) (1

a

Ia∑
i=1

ei/ai−2β +
n2

a3

∑
i>Ia

e−i/ai−2β

)

≤ Cβ
M

log2
(
n
a

) (I−2β
a eIa/a +

n2

a2
I−2β
a e−Ia/a

)
≤ 2CβMa−1−2βn

(
log
(n
a

))−2−2β

,

for some constant Cβ > 0 depending only on β. For any a > 0 such that An ≥
a ≥ Kn1/(2β+1)(log n)−1−1/(2β+1) the preceding display is bounded by a multiple
of 2CβMK−1−2β . Then for sufficiently large choice of the constant K = Cβ,b,M
(depending only on β, b and M), we get that hn(a, θ0) < b for any a larger than
Cβ,b,Mn

1/(1+2β)(log n)−1−1/(2β+1).
The proof of the second inequality of the statement goes similarly, i.e. we prove

that for a ≥ Cγ,b,M we have hn(a, θ0) < b. Note that by the sum of geometric series
we get for every a ≥ 1/γ

hn(a, θ0) ≤
M

log2
(
n
a

) (1

a

Ia∑
i=1

iei/ae−2γi +
n2

a3

∑
i>Ia

ie−i/ae−2γi

)

≤ M

a log2
(
n
a

) ∞∑
i=1

ie−γi ≤ M

a(1− e−γ)2 log2
(
n
a

) ,
which is bounded from above by arbitrarily small b for sufficiently large choice of the
constant Cγ,b,M .

Finally we deal with the lower bound for an. Note that by using the inequalities
aei/a+n ≥ n and aei/a+n ≥ aei/a, for all a ≥ 1, and the sum of geometric series we
get

gn(a, θ0) ≥
m

4 log2
(
n
a

) n2
a3

∑
i>Ia

(i− a)e−i/ai−2β

≥ cβ
m

log2
(
n
a

) n2
a2
I−2β
a e−Ia/a

= cβma
−1−2βn

(
log(n/a)

)−2−2β
,

for some cβ > 0 depending only on β. For 1 ≤ a ≤ Kn1/(2β+1)(log n)−1−2/(2β+1) the
preceding display is bounded by a multiple of mcβK

−1−2β log n. Then for sufficiently
small choice of the constant Cβ,B,m, we get that gn(a, θ0) ≥ B log n for any a ≤
Cβ,B,mn

1/(2β+1)(log n)−1−2/(2β+1).

In the next lemma we show that under the polished tail condition the deterministic
bounds an, an are close to each other.
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2. Adaptive credible sets with a squared-exponential GP prior

Lemma 2.4.3. For every L0, ρ,N0 ≥ 1 we have

sup
θ0∈Θpt(L0,N0,ρ)

an log
(
n
an

)
an log

(
n
an

) ≤ K log2 n,

with K = 8.1e4ρ2L0B/b for n large enough.

Proof. First of all note that since an ≤ an, there is nothing to prove in the trivial
cases an = An or an = K0. Hence hn(an, θ0) ≤ b and gn(a, θ0) < B log n, for all
a > an, hold. Furthermore assume that an ≤ ρ−2an, else the statement is trivial.

Let us divide the interval [ρj , ρj+1) into sub-intervals [ρj+
k

⌈log n⌉ , ρj+
k+1

⌈log n⌉ ), k =
0, 1, ...⌈log n⌉ − 1, and introduce the notation

kj = argmaxk=0,...,⌈logn⌉−1ϑj,k, where ϑj,k =

ρj+(k+1)/⌈log n⌉∑
i=ρj+k/⌈log n⌉

θ20,i,

with the notational convenience
∑b
i=a ci =

∑⌊b⌋
i=⌈a⌉ ci, applied later on as well.

Then by the polished tail condition

∞∑
i=ρj

θ20,i ≤ L0

ρj+1∑
i=ρj

θ20,i ≤ L0 log(n)ϑj,kj ,

for j ≥ logρN0. Note that for every a > 0 there exists an ã ∈ (a, ρ2a) such that

Iã ≡ ã log(n/ã) ∈
[
ρj+

kj
⌈log n⌉ , ρj+

kj+1

⌈log n⌉

)
(2.4.5)

for some j ∈ N and let us denote this j by Jã. Then

e1/ log nIã∑
i=e−1/ log nIã

θ20,i ≥ ϑJã,kJã
.

Let us take any a1 ≤ ρ−2a2 and denote by ã1 ∈ (a1, ρ
2a1) the value satisfying (2.4.5).

Then in view of exp{e1/ logn log(n/a)} ≤ exp{(1+2/ log n) log(n/a)} ≤ e2n/a, for n ≥
e, combined with the previous inequalities we get that the ratio hn(a2, θ0)/hn(ã1, θ0)
is bounded from above by

ã1 log
2
(
n
ã1

)
a2 log

2
(
n
a2

)4e2∑Iã1
i=1 ie

i/a2θ20,i +
∑Ia2

i=Iã1
iei/a2θ20,i +

n2

a22

∑∞
i=Ia2

ie−i/a2θ20,i∑e1/ log nIã1
i=1 iei/ã1θ20,i

≤
ã1 log

2
(
n
ã1

)
a2 log

2
(
n
a2

)4e2
1 +

∑Ia2

i=Iã1
iei/a2θ20,i + n log

(
n
a2

)∑∞
i=Ia2

θ20,i∑e1/ log nIã1

i=e−1/ log nIã1

iei/ã1θ20,i

 .
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Since iei/ã1 > e−2n log(n/ã1) for i ≥ e−1/ lognIã1 , and ie
i/a2 ≤ n log(n/a2) for i ≤ Ia2 ,

we can see that∑Ia2

i=Iã1
iei/a2θ20,i + n log( na2 )

∑∞
i=Ia2

θ20,i∑e1/ log nIã1

i=e−1/ log nIã1

iei/ã1θ20,i

≤ e2
log
(
n
a2

)
log
(
n
ã1

) ∑∞
i=Iã1

θ20,i∑e1/ log nIã1

i=e−1/ log nIã1

θ20,i

.

Moreover, since

∞∑
i=Iã1

θ20,i ≤ L0 log(n)ϑJã1 ,kJã1
≤ L0 log(n)

e1/ log nIã1∑
i=e−1/ log nIã1

θ20,i,

combined with the preceding computations we get that

hn(a2, θ0)

hn(ã1, θ0)
≤ 4e

ã1 log
2
(
n
ã1

)
a2 log

2
(
n
a2

)
1 + L0e

2
log
(
n
a2

)
log
(
n
ã1

) log n

 . (2.4.6)

Furthermore, let us note that for any an < a ≤ An

hn(a, θ0) ≤ 2gn(a, θ0) +
2e2

log2
(
n
a

) 2a∑
i=1

θ20,i ≤ 2B log(n) + o(1).

Then by taking a1 = an, ã1 ∈ (an, ρ
2an), and a2 = an in (2.4.6) we get that

b

2B log(n) + o(1)
≤ hn(an, θ0)

hn(ã1, θ0)
≤ 4e4(1 + o(1))L0 log(n)

ã1 log(
n
ã1
)

an log(
n
an

)

≤ 4e4ρ2(1 + o(1))L0 log(n)
an log(

n
an

)

an log(
n
an

)
.

After rearranging the preceding inequality we arrive to our statement.

§2.4.2 Contraction rates

In this section we provide the contraction rate results both for the empirical and hi-
erarchical Bayes procedures. First we show that the empirical Bayes method achieves
the (up to a logarithmic factor) optimal minimax contraction rate around the truth
for unknown regularity hyper-parameter β > 0.

Theorem 2.4.4. The maximum marginal likelihood empirical Bayes posterior corre-
sponding to the prior (2.1.2) achieves the minimax adaptive contraction rate (up to a
logarithmic factor), i.e. for given M,β0 > 0 we have

sup
β≥β0

sup
θ∈Θβ(M)

E0

[
Πân(∥θ − θ0∥2 ≥Mn

(
n

log2 n

)−β/(2β+1)

|Y )

]
→ 0, (2.4.7)

for any sequence Mn tending to infinity.
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2. Adaptive credible sets with a squared-exponential GP prior

Proof. See Section 2.4.3.

Using our findings on the empirical Bayes method we can extend the results on
the hierarchical Bayes method, derived in (van der Vaart and van Zanten, 2009a)
and (Bhattacharya and Pati, 2015) (where typically inverse gamma hyper-prior was
considered), by allowing other, more general choices of the hyper-prior distribution
as well.

Theorem 2.4.5. Let us assume that the hyper-prior π satisfies Assumption 2.1.1.
Then the corresponding hierarchical Bayes posterior achieves the minimax contraction
rate (up to a logarithmic factor), i.e. for given β0,M > 0 we have

sup
β≥β0

sup
θ∈Θβ(M)

E0

[
Π(∥θ − θ0∥2 ≥Mn

(
n

log2 n

)−β/(2β+1)

|Y )

]
→ 0, (2.4.8)

for some arbitrary sequence Mn tending to infinity.

Proof. See Section 2.10.1.

§2.4.3 Proof of Theorem 2.4.4

Let us introduce the shorthand notation

εn := n−β/(2β+1)(log n)2β/(2β+1).

In view of Markov’s inequality and Theorem 2.4.1, for every β > 0

sup
θ0∈Θβ(M)

E0[Πân(∥θ − θ0∥2 ≥Mnεn|Y )] ≤ 1

M2
nε

2
n

sup
θ0∈Θβ(M)

E0[ sup
a∈[an,an]

Rn(a)] + o(1),

(2.4.9)

where

Rn(a) =

∫
∥θ − θ0∥22Πa(dθ|Y )

is the posterior risk. We show below that both

sup
θ0∈Θβ(M)

sup
a∈[an,an]

E0[Rn(a)] = O(ε2n) and (2.4.10)

sup
θ0∈Θβ(M)

E0[ sup
a∈[an,an]

|Rn(a)− E0(Rn(a))|] = o(ε2n) (2.4.11)

hold, which results in that the right-hand side of (2.4.9) vanishes as n→ ∞, conclud-
ing the proof of Theorem 2.4.4.

2.4.3.1 Bound for the expected posterior risk (2.4.10)

First, note that by elementary computations

Rn(a) =

∞∑
i=1

(θ̂a,i − θ0,i)
2 +

∞∑
i=1

1

aei/a + n
,
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where θ̂a,i = n(aei/a + n)−1Yi is the ith coefficient of the posterior mean. Therefore
the expectation of Rn(a) is given by

E0Rn(a) =

∞∑
i=1

a2e2i/a

(aei/a + n)2
θ20,i +

∞∑
i=1

n

(aei/a + n)2
+

∞∑
i=1

1

aei/a + n
. (2.4.12)

Note that the second and third terms do not contain θ0, and that the second term
is bounded by the third. By Lemma 2.11.2 (with r = 0 and l = 1) and Proposition
2.4.2 the latter is further bounded for a ≤ an by a multiple of

a

n
log
(n
a

)
≤ an

n
log

(
n

an

)
≤ Cβ,b,Mn

−2β/(2β+1)(log n)−1/(2β+1),

since the function a 7→ a log(n/a) is monotone increasing for a ≤ n/e. It remained
to deal with the first term on the right hand side of (2.4.12), which we divide into
three parts and show that each of the parts have the stated order. First note that for
θ0 ∈ Θβ(M)

∞∑
i=(n/ log2 n)1/(2β+1)

a2e2i/a

(aei/a + n)2
θ20,i ≤

∞∑
i=(n/ log2 n)1/(2β+1)

Mi−1−2β

≤ M

2β

(
n

log2 n

)−2β/(2β+1)

.

Next note that for a ≤ an, in view of Proposition 2.4.2,

2a∑
i=1

a2e2i/a

(aei/a + n)2
θ20,i ≤

2a∑
i=1

a2e2i/a

n2
θ20,i ≤

a2e4

n2

2a∑
i=1

θ20,i

≤ e4
a2n
n2

≤ e4MC2
β,b,Mn

−4β/(2β+1)(log n)−2−2/(2β+1).

Furthermore, notice that the maximum of the function i 7→ ei/a/(i−a) over [2a, Ia] is
attained at i = Ia, because the function is increasing for i > 2a and n > 0. Besides,
for a > an we have gn(a, f0) < B log n, hence for any an < a ≤ ān

Ia∑
i=2a

a2e2i/a

(aei/a + n)2
θ20,i ≤

a

n

log2
(
n
a

)(
log
(
n
a

)
− 1
) Ia∑
i=2a

n2ei/a(i− a)

a log2
(
n
a

)
(aei/a + n)2

θ20,i

≤ 2ann
−1 log

(
n

an

)
gn(a, θ0)

≤ 2ann
−1 log2 n ≤ 2Cβ,b,Mn

−2β/(2β+1)(log n)2β/(2β+1),

where the last inequality follows from Proposition 2.4.2.
It remained to deal with the terms between the term Ian = an log(n/an) and the

term (n/ log2 n)1/(2β+1). Let J = J(n) be the smallest integer such that(
1 +

1

log n

)J
an log

(
n

an

)
≥
(

n

log2 n

)1/(2β+1)
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and let

nj :=

(
1 +

1

log n

)j
Ian .

Note that the sequence nj is increasing. For notational convenience, we also introduce
bj such that bje

nj/bj = n and bj < nj . Now we have for any a ≥ 1

(n/ log2 n)1/(2β+1)∑
i=Ian

a2e2i/a

(aei/a + n)2
θ20,i ≤

J−1∑
j=0

nj+1∑
i=nj

θ20,i

≤ 4e2
J−1∑
j=0

nj+1∑
i=nj

nbje
i/bj

(bjei/bj + n)2
θ20,i. (2.4.13)

By elementary computations we get that bj ≍ nj/ log nj , therefore (2.4.13) is further
bounded by constant times

1

n

J−1∑
j=0

1

log nj

nj+1∑
i=nj

n2(i− bj)e
i/bj

(bjei/bj + n)2
θ20,i ≤

1

n

J−1∑
j=0

bj log
2 n

log nj
gn(bj , θ0).

Since bj ≥ an we have gn(bj , θ0) ≤ B log n for all j ≥ 0. Then by the sum of geometric
series we get that

1

n

J−1∑
j=0

nj

log2 nj
log3 n ≤ 2(1 + 2β)2

log n

n

Ian

(
1 + 1

logn

)J
1

logn

≤ 2(1 + 2β)2n−2β/(2β+1)(log n)2−2/(2β+1),

concluding the proof of assertion (2.4.10).

2.4.3.2 Bound for the centered posterior risk (2.4.11)

Note that

Rn(a)− E0Rn(a) = V(a)/n− 2W(a)/
√
n, where

V(a) = n2
∞∑
i=1

1

(aei/a + n)2
(Z2

i − 1), and W(a) = n

∞∑
i=1

aei/aθ0,i
(aei/a + n)2

Zi.

Therefore it is sufficient to show that there exists a constant K = Kβ,M,b,B > 0 such
that

E0

(
sup

a∈[an,an]

|V(a)|
n

)
≤ Kn−2β/(2β+1)(log n)−1/(2β+1),

E0

(
sup

a∈[an,an]

|W(a)|√
n

)
≤ Kn−2β/(1+2β).

We deal with the two processes above, separately.
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For the process V, Corollary 2.2.5 in (Van Der Vaart and Wellner, 1996) implies
that

E0

[
sup

a∈[an,an]

|V(a)|

]
≲ sup
a∈[an,an]

√
V0(V(a)) +

diamn∫
0

√
N(ε, [an, an], dn)dε,

where d2n(a1, a2) = V0(V(a1) − V(a2)), diamn is the dn-diameter of [an, an] and
N(ε,B, dn) the covering number of the set B with ε-radius balls relative to the dn
semi-metric. The variance of V(a) is equal to

V0(V(a)) = 2n4
∞∑
i=1

1

(aei/a + n)4

since V (Z2
i ) = 2. Using Lemma 2.11.2 (with r = 0 and l = 4) we can conclude

that the variance of V(a) is bounded from above by a multiple of a log(n/a), hence
diamn ≲

√
an log n. In view of Lemma 2.4.6, the distance dn(a1, a2) is bounded from

above by a multiple of |a1 − a2| log3/2 n, hence the interval [an, an] can be covered

with constant times anε
−1 log3/2 n amount of ε-balls relative to the dn semi-metric.

In view of the above computation and Proposition 2.4.2

E0

[
1

n
sup

a∈[an,an]

|V(a)|

]
≲
an
n

log n ≤ Cβ,b,Mn
−2β/(2β+1)(log n)−1/(2β+1).

The process W can be dealt with similarly to V. The main difference is the
bounding of the variance of W, which we describe in details. First note that

V0

(
W(a)√
n

)
= n

∞∑
i=1

a2e2i/a

(aei/a + n)4
θ20,i.

Let us split the sum at Ia and by applying the inequality aei/a + n ≥ n, we get

n

Ia∑
i=1

a2e2i/a

(aei/a + n)4
θ20,i ≤

1

n3

Ia∑
i=1

a2e2i/aθ20,i ≤
∥θ0∥22
n

.

Then by noting that the function i 7→ ei/a/((i − a)(aei/a + n)2) is decreasing on
[Ia,∞), recalling that gn(a, θ0) ≤ B log n, for all a ≥ an, and in view of Proposition
2.4.2, for a ≤ aN

n

∞∑
i=Ia

a2e2i/a

(aei/a + n)4
θ20,i ≤

a log2
(
n
a

)
4n2

(
log
(
n
a

)
− 1
) ∞∑
i=Ia

n2(i− a)ei/a

a log2
(
n
a

)
(aei/a + n)2

θ20,i

≤ an−2 log
(n
a

)
gn(a, θ0) ≤ Bann

−2 log2 n

≤ 2BCβ,b,Mn
−(4β+1)

2β+1 (log n)2β/(2β+1),

hence diamn = O(n−
1/2+2β
1+2β (log n)β/(1+2β)). Then in view of Lemma 2.4.6 the covering

number of the interval [an, an] is bounded by CMε
−1(an/

√
n) log n with respect to

the semi-metric dn(a1, a2) = V0
(
W(a1)/

√
n − W(a2)/

√
n
)
and the rest of the proof

goes as above.
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2.4.3.3 Bounds for the semi-metrics associated to V and W

Lemma 2.4.6. For any 1 ≤ a1 ≤ a2 and f0 ∈ ℓ2(M) we have

V0(V(a1)− V(a2)) ≲ (a1 − a2)
2 log3 n,

V0(W(a1)−W(a2)) ≲ (a1 − a2)
2 log2 n,

with constants only depending on M .

Proof. The left-hand side of the first inequality is equal to

n4
∞∑
i=1

(ϕi(a1)− ϕi(a2))
2V (Z2

i ),

where ϕi(a) = (aei/a + n)−2. The square of the derivative of ϕi is given by ϕ′i(a)
2 =

4ϕi(a)
3e2i/a(i − a)2/a2, hence in view of Lemma 2.11.3 the preceding display is

bounded above by a multiple of

(a1 − a2)
2 sup
a∈[a1,a2]

∞∑
i=1

n4e2i/a(i− a)2

a2(aei/a + n)6
≤ (a1 − a2)

2n4 sup
a∈[a1,a2]

∞∑
i=1

e2i/a(i2 + a2)

a2(aei/a + n)6

≲ (a1 − a2)
2 sup
a∈[a1,a2]

log
(
n
a

)
a

(
1 + log2

(n
a

))
with the help of Lemma 2.11.1 (first with m = 2 and then with m = 0), and Lemma
2.11.2 (with r = 1 and l = 4).

We next consider the process W(a). The left-hand side of the second inequality
in the statement of the lemma is equal to

n2
∞∑
i=1

(ϕi(a1)− ϕi(a2))
2θ20,iV0(Zi),

with ϕi(a) = aei/a/(aei/a + n)2. Note that |ϕ′i(a)| ≤ (i + a)a−2ϕi(a), hence in view
of Lemma 2.11.1 (first with m = 2 and then with m = 0) and Lemma 2.11.3 the
preceding display is bounded by

4(a1 − a2)
2n2 sup

a∈[a1,a2]

1

a2

∞∑
i=1

e2i/a( i
2

a2 + 1

(aei/a + n)4
θ20,i

≤ 4(a1 − a2)
2 sup
a∈[a1,a2]

1

a2

(
log2

(n
a

)
+ 1
)
∥θ0∥22,

concluding the proof of the lemma.

§2.5 Proof of the empirical Bayes part of Theorem
2.1.5

First note that we get the empirical Bayes credible set by plugging in the estimator
ân into the credible ball Ĉa,α defined as

Ĉa,α = {θ ∈ L2 : ∥θ − θ̂a∥2 ≤ Lrα}
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§2.5. Proof of the empirical Bayes part of Theorem 2.1.5

satisfying that

Πa(Ĉa,α|Y ) = 1− α,

where θ̂a is the posterior mean for fixed hyper-parameter a > 0.

The proof of the statement is then based on the deterministic bounds for the
MMLE ân derived in Theorem 2.4.1 and their distance investigated in Lemma 2.4.3.

Note that θ0 ∈ Ĉn(L log3/2 n) if and only if ∥θ0− θ̂ân∥2 ≤ L(log n)3/2rα. Therefore
by triangle inequality it is sufficient to verify that

∥W (ân)∥2 ≤ L(log n)3/2rα(ân)− ∥B(ân, θ0)∥2 (2.5.1)

holds with high probability, whereW (a) = θ̂a−E0θ̂a and B(a, θ0) = E0θ̂a−θ0 are the
centered posterior mean and the bias of the posterior mean for fixed hyper-parameter
a > 0, respectively. Note that the ith coefficient of these vectors take the form

Wi(a) =
n(Yi − θ0,i)

aei/a + n
, and Bi(a, θ0) =

aei/aθ0,i
aei/a + n

.

We prove below that there exist constants C1, C2 > 0 depending on ρ, L0, B and b
such that for large enough n,

inf
an≤a≤an

r2α(a) ≥
an
3n

log

(
n

an

)
, (2.5.2)

inf
θ0∈Θpt(L0,N0,ρ)

P0

(
sup

an≤a≤an
∥W (a)∥22 ≤ C1

an
n

log

(
n

an

)
log2 n

)
→ 1, (2.5.3)

sup
θ0∈Θpt(L0,N0,ρ)

sup
an≤a≤an

∥B(a, θ0)∥22 ≤ C2
an
n

log

(
n

an

)
log3 n. (2.5.4)

Hence in view of Theorem 2.4.1 assertion (2.5.1) holds with probability tending to
one for large enough choice of L, under the polished tail assumption.

Proof of (2.5.2): The radius rα(a), given in (2.1.6), is defined as P (Un(a) <

r2α(a)) = 1 − α with Un(a) :=
∞∑
i=1

1
aei/a+n

Z2
i , where Zi’s are iid N(0, 1). We show

below that

lim inf
n→∞

inf
a∈[an,an]

E

[
nUn(a)

a log
(
n
a

)] > 1

2
, (2.5.5)

E

[
sup

a∈[an,an]

n|Un(a)− E[Un(a)]|
a log

(
n
a

) ]
→ 0. (2.5.6)

Then by Markov’s inequality with probability tending to one we have

inf
a∈[an,an]

nUn(a)

a log
(
n
a

) > 1/3,

hence (2.5.2) follows from the definition of rα(a).
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2. Adaptive credible sets with a squared-exponential GP prior

Assertion (2.5.5) follows as

E[Un(a)] ≥
Ia∑
i=1

1

aei/a + n
≥ Ia

2n
≥ a

2n
log
(n
a

)
.

To verify (2.5.6), it suffices by Corollary 2.2.5 in (Van Der Vaart and Wellner,
1996) (applied with ψ(x) = x2) to show that there exist K1,K2 > 0 such that for any
a ∈ [an, an]

V

(
nUn(a)

a log
(
n
a

)) ≤ K1
1

a log
(
n
a

) , (2.5.7)

diamn∫
0

√
N(ε, [an, an], dn)dε ≤

√
An/n = o(1), (2.5.8)

where dn is the semi-metric defined by d2n(a1, a2) := V
(

nUn(a1)
a1 log(n/a1)

− nUn(a2)
a2 log(n/a2)

)
,

diamn is the diameter of the interval [an, an] relative to dn and N(ε, S, dn) is the
minimal number of dn-balls of radius ε needed to cover the set S.

First note that in view of Lemma 2.11.2 (with r = 0 and l = 2) we have

V

(
nUn(a)

a log
(
n
a

)) =
2n2

a2 log2
(
n
a

) ∞∑
i=1

1

(aei/a + n)2
≲

1

a log
(
n
a

) .
As a consequence one can see that diamn ≲ (an log(n/an))

−1/2. By Lemma 2.5.1,

dn(a1, a2) ≲ a
−3/2
1 log1/2(n/a1)n

−1|a1 − a2|, hence

N(ε, [an, an], dn) ≲ ε−1 log1/2
(
n

an

)
a−3/2
n

an
n
.

Therefore one can conclude that

diamn∫
0

√
N(ε, [an, an], dn)dε =

a
1/2
n log1/4

(
n
an

)
a
3/4
n n1/2

∫ C(an log(n/an))
−1/2

0

ε−1/2dε ≲
√
An/n.

Proof of (2.5.3): The variable ∥W (a)∥22 is distributed as
∞∑
i=1

n
(aei/a+n)2

Z2
i , with

Zi
iid∼ N(0, 1). Observe that

E0[∥W (a)∥22] =
∞∑
i=1

n

(aei/a + n)2
, and V0(∥W (a)∥22) = 2

∞∑
i=1

n2

(aei/a + n)4
.

Furthermore note that by applying Lemma 2.11.2 (with r = 0 and l = 2) we get

a

n
log
(n
a

)
≤ 4Ian

(aeIa/a + n)2
≤

Ia∑
i=1

4n

(aei/a + n)2
≤

∞∑
i=1

4n

(aei/a + n)2
≤ C

a

n
log
(n
a

)
,
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§2.5. Proof of the empirical Bayes part of Theorem 2.1.5

for some universal constant C > 0, while by applying the same lemma (with r = 0 and
l = 4) the variance is bounded above by a multiple of an−2 log(n/a). Then similar
reasoning to the previous proof results in that

inf
θ0∈ℓ2(M)

(
sup

an≤a≤an
∥W (a)∥22 ≤ C2

an
n

log

(
n

an

))
P0→ 1. (2.5.9)

Then in view of Lemma 2.4.3, the right hand side of the inequality in the preced-
ing probability statement is further bounded from above by constant multiplier of
(an/n) log(n/an) log

2 n.
Proof of (2.5.4): First note that

∥B(a, θ0)∥22 ≤
Ia∑
i=1

n−2a2e2i/aθ20,i +

∞∑
i=Ia

θ20,i.

To bound the first term on the right hand side, we use the inequalities a/n ≤ log(n/a)
for a ≤ An and

∑∞
i=1 θ

2
0,i < ∞, and furthermore note the function i 7→ ei/a/(i − a)

is monotone increasing on the interval [2a, Ia] hence it takes its maximum at Ia.
Therefore in view of Lemma 2.4.3 the first part of the bias for functions satisfying the
polished tail condition is bounded by

sup
an≤a≤an

Ia∑
i=1

a2e2i/aθ20,i
n2

≤ sup
an≤a≤an

2a∑
i=1

a2e2i/aθ20,i
n2

+ sup
an≤a≤an

a

n

log2
(
n
a

)(
log
(
n
a

)
− 1
)gn(a, θ0)

≤ e4a2n
n2

2a∑
i=1

θ20,i + (B + o(1))
an
n

log

(
n

an

)
log n

≤ (B + o(1))
an
n

log

(
n

an

)
log n

≤ Kρ,L0,B,b
an
n

log

(
n

an

)
log3 n,

for some constant Kρ,L0,B,b depending on ρ, L0, B, and b. Furthermore in view of the
polished tail assumption we have

∞∑
i=Ian

θ20,i ≤ L0

ρIan∑
i=Ian

θ20,i ≤ log

(
n

an

) Iãn+ρãn∑
i=Iãn

θ20,i,

for some ãn ∈ [an, ρan]. Therefore, by using Lemma 2.4.3,

∞∑
i=Ian

θ20,i ≲ log

(
n

an

) Iãn+ρãn∑
i=Iãn

n2(i− ãn)e
i/ãn

ãn log
2
(
n
ãn

)
(ãnei/ãn + n)2

θ20,i
ãn
n

log

(
n

ãn

)
,

≤ log

(
n

an

)
gn(ãn, θ0)

ãn
n

log

(
n

ãn

)
≤ Kρ,L0,B,b log

2

(
n

an

)
an
n

log n,

for some large enough constant Kρ,L0,B,b > 0. Combining the two bounds, we see
that (2.5.4) holds.

47



2. Adaptive credible sets with a squared-exponential GP prior

Lemma 2.5.1. There exists a K > 0 such that for any 1 < a1 < a2

V

 Un(a1)

a1 log
(
n
a1

) − Un(a2)

a2 log
(
n
a2

)
 ≤ K(a1 − a2)

2
log
(
n
a1

)
a31n

2
. (2.5.10)

Proof. First note that

V

 Un(a1)

a1 log
(
n
a1

) − Un(a2)

a2 log
(
n
a2

)
 = 2

∞∑
i=1

(ϕi(a1)− ϕi(a2))
2 (2.5.11)

with ϕi(a) :=
1

a log(n/a)(aei/a+n)
. The derivative of ϕi(a) is given as

ϕ′i(a) = ϕi(a)
( 2(i− a)ei/a

a(aei/a + n)
+

1

a log(n/a)
− 1

a

)
,

so we can see that |ϕ′i(a)| ≲
( (i+a)ei/a

a(aei/a+n)
∨ 1
a

)
ϕi(a). Thus in view of Lemma 2.11.3 the

right hand side of (2.5.11) is bounded by a multiple of

(a1 − a2)
2 sup
a∈[a1,a2]

∞∑
i=1

( (i2 + a2)e2i/a

a2(aei/a + n)2
∨ 1

a2

)
ϕi(a)

2.

Then in view of Lemma 2.11.1 (first with m = 2 and then with m = 0) and Lemma
2.11.2 (first with r = 1 and l = 2 and second with r = 0 and l = 2) the preceding
display is further bounded by the right hand side of (2.5.10), finishing the proof of
the statement.

§2.6 Proof of Theorem 2.1.4

We use the notations introduced in Section 2.5.
First recall that θ0 ∈ Ĉn(L) if and only if ∥θ0 − θ̂∥2 ≤ Lrα(ân). We show below

that

inf
θ0∈Aγ(M)

P0

(
sup

an≤a≤an
∥W (a)∥22 ≤ C1

an
n

log

(
n

an

))
→ 1, (2.6.1)

sup
θ0∈Aγ(M)

sup
an≤a≤an

∥B(a, f0)∥22 ≤ C2
an
n

log

(
n

an

)
, (2.6.2)

for some constants C1, C2 > 0 depending only on M , which together with (2.5.2) and
Theorem 2.4.1 results in the statement.

The proof of assertion (2.6.1) follows by combining (2.5.9) and the second in-
equality of Proposition 2.4.2. Next note that similarly to the proof of (2.5.4), we get
that

∥B(a, θ0)∥22 ≤
Ia∑
i=1

a2e2i/aθ20,i
n2

+

∞∑
i=Ia

θ20,i ≲
an
n

log

(
n

an

)
+

∞∑
i=Ian

θ20,i.
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§2.7. Proof of Theorem 2.1.3 and the empirical Bayes part of Corollary 2.1.2

Furthermore

∞∑
i=Ian

θ20,i =

∞∑
i=Ian

e−2iγe2iγθ20,i ≤Me−2Ian
γ =M

(an
n

)2anγ ≤M
an
n

log

(
n

an

)

for γ ≥ 1/2, finishing the proof of (2.6.2) and concluding the proof of the theorem.

§2.7 Proof of Theorem 2.1.3 and the empirical Bayes
part of Corollary 2.1.2

In the proof we use again the notations introduced in Section 2.5.

First note that θ0 ∈ Ĉn(Ln) implies that ∥B(ân, θ0)∥2 ≤ Lnrα(ân) + ∥W (ân)∥2,
which combined with Theorem 2.4.1 provides the upper bound

P0(θ0 ∈ Ĉn(Ln)) ≤ P0

(
inf
a≤an

∥B(a, θ0)∥2 ≤ Ln sup
a≤an

rα(a) + sup
a≤an

∥W (a)∥2
)
+ o(1).

(2.7.1)

The proof of assertion (2.5.2) also shows that there exists constants C1 > 0 such that

sup
a≤an

r2α(a) ≤ C1
an
n

log

(
n

an

)
. (2.7.2)

Then in view of assertion (2.5.9) and Proposition 2.4.2, both the squared radius rα(a)
2

and the variance term ∥W (a)∥22 are bounded byCβ,b,Mn
−2β/(2β+1)(log n)−1/(2β+1), for

some Cβ,b,M > 0.

Since for θ0 ∈ Θβs (m,M) we have ∥B(a, θ0)∥22 =
∞∑
i=1

a2e2i/aθ20,i
(aei/a+n)2

the bias is bounded

from below by

∥B(a, θ0)∥22 ≥ m

∞∑
i=Ia

i−1−2β >
m

2β
I−2β
a ≥ m

2β
a−2β log−2β

(n
a

)
.

As the function a 7→ a−2β log−2β
(
n/a

)
is monotone decreasing for a ≤ An, we see that

inf
a≤an

∥B(a, θ0)∥22 ≥ (m/(2β))a−2β
n log−2β(n/an). Hence in view of Proposition 2.4.2

the bias is bounded from below by cm,β,b,B,Mn
−2β/(2β+1)(log n)2β/(2β+1), for some

cm,β,b,B,M > 0. Thus, the above inequalities imply that for arbitrary θ0 ∈ Θβs (m,M)
the right hand side of (2.7.1) is further bounded by

sup
θ0∈ℓ2(M)

P0

(
n−β/(2β+1)(log n)β/(2β+1) ≤ LnCn

−β/(2β+1)(log n)−(1/2)/(2β+1)
)
+ o(1),

which goes to 0 for arbitrary Ln = o(
√
log n) and C depending on m,β, b, B and M ,

concluding the proof of the theorem.
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2. Adaptive credible sets with a squared-exponential GP prior

§2.8 Proof of Theorem 2.4.1

First note that the derivative of the marginal likelihood function ℓn(a) is

Mn(a) =
1

2

( ∞∑
i=1

n2Y 2
i e

i/a(i− a)

a(aei/a + n)2
−

∞∑
i=1

n(i− a)

a2(aei/a + n)

)
, (2.8.1)

with expected value

E0[Mn(a)] =
1

2

( ∞∑
i=1

n2(i− a)ei/aθ20,i
a(aei/a + n)2

−
∞∑
i=1

n2(i− a)

a2(aei/a + n)2

)
. (2.8.2)

In the following subsections we show with the help of the score function Mn(a) that
the marginal likelihood function ℓn(a) with probability tending to one has its global
maximum outside of the set [1, an) ∪ (an, An].

§2.8.1 Mn(a) on [1, an)

In this subsection we derive that the process Mn(a) is bounded from below by
−CB log2(n/a) on [1, an], for some CB > 0, and is bigger than e−5/2B log3(n/an), on
the interval

In ≡

 log
(
n
an

)
1 + log

(
n
an

)an, an
 (2.8.3)

with probability going to one, where B is the parameter in the definition of an. Hence
with probability tending to one for every a ∈ [1, an]/In

ℓn(an)− ℓn(a) ≥
∫ log(n/an)

1+log(n/an)
an

a

Mn(ã)dã+

∫
In

Mn(ã)dã

≥ −(an − a)C log2
(
n

an

)
+
c̃0Ban log

3
(
n
an

)
log
(
n
an

)
≥ (Bc̃0/2)an log

2

(
n

an

)
,

for B > 2c̃−1
0 C. Therefore the global maximum of ℓn(a) lies outside of the interval

[1, an) with probability tending to one. It remained to show the stated lower bounds
for Mn(a).

By leaving the non-negative stochastic part out we get the lower bound

Mn(a) ≥
1

2

(
a∑
i=1

n2(i− a)ei/aY 2
i

a(aei/a + n)2
−

∞∑
i=1

n(i− a)

a2(aei/a + n)

)
. (2.8.4)

In view of Lemma 2.8.1 the deterministic part in (2.8.4) is bounded from below by
a negative constant times log2

(
n/a

)
. The stochastic part is bounded from below by
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§2.8. Proof of Theorem 2.4.1

−C
a∑
i=1

Y 2
i and since E0

a∑
i=1

Y 2
i =

a∑
i=1

θ20,i + an−1 and V0
( a∑
i=1

Y 2
i

)
= 2n−1

a∑
i=1

θ20,i +

an−2 → 0 for all a ≤ An it follows from Chebyshev’s inequality that the sum
a∑
i=1

Y 2
i

is bounded with probability going to 1, for all θ0 ∈ ℓ2(M).

Next we deal with the lower bound on the interval a ∈ In. First note that
Y 2
i ≥ θ20,i + 2θ0,iZi/

√
n implying

Mn(a) ≥
1

2

(
a∑
i=1

n2(i− a)ei/aY 2
i

a(aei/a + n)2
+ log2

(n
a

)
gn(a, θ0) +Hn(a)−

∞∑
i=1

n(i− a)

a2(aei/a + n)

)
,

with the centered Gaussian process

Hn(a) =
∞∑
i=2a

n3/2(i− a)ei/aθ0,iZi
a(aei/a + n)2

. (2.8.5)

Note that

V0

(
Hn(a)
log2

(
n
a

)) =
1

log4
(
n
a

) ∞∑
i=2a

n3(i− a)2e2i/aθ20,i
a2(aei/a + n)4

V0(Zi)

≤ ngn(a, θ0)

a log2
(
n
a

) max
i≥2a

(i− a)ei/a

(aei/a + n)2
≥ gn(a, θ0)

a log
(
n
a

) ,
hence the diameter of the interval In with respect to the metric

d2n(a1, a2) = V0

 Hn(a1)

log2
(
n
a1

) − Hn(a2)

log2
(
n
a2

)


is bounded by a multiple of supa∈In
gn(a, θ0)

1/2(a log(n/a))−1/2.

Next we give an upper bound for the covering number of the interval In. Let us
take ε-balls centered at a ∈ In, with 2a ∈ N. To cover the remaining part of the inter-
val In it is sufficient to cover all intervals of the form (a, a+1/2), 2a ∈ N∩ 2In. Note
that on these intervals for every a1, a2 ∈ (a, a+1/2) we have ⌊2a1⌋−⌊2a2⌋ = 0. Hence
in view of Lemma 2.8.2 we have dn(a1, a2) ≲ |a1−a2| supa∈In

√
log(n/a)gn(a, θ0)/a3.

Thus the covering number of the interval (a, a+ 1/2) relative to dn is bounded from
above by a multiple of ε−1 supa∈In

√
log(n/a)gn(a, θ0)/a3, which implies that the

covering number of the whole interval In is bounded from above by constant times

ε−1 supa∈In

√
log−1(n/a)gn(a, θ0)/a+ an/ log(n/an).

We show below that for any c0 > 2

e−2c0B log n+ o(1) ≤ gn(a, θ0) ≤ ec0B log n+ o(1), for a ∈ In, (2.8.6)

hold. Therefore the covering number of In is bounded from above by a multiple of

an + ε−1
√
log−1(n/an) log(n)/an.
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2. Adaptive credible sets with a squared-exponential GP prior

By Corollary 2.2.5 in (Van Der Vaart and Wellner, 1996) (applied with ψ(x) =

ex
2 − 1) it follows that

E0

 sup
a∈In

∣∣∣∣∣∣ Hn(a)
log2

(
n
a

) − Hn(an)

log2
(
n
an

)
∣∣∣∣∣∣


≲
∫ C log1/2(n)I−1/2

an

0

√√√√log

(
an + ε−1

√
log(n)

an
log

(
n

an

))
dε

≲

C log1/2(n)I−1/2
an∫

0

√
log andε+

∫ 1

0

log(1/ε)dε = O(1).

Therefore the process Mn(a) can be bounded from below on a ∈ In by

Mn(a) ≥ 2−1 inf
a∈In

{
log2

(n
a

) (
Be−5 log n− C

)
+

a∑
i=1

n2(i− a)ei/aY 2
i

a(aei/a + n)2
−

∞∑
i=1

n(i− a)

a2(aei/a + n)

}
with probability going to one. In view of (2.8.6) and since the third and fourth
terms on the right hand side of the preceding display are bounded from below by
a fixed negative constant, we get that with probability tending to one Mn(a) ≥
e−5/2B log3(n/an).

It remained to verify assertion (2.8.6). First note that

n2

log2
(
n
an

) ∞∑
i=c0Ian

(i− an)e
i/an

an(ane
i/an + n)2

θ20,i ≤
n2

a3n log
2
(
n
an

) ∞∑
i=c0Ian

ie−i/anθ20,i

≲
Ac0−2
n

nc0−2 log
(
n
an

)∥θ0∥22 = o(1).

Furthermore, in view of the inequality c0Ian(a
−1 − a−1

n ) ≤ c0, for a ∈ In, we have
that

gn(a, θ0) ≥
n2

log2
(
n
a

) c0Ian∑
i=2an

(i− a)ei/a

a(aei/a + n)2
θ20,i

≥ n2

e2c0 log2
(
n
an

) c0Ian∑
i=2an

(i− an)e
i/an

an(ane
i/an + n)2

θ20,i.

By combining the preceding two displays we get that

gn(a, θ0) ≥ e−2c0gn(an, θ0)−
e−2c0n2

log2
(
n
an

) ∞∑
i=c0Ian

(i− an)e
i/an

an(ane
i/an + n)2

θ20,i

≥ e−2c0B log n+ o(1),
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finishing the proof of the first inequality in (2.8.6). The proof of the second inequality
goes accordingly.

Lemma 2.8.1. There exists a constant K > 0 such that for any a ∈ [1, n)

∞∑
i=1

n(i− a)

a2(aei/a + n)
≤ K log2(n/a)

Proof. Note that

∞∑
i=1

n(i− a)

a2(aei/a + n)
≤

∞∑
i=1

ni

a2(aei/a + n)
≤

Ia∑
i=1

i

a2
+

∞∑
i=Ia

nie−i/a

a3

≲ log2(n/a) +
log(n/a)

a
≲ log2(n/a).

Lemma 2.8.2. There exists a constant K > 0 such that for any positive a1 and a2
such that a1 < a2, ⌊2a2⌋ − ⌊2a1⌋ = 0

V0

( Hn(a1)
log(n/a1)2

− Hn(a2)
log(n/a2)2

)
≤ K(a1 − a2)

2 sup
a∈[a1,a2]

log(n/a)gn(a, θ0)

a3
.

Proof. Recall that the left hand side of the display in the lemma was denoted by
d2n(a1, a2) and note that

d2n(a1, a2) =

∞∑
i=2a2

(
ϕi(a1)− ϕi(a2)

)2
n3θ20,i (2.8.7)

with ϕi(a) := (i−a)ei/a
log(n/a)2a(aei/a+n)2

. Then by elementary, but cumbersome computa-

tions we get that |ϕ′i(a)| ≲ ia−2ϕi(a). Thus, in view of Lemma 2.11.3, the right hand
side of (2.8.7) is bounded by

n3(a1 − a2)
2 sup
a∈[a1,a2]

∞∑
i=2a

i2

a4
ϕi(a)

2θ20,i

≲ (a1 − a2)
2 sup
a∈[a1,a2]

gn(a, θ0) sup
i∈N

ni3ei/a

a5 log2(n/a)(aei/a + n)2
.

Then the statement of the lemma follows by applying Lemma 2.11.1 (withm = 3).

§2.8.2 Mn(a) on [an, An]

We prove that for sufficiently large choice of K0 > 0 in the definition of an

lim sup
n

sup
θ0∈ℓ2(M)

sup
a∈[an,An]

E0

[ Mn(a)

log2(n/a)

]
< −2−5, (2.8.8)

lim sup
n

sup
θ0∈ℓ2(M)

E0

[
sup

a∈[an,An]

|Mn(a)− E0[Mn(a)]|
log2(n/a)

]
≤ 2−6. (2.8.9)
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2. Adaptive credible sets with a squared-exponential GP prior

These imply that with probability tending to one Mn(a) < −2−6 log2(n/a), for every
a ∈ [ān, An], hence the marginal likelihood function ℓn(a) is monotone decreasing and
does not attain its global (or local) maximum on the interval [an, An], i.e.

inf
θ0∈ℓ2(M)

P0(ân ≤ an) → 1. (2.8.10)

Proof of assertion (2.8.8): In view of hn(a, θ0) ≤ b for all a ∈ [an, An] (assuming
that an > K0), we get that

E0

[ Mn(a)

log2(n/a)

]
=

1

2

(
hn(a, θ0)−

1

log2(n/a)

∞∑
i=1

n2(i− a)

a2(aei/a + n)2

)
≤ 1

2

(
b− 1

log2(n/a)

∞∑
i=1

n2(i− a)

a2(aei/a + n)2

)
.

In view of Lemma 2.11.2 (with r = 0 and l = 2), we have
∞∑
i=1

n2

a(aei/a+n)2
≲ log(n/a).

Furthermore,

∞∑
i=1

in2

a2(aei/a + n)2
≥

Ia∑
i=1

i

4a2
=
Ia(Ia + 1)

8a2
≥ 2−3 log2

(n
a

)
,

which implies that

E0

[
Mn(a)/ log

2(n/a)
]
≤ (b− 2−3 + o(1))/2,

concluding the proof of assertion (2.8.8), for small enough choice of b (b < 2−4 is small
enough).

Proof of assertion (2.8.9): In view of Corollary 2.2.5 in (Van Der Vaart and Well-
ner, 1996) (applied with ψ(x) = x2) it is sufficient to show that there exist universal
constants K1,K2 > 0 such that for any a ∈ [an, An]

V0
(
Mn(a)/ log

2(n/a)
)
≤ K1/ log(n/a), (2.8.11)

diamn∫
0

√
N(ε, [an, An], dn)dε ≤ K2/K

1/4
0 , (2.8.12)

where dn is the semi-metric defined by d2n(a1, a2) := V0

(
Mn(a1)

log2(n/a1)
− Mn(a2)

log2(n/a2)

)
, diamn

is the diameter of [an, An] relative to dn and N(ε, S, dn) is the minimal number of
dn-balls of radius ε needed to cover the set S, since by sufficiently large choice of K0

(K0 ≥ (26K2)
4 is sufficiently large) assertion (2.8.9) holds.

Note that Lemma 2.8.3 immediately implies assertion (2.8.11) and

diamn ≲ sup
a∈[ān,An]

(a log(n/a))−1/2 ≲ log−1/2 n.

Then let us introduce the cover

[an, An] ⊂
Kn−1⋃
k=0

[2kan, 2
k+1an]
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§2.8. Proof of Theorem 2.4.1

with Kn = ⌈log(An/an)⌉. In view of Lemma 2.8.4, when a1 and a2 are on the interval
[2kan, 2

k+1an]

dn(a1, a2) ≲
(
2kan

)−3/2
log1/2(n)|a1 − a2|,

hence

N(ε, [an, An], dn) ≲
Kn−1∑
k=0

log1/2(n)

ε
(
2kan

)1/2 ≲
log1/2(n)

εa
1/2
n

.

This results in

diamn∫
0

√
N(ε, [an, An], dn)dε ≤ K2/a

1/4
n ≤ K2/K

1/4
0 .

Lemma 2.8.3. For all a ∈ [an, An], we have V0
(
Mn(a)/ log

2(n/a)
)
≲ (a log(n/a))−1.

Proof. We know that the Yis are independent and V0(Y
2
i ) = 2/n2 + 4θ20,i/n, so the

variance is equal to

V0

( Mn(a)

log2(n/a)

)
=

1

4

∞∑
i=1

n4V0(Y
2
i )e

2i/a(i− a)2

a2 log4(n/a)(aei/a + n)4

=
1

2

∞∑
i=1

n2e2i/a(i− a)2

a2 log4(n/a)(aei/a + n)4
+

∞∑
i=1

n3e2i/a(i− a)2θ20,i

a2 log4(n/a)(aei/a + n)4
.

(2.8.13)

In view of (i − a)2 ≤ a2 + i2, for any a, i > 0, and by applying Lemma 2.11.1 (with
m = 2) and Lemma 2.11.2 (first with r = 2 and l = 4 and then with r = 1 and l = 2)
the first sum in (2.8.13) is bounded from above by a multiple of

∞∑
i=1

n2e2i/a

log4(n/a)(aei/a + n)4
+

∞∑
i=1

nei/a

a log2(n/a)(aei/a + n)2

≲
1

a log3(n/a)
+

1

a log(n/a)
≲

1

a log(n/a)
.

Similarly, following from Lemma 2.11.1 (with m = 1 and m = −1) and hn(a, θ0) ≤ b
for a ≥ an, the second sum in (2.8.13) is bounded by a multiple of(

max
i∈N

anei/a

i log2(n/a)(aei/a + n)2
+max

i∈N

inei/a

a log2(n/a)(aei/a + n)2

)
hn(a, θ0)

≲
( 1

a log3(n/a)
+

1

a log(n/a)

)
≲

1

a log(n/a)
,

concluding the proof of the lemma.

Lemma 2.8.4. For all 1 ≤ a1 < a2 < An, we have

d2n(a1, a2) ≤ C0(a1 − a2)
2 sup
a∈[a1,a2]

log(n/a)

a3
(1 + hn(a, θ0)),

for some universal constant C0 > 0.
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2. Adaptive credible sets with a squared-exponential GP prior

Proof. Note that

d2n(a1, a2) = n4
∞∑
i=1

(ϕi(a1)− ϕi(a2))
2V0(Y

2
i ),

with ϕi(a) = ei/a(i−a)
2a log2(n/a)(aei/a+n)2

. By elementary computations one can see that

|ϕi(a)′|2 ≲ (i2a−4 + a−2)ϕ2i (a), hence in view of Lemma 2.11.3,

d2n(a1, a2) ≲ (a1 − a2)
2n4 sup

a∈[a1,a2]

∞∑
i=1

e2i/a(i4 + a4)

a6 log4(n/a)(aei/a + n)4
V0(Y

2
i ).

Since V0(Y
2
i ) = 2/n2 + 4θ20,i/n the preceding sum is bounded by

∞∑
i=1

2e2i/a(i4 + a4)

a6n2 log4(n/a)(aei/a + n)4
+

∞∑
i=1

4e2i/a(i4 + a4)

a6n log4(n/a)(aei/a + n)4
θ20,i. (2.8.14)

Then in view of Lemma 2.11.1 (applied with m = 4 and m = 0) and Lemma 2.11.2
(applied with r = 1 and l = 2) the first term of (2.8.14) is bounded from above by a
multiple of

∞∑
i=1

ei/a

a3n3(aei/a + n)2
≲

log(n/a)

a3n4
.

Similarly in view of Lemma 2.11.1 (with m = 3 and m = −1) the second term of
(2.8.14) is bounded by

max
i∈N

(
(i/a)3 + (i/a)−1

)
ei/a

a2n3 log2(n/a)(aei/a + n)2
hn(a, θ0)

≲
( log(n/a)

a3n4
+

1

n5a2

)
hn(a, θ0) ≲

log(n/a)

a3n4
hn(a, θ0),

concluding the proof of the lemma.

§2.9 Proof of Theorem 2.1.6

Similarly to the previous sections we use the notations introduced in Section 2.5. We
show below that there exists a constant c > 0 depending only on m,M and β0 such
that

inf
β≥β0

inf
θ0∈Θβ

s (m,M)
P0(ân ≥ c(n/ log n)1/(1+2β)/ log n) → 1, (2.9.1)

which combined with Proposition 2.4.2 and Theorem 2.4.1 results in

inf
β≥β0

inf
θ0∈Θβ

s (m,M)
P0(c(n/ log n)

1/(1+2β) ≤ ãn ≤ C(n/ log n)1/(1+2β)) → 1,
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for some positive constants c, C depending on b, B,m,M and β. Let us introduce
then the notation

Ĩn = [c(n/ log n)
1

1+2β , C(n/ log n)
1

1+2β ].

As before, note that θ0 ∈ Ĉn(L) is equivalent to ∥θ0 − θ̂∥2 ≤ Lrα(ãn), hence by
proving that

inf
a∈Ĩn

r2α(a) ≥ C1(n/ log n)
−2β/(1+2β),

inf
β≥β0

inf
θ0∈Θβ

s (m,M)
P0

(
inf
a∈Ĩn

∥W (a)∥22 ≤ C2(n/ log n)
−2β/(1+2β)

)
→ 1,

sup
β≥β0

sup
θ0∈Θβ

s (m,M)

sup
a∈Ĩn

∥B(a, θ0)∥22 ≤ C3(n/ log n)
−2β/(1+2β),

hold for some constants C1, C2, C3 > 0, the statement of the theorem follows immedi-
ately. The proof of the first two inequalities follow from (2.5.2) and (2.5.9) (with an
and an replaced by a multiple of (n/ log n)1/(1+2β)), respectively. To prove the last
inequality we note that for θ0 ∈ Θβs (m,M), a ∈ Ĩn, and β ≥ β0 we have that

∥B(a, θ0)∥22 ≲
Ia/2∑
i=1

a2e2i/an−2i−1−2β +

∞∑
i=Ia/2

i−1−2β ≲ a/n+ I−2β
a

= o
(
(n/ log n)−2β/(1+2β)

)
.

It remained to prove assertion (2.9.1). Let us introduce the slightly modified
version of an as

a′n := sup{a ∈ [1, An] : gn(a, θ0) ≥ B},

for some sufficiently large constant B > 0 to be specified later. Then we show below
that

P0(ân ≥ a′n) → 1, and a′n ≥ c(n/ log n)1/(1+2β)/ log n, (2.9.2)

for some sufficiently small constant c > 0.
For the second statement note that

gn(a, θ0) ≥
m

log2(n/a)
n2

∞∑
i=Ia

e−i/ai−2β ≳ mna−1−2β log−2−2β(n/a), (2.9.3)

hence for any fixed B > 0 there exists a small enough c > 0 such that the right hand
side of the preceding display with a = c(n/ log n)1/(1+2β)/ log n is bigger than B. It
remained to deal with the first part of (2.9.2). We show below that with probability
tending to one infa∈[a′n/2,a

′
n]
Mn(a) ≥ cB log2(n/a), for some small enough constant

c > 0, not depending on B. Then with probability tending to one for any a ∈ [1, a′n/2]
we have

ℓn(an)− ℓn(a) ≥
∫ a′n/2

a

Mn(ã)dã+

∫
[a′n/2,a

′
n]

Mn(ã)dã

≥ −(a′n/2− a)C log2(n/an) + cB(a′n/2) log
2(n/a′n)

≥ (c/4)Ba′n log
2(n/a′n),
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2. Adaptive credible sets with a squared-exponential GP prior

for large enough choice of B > 0, hence the global maximum of ℓn(a) lies outside of
the interval [1, a′n].

It remained to verify the lower bound forMn(a). First note that for a ≤ An = o(n)

gn(a, θ0) ≤
M

log2(n/a)

(1
a

Ia∑
i=2a

ei/ai−2β +
n2

a3

∞∑
i=Ia

e−i/ai−2β
)

≤ cM,βna
−1−2β(log n)−2−2β ,

hence a′n ≤ c′M,βB
−1/(1+2β)(n/ log n)1/(1+2β)/ log n. Therefore in view of (2.9.3) for

every a ≥ a′n/2 we have gn(a, θ0) ≥ cM,β,mB, for some positive constant cM,β,m > 0
not depending on B. Similarly we can show that gn(a, θ0) ≤ c′M,β,mB, for every
a ≥ a′n/2, for some c′M,β,m > 0 not depending on B. Then following the same line
of reasoning as in Section 2.8.1, with the only main difference that instead of the
interval given in (2.8.3) we are working with the interval [a′n/2, a

′
n] we get that with

probability going to one

inf
a∈[a′n/2,a

′
n]
Mn(a) ≥ 2−1 inf

a∈[a′n/2,a
′
n]

{
log2(n/a)

(
cM,β,mB −

√
c′M,β,mB

)
+

a∑
i=1

n2(i− a)ei/aY 2
i

a(aei/a + n)2
−

∞∑
i=1

n(i− a)

a2(aei/a + n)

}
≳ B log2(n/a′n),

for large enough choice of M > 0, finishing the proof of the theorem.

§2.10 Proofs for the Hierarchical Bayes procedure

In this section we prove the results on the hierarchical Bayes procedure (i.e. Theorems
2.4.5 and 2.1.5 and Corollary 2.1.2) based on the results derived for the empirical
Bayes procedure. First we state that under the conditions of Theorem 2.4.5 the
hyper-posterior distribution on the hyper-parameter a concentrates most of its mass
on the interval In = [an log(n)/(1 + log n), Can], for some large enough constant
C > 0.

Lemma 2.10.1. If a ∼ π(.) such that π verifies Assumption 2.1.1 then for sufficiently
large C > 0 we have for every β0 > 0 that

inf
β>β0

inf
θ0∈Θβ(M)

E0Π
(
an log(n)/(1 + log n) ≤ a ≤ Can|Y

)
= 1 + o(1/n).

§2.10.1 Proof of Theorem 2.4.5

Take εn = (n/ log2 n)−β/(1+2β). Then following from Lemma 2.10.1, we have

sup
θ0∈Θβ(M)

E0Π
(
θ : ∥θ − θ0∥2 > Mnεn|Y

)
≤ sup
θ0∈Θβ(M)

(
E0Π(a /∈ In|Y )

+ E0 sup
a∈In

Πa
(
θ : ∥θ − θ0∥2 > Mnεn|Y

))
= o(1),
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where the last equation follows by similar arguments as given in (2.4.9) and the
displays below it (the only difference is that the supremum is taken over the interval
In instead of [an, an], but it only changes the constant factors which do not play an
essential role. This concludes the proof of the theorem.

§2.10.2 Proof of Theorem 2.1.3 - Hierarchical Bayes
part

In the proof we use again the notations introduced in Section 2.5.
Let a′ := n1/(1+2β)(log n)−1−1/(1+2β) ≍ an ≍ an with probability going to one

thanks to Proposition 2.4.2. One can see that in the hierarchical case,

P0(θ0 ∈ Ĉn(Ln)) ≤ P0

(
∥B(a′, θ0)∥2 ≤ Lnrα + ∥W (a′)∥2 + ∥θ̂ − θ̂a′∥2

)
+ o(1),

(2.10.1)

which is a slightly modified version of (2.7.1) thanks to the triangle inequality. In
order to prove that the right hand-side tends to zero, it is sufficient to show that there
exist constants C̃1, C̃2, C̃3 > 0 such that

r2α ≤ C̃1n
−2β/(1+2β) log(n)−1/(1+2β), (2.10.2)

P0(∥W (a′)∥22 ≤ C̃2n
−2β/(1+2β) log(n)−1/(1+2β)) → 1, (2.10.3)

∥B(a′, θ0)∥22 ≥ C̃3n
−2β/(1+2β) log(n)2β/(1+2β), (2.10.4)

P0(∥θ̂ − θ̂a′∥2 ≤ C̃4n
−2β/(1+2β) log(n)−1/(1+2β)) → 1. (2.10.5)

The bounds on the variance and the bias are obtained in a similar manner as in
Section 2.7 and 2.10.3. Next we deal with assertion (2.10.5).

By Jensen’s inequality, Fubini’s theorem and triangle inequality one can obtain
that

∥θ̂ − θ̂a′∥2 = ∥
∫
(θ̂a − θ̂a′)Π(da|Y )∥22 (2.10.6)

≤
∞∑
i=1

∫
(θ̂a,i − θ̂a′,i)

2Π(da|Y )

≤ sup
a1∈In

∞∑
i=1

(θ̂a1,i − θ̂a′,i)
2Π(a1 ∈ In|Y ) + sup

a1 /∈In

∞∑
i=1

(θ̂a1,i − θ̂a′,i)
2Π(a1 /∈ In|Y ).

Starting with the first term, we use the trivial bound 1 for Π(.|Y ). We have with
P0-probability tending to 1 that

sup
a1∈In

∞∑
i=1

(θ̂a1,i − θ̂a′,i)
2 ≤ sup

a1∈In

∞∑
i=1

(E0θ̂a1,i − E0θ̂a′,i)
2 (2.10.7)

+ sup
a1∈In

∞∑
i=1

(θ̂a1,i − E0θ̂a1,i)
2 +

∞∑
i=1

(θ̂a′,i − E0θ̂a′,i)
2
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2. Adaptive credible sets with a squared-exponential GP prior

The two last term on the right hand-side are bounded by a constant multi-
plier of n−2β/(1+2β) log(n)−1/(1+2β) from (2.5.3). The first term can be written as
supa1∈In

∑∞
i=1(gi(a1)− gi(a

′))2 for gi(a) = nθ20,i/(ae
i/a + n). The derivative of gi(a)

is −nθ20,i(a − i)ei/a/(a(aei/a + n)2). Without loss of generality, when a1 < a′ writ-
ing the difference as the integral of g′i(a), applying Cauchy-Schwartz inequality to its
squares and then interchanging the sum and the integral, we get that

∞∑
i=1

(E0θ̂a1,i − E0θ̂a′,i)
2 =

∞∑
i=1

(∫ a′

a1

g′i(a)da
)2

≤
∞∑
i=1

(a′ − a1)

∫ a′

a1

g′i(a)
2da

= (a′ − a1)

∫ a′

a1

∞∑
i=1

g′i(a)
2da ≤ (a′ − a1)

2 sup
a∈In

∞∑
i=1

g′i(a)
2da

≤ (a′ − a1)
2 sup
a∈In

∞∑
i=1

n2θ40,i(i− a)2e2i/a

a2(aei/a + n)4

For fixed a, the sum in the preceding display is bounded from above by constant
times

∞∑
i=1

n2i−2−4β(i− a)2e2i/a

a2(aei/a + n)4
≤ 1

a2n2

Ia∑
i=1

(i2 + a2)i−2−4βe2i/a

+
n2

a6

∑
i>Ia

(i2 + a2)i−2−4βe−2i/a

≲ a−3−4β log
(n
a

)1−4β
.

Therefore, one can see that

sup
a1≤an

∞∑
i=1

(E0θ̂a1,i − E0θ̂a′,i)
2 ≲ sup

a1∈In

(a′ − a1)
2a−3−4β
n log(n)1−4β .

≲ n−1−2β/(1+2β) log(n)7+1/(1+2β) = o(1/n),

with probability tending to one using Proposition 2.4.2
It is left to deal with the second term on the right hand-side of (2.10.6). Following

from (2.10.7), we get with P0-probability tending to 1 that

sup
a1 /∈In

∞∑
i=1

(θ̂a1,i − θ̂a′,i)
2 ≤ 2 sup

a1 /∈In

∞∑
i=1

(E0θ̂a1,i)
2 + sup

a1 /∈In

∞∑
i=1

(θ̂a1,i − E0θ̂a1,i)
2

(2.10.8)

+2

∞∑
i=1

(E0θ̂a′,i)
2 +

∞∑
i=1

(θ̂a′,i − E0θ̂a′,i)
2,

where all terms on the right hand side are O(1). Since

E0Π(a /∈ In|Y ) = o(1/n),
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applying Markov’s inequality leads to the second term on the right hand-side of
(2.10.6) being of lower order than n−1.

It remained to deal with assertion (2.10.2). We show below that

rα ≤ r̃ := sup
a∈In

(
∥θ̂ − θ̂a∥2 + rα/2(a)

)
. (2.10.9)

Then in view of the inequality

sup
a∈In

∥θ̂ − θ̂a∥2 ≤ ∥θ̂ − θ̂a′∥2 + sup
a∈In

∥θ̂a − θ̂a′∥2

and assertions (2.10.5), (2.10.7), and (2.7.2) we get that with probability tending to
one r2α ≤ C̃1n

−2β/(1+2β) log(n)−1/(1+2β) and since rα is deterministic the inequality
holds almost surely.

Finally we verify assertion (2.10.9). Note that

Π(θ : ∥θ̂ − θ∥2 ≤ r̃|Y ) ≥
∫
In

Πa(θ : ∥θ − θ̂∥2 ≤ r̃|Y )π(a|Y )da

≥
∫
In

Πa(θ : ∥θ − θ̂a∥2 ≤ rα/2(a)|Y )π(a|Y )da

≥
∫
In

(1− α/2)π(a|Y )da < 1− α,

for large enough n, concluding the proof of our theorem for the Hierarchical Bayes
method.

§2.10.3 Proof of Theorem 2.1.5 - Hierarchical Bayes
part

Let us introduce the notations W = θ̂ − E0θ̂ and B(θ0) = E0θ̂ − θ0, for the centered
hierarchical posterior mean and the bias of the posterior mean, respectively. Then
P0(θ0 ∈ Ĉ(L log n)) if and only if

∥W∥2 ≤ L log(n)rα − ∥B(θ0)∥2 (2.10.10)

holds. Using assertions (2.5.2), (2.5.3), and (2.5.4) we show below that, there exist
constants C̃1, C̃2, C̃3 > 0, such that

r2α ≥ C̃1(an/n) log(n/an), (2.10.11)

inf
θ0∈Θpt(L0,N0,ρ)

P0

(
∥W∥22 ≤ C̃2(an/n) log(n/an) log

2 n
)
→ 1, (2.10.12)

∥B(θ0)∥22 ≤ C̃3(an/n) log
2
(
n/an) log n, (2.10.13)

resulting in (2.10.10) for sufficiently large choice of L > 0.
Proof of (2.10.11): Let us take any α′ > α and note that in view of (2.5.2) we

have
inf
a∈In

rα′(a)2 ≥ C1(an/n) log(n/an).
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2. Adaptive credible sets with a squared-exponential GP prior

Next, in view of Lemma 2.10.1 and Anderson’s lemma, we get for arbitrary r ≤
infa∈In rα′(a) that

Π(θ : ∥θ − θ̂∥2 ≤ r|Y ) =

∫
In

Πa(θ : ∥θ − θ̂∥2 ≤ r|Y )π(a|Y )da+ o(1)

≤
∫
In

Πa(θ : ∥θ − θ̂a∥2 ≤ rα′(a)|Y )π(a|Y )da+ o(1)

≤ 1− α′ + o(1),

hence r2α ≥ infa∈In rα′(a)2 ≥ C1(an/n) log(n/an).

Proof of (2.10.12): Note that by triangle inequality, Fubini’s theorem, assertion
(2.5.3), and Lemma 2.10.1 we get that under the polished tail condition with P0-
probability tending to one

∥W∥2 =
∥∥∥ ∫ (θ̂a − E0θ̂a)π(a|Y )da

∥∥∥
2

≤ sup
a∈In

∥W (a)∥2π(In|Y ) + sup
1≤a≤An

∥W (a)∥2π(Icn|Y )

≤ (C2an/n)
1/2 log(n/an)

1/2 log n+ o(1/n)

where π(In|Y ) denotes (by slightly abusing our notation) the posterior probability
that the hyper-parameter a lies in the interval In and in the last inequality we used
in view of the proof of assertion (2.5.3) that sup1≤a≤An

∥W (a)∥2 = O(1).

Proof of (2.10.13): Similarly to the proof of (2.10.12) we get that

∥B(θ0)∥22 ≲ sup
a∈In

∥B(a, θ0)∥22 + o( sup
a∈[1,An]

∥B(a, θ0)∥22/n)

≤ C3(an/n) log
2
(
n/an) log n+ o(1/n),

where the last inequality follows from ∥B(a, θ0)∥22 ≤ ∥θ0∥22 = O(1), finishing the proof
of the theorem.

§2.10.4 Proof of Corollary 2.1.2

Let εn = (n/ log2 n)−β/(1+2β) and first note that in view of assertions (2.10.12) and
(2.10.13) combined with triangle inequality and Proposition 2.4.2 we have with P0-
probability tending to one that

∥θ0 − θ̂∥2 ≤ ∥W∥2 + ∥B(θ0)∥2 ≲
√
an/n log(n/an) ≲ εn.

Then in view of Theorem 2.4.5 and by applying again the triangle inequality we get
with probability tending to one that

Π(θ : ∥θ − θ̂∥2 ≤Mnεn|Y ) ≥ Π(θ : ∥θ − θ0∥2 ≤Mnεn − ∥θ0 − θ̂∥2|Y ) = 1− o(1),

concluding the proof of the corollary.
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§2.10.5 Proof of Lemma 2.10.1

In Section 2.8 it was shown that Mn(a) =
∂ℓn(a)
∂a satisfies, for positive constants K1,

K2 and K3,

Mn(a)

log2(n/a)

 ≤ −K1, for a ≥ an
≥ K2 log(n/an), for a ∈ [a∗n, an]
≥ −K3, for a ≤ a∗n,

where a∗n = an log n/(1 + log n). Furthermore, the constant K2 can be chosen arbi-
trarily large by choosing B large enough, while the constant K3 is fixed.

For a ≥ Can with C ≥ 3, we have

ℓn(a)− ℓn(2an) ≤ −K1 log
2(n/an)(a− 2an) ≤ −K4 log

2(n/an)an

with K4 = K1(C − 2). Consequently eℓn(a) ≤ eℓn(2an)−K4 log2(n/an)an for a ≥ Can.
Since also eℓn(a) ≥ eℓn(2an) for a ∈ [an, 2an], we find

Π(a ≥ Can|Y ) ≤
∫∞
Can

eℓn(a)π(a)da∫ 2an
an

eℓn(a)π(a)da
≤

Π
(
[Can,∞)

)
e−K4 log2(n/an)an

Π([an, 2an])
. (2.10.14)

Note that by Assumption 2.1.1

Π
(
[an, 2an]

)
≳ a1−c3n e−c2an ≫ e−K4 log2(n/an)an ,

hence the right hand side of (2.10.14) tends to zero.
The analysis of the left tail goes similarly. Note that for a < a∗n/2 we have

ℓn(a
∗
n) − ℓn(a) ≥ −K3(a

∗
n − a) log2(n/an), hence e

ℓn(a) ≤ eℓn(a
∗
n)+K3an log2(n/an) and

analogously for (an+a
∗
n)/2 < a < an we have ℓn(a)−ℓn(a∗n) ≥ K2(a−a∗n) log

3(n/an),

which implies eℓn(a) ≥ eℓn(a
∗
n)+K2(an/4) log

2(n/an). Therefore

Π(a ≤ a∗n|Y ) ≤
∫ a∗n
1

eℓn(a)π(a)da∫ an
(an+a

∗
n)/2

eℓn(a)π(a)da
≤ Π([1, an])e

K3an log2(n/an)

Π([(an + a∗n)/2, an])e
K2(an/4) log

2(n/an)
.

(2.10.15)

Since
Π([(an + a∗n)/2, an])

−1 ≲ log(n)ac5−1
n ec6an ≪ eK2(an/8) log

2(n/an),

for large enough choice of K2, the right hand side of (2.10.15) tends to zero, finishing
the proof of the lemma.

§2.11 Technical Lemmas

Lemma 2.11.1. Let i,m ∈ N and a ≥ 1, then for any n/a ≥ em

nei/aim

am(aei/a + n)2
≤ 1

a
logm

(n
a

)
∨ ea

−m

n
.
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2. Adaptive credible sets with a squared-exponential GP prior

Proof. Assume first that i ≤ Ia ≡ a log(n/a). Note that the function f(x) =
ex/a(x/a)m is monotone decreasing on (−∞,−ma] and monotone increasing on [−ma,∞].
Then by the inequality aei/a + n ≥ n,

nei/aim

am(aei/a + n)2
≤ ei/a(i/a)m

n
≤ 1

a
logm

(n
a

)
∨ ea

−m

n
.

Next assume that i > Ia. Note that the derivative of the function f(x) = e−x/axm

is f ′(x) = e−x/axm−1(m − x/a), hence the function f(i) is monotone decreasing for
i ≥ am. Thus for n/a ≥ em, f(i) takes its maximum at i = Ia, which implies that

nei/aim

am(aei/a + n)2
≤ ne−i/aim

am+2
≤ 1

a
logm

(n
a

)
.

Lemma 2.11.2. Let l > r ≥ 0, then for n/a ≥ el−r

∞∑
i=1

eir/a

(aei/a + n)l
≲
nr−l

ar−1
log
(n
a

)
.

Proof. First note that following from the inequality aei/a + n ≥ n and the sum of
geometric series we get

Ia∑
i=1

eir/a

(aei/a + n)l
≤ n−1

Ia∑
i=1

eir/a ≲
nr−l

ar−1
log
(n
a

)
,

where Ia ≡ a log(n/a). Then similarly, using the inequality aei/a+n ≥ aei/a and the
sum of geometric series,

∞∑
Ia

eir/a

(aei/a + n)l
≤ a−l

∞∑
Ia

e(r−l)i/a ≤ nr−l

ar
1

e(l−r)/a − 1
≲
nr−l

ar−1
log
(n
a

)
because e(l−r)/a − 1 ≥ l−r

a and log
(
n
a

)
≥ l − r for n

a ≥ el−r.

Lemma 2.11.3 (Lemma C.11 of (van der Pas et al., 2017)). For any stochastic
process (Va : a > 0) with continuously differentiable sample paths a 7→ Va, with
derivative written as V̇a,

E(Va2 − Va1)
2 ≤ (a2 − a1)

2 sup
a∈[a1,a2]

EV̇ 2
a .

§2.12 Extra simulation study

The purpose of this section is to reinforce the evidence shown in Section 2.2. To this
end, we will show graphically and numerically the sub-optimal performance of the
Gaussian process with (approximately) squared exponential covariance kernel com-
pared to other methods in the non-parametric regression model specifically. In this
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§2.12. Extra simulation study

simulation study we take the Fourier coefficients of the underlying true function θ3
to be θ3,i = i−3/2 cos(i), i = 1, 2, .... We take σ2 = 1/2, but in the procedure it is
considered to be unknown and estimated with the MMLE σ̂2. We take the sample
size to be n = 500, 1000, 5000, and 10000. Observe in Figure 2.4 that the standard
MMLE empirical Bayes method provides unreliable uncertainty quantification in cer-
tain points, especially compared to the three other methods. One can also observe
through different running times in Table 2.9, that while the Matérn covariance kernels
might provide robust credible sets, they substantially slow down the computations for
large n.

We also investigate empirically the frequentist coverage probabilities of the point-
wise credible sets by repeating the experiment 100 times and reporting the frequency
that the function at given points (we consider x = (0.25, 0.6474, 0.75) with 0.6474 =
argmaxx∈[0,1]θ3(x)) is included in the credible interval, see Table 2.7. Moreover, Table

2.8 shows the average size of the point-wise credible intervals (i.e. 2q0.025
√
ĉ(x, x))

depending on the sample size n and the procedure used to compute the credible sets.
One can observe similar behavior to what we have described above.

Figure 2.4: Empirical Bayes credible sets for the regression function θ3 (drawn in black), zoomed in to
the interval x ∈ [0.5, 0.75]. The posterior means are drawn by solid blue line, while the 95% point-wise
credible sets by dashed blue curves. In the first row we plot the MMLE empirical Bayes method, in the
second row the MMLE empirical Bayes method with a logn blow up factor, the third row the modified
MMLE empirical Bayes method using squared exponential Gaussian process prior, while in the fourth row
we plot the empirical Byes credible sets using a Matérn kernel with data-driven choice for the regularity
hyper-parameter. From left to right the sample size is n = 500, 1000, 5000, 10000.

We also consider a multi-variable version of the previous regression with d =
10 variables. The Fourier coefficients of the underlying true function θ4 become

θ4,i =
∏10
k=1(i

−3/2
k cos(ik)), ik = 1, 2, ... for all k = 1, 2, ..., 10, relative to the Fourier

eigenbasis ψi(t) = 32
∏10
k=1 cos(π(ik − 1/2)t). We have collected the frequentist

coverage probabilities of the point-wise credible sets at given points (we consider
x = ({0.25}10, {0.3188}10, {0.75}10)) in Table 2.10 and note that similar conclusions
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2. Adaptive credible sets with a squared-exponential GP prior

x = 0.25 x = 0.6474 x = 0.75
n = 100 500 1000 100 500 1000 100 500 1000

Method 1 0.00 0.00 0.00 0.86 0.82 0.71 0.00 0.01 0.00
Method 2 0.94 1.00 1.00 0.64 1.00 1.00 1.00 1.00 1.00
Method 3 0.11 0.12 0.17 0.95 0.95 0.96 0.62 0.47 0.75
Method 4 0.00 0.13 0.14 0.86 0.86 0.90 0.24 0.27 0.35
Method 5 0.00 0.08 0.10 0.83 0.84 0.87 0.19 0.19 0.34

Table 2.7: Frequencies that θ3(x) is inside of the corresponding credible interval for the squared expo-
nential and Matérn Gaussian process prior at given points x ∈ {0.25, 0.3188, 0.75}. Method 1: SE kernel
MMLE empirical Bayes procedure, Method 2: SE kernel empirical Bayes procedure with logn blow up
factor, Method 3: SE kernel modified empirical Bayes procedure (MMLE multiplied by logn), Method 4:
Matérn kernel with smoothness MMLE empirical Bayes, Method 5: Matérn kernel with rescaling MMLE
empirical Bayes and α = 10. From left to right the sample size is n = 100, 500, 1000.

n = 100 500 1000
Method 1 0.4184 0.2335 0.1804
Method 2 1.9270 1.4516 1.2459
Method 3 0.7949 0.5271 0.4267
Method 4 0.6694 0.4292 0.3446
Method 5 0.5439 0.2987 0.2625

Table 2.8: Average size of the pointwise credible intervals (i.e. 2q0.025
√
ĉ(x, x)) for θ3(x) in the re-

gression model. Method 1: SE kernel MMLE empirical Bayes procedure, Method 2: SE kernel empirical
Bayes procedure with logn blow up factor, Method 3: SE kernel modified empirical Bayes procedure
(MMLE multiplied by logn), Method 4: Matérn kernel with smoothness MMLE empirical Bayes, Method
5: Matérn kernel with rescaling MMLE empirical Bayes and α = 10. From left to right the sample size is
n = 100, 500, 1000.

n = 100 500 1000 5000 10000
Method 1 0.82 s 2.70 s 10.66 s 3.6 m 19.1 m
Method 4 1.61 s 14.52 s 45.77 s 19 m 4.2 h
Method 5 1.37 s 11.45 s 34.29 s 14.1 m 2.4 h

Table 2.9: Average run time of the EB methods for θ3 in the regression model. Method 1: SE covariance
kernel, Method 4: Matérn covariance kernel and MMLE for the regularity hyper-parameter, Method 5:
Matérn covariance kernel and MMLE for the scaling hyper-parameter with fixed regularity α = 10. From
left to right the sample size is n = 100, 500, 1000, 5000, 10000

can be drawn as in the d = 1 dimensional case. Surprisingly, the computation times
for the posterior in higher dimension is of similar order as their one-dimensional coun-
terpart, hence they are omitted.
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x = {0.25}10 x = {0.3188}10 x = {0.75}10
n = 100 500 1000 100 500 1000 100 500 1000

Method 1 1.00 0.97 0.96 0.85 0.76 0.70 1.00 0.98 0.95
Method 2 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00
Method 3 1.00 1.00 1.00 0.86 0.87 0.89 1.00 1.00 1.00
Method 4 1.00 1.00 1.00 0.96 0.95 0.97 1.00 1.00 1.00
Method 5 1.00 1.00 1.00 0.95 0.95 0.94 1.00 1.00 1.00

Table 2.10: Frequencies that θ4(x) is inside of the corresponding credible interval for the squared
exponential and Matérn Gaussian process prior in the multivariate (d = 10) regression model. Method
1: SE kernel MMLE empirical Bayes procedure, Method 2: SE kernel empirical Bayes procedure with
logn blow up factor, Method 3: SE kernel modified empirical Bayes procedure (MMLE multiplied by
logn), Method 4: Matérn kernel with smoothness MMLE empirical Bayes, Method 5: Matérn kernel with
rescaling MMLE empirical Bayes and α = 10. From left to right the sample size is n = 100, 500, 1000.
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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

CHAPTER 3
Optimal recovery and coverage for

distributed Bayesian non-parametric
regression

Abstract. Gaussian Processes (GP) are widely used for probabilistic modeling and
inference for non-parametric regression. However, their computational complexity
scales cubicly with the sample size rendering them unfeasible for large data sets. To
speed up the computations various distributed methods were proposed in the litera-
ture. These methods have, however, limited theoretical underpinning. In our work
we derive frequentist theoretical guarantees and limitations for a range of distributed
methods for general GP priors in context of the non-parametric regression model,
both for recovery and uncertainty quantification. As specific examples we consider
covariance kernels both with polynomially and exponentially decaying eigenvalues.
We demonstrate the practical performance of the investigated approaches in a nu-
merical study using synthetic data sets.

§3.1 GP regression framework

In our analysis we consider the multivariate random design regression model. Let us
assume that we observe (Xi, Yi), i = 1, ..., n, i.i.d pairs of random variables satisfying

Yi = θ0 (Xi) + εi, εi
iid∼ N

(
0, σ2

)
, (3.1.1)

with design points Xi, i = 1, ..., n, belonging to some compact set X ⊂ Rd, obser-
vations Yi ∈ R, noise variance σ2 > 0, and functional parameter θ0 : X → R. For
simplicity we take X = [0, 1]d, assume that the design points are uniformly distributed,

i.e. Xi
iid∼ U [0, 1]d, and σ2 ≳ 1 to be known. We use the notation Dn = (Yi, Xi)i=1,...,n

for the observations and P0 and E0 for the probability measure and expected value
corresponding to the underlying regression function θ0.

In order to perform inference on the regression function θ0, we consider a non-
parametric Bayesian approach. We endow θ0 with a mean-zero Gaussian Process
(GP) prior GP (0,K), where K : Rd×Rd 7→ R is a positive definite stationary kernel.
For matrices A ∈ Rd×n and B ∈ Rd×n′

, let K(A,B), denote the n × n′ matrix of
(K(A·i, B·j))1≤i≤n, 1≤j≤n′ .
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3. Optimal recovery and coverage for distributed Bayesian non-parametric regression

By conjugacy the posterior distribution of θ is also a Gaussian process and by
the same conjugate computation as in Chapter 2 of (Rasmussen and Williams, 2006),

θ|Dn ∼GP(θ̂n, Ĉn), where for any x, x′ ∈ [0, 1]d

θ̂n (x) = K (x,X)
(
K (X,X) + σ2In

)−1 Y, (3.1.2)

Ĉn (x, x
′) = K (x, x′)−K (x,X)

(
K (X,X) + σ2In

)−1
K (X, x′) , (3.1.3)

where X ∈ [0, 1]d×n, Y ∈ Rn are the collection of design points and observations,
respectively, and In denotes the n× n identity matrix.

We assume that the eigenfunctions {ψj}j∈Nd of the above covariance kernel K
factorize, i.e.

ψj =

d∏
k=1

ψjk , j ∈ Nd, (3.1.4)

where {ψjk}jk∈N are the eigenfunctions corresponding to the one dimensional kernel
on [0, 1]. We further assume that the eigenfunctions of the kernel K are bounded.

Assumption 3.1.1. There exists a global constant Cψ > 0 such that the eigenfunc-
tions {ψj}j∈Nd of K satisfy |ψj(t)| ≤ Cψ for all j ∈ Nd, t ∈ X .

The corresponding eigenvalues of K are

µj =

d∏
k=1

µjk , j ∈ Nd, (3.1.5)

with {µjk}jk∈N the eigenvalues of the k-th component of the kernel (Berlinet and
C. Thomas-Agnan, 2004). Although our results hold more generally, as specific ex-
amples we consider polynomially and exponentially decaying eigenvalues

Assumption 3.1.2. The one dimensional eigenvalues µj, j ∈ N are either

• Polynomially decaying:

C−1j−2α/d−1 ≤ µj ≤ Cj−2α/d−1, (3.1.6)

for some α,C > 0, or

• Exponentially decaying:

C−1be−aj ≤ µj ≤ Cbe−aj , (3.1.7)

for some a, b, C > 0.

In non-parametric statistics, it is common to assume that the underlying functional
parameter of interest belongs to some regularity class. In our analysis we consider
Sobolev-type of regularity classes defined with the basis ψj , i.e. for any β > 0 and
B > 0, define as in (Bényi and Oh, 2013), (Hunter, 2013) and (Cobos et al., 2015)
the function space

Θβ (B) =

θ = ∑
j∈Nd

θjψj ∈ L2

(
[0, 1]d

)
:
∑
j∈Nd

(
d∑
k=1

jk

)2β

θ2j ≤ B2

 . (3.1.8)
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For the Fourier basis or the basis corresponding to the Matérn covariance kernel,
Θβ(B) is equivalent to β-smooth Sobolev balls and are known as isotropic Sobolev
spaces, see (Cobos et al., 2015).

The frequentist properties of Gaussian process priors for recovery are well under-
stood in the literature. It was shown in various specific examples and choices of priors
that for appropriately scaled Gaussian priors the corresponding posterior can recover
the underlying functional parameter of interest θ0 ∈ Θβ(B) with the optimal minimax
estimation rate n−β/(2β+d), see for instance (van der Vaart and van Zanten, 2007),
(van der Vaart and van Zanten, 2008) and (van der Vaart and van Zanten, 2011).
Another, from a practical perspective very appealing property of Bayesian methods is
the built-in uncertainty quantification. Bayesian credible sets accumulate prescribed
(typically 95%) posterior mass and can take various forms. In our analysis we consider

L2 credible balls, i.e. we define the credible set as B̂n = {θ : ∥θ− θ̂n∥ ≤ rγ}, satisfying
Π(θ ∈ B̂n|Dn) = 1 − γ, for some γ ∈ (0, 1). Credible sets do not provide automati-
cally valid confidence statements. In recent years the frequentist coverage properties
of Bayesian credible sets were widely studied and it was shown for appropriate choices
of the prior distribution the corresponding posterior can provide reliable frequentist
uncertainty quantification for functions satisfying certain regularity assumptions, see
for instance (Szabo et al., 2015), (Belitser, 2017), (Castillo and Nickl, 2014), (Serra
and Krivobokova, 2017), (Sniekers and van der Vaart, 2015a), (Yoo and Ghosal, 2016),
(Bhattacharya et al., 2017), (Ray, 2017), (Rousseau and Szabo, 2020) and (Hadji and
Szabo, 2021). However, our setting wasn’t covered by these results yet.

Despite the fact that the mean (3.1.2) and covariance (3.1.3) functions can be
explicitly computed, consequently solving the model, their computation requires in-
verting the matrix (K(X,X) + σ2In). The inversion of this n× n matrix is of O(n3)
computational complexity, which rapidly explodes as n grows. One way to speed up
the computations is to consider sparse approximations of the matrices, see for in-
stance (Gibbs et al., 1976), (Saad, 1990), (Quiñonero-Candela and Rasmussen, 2005)
and (Titsias, 2009). In this work we focus on a different, distributed approach to
decrease computational complexity.

§3.2 Distributed GP regression

In distributed methods, the data are divided among multiple local machines or servers,
and the computations are carried out locally, in parallel to each other. Then the
outcome of the computations are transmitted to a center machine or server where
they are aggregated somehow forming the final outcome of the distributed method.
In the random design regression model it means that we divide the data of size
n over m machines (we assume for simplicity that n mod m = 0), i.e. in each

machine k = 1, ...,m we observe iid pairs of random variables (X
(k)
i , Y

(k)
i ) ∈ [0, 1]d×R,

i = 1, ..., n/m, satisfying

Y
(k)
i = θ0

(
X

(k)
i

)
+ ε

(k)
i , ε

(k)
i

iid∼ N
(
0, σ2

)
, (3.2.1)

where θ0 : [0, 1]d 7→ R is the unknown functional parameter of interest, and σ2 > 0 the

known variance of the noise. For convenience, let us introduce the notations D(k)
n =
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(X
(k)
i , Y

(k)
i )i=1,...,ñ, X(k) = (X

(k)
i )i=1,...,ñ, Y(k) = (Y

(k)
i )i=1,...,ñ for the whole data set,

the design points, and observations in the k-th local machine, respectively. Similarly
to the non-distributed method (with only one local machine m = 1), we assume that
the true function belongs to some Sobolev-type of regularity class θ0 ∈ Θβ(B), for
given β,B > 0, see (3.1.8).

We consider distributed Bayesian approaches for recovering θ0. First, we endow
the function θ0 in each local machine k = 1, ...,m with a Gaussian process prior and

compute the corresponding local (adjusted) posterior distribution Π(k)(.|D(k)
n ). Then,

we transmit the m local posteriors into a central machine where we aggregate them

somehow into a global (adjusted) posterior Π†
n,m(·|Dn). We further denote by θ̂

(k)
n the

local (adjusted) posterior mean, and by θ̂n,m the global (adjusted) posterior mean.
For quantifying the uncertainty of the distributed Bayesian procedure we consider
L2-credible balls resulting in from the aggregated posterior distribution, i.e. let

B̂n,m,γ =
{
θ : ∥θ − θ̂n,m∥2 ≤ rn,m,γ

}
, satisfying

Π†
n,m

(
θ ∈ B̂n,m,γ |Dn

)
= 1− γ, (3.2.2)

for some prescribed γ ∈ (0, 1).
Distributed methods vary according to the way the local (adjusted) posterior

distributions are computed and aggregated to obtain the global posterior. The be-
havior of the aggregated posterior crucially depends on the applied techniques. To
demonstrate this let us consider a naive method where in each local machine we
endow θ0 ∈ Θβ(B) with a Gaussian process prior and compute the corresponding

unadjusted local posterior distribution Π∗
n(·|D

(k)
n ). We consider a centered GP with

polynomially decaying eigenvalues as in Assumption 3.1.2 with matching regularity
hyper-parameter α = β. Note that this choice of the hyper-parameter is optimal in
the non-distributed case (with only one local machine m = 1). Then the local pos-
teriors are aggregated to a global posterior Π†

n,m(·|Dn) in the following way: a draw
from the aggregated posterior is taken to be the average of a single draw from each
local posteriors. The theorem below shows that such method results in sub-optimal
concentration for the posterior mean and contraction rate for the whole posterior
distribution.

Theorem 3.2.1. Take β ≥ 2 and consider the function θ0 ∈ Θβ(L) of the form
θ0(x) = cL

∑∞
j=1 j

−1−2β(log j)−2ψj(x), x ∈ [0, 1], for sufficiently small cL > 0. Then
for the covariance kernel K with polynomially decaying eigenvalues (3.1.6) with α = β
and d = 1, and (log n)2 ≪ m ≲ n1/(1+2β) the corresponding naive aggregated posterior

mean θ̂n,m has sub-optimal concentration and the posterior itself achieves sub-optimal
contraction rate, i.e.

E0

∥∥∥θ̂n,m − θ0

∥∥∥2
2
≥ c (log n)

−2
(n/m)−β/(2β+1), (3.2.3)

E0Π
†
n,m

(
θ : ∥θ − θ0∥22 ≤ c (log n)

−2
(n/m)−β/(2β+1)|Dn

)
→ 0, (3.2.4)

for sufficiently small c > 0, where θ̂n,m is the mean of the global posterior Π†
n,m

obtained with the naive method.

The proof is given in Section 3.5.4.
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§3.2.1 Optimal Distributed Methods

In this paper we consider two methods, for which optimal performance were de-
rived in context of the Gaussian white noise setting, see (Szabó and van Zanten,
2019). We investigate these methods here in the practically more relevant and tech-
nically substantially more complex non-parametric regression model. We note that
in (Guhaniyogi et al., 2017) in context of the regression model an approach closely
related to Method II was derived and its contraction properties were investigated for
a rescaled covariance kernel with polynomially decaying eigenvalues. In our work we
consider more general kernel structures and in contrast to (Guhaniyogi et al., 2017) do
not require that the functional parameter belongs to the Reproducing Kernel Hilbert
Space (RKHS) of the Gaussian Process prior. Furthermore, we also derive guarantees
and limitations to uncertainty quantification. Therefore, our results are of different
nature requiring a different approach.

3.2.1.1 Method I

Rescaling the priors. In the first method, introduced by (Scott et al., 2016) in a
parametric setting, we consider raising the prior density to the power 1/m, which is
formally equivalent to multiplying the kernelK bym, i.e. the adjusted kernel takes the
form KI := mK. Then the eigenvalues of the kernel KI are {µIj}j∈Nd = {mµj}j∈Nd .
Hence, in view of (3.1.1) the posterior distribution, for each machine k = 1, ...,m, is

also a Gaussian process θ|D(k)
n ∼GP(θ̂

(k)
n , Ĉ

(k)
n ) with

θ̂(k)n (x) = K
(
x,X(k)

)(
K
(
X(k),X(k)

)
+m−1σ2Iñ

)−1

Y(k),

Ĉ(k)
n (x, x′) = m

(
K (x, x′)−K

(
x,X(k)

)(
K
(
X(k),X(k)

)
+m−1σ2Iñ

)−1

K(X(k), x′)

)
.

Averaging the local draws. A draw from the global posterior is generated by first
drawing a single sample from each local posteriors and then taking the averages of
these draws over all machines. Since the data sets and the priors in the local machines
are independent, the so generated average of the local posteriors is also a Gaussian pro-

cess with mean θ̂In,m = m−1
∑m
k=1 θ̂

(k)
n and covariance kernel ĈIn,m = m−2

∑m
k=1 Ĉ

(k)
n ,

where θ̂
(k)
n and Ĉ

(k)
n denote the posterior mean and covariance functions in the kth

local machine.

3.2.1.2 Method II

Rescaling the likelihood. In the second method proposed by (Srivastava et al.,
2015), we adjust the local likelihood by raising its power tom in every machine, which
is equivalent to rescaling the variance of the observations by a factor m−1. Then, by
elementary computations similar to (3.1.1), we obtain that for each machine, the
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posterior distribution is GP (θ̂
(k)
n , Ĉ

(k)
n ), with

θ̂(k)n (x) = K
(
x,X(k)

)(
K
(
X(k),X(k)

)
+m−1σ2Iñ

)−1

Y(k),

Ĉ(k)
n (x, x′) = K (x, x′)−K

(
x,X(k)

)(
K
(
X(k),X(k)

)
+m−1σ2Iñ

)−1

K
(
X(k), x′

)
.

Wasserstein barycenter. This approach consists in aggregating the local posteri-
ors by computing their Wasserstein barycenter. The 2-Wasserstein distance W 2

2 (µ, ν)
between two probability measures µ and ν is defined as

W 2
2 (µ, ν) := inf

γ

∫ ∫
∥x− y∥22γ(dx, dy),

where the infimum is taken over all measures γ with marginals µ and ν. The cor-
responding 2-Wasserstein barycenter of m probability measures µ1, ..., µm is defined
by

µ̄ = argmin
µ

1

m

m∑
k=1

W 2
2 (µ, µk),

where the minimum is taken over all probability measures with finite second moments.
In view of Theorem 4 in (Mallasto and Feragen, 2017), the global posterior is a

Gaussian process with mean θ̂IIn,m and covariance ĈIIn,m satisfying

θ̂IIn,m =
1

m

m∑
k=1

θ̂(k)n ,

ĈIIn,m =
1

m

m∑
k=1

((
ĈIIn,m

)1/2
Ĉ(k)
n

(
ĈIIn,m

)1/2)1/2

.

In particular, the posterior variance function is

VarIIn,m (f(x)|Dn) =
1

m

m∑
k=1

Var
(
f(x)|D(k)

n

)
for all x ∈ X .

§3.2.2 Posterior contraction rate

We show that the above proposed distributed methods (i.e. Methods I- II) provide
optimal recovery of the underlying functional parameter of interest. The methods
result in different global posteriors which can have different finite sample size behavior,
but their asymptotic properties are similar.

Theorem 3.2.2. Let β,B > 0, K a kernel with eigenvalues (µj)j∈Nd satisfying |{j ∈
Nd : µjn ≥ σ2}| ≤ n and corresponding eigenfunctions satisfying Assumption 3.1.1.
Furthermore, let

νj =
nµj

σ2 + nµj
, for all j ∈ Nd, (3.2.5)
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and P̃ a linear operator defined as P̃ (θ) :=
∑
j∈Nd(1 − νj)θjψj for all θ ∈ L2(X ).

Then

E0∥θ̂n,m − θ0∥22 ≲ ∥P̃ (θ0)∥22 +
σ2

n

∑
j∈Nd

ν2j + δn, (3.2.6)

E0Π
†
n,m

(
∥θ − θ0∥22 > Mn

(
∥P̃ (θ0)∥22 +

σ2

n

∑
j∈Nd

νj + δn

)
|Dn

)
→ 0, (3.2.7)

for arbitrary sequence Mn tending to infinity, where θ̂n,m is the mean of the global
posterior Π†

n,m(.|Dn) obtained with either Methods I − II and

δn = inf
{
n
∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ : I ⊂ Nd, |I| ≤ n
(
m2 log n

∑
j∈Nd

ν2j
)−1
}

(3.2.8)

is a (typically) negligible technical term.

The proof of the theorem is deferred to Section 3.5.3.
First we note that the condition |{j ∈ Nd : µjn ≥ σ2}| ≤ N is very mild and

is satisfied by the eigenvalues considered in Assumption 3.1.2. The sequence (νj)j∈N
can be thought of as the population eigenvalues of the posterior. Next note that the
bound (3.2.6) has two main components. The first term ∥P̃ (θ0)∥22 measures how close
θ0 is (in L2-norm) to its convolution with the eigenvalues (νj)j∈Nd , hence it accounts
for the bias of the estimator. In the meanwhile the second term (σ2/n)

∑
j∈Nd ν2j can

be thought of as the variance term. In a similar fashion, the contraction rate (3.2.7)
has also two main components: ∥P̃ (θ0)∥22 and (σ2/n)

∑
j∈Nd νj , where the former is

the squared bias while the latter is the expected value of the posterior variance under
the true parameter. The remaining δn term is of technical nature. It bounds the tail
behavior of the eigen-decomposition of the variance of the posterior mean. This term
is shown to be negligible in our examples. Since all the above terms are related to
the kernel K, explicit bounds on the expectation of ∥θ̂n − θ0∥2, as well as explicit
posterior contraction rates of the global posterior Π†

n,m(.|Dn), can be achieved for
specific choices of the kernels.

Corollary 3.2.3. (Polynomial) For given B > 0 and β ≥ 3d/2, assume that the
covariance kernel K satisfies Assumptions 3.1.1 and (3.1.6) with α = β. Then for

m = o(n
2β−3d

4β ) the aggregated posterior distribution Π†
n,m(.|Dn) and the corresponding

aggregated posterior mean θ̂n,m resulting from either of the Methods I − II achieve
the minimax convergence rate up to a logarithmic factor, i.e.

sup
θ0∈Θβ(B)

E0∥θ̂n,m − θ0∥22 ≲ (n/σ2)−2β/(2β+d)(log(n/σ2))d−1

and for all sequences Mn → +∞,

sup
θ0∈Θβ(B)

E0Π
†
n,m(θ : ∥θ − θ0∥2 > Mn(n/σ

2)−β/(2β+d)(log(n/σ2))(d−1)/2|Dn) → 0.

The proof is given in Section 3.6.1.
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Corollary 3.2.4. (Exponential) For given B > 0 and β ≥ d/2 assume that the
covariance kernel K satisfies Assumptions 3.1.1 and (3.1.7) with rescaling parameter

a = (σ2/n)1/(2β+d) log(n/σ2) and b = 1. Then for m = o(n
2β−d

2(2β+d) ) the aggregated
posterior distribution Π†

n,m(.|Dn) and the corresponding aggregated posterior mean

θ̂n,m resulting from either of the methods I − II achieve the minimax convergence
rate, i.e.

sup
θ0∈Θβ(B)

E0

∥∥∥θ̂n,m − θ0

∥∥∥2
2
≲ (n/σ2)−2β/(2β+d),

and for all sequences Mn → +∞,

sup
θ0∈Θβ(B)

E0Π
†
n,m

(
θ : ∥θ − θ0∥2 > Mn(n/σ

2)−β/(2β+d)|Dn
)
→ 0.

The proof is given in Section 3.6.2. We note that the conditions on β and m in
both corollaries follow from the remaining technical term δn. These conditions are
not optimized and are of technical nature.

§3.3 Distributed uncertainty quantification

In the following, we study the frequentist coverage properties of the L2 credible balls
defined in (3.2.2) resulting from Method I. For convenience we allow some additional
flexibility by allowing the credible balls to be blown up by a constant factor L > 0,
i.e. we consider balls

B̂n,m,γ(L) =
{
θ ∈ L2(X ) :

∥∥∥θ − θ̂n,m

∥∥∥ ≤ Lrn,m,γ

}
,

where for the choice L = 1 we get back our original credible ball (3.2.2). The frequen-
tist validity of B̂n,m,γ(L) will be established in two steps: First we approximate the

centered posterior measure θ− θ̂n,m|Dn and second we study the asymptotic behavior
of the radius, the bias and the variance of the posterior mean corresponding to the
approximated posterior.

In the non-distributed case (i.e. m = 1), the posterior distribution can be ap-

proximated by an auxiliary GP. For the GP posterior θ − θ̂n|Dn ∼GP(0, Ĉn), the
covariance kernel Ĉn given in (3.1.3) is hard to analyze due to its dependence on X.
Against this background, following the idea of (Bhattacharya et al., 2017), we define
a population level GP Ŵ ∼GP(0, C̃n), where C̃n(x, x

′) = σ2/n
∑
j∈Nd νjψj(x)ψj(x

′),
and show that the two kernels are close with respect to the L2-norm. Then using this
result we can provide the following frequentist coverage results for the credible balls.

Theorem 3.3.1. Let β,B > 0, K be a kernel with eigenvalues (µj)j∈Nd satisfying
|{j ∈ Nd : nµj ≥ σ2}| ≤ n and corresponding eigenfunctions satisfying Assumption
3.1.1. Furthermore, assume that nδn/

∑
j∈Nd νj = o(1), where the (typically) negli-

gible term δn was defined in (3.2.8). Then in case the bias term ∥P̃ (θ0)∥2 satisfies
that

n

σ2

∥P̃ (θ0)∥22∑
j∈Nd νj

≤ c (3.3.1)
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for some c ≥ 0, the frequentist coverage of the (inflated) credible set resulting from
Method I tends to one, i.e. for arbitrary Ln → +∞

Pθ0

(
θ0 ∈ B̂n,m,γ (Ln)

)
n→∞→ 1.

On the other hand, if the bias term ∥P̃ (θ0)∥2 satisfies that

n

σ2

∥P̃ (θ0)∥22∑
j∈Nd νj

n→∞→ ∞, (3.3.2)

then the aggregated and inflated credible set resulting from Method I has frequentist
coverage tending to zero, i.e. for any L > 0,

Pθ0

(
θ0 ∈ B̂n,m,γ (L)

)
n→∞→ 0.

We briefly discuss the assumptions. Condition (3.3.1) requires that the squared
bias term is dominated by the posterior variance, which is a natural and standard
assumption for coverage. On the other hand condition (3.3.2) resulting in the lack
of coverage assumes that the squared bias dominates the variance which is again
natural and standard. The assumption nδn/

∑
j∈Nd νj = o(1) is of technical nature,

and is required to deal with the tail of the eigen-decomposition of the posterior.
This condition is not optimized but it is already sufficiently general to cover our
examples. The blow up constant of the credible sets are again of technical nature,
it can be equivalently replaced by slightly under-smoothing the priors, see (Knapik
et al., 2011).

Below we consider specific choices of the covariance kernel K, both with poly-
nomially and exponentially decaying eigenvalues. We show below that by not over-
smoothing the priors, Method I results in frequentist coverage tending to one in both
examples.

Corollary 3.3.2. (Polynomial) For given B > 0 and β ≥ 3d/2, assume that the
covariance kernel K satisfies Assumptions 3.1.1 and (3.1.6) with α ≤ β. Then for

m = o(n
2β−3d

4β ) and Ln tending to infinity arbitrarily slowly the aggregated posterior
credible set B̂n,m,γ(Ln) attains asymptotic frequentist coverage one, i.e.

inf
θ0∈Θβ(B)

P0

(
θ0 ∈ B̂n,m,γ (Ln)

)
→ 1.

The proof is given in Section 3.6.3.

Corollary 3.3.3. (Exponential) For given B > 0 and β ≥ d/2, let us take m =

o(n
2β−d

2(2β+d) ) and assume that the covariance kernel K satisfies Assumptions 3.1.1

and (3.1.7) with (m/n)1/(2d)(log n)1−1/(2d) ≲ a ≲
(
σ/n

)1/(2β+d)
log n and b = 1.

Then for Ln tending to infinity arbitrarily slowly the aggregated posterior credible set
B̂n,m,γ(Ln) obtains asymptotic frequentist coverage one, i.e.

inf
θ0∈Θβ(B)

P0

(
θ0 ∈ B̂n,m,γ (Ln)

)
→ 1.

The proof is given in Section 3.6.4. We note that in both examples the conditions
on β and m are of technical nature and they were not optimized.
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§3.4 Discussion

In this chapter, we have shown that distributed methods can be applied in the context
of Gaussian Process regression and give accurate results in terms of recovery and
uncertainty quantification. Although a naive averaging of the local posteriors will fail
to capture the true functional parameters, there exist techniques obtaining a global
posterior distribution which has similar asymptotic behavior as the non-distributed
posterior distribution. We demonstrate through various examples (including both
polynomially and exponentially decaying eigenvalues for the covariance kernel) that
the aggregated posterior distribution can achieve optimal minimax contraction rates
and good frequentist coverage.

One of the main contributions of our paper is that we do not need to assume
that the true functional parameter belongs to the Reproducing Kernel Hilbert Space
(RKHS) corresponding to the considered Gaussian Process prior, which is a typical
assumption in the literature. This way our results are less restrictive and can be
applied for a larger class of functions and priors. For instance squared exponential
covariance kernels contain analytic functions in their RKHS, hence assuming that
the truth belongs to that space would substantially reduce the applicability of the
method. Also, in case of Matérn kernels by relaxing this assumption we do not have
to introduce an (artificial) rescaling factor which is needed otherwise as the regularity
of the Matérn kernel can’t be chosen to match the regularity of the truth.

The optimal choice of the tuning hyper-parameter in the covariance kernel depends
on the regularity of the underlying function, which is typically unknown in practice.
In the non-distributed setting various adaptive techniques were proposed to solve
this problem, including hierarchical and empirical Bayes methods. However, in the
distributed setting standard approaches based on the (marginal) likelihood fail, as it
was demonstrated in the context of the Gaussian white noise model, see (Szabó and
van Zanten, 2019). An open and interesting line of research is to understand whether
adaptation is possible at all in the distributed regression framework (3.1) and if yes
to provide method achieving it.

§3.5 Proofs of the main results

§3.5.1 Kernel Ridge Regression in non-distributed
setting

Let us first consider the non-distributed case, i.e. take m = 1. We introduce some
notations and recall standard results for the kernel ridge regression method. The
posterior mean θ̂n coincides with the kernel ridge regression (KRR) estimator

θ̂n = θ̂KRR = argmin
θ∈H

[−ℓn (θ)] , −ℓn (θ) :=
n∑
i=1

(Yi − θ (Xi))
2
+ σ2 ∥θ∥2H , (3.5.1)

where the RKHS H corresponds to the prior covariance kernel K, see Chapter 6 in
(Rasmussen and Williams, 2006). The objective function of the KRR is composed of
the average squared-error loss and an RKHS penalty term. In view of the representer
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theorem for RKHSs, the solution to (3.5.1) is a linear combination of kernel functions,
which renders it equivalent to a quadratic program.

By the reproducing property, all functions θ in the RKHS H can be evaluated as
θ(Xi) = ⟨θ,KXi

⟩H with KXi
= K(Xi, ·), and ∥θ∥2H = ⟨θ, θ⟩H. The corresponding

log-likelihood function takes the form (up to an additive constant term)

−ℓn (θ) :=
n∑
i=1

(Yi − ⟨θ,KXi
⟩H)

2
+ σ2 ⟨θ, θ⟩H .

Performing a Fréchet derivation on ℓn : (H, ⟨·, ·⟩H) → R with respect to θ, one can
obtain the score function. By multiplying the score function with 1/(2n) we arrive at
the function Ŝn : H → H given as

Ŝn(θ) =
1

n

[
n∑
i=1

(Yi − θ (Xi))KXi
− σ2θ

]
. (3.5.2)

For simplicity we refer to Ŝn(θ) as the score function from now on and note that the

KRR estimate θ̂n = θ̂KRR then verifies

Ŝn

(
θ̂n

)
= 0.

Define also Sn(θ) := E0Ŝn(θ) to be the population version of the score function, i.e.

Sn (θ) =

∫
X
(θ0 (x)− θ (x))Kxdx− σ2

n
θ = F (θ0 − θ)− σ2

n
θ, (3.5.3)

where the operator F : L2(X ) → H is a convolution with the kernel K, in other words
F (θ) =

∫
θ(x)Kxdx. Considering θ =

∑
j∈Nd θjψj , a straightforward calculation

yields F (θ) =
∑
j∈Nd µjθjψj . We can then rewrite Sn(θ) as

Sn(θ) =
∑
j∈Nd

(
µjθ0,j −

σ2 + nµj
n

θj

)
ψj , (3.5.4)

which leads immediately to a solution of Sn(θ) = 0 with θj = νjθ0,j , where νj =
νn,j =

nµj

σ2+nµj
.

Let us define another operator F̃ : L2(X ) → H̃, with H̃ denoting the Hilbert space
with inner product ⟨θ, θ′⟩H̃ =

∑
j∈Nd ν

−2
j θjθ

′
j , as F̃ (θ) =

∑
j∈Nd νjθjψj (we omit the

dependence on n in the notation). Note that both operators F and F̃ are bijective
and linear, which allows us to rewrite (3.5.3) as

Sn (θ) = F (θ0)− F ◦ F̃−1 (θ) = F
(
θ0 − F̃−1 (θ)

)
.

Hence, using the notation ∆θ̂n = θ̂n − F̃ (θ0) we get

∆θ̂n = −F̃ ◦ F−1 ◦ Sn
(
θ̂n

)
. (3.5.5)

It will also be useful to define the operator P̃ = id− F̃ , where id denotes the identity
operator on L2(X ). Also note that Sn(F̃ (θ0)) = 0.

Table 3.1 provides a summary of the key above notations in order to help the
reader find a way in the proofs.
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Table 3.1: Notation references

Symbol Definition
Dn Data, {(Yi, Xi)

n
i=1}.

θ0 True function.
εi Gaussian error, εi = Yi − θ0(Xi) ∼ N (0, σ2).

θ̂n posterior mean function, EX [θ|Dn], equal to the KRR solution.

θ̂n = argminθ∈H

[
n−1

∑n
i=1(Yi − θ(Xi))

2 + n−1σ2∥θ∥2H
]
.

F Convolution with kernel K, F (θ) =
∑
j∈Nd µjθjψj .

F−1 Inverse of F , F−1(θ) =
∑
j∈Nd(θj/µj)ψj .

{νj}j∈Nd Eigenvalues of the equivalent kernel νj = nµj/(σ
2 + nµj).

F̃ Convolution with the equivalent kernel F̃ (θ) =
∑
j∈Nd νjθjψj .

F̃−1 Inverse of F̃ , F̃−1(θ) =
∑
j∈Nd(θj/νj)ψj .

P̃ P̃ = id− F̃ .

Ŝn Sample score function, Ŝn(θ) = n−1[
∑n
i=1(Yi − θ(Xi))KXi

− σ2θ].

Sn Population score function, Sn(θ) = F (θ0 − F̃−1(θ)).

§3.5.2 Kernel Ridge Regression in distributed set-
ting

In the distributed setting (both in Methods I and II), accordingly, the kth local sample
and population score functions are given (up to constant multipliers) by

Ŝ(k)
n (θ) =

1

n/m

n/m∑
i=1

(
Y

(k)
i − θ

(
X

(k)
i

))
K
X

(k)
i

− σ2

m
θ

 ,
S(k)
n (θ) =

∫
X
(θ0 (x)− θ (x))Kxdx− σ2

n
θ = Sn(θ), (3.5.6)

respectively. Analogously to (3.5.2), every local KRR estimate satisfies Ŝ
(k)
n (θ̂

(k)
n ) = 0.

In view of S
(k)
n = Sn we have S

(k)
n

(
F̃ (θ0)

)
= 0, hence for each machine, let ∆θ̂

(k)
n =

θ̂
(k)
n −F̃ (θ0) denote the difference between the empirical and the population minimizer
of the KRR.

§3.5.3 Proof of Theorem 3.2.2

In the proof we use ideas from the proof of Theorem 2.1 of (Bhattacharya et al.,
2017). The main differences between their and our results are that we are consid-
ering (various) distributed Bayesian methods (not just the standard posterior with
m = 1) and that we extend the results to general Gaussian process priors (including
kernel with polynomially decaying and exponentially decaying eigenvalues), while the
proof (Bhattacharya et al., 2017) only covered the rescaled version of the kernel with
polynomially decaying eigenvalues, with scaling factor depending on the sample size.
More specifically we do not require that the true function belongs to the RKHS of
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the GP prior, which substantially extends the applicability of our results. Finally in
our analysis we consider the multivariate d-dimensional case, work with L2-norm and
consider Sobolev type of regularity classes rather than L∞ norm and hyper-rectangles
induced by the series decomposition with respect to the eigenbasis ψj . These exten-
sions and conceptual differences required substantially different proof techniques than
in (Bhattacharya et al., 2017).

First note that in view of the inequality (a+ b)2 ≤ 2a2 + 2b2, we get

E0

∥∥∥θ̂n,m − θ0

∥∥∥2
2
≤ 2

∥∥∥θ0 − F̃ (θ0)
∥∥∥2
2
+ 2E0

∥∥∥θ̂n,m − F̃ (θ0)
∥∥∥2
2
,

where θ̂n,m is the mean of the global posterior Π†
n,m(.|Dn) obtained with either method

I or II. Then we show in Section 3.5.3.1 that for θ0 ∈ Θβ(B)

E0

∥∥∥θ̂n,m − F̃ (θ0)
∥∥∥2
2
≲

 1

n

∑
j∈Nd

ν2j

(∥P̃ (θ0)∥22 + σ2
)
+ δn, (3.5.7)

where

δn = inf

n
∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ : I ⊂ Nd, |I| ≤ n

m2

∑
j∈Nd

ν2j

−1


concluding the proof of the first statement.
For the contraction rate note that by using Markov’s and triangle inequalities we

get

E0Π
†
n,m (θ : ∥θ − θ0∥2 ≥Mnεn|Dn) ≤ 2

E0E
†
n,m

[∥∥∥θ − θ̂n,m

∥∥∥2
2
|Dn
]
+ E0

∥∥∥θ̂n,m − θ0

∥∥∥2
2

M2
nε

2
n

.

Therefore it is sufficient to show that

E0E
†
n,m

[∥∥∥θ − θ̂n,m

∥∥∥2
2
|Dn
]
= O

σ2

n

∑
j

νj

 .

In view of Fubini’s theorem the expected squared L2-norm of the process θ− θ̂n,m|Dn
is the integral of the aggregated posterior variance of θ(x) over X ,

E†
n,m

[∥∥∥θ − θ̂n,m

∥∥∥2
2
|Dn
]
=

∫
X
Var†n,m (θ (x) |Dn) dx.

In the non-distributed setting, the posterior variance only depends on the design
matrix X. The expectation of this integral is known as the learning curve in Chapter
7 of (Rasmussen and Williams, 2006). In Section 3.5.3.2 we prove that

E0

∫
X
Var†n,m (θ (x) |Dn) dx ≍ σ2

∑
j∈Nd

µj
σ2 + nµj

=
σ2

n

∑
j∈Nd

νj , (3.5.8)

concluding the proof of the statement.
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3.5.3.1 Proof of (3.5.7)

First note, that in view of the inequality (a+ b)2 ≤ 2a2 + 2b2,∥∥∥∆θ̂(k)n

∥∥∥2
2
≤ 2

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
+ 2

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
.

Then we show below that

E0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
≲

1

m
E0

∥∥∥∆θ̂(k)n

∥∥∥2
2
+ δn, (3.5.9)

which together with the preceding display implies

E0

∥∥∥∆θ̂(k)n

∥∥∥2
2
≤ (2 + o (1))

(
E0

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
+ Cδn

)
.

By combining the preceding two displays we arrive at

E0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2

≲
1

m
E0

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
+ δn.

For the aggregated estimator we get that

∥∥∥∆θ̂n,m∥∥∥2
2
≲

∥∥∥∥∥∆θ̂n,m − 1

m

m∑
k=1

F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥∥∥
2

2

+

∥∥∥∥∥ 1

m

m∑
k=1

F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥∥∥
2

2

.

Then in view of the preceding display, the independence of the data across machines

and E0

(
F̃ ◦ F−1 ◦ Ŝ(k)

n (F̃ (θ0))
)
= 0 we get that

E0

∥∥∥∆θ̂n,m∥∥∥2
2
≲

1

m
E0

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
+ δn.

Finally we verify below that

E0

∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)
n

(
F̃ (θ0)

)∥∥∥2
2
≲

 1

n/m

∑
j∈Nd

ν2j

(∥∥∥P̃ (θ0)
∥∥∥2
2
+ σ2

)
, (3.5.10)

which together with ∥P̃ (θ0)∥22 ≤ ∥θ0∥22 ≤ B2 provides us (3.5.7).

Proof of (3.5.9): First note that the identity ∆θ̂
(k)
n = −F̃ ◦ F−1 ◦ S(k)

n (θ̂
(k)
n ) follows

from assertions (3.5.5) and (3.5.6). This implies together with the properties of Ŝ
(k)
n

and S
(k)
n , that(
Ŝ(k)
n

(
θ̂(k)n

)
− S(k)

n

(
θ̂(k)n

))
−
(
Ŝ(k)
n

(
F̃ (θ0)

)
− S(k)

n

(
F̃ (θ0)

))
= F ◦ F̃−1

(
∆θ̂(k)n

)
− Ŝ(k)

n

(
F̃ (θ0)

)
. (3.5.11)
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On the other hand, in view of (3.5.6),

Ŝ(k)
n (θ)− S(k)

n (θ) =
1

n/m

n/m∑
i=1

(
Y

(k)
i − θ

(
X

(k)
i

))
K
X

(k)
i

−
∫
X
(θ0 (x)− θ (x))Kxdx

for all functions θ ∈ H. Therefore, by applying the preceding display twice with

θ = θ̂
(k)
n and θ = F̃ (θ0), we get that

(
Ŝ(k)
n

(
θ̂(k)n

)
− S(k)

n

(
θ̂(k)n

))
−
(
Ŝ(k)
n

(
F̃ (θ0)

)
− S(k)

n

(
F̃ (θ0)

))
= − 1

n/m

n/m∑
i=1

∆θ̂(k)n (X
(k)
i )K

X
(k)
i

+

∫
X
∆θ̂(k)n (x)Kxdx.

Combining assertion (3.5.11) with the preceding display and then using Lemma 3.7.2

(with ϑ̂ = ∆θ̂
(k)
n , satisfying the boundedness assumption, see Lemma 3.7.9) together

with Lemma 3.7.7, we get for arbitrary index set I ⊂ Nd that

E0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ S(k)
n

(
F̃ (θ0)

)∥∥∥2
2

= E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

∆θ̂(k)n

(
X

(k)
i

)
K
X

(k)
i

−
∫
X
∆θ̂(k)n (x)Kxdx

∥∥∥∥∥∥
2

2

≲
|I| log n
n/m

∑
j∈Nd

ν2jE0

∥∥∥∆θ̂(k)n

∥∥∥2
2
+ n

∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ.

Taking the minimum over |I| ≤ n
m2 logn (

∑
j∈Nd ν2j )

−1, we get that

E0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ S(k)
n (F̃ (θ0))

∥∥∥2
2
≲

1

m
E0∥∆θ̂(k)n ∥22 + δn (3.5.12)

concluding the proof of (3.5.9).

Proof of (3.5.10). In view of the linearity of the operator F̃ ◦ F−1, the inequality
∥θ1 + θ2∥22 ≤ 2∥θ1∥22 + 2∥θ2∥22, and

Ŝ(k)
n

(
F̃ (θ0)

)
=

1

n/m

n/m∑
i=1

(
Y

(k)
i − θ0

(
X

(k)
i

))
K
X

(k)
i

+
1

n/m

n/m∑
i=1

P̃ (θ0)
(
X

(k)
i

)
K
X

(k)
i

− σ2

n
F̃ (θ0) ,
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the left hand side of (3.5.10) can be bounded from above as

E0

∥∥∥F̃ ◦ F−1
(
Ŝ(k)
n

(
F̃ (θ0)

)
− S(k)

n

(
F̃ (θ0)

))∥∥∥2
2

≤ 2E0

∥∥∥∥∥∥F̃ ◦ F−1

 1

n/m

n/m∑
i=1

P̃ (θ0)
(
X

(k)
i

)
K
X

(k)
i

−
∫
X
P̃ (θ0) (x)Kxdx

∥∥∥∥∥∥
2

2

+ 2E0

∥∥∥∥∥∥F̃ ◦ F−1

 1

n/m

n/m∑
i=1

ε
(k)
i K

X
(k)
i

∥∥∥∥∥∥
2

2

=: (T1 + T2).

We deal with terms T1 and T2 separately. In view of Lemma 3.7.1 (with ϑ = P̃ (θ0))

T1 ≤ 2C

n/m

∑
j∈Nd

ν2j

∥∥∥P̃ (θ0)
∥∥∥2
2
,

for some C > 0. Since the operator F̃ ◦ F−1 is linear, we get that

T2 =
2

(n/m)2

n/m∑
i=1

E0

((
ε
(k)
i

)2 ∥∥∥F̃ ◦ F−1
(
K
X

(k)
i

)∥∥∥2
2

)
+

4

(n/m)2

∑
1≤i<ℓ≤n

E0

(
ε
(k)
i ε

(k)
ℓ F̃ ◦ F−1

(〈
K
X

(k)
i
,K

X
(k)
ℓ

〉
2

))
=

2σ2

n/m
E0

∥∥∥F̃ ◦ F−1
(
K
X

(k)
1

)∥∥∥2
2
=

2σ2

n/m

∑
j∈Nd

ν2j ,

because the cross terms are equal to 0 due to independence of the noise ε
(k)
i , i =

1, ..., n/m, k = 1, ...,m.

3.5.3.2 Proof of (3.5.8)

In this section we give upper bounds for the learning curves in case of both distributed
methods.

Method I: Let us denote by µIj = mµj the eigenvalues of the local covariance kernel.
Then in view of Lemma 3.7.4, the expectations of the m local posterior variances are
all of the same order

E0EX Var
(
θ(X)|D(k)

n

)
≍ σ2

∑
j∈Nd

µIj
σ2 + (n/m)µIj

= σ2
∑
j∈Nd

mµj
σ2 + nµj

=
σ2

n/m

∑
j∈Nd

νj .

Since the variance of the global posterior distribution ΠIn,m(.|Dn) satisfies the following
equality

VarIn,m (θ(x)) = m−2
m∑
k=1

Var
(
θ(x)|D(k)

n

)
,
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one can see that

E0EX VarIn,m (θ(X)) ≍ σ2

n

∑
j∈Nd

νj .

Method II: First note that µIIj = µj the eigenvalues of the local covariance kernel.
Note that the expectations of the m local posterior variances are all of the same order

E0EX Var
(
θ(X)|D(k)

n

)
≍ σ2

m

∑
j∈Nd

µIIj
σ2/m+ (n/m)µIIj

=
σ2

n

∑
j∈Nd

νj ,

because the variance of the noise is σ2/m for each machine. The variance of the
aggregated posterior distribution ΠIIn,m(.|Dn) satisfies

E0EX VarIIn,m (θ(X)|Dn) ≍
σ2

n

∑
j∈Nd

νj

because we know that

VarIIn,m (θ(X)|Dn) = m−1
m∑
k=1

Var
(
θ(x)|D(k)

n

)
proving assertion (3.5.8).

§3.5.4 Proof of Theorem 3.2.1

The proof follows similar lines of reasoning as Theorem 3.2.2, where we provided
general upper bounds for the contraction rate of the distributed posterior.

First we prove (3.2.3). For the naive averaging method the local sample and
population score functions coincide to the non-distributed case given in Section 3.5.1
with sample size n/m, i.e.

Ŝ∗(k)
n (θ) =

1

n/m

n/m∑
i=1

(
Y

(k)
i − θ

(
X

(k)
i

))
K
X

(k)
i

− σ2θ

 ,
S∗(k)
n (θ) =

∫
X
(θ0(x)− θ(x))Kxdx− σ2

n/m
θ = F (θ0 − θ)− σ2

n/m
θ.

Note that the solution of the equation S
∗(k)
n (θ) = 0 is given by the coefficients θj =

ν∗j θ0,j , with ν
∗
j =

nµj

mσ2+nµj
, j ∈ Nd.

Then using the inequality a2 ≥ (a− b)2/2− b2 one can obtain that

E0

∥∥∥θ̂∗n,m − θ0

∥∥∥2
2
≥ 1

2

∥∥∥θ0 − F̃ ∗(θ0)
∥∥∥2
2
− E0

∥∥∥θ̂∗n,m − F̃ ∗(θ0)
∥∥∥2
2
,

where F̃ ∗(θ) =
∑
j∈N ν

∗
j θjψj and θ̂

∗
n,m is the mean of the global posterior Π†

n,m(.|Dn)
obtained with the naive averaging method.
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First note that∥∥∥θ0 − F̃ ∗(θ0)
∥∥∥2
2
=

∞∑
j=1

m

mσ2 + nµj
θ20,j ≥

cL
2

∑
(n/(mσ2))1/(2β+1)≤j

j−1−2β(log j)−2

≥ c0(n/m)−2β/(2β+1)(log(n/m))−2, (3.5.13)

for some small enough c0 > 0. We conclude the proof of (3.2.3) by showing below

that E0∥θ̂n,m − F̃ (θ0)∥22 = o((n/m)−2β/(2β+1)(log(n/m))−2).

Similarly to (3.5.7) we can derive (by replacing F̃ and ν with F̃ ∗ and ν∗, respec-
tively) that

E0

∥∥∥θ̂∗n,m − F̃ ∗(θ0)
∥∥∥2
2
≲

 1

n

∞∑
j=1

(ν∗j )
2

(∥∥∥P̃ ∗(θ0)
∥∥∥2
2
+ σ2

)
+ δ∗n, (3.5.14)

where δ∗n = n
∑∞
j=1(ν

∗
j )

2
∑∞
ℓ=I µℓ, with I = n

m2 logn (
∑∞
j=1(ν

∗
j )

2)−1. Note that ∥P̃ ∗(θ0)∥22 =

O(1) and in view of Lemma 3.7.5,
∑∞
j=1(ν

∗
j )

2 ≍ (n/m)1/(2β+1); hence

I ≍ (n/m)2β/(2β+1)

m log n
.

Therefore the first term on the right hand side of (3.5.14) is O(n−2β/(2β+1)m−1/(2β+1))
and

δ∗n ≲ n(n/m)1/(1+2β)I−2β ≍ n2−2βm−1+4β(log n)2β = o
(
(log(n/m))

−2
)
,

where the last step holds for large enough choice of β and not too large choice of m.
For instance taking β > 2 and m = o(n1/(2+2β)), we get that

δ∗n(n/m)2β/(2β+1) ≲ n−c0 log4 n = o
(
(log(n/m))−2

)
,

for some c1 > 0.
It remained to deal with (3.2.4). First note that by the computations above

combined with Markov’s inequality there exists a sequence ρn → 0 such that

P0

(∥∥∥θ̂∗n,m − F̃ ∗(θ0)
∥∥∥
2
≥ ρn(n/m)−β/(2β+1)(log(n/m))−1

)
→ 0.

Then by triangle inequality, (3.5.13) and Markov’s inequality we get for c < c0 that

E0Π
∗
n,m

(
θ : ∥θ − θ0∥2 ≤ c(n/m)−β/(2β+1)(log(n/m))−1|Dn

)
≤ E0Π

∗
n,m

(∥∥∥θ0 − F̃ ∗(θ0)
∥∥∥
2
−
∥∥∥θ̂∗n,m − F̃ ∗(θ0)

∥∥∥
2

− c(n/m)−β/(2β+1)(log(n/m))−1 ≤
∥∥∥θ − θ̂∗n,m

∥∥∥
2
|Dn
)

≤ E0Π
∗
n,m

(
(c0 − c− ρn)(n/m)−β/(2β+1)(log(n/m))−1 ≤

∥∥∥θ − θ̂∗n,m

∥∥∥
2
|Dn
)
+ o(1)

≲ (n/m)2β/(2β+1)(log(n/m))2E0E
∗
n,m

∥∥∥θ − θ̂∗n,m

∥∥∥2
2
.
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We conclude the proof by noting that

E0EX Var
(
θ(X)|D(k)

n

)
= σ2

∞∑
j=1

µj
σ2 + (n/m)µj

=
σ2

n/m

∞∑
j=1

ν∗j ,

for all k ∈ {1, ...,m}; hence

E0E
∗
n,m

∥∥∥θ − θ̂∗n,m

∥∥∥2
2
=

1

m2

m∑
k=1

E0EX Var
(
θ(X)|D(k)

n

)
=
σ2

n

∞∑
j=1

ν∗j ≲
σ2

m
(n/m)−2β/(2β+1).

§3.5.5 Proof of Theorem 3.3.1

We first consider the non-distributed case m = 1 for clearer presentation and then
extend our results to the distributed setting.

3.5.5.1 Non-distributed setting

Connection to KRR Similarly to the posterior mean, the posterior covariance
function Ĉn can be given as

Ĉn(x, x
′) = K(x, x′)− K̂n(x, x

′),

where K̂n(x, ·) = K(·,X)[K(X,X) + σ2In]
−1K(X, x), or equivalently

K̂x,n = K̂n(x, ·) = arg min
ϑ∈H

[
1

n

n∑
i=1

(K(x,Xi)− ϑ(Xi))
2
+
σ2

n
∥ϑ∥2H

]
, (3.5.15)

see assertion (8) of (Bhattacharya et al., 2017).

Then by taking the Fréchet derivative of the expression on the right hand side we
arrive to the (adjusted) score function and its expected value

ŜKx,n(ϑ) =
1

n

(
n∑
i=1

(Kx(Xi)− ϑ(Xi))KXi − σ2ϑ

)
,

SKx,n(ϑ) = EŜKx,n(ϑ) =

∫
X
(Kx(z)− ϑ(z))Kzdz −

σ2

n
ϑ.
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Then similarly to the posterior mean in Section 3.5.1 the following assertions hold

SKx,n(ϑ) = F (Kx)− F ◦ F̃−1(ϑ) = F
(
Kx − F̃−1(ϑ)

)
, (3.5.16)

∆K̂x,n = K̂x,n − F̃ (Kx) = −F̃ ◦ F−1 ◦ SKx,n

(
K̂x,n

)
, (3.5.17)

ŜKx,n

(
F̃ (Kx)

)
=

1

n

(
n∑
i=1

P̃ (Kx)(Xi)KXi
− σ2F̃ (Kx)

)
, (3.5.18)

F ◦ F̃−1
(
∆K̂x,n

)
− ŜKx,n

(
F̃ (Kx)

)
= − 1

n

n∑
i=1

∆K̂x,n(Xi)KXi
+

∫
X
∆K̂x,n(x

′)Kx′dx′, (3.5.19)

and note that K̂x,n and F̃ (Kx) are the zero points of the functions ŜKx,n and SKx,n,
respectively.

Under-smoothing Following from the triangle inequality, to obtain frequentist
coverage for the credible ball it is sufficient to show that for Ln → ∞

P0

(∥∥∥P̃ (θ0)∥∥∥
2
+
∥∥∥θ̂n − F̃ (θ0)

∥∥∥
2
≤ Lnrn,γ

)
→ 1.

The preceding display is implied by assumption (3.3.1) and assertions

P0

∥∥∥∆θ̂n∥∥∥2
2
≤ Ln

σ2

n

∑
j∈Nd

νj

→ 1, (3.5.20)

P0

r2n,γ ≥ 1

2C2
ψ

σ2

n

∑
j∈Nd

νj

→ 1, (3.5.21)

where ∆θ̂n := θ̂n − F̃ (θ0), verified below.

Proof of (3.5.20): In view of assertion (3.5.7) withm = 1 and Markov’s inequality
we get

P0

∥∥∥∆θ̂n∥∥∥2
2
≤ Ln

σ2

n

∑
j∈Nd

νj

 ≤
E0

∥∥∥∆θ̂n∥∥∥2
2

Ln
σ2

n

∑
j∈Nd νj

≲

(
1
n

∑
j∈Nd ν2j

)
+ δn

Ln
σ2

n

∑
j∈Nd νj

= O

(
1

Ln
+

nδn∑
j∈Nd νj

)
= o(1).

Proof of (3.5.21): The radius rn,γ is defined, conditionally on X, as P (∥Wn∥22 ≤
r2n,γ |X) = 1−γ, whereWn is a centered GP with covariance kernel Ĉn given in (3.1.3).
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In view of Chebyshev’s inequality

r2n,γ ≥ E
[
∥Wn∥22|X

]
− (1− γ)−1/2 Var

(
∥Wn∥22|X

)1/2
.

Using Fubini’s theorem, the first term on the right hand side of the preceding display
can be rewritten as

E
[
∥Wn∥22|X

]
= E

[
∥θ − θ̂n∥22|Dn

]
=

∫
X
Var (θ(x)|Dn) dx.

The integral on the right-hand side of the display, called the generalization error, see
Chapter 7 of (Rasmussen and Williams, 2006), is asymptotically bounded from below
almost surely by

σ2
∑
j∈Nd

µj

σ2 + nµjsupx∈X ψ
2
j (x)

≥
σ2C−2

ψ

n

∑
j∈Nd

νj , (3.5.22)

in view of assertion (12) of (Opper and Vivarelli, 1999) and Assumption 3.1.1. Fur-
thermore, the variance of ∥Wn∥22, conditional on the design X, is

Var
(
∥Wn∥22|X

)
= E

[
∥Wn∥42|X

]
− E2

[
∥Wn∥22|X

]
.

The first term on the right hand-side satisfies

E
[
∥Wn∥42|X

]
= E

[
∥θ − θ̂n∥42|Dn

]
(3.5.23)

=

∫ (∫
X

(
θ(x)− θ̂n(x)

)2
dx

∫
X

(
θ(x′)− θ̂n(x

′)
)2
dx′
)
Π(dθ|Dn)

=

∫
X

∫
X

∫ (
θ(x)− θ̂n(x)

)2 (
θ(x′)− θ̂n(x

′)
)2

Π(dθ|Dn)dxdx′

=

∫
X

∫
X

(
Var (θ(x)|Dn)Var (θ(x′)|Dn) + 2Ĉn(x, x

′)2
)
dx′dx

=

(∫
X
Var (θ(x)|Dn) dx

)2

+ 2

∫
X

∥∥∥Ĉn(x, .)∥∥∥2
2
dx

= E2
[
∥Wn∥22|X

]
+ 2

∫
X

∥∥∥Ĉn(x, .)∥∥∥2
2
dx, (3.5.24)

using Fubini’s theorem and the reduction formula EX2
1X

2
2 = V ar(X1)V ar(X2) +

2Cov(X1, X2)
2 for X1, X2 centered Gaussian random variables, see for instance page

189 of (Isserlis, 1916). Hence, again in view of Fubini’s theorem,

E0 Var
(
∥Wn∥22|X

)
= 2

∫
X
E0

∥∥∥Ĉn(x, .)∥∥∥2
2
dx. (3.5.25)

Recall that the covariance function Ĉn(x, x
′) = K(x, x′) − K̂n(x, x

′), where K̂x,n =

K̂n(x, .) is the solution to (3.5.15). We show below that for all x ∈ X

E0

∥∥∥Ĉn(x, .)∥∥∥2
2
≲
∥∥∥P̃ (Kx)

∥∥∥2
2
+ δ̃n, (3.5.26)
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for

δ̃n = inf


∑
j∈Nd

ν2j

2 ∑
ℓ∈Ic

µℓ : I ⊂ Nd, |I| = o

n
∑
j∈Nd

ν2j

−1

 .

In view of the definition of the linear operator P̃ and the eigenvalues νj , µj we get

P̃ (K(x, x′)) =
∑
j∈Nd

(1− νj)µjψj(x)ψj(x
′) =

σ2

n

∑
j∈Nd

νjψj(x)ψj(x
′), (3.5.27)

for all x, x′ ∈ X . Then by combining the last three displays

E0 Var
(
∥Wn∥22|X

)
= 2

∫
X
E0

∥∥∥Ĉn(x, .)∥∥∥2
2
dx

≲
∫
X

∥∥∥P̃ (K(x, .))
∥∥∥2
2
dx+ δ̃n

=

(
σ2

n

)2 ∫
X

∑
j∈Nd

ν2jψj(x)
2dx+ δn

∑
j∈Nd ν2j

n

=

(
σ2

n

)2 ∑
j∈Nd

ν2j + δn

∑
j∈Nd ν2j

n
. (3.5.28)

Therefore, by Markov’s inequality and Lemmas 3.7.5 and 3.7.6,

P0

Var
(
∥Wn∥22|X

)1/2 ≥ t
σ2

n

∑
j∈Nd

νj

 ≲ t−2

( ∑
j∈Nd ν2j

(
∑
j∈Nd νj)2

+
nδn

∑
j∈Nd ν2j

(
∑
j∈Nd νj)2

)
→ 0

for all t > 0. Hence by combining (3.5.22) and the preceding display (with t =
(1− γ)1/2C−2

ψ /2),

P0

E [∥Wn∥22|X
]
− (1− γ)−1/2 Var

(
∥Wn∥22|X

)1/2 ≥ (C−2
ψ /2)

σ2

n

∑
j∈Nd

νj

→ 1.

This implies that all the quantiles of ∥Wn∥22, conditionally on X, are of the order
(σ2/n)

∑
j∈Nd νj with P0-probability going to one, including r2n,γ .

Proof of (3.5.26): First note that by the inequality (a+ b)2 ≤ 2a2 + 2b2,∥∥∥Ĉn(x, .)∥∥∥2
2
≤ 2

∥∥∥P̃ (Kx)
∥∥∥2
2
+ 2

∥∥∥∆K̂x,n

∥∥∥2
2
,

where ∆K̂x,n = K̂x,n − F̃ (Kx).
Next we give an upper bound for the second term of the preceding display similarly

to Section 3.5.3.1. First note that∥∥∥∆K̂x,n

∥∥∥2
2
≲
∥∥∥∆K̂x,n − F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2
+
∥∥∥F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2
.
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Then by showing below that

E0

∥∥∥∆K̂x,n − F̃ ◦ F−1 ◦ ŜKx,n(F̃ (Kx))
∥∥∥2
2
≤ o

(
E0

∥∥∥∆K̂x,n

∥∥∥2
2

)
+ δ̃n, (3.5.29)

we arrive at

E0

∥∥∥∆K̂x,n

∥∥∥2
2
≲ E0

∥∥∥F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2
+ δ̃n.

Next, in view of (3.5.18),

E0

∥∥∥F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2
= E0

∥∥∥F̃ ◦ F−1
(
ŜKx,n

(
F̃ (Kx)

)
− SKx,n

(
F̃ (Kx)

))∥∥∥2
2

= E0

∥∥∥∥∥F̃ ◦ F−1

(
1

n

n∑
i=1

P̃ (Kx)(Xi)KXi
−
∫
X
P̃ (Kx)(x

′)Kx′dx′

)∥∥∥∥∥
2

2

≤

 1

n

∑
j∈Nd

ν2j

∥∥∥P̃ (Kx)
∥∥∥2
2
= o

(∥∥∥P̃ (Kx)
∥∥∥2
2

)
,

where the last line follows from Lemma 3.7.1 with ϑ = P̃ (Kx) (and m = 1), conclud-
ing the proof of (3.5.26).

Proof of (3.5.29): Similarly to (3.5.12), by using assertion (3.5.19), Lemma 3.7.2

(with ϑ̂ = ∆K̂x,n, sample size n) and Lemma 3.7.3 (with m = 1), we can show that
for all x ∈ X

E0

∥∥∥∆K̂x,n − F̃ ◦ F−1 ◦ ŜKx,n

(
F̃ (Kx)

)∥∥∥2
2

= E0

∥∥∥∥∥(F̃ ◦ F−1)

(
1

n

n∑
i=1

∆K̂x,n(Xi)KXi
−
∫
X
∆K̂x,n(x

′)Kx′dx′

)∥∥∥∥∥
2

2

≲
|I| log n

∑
j∈Nd ν2j

n
E0

∥∥∥∆K̂x,n

∥∥∥2
2
+

∑
j∈Nd

ν2j

2 ∑
ℓ∈Ic

µℓ.

Taking the infimum over |I| = o
(
n/(log n

∑
j∈Nd ν2j )), we get that the left hand-

side of the preceding display is bounded from above by o(E0∥∆K̂x,n∥22)+ δ̃n, conclud-
ing the proof of the statement.

Over-smoothing By the definition of credible sets and using the triangle inequality,
we get that

P0

(
θ0 ∈ B̂n,γ(L)

)
≤ P0

(∥∥∥P̃ (θ0)∥∥∥
2
≤
∥∥∥θ̂n − F̃ (θ0)

∥∥∥
2
+ Lrn,γ

)
≤ P0

(∥∥∥P̃ (θ0)∥∥∥
2
≤ 2

∥∥∥θ̂n − F̃ (θ0)
∥∥∥
2

)
+ P0

(∥∥∥P̃ (θ0)∥∥∥
2
≤ 2Lrn,γ

)
and we show below that both probabilities on the right hand side tend to zero.
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The first term disappears in view of (3.5.20) and assumption (3.3.2). For the
second term note, that in view of Markov’s inequality and P0(∥Wn∥22 ≥ r2n,γ |X) = γ,

where Wn is a centered GP with covariance kernel Ĉn, we have γr2n,γ ≤ E[∥Wn∥22|X].
Then

P0

(
2Lr2n,γ ≥

∥∥∥P̃ (θ0)∥∥∥2
2

)
≤ P0

(
E
[
∥Wn∥22|X

]
≥ γ

2L

∥∥∥P̃ (θ0)∥∥∥2
2

)
≤

2LE0(
∫
X Var (θ(x)|Dn) dx)

γ
∥∥∥P̃ (θ0)∥∥∥2

2

. (3.5.30)

The expectation in the numerator, known as the learning curve, is of order (σ2/n)
∑
j∈Nd νj

according to Lemma 3.7.4; thus for all L > 0 not depending on n the right hand side
of the preceding display goes to 0 in view of assumption (3.3.2).

3.5.5.2 Distributed setting

Preliminary results. We start by introducing the distributed version of the nota-
tions introduced in Section 3.5.5.1. The aggregated posterior covariance function is

ĈIn,m(x, x′) = m−2
∑m
k=1 Ĉ

I,(k)
n (x, x′), where the local posterior covariance functions

can be given as Ĉ
I,(k)
n (x, x′) = KI

x(x
′)− K̂

I,(k)
x (x′) with

K̂I,(k)
x (·) = KI

(
·,X(k)

) [
KI
(
X(k),X(k)

)
+ σ2In/m

]−1

KI
(
X(k), x

)
= mK

(
·,X(k)

) [
K
(
X(k),X(k)

)
+m−1σ2In/m

]−1

K
(
X(k), x

)
.

Then in view of (3.5.15),

m−1K̂I,(k)
x = argmin

ϑ∈H

1

n/m

n/m∑
i=1

(
Kx(X

(k)
i )− ϑ(X

(k)
i )

)2
+
σ2

m
∥ϑ∥2H

 .
For convenience let us introduce the notation K̃

I,(k)
x = m−1K̂

I,(k)
x . Then the corre-

sponding score function (up to constant multipliers) is given by

Ŝ
I,(k)
Kx,n

(ϑ) =
1

n/m

n/m∑
i=1

(
Kx(X

(k)
i )− ϑ(X

(k)
i )

)
K
X

(k)
i

− σ2

m
ϑ


satisfying Ŝ

I,(k)
Kx,n

(K̃
I,(k)
x ) = 0. Furthermore the expected value of the score function is

SIKx,n(ϑ) = EŜ
I,(k)
Kx,n

(ϑ) =

∫
X
(Kx(z)− ϑ(z))Kzdz −

σ2

n
ϑ = SKx,n(ϑ),

hence SIKx,n
(F̃ (Kx)) = 0.
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Then similarly to the posterior mean in Section 3.5.1 the following assertions hold

∆K̃I,(k)
x = K̃I,(k)

x − F̃ (Kx) = −F̃ ◦ F−1 ◦ SIKx,n

(
K̃I,(k)
x

)
,

Ŝ
I,(k)
Kx,n

(
F̃ (Kx)

)
=

1

n/m

n/m∑
i=1

P̃ (Kx)
(
X

(k)
i

)
K
X

(k)
i

− σ2

m
F̃ (Kx)

 , (3.5.31)

F ◦ F̃−1
(
∆K̃I,(k)

x

)
− Ŝ

I,(k)
Kx,n

(
F̃ (Kx)

)
= − 1

n/m

n/m∑
i=1

∆K̃I,(k)
x

(
X

(k)
i

)
K
X

(k)
i

+

∫
X
∆K̃I,(k)

x (x′)Kx′dx′.

(3.5.32)

Main assertions. Similarly to the non-distributed case in Section 3.5.5.1, for the
coverage of the credible sets it is sufficient to show that

P0

r2n,m(γ) ≥ C2
σ2

n

∑
j∈Nd

νj

→ 1, (3.5.33)

P0

∥∥∥θ̂n,m − F̃ (θ0)
∥∥∥2
2
≤ Ln

σ2

n

∑
j∈Nd

νj

→ 1, (3.5.34)

where the radius rn,m(γ) is defined as P (∥Wn,m∥22 ≤ r2n,m(γ)|X) = 1− γ and Wn,m is

a centered GP with the same covariance kernel as Π†
n,m(.|Dn). Furthermore, the lack

of coverage under (3.3.2) follows from

P0

(
Lr2n,m(γ) ≥

∥∥∥P̃ (θ0)∥∥∥2
2

)
→ 0. (3.5.35)

We prove below the above assertions.

Proof of (3.5.33): Similarly to the proof of (3.5.21) we get by Chebyshev’s
inequality that

r2n,m(γ) ≥ E
[
∥Wn,m∥22|X

]
− (1− γ)−1/2 Var

(
∥Wn,m∥22|X

)1/2
.

Then in view of

VarIn,m (θ(x)) = m−2
m∑
k=1

VarI
(
θ(x)|D(k)

n

)
, for all x ∈ X , (3.5.36)

and Lemma 3.7.4 it holds almost surely that

E
[
∥Wn,m∥22|X

]
=

∫
x∈X

VarIn,m (θ(x)) dx ≳
σ2

n

∑
j∈Nd

νj . (3.5.37)

Furthermore, as in (3.5.25),

Var
(
∥Wn,m∥22|X

)
= 2

∫
X

∥∥∥ĈIn,m(x, .)
∥∥∥2
2
dx.
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Recall that the covariance function ĈIn,m(x, x′) = m−2
∑m
k=1 Ĉ

I,(k)
n (x, x′). Then in

view of (
∑m
i=1 ai)

2 ≤ m
∑m
i=1 a

2
i ,

∥∥∥ĈIn,m(x, .)
∥∥∥2
2
=

∥∥∥∥∥m−2
m∑
k=1

ĈI,(k)n (x, .)

∥∥∥∥∥
2

2

≤ m−3
m∑
k=1

∥∥∥ĈI,(k)n (x, .)
∥∥∥2
2
.

We show below that

E0

∥∥∥ĈI,(k)n (x, .)
∥∥∥2
2
≲ m2

(∥∥∥P̃ (Kx)
∥∥∥2
2
+ δ̃n

)
, (3.5.38)

for δ̃n = inf{(
∑
j∈Nd ν2j )

2
∑
ℓ∈Ic µℓ : |I| ≤ n/(m2 log n

∑
j∈Nd ν2j )} similarly to the

non-distributed case. Then in view of assertion (3.5.27), the variance of ∥Wn,m∥22,
similarly to (3.5.28), is bounded from above by

E0 Var
(
∥Wn,m∥22|X

)
= 2

∫
X
E0

∥∥∥ĈIn,m(x, .)
∥∥∥2
2
dx

≲

(∫
X

∥∥∥P̃ (KI
x)
∥∥∥2
2
dx+ δ̃n

)
=
σ4

n2

∑
j∈Nd

ν2j + δ̃n.

Hence for all t > 0 we get by Markov’s inequality and Lemmas 3.7.5 and 3.7.6 that

P0

Var
(
∥Wn,m∥22|X

)
≥ t

σ4

n2

∑
j∈Nd

νj

2


≲ t−2

 ∑
j∈Nd ν2j(∑
j∈Nd νj

)2 +
δ̃nn

2

σ4
(∑

j∈Nd νj

)2
 = o(1).

Hence with P0-probability tending to one E[∥Wn,m∥22|Xn] is of higher order than
Var(∥Wn,m∥22)1/2. Therefore, the quantiles of ∥Wn,m∥22 are of the order (σ2/n)

∑
j∈Nd νj

with P0-probability going to one, including r2n,m(γ).

Proof of (3.5.38): We adapt the proof of (3.5.26) to the distributed setting. First
note that

∥∥∥ĈI,(k)n (x, .)
∥∥∥2
2
≲ m2

(∥∥∥P̃ (Kx)
∥∥∥2
2
+
∥∥∥∆K̃I,(k)

x − F̃ ◦ F−1 ◦ ŜI,(k)Kx,n

(
F̃ (Kx)

)∥∥∥2
2

+
∥∥∥F̃ ◦ F−1 ◦ ŜI,(k)Kx,n

(
F̃ (Kx)

)∥∥∥2
2

)
,
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where ∆K̃
I,(k)
x = K̂

I,(k)
x /m− F̃ (Kx). Then for, in view of (3.5.31), we get that

E0

∥∥∥F̃ ◦ F−1 ◦ ŜI,(k)Kx,n

(
F̃ (Kx)

)∥∥∥2
2

= E0

∥∥∥F̃ ◦ F−1
(
Ŝ
I,(k)
Kx,n

(
F̃
(
Kx)

)
− S

I,(k)
Kx,n

(
F̃
(
Kx)

))∥∥∥2
2

= E0

∥∥∥∥∥∥F̃ ◦ F−1

 1

n/m

n/m∑
i=1

P̃ (Kx)
(
X

(k)
i

)
K
X

(k)
i

−
∫
X
P̃ (Kx)(x

′)Kx′dx′

∥∥∥∥∥∥
2

2

≤

 1

n/m

∑
j∈Nd

ν2j

 ∥P̃ (Kx)∥22 = o
(
∥P̃ (Kx)∥22

)
,

where the penultimate inequality follows from Lemma 3.7.1 with ϑ = P̃ (Kx).

Furthermore, similarly to the proof in Section 3.5.5.1, by using assertion (3.5.32),

Lemma 3.7.2 (with ϑ̂(k) = ∆K̃
I,(k)
x , sample size n/m) and Lemma 3.7.3, we can show

that for all x ∈ X

E0

∥∥∥∆K̃I,(k)
x − F̃ ◦ F−1 ◦ ŜI,(k)Kx,n

(
F̃ (Kx)

)∥∥∥2
2

= E0

∥∥∥∥∥∥(F̃ ◦ F−1)

 1

n/m

n/m∑
i=1

∆K̃I,(k)
x

(
X

(k)
i

)
K
X

(k)
i

−
∫
X
∆K̃I,(k)

x (x′)Kx′dx′

∥∥∥∥∥∥
2

2

≲
|I| log n

∑
j∈Nd ν2j

n/m
E0∥∆K̃I,(k)

x ∥22 + δ̃n.

Taking the infimum over |I| = o
(
n/(m log n

∑
j∈Nd ν2j )

)
we get that the left hand side

of the preceding display is bounded from above by o(E0∥∆K̃(k)
x,n∥22)+ δ̃n. We conclude

the proof of (3.5.38) by combining the above three displays.

Proof of (3.5.34): Exactly the same as the proof of (3.5.20).

Proof of (3.5.35): Similarly to assertion (3.5.30) we get in view of (3.5.36) and
Lemma 3.7.4 in the case where assumption (3.3.2) holds

P0

(
Lr2n,m(γ) ≥

∥∥∥P̃ (θ0)∥∥∥2
2

)
≤

2LE0

∫
X Varn,m (θ(x)) dx.

γ
∥∥∥P̃ (θ0)∥∥∥2

2

≲
σ2
∑
j∈Nd

mµj

σ2+nµj

m
∥∥∥P̃ (θ0)∥∥∥2

2

=
σ2
∑
j∈Nd νj

n
∥∥∥P̃ (θ0)∥∥∥2

2

= o(1).
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§3.6 Proof of the Corollaries

§3.6.1 Proof of Corollary 3.2.3

First note that for any N ⊂ Nd∥∥∥P̃ (θ0)∥∥∥2
2
=
∑
j∈Nd

(1− νj)
2θ20,j =

∑
j∈Nd

σ4

(σ2 + nµj)2
θ20,j

≤ (n/σ2)−2
∑
j∈N

1

µ2
j

θ20,j +
∑

j∈Nd/N

θ20,j . (3.6.1)

Consider eigenvalues satisfying (3.1.6) with α = β, i.e. µj ≍
(∏d

i=1 ji
)−2β/d−1

.

Let us take N = {j ∈ Nd : Πdi=1ji ≤ Jβ} with Jβ := (n/σ2)d/(d+2β) and note that in
view of (3.7.6) [with I = Jβ ] we have

|N | ≲ Jβ log
d−1 Jβ = o(n) (3.6.2)

Furthermore, we also get that

sup
θ0∈Θβ(B)

∥∥∥P̃ (θ0)∥∥∥2
2
≲ sup
θ0∈Θβ(B)

[
σ4

n2
max
j∈N

(
d∏
i=1

ji

)4β/d+2( d∑
i=1

ji

)−2β ∑
j∈N

(
d∑
i=1

ji

)2β

θ20,j

+ sup
j /∈N

(
d∑
i=1

jk

)−2β ∑
j /∈N

(
d∑
i=1

ji

)2β

θ20,j

]
≲ (n/σ2)−2J

2β/d+2
β B2 + J

−2β/d
β B2

≲ (n/σ2)−2β/(d+2β),

using Lemmas 3.7.10 [with r = 4β/d+2, s = 2β and J = Jβ ] and 3.7.11 [with s = 2β
and J = Jβ ].

Moreover, in view of Lemma 3.7.5 and νj ≤ 1

σ2

n

∑
j∈Nd

ν2j ≲
σ2

n
Jβ log

d−1 Jβ = (n/σ2)−2β/(d+2β)
(
log
( n
σ2

))d−1

.

Finally we show that the remaining term is δn = o(n−2β/(d+2β)) for the choice

I =

{
j ∈ Nd :

d∏
i=1

ji ≤ I

}
with I =

n

m2 logd(n/m)

( ∑
j∈Nd

ν2j

)−1

,

where n
m2 logd(n/m)

(∑
j∈Nd ν2j

)−1

≥ 1 holds because m is small enough. Note that in

view of Lemma 3.7.8 the cardinality of I satisfies |I| ≲ n
m2 logn

(∑
j∈Nd ν2j

)−1

, hence
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it satisfies the cardinality assumption on I. Then in view of Lemma 3.7.8 and Lemma
3.7.5

δn ≲ n
∑
j∈Nd

ν2j
∑

ℓ:
∏d

i=1 ℓi>I

µℓ ≲ n
∑
j∈Nd

ν2j I
−2β/d logd−1 I

≪ n1−2β/dm4β/d

∑
j∈Nd

ν2j

2β/d+1

(log n)2β+d−1

≲ n2−2β/dm4β/d(log n)2β+d−1.

The right hand side is of order o(n−2β/(2β+d)) for all m = o(n1/2−3d/(4β)) with β >
3d/2. Combining the above inequality with Theorem 3.2.2 concludes the proof for
the polynomially decaying eigenvalues.

§3.6.2 Proof of Corollary 3.2.4

For arbitrary index set N ⊂ Nd we get that

sup
θ0∈Θβ(B)

∥∥∥P̃ (θ0)∥∥∥2
2
≤ sup
θ0∈Θβ(B)

[
σ4

n2
max
j∈N

(
d∑
i=1

ji

)−2β

e2a
∑d

i=1 ji
∑
j∈N

(
d∑
i=1

ji

)2β

θ20,j

+ sup
j /∈N

(
d∑
i=1

ji

)−2β ∑
j /∈N

(
d∑
i=1

ji

)2β

θ20,j

]
. (3.6.3)

We deal with the two terms on the right hand side separately. Note that the function
x 7→ x−2βe2ax is convex on [1, Ja], for Ja = a−1 log(n/σ2) with a ≤ 1, and achieves its

maximum at one of the end points. Let us take the set N = {j ∈ Nd :
∑d
k=1 jk ≤ Ja}

and note that

|N | ≤ a−d logd n = o(n), (3.6.4)

, by the lower bound on a. Furthermore, by noting that (
∑d
i=1 ji)

2 ≤ d
∑d
i=1 j

2
i , the

maximum of the last display over N is bounded from above by

max
j∈N

(
d∑
i=1

ji

)−2β

e2a
∑d

i=1 ji ≲ 1 + J−2β
a e2aJa .

The second term in (3.6.3) is directly bounded from above by J−2β
a B2. Therefore,

by combining the inequalities above,∥∥∥P̃ (θ0)∥∥∥2
2
≲
σ4

n2
+
(
a−1 log(n/σ2)

)−2β
. (3.6.5)

Moreover, in view of Lemma 3.7.6

σ2

n

∑
j∈Nd

νj ≍
σ2

n
Jda =

σ2

n
a−d logd(n/σ2). (3.6.6)
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For a := (n/σ2)−1/(2β+d) log(n/σ2) both of the preceding displays are bounded from
above by a multiple of (n/σ2)−2β/(2β+d).

Finally we show that the remainder term δn is of lower order than (n/σ2)−2β/(2β+d).

We take I = {j ∈ Nd :
∑d
i=1 ji ≤ I}, with I = n1/d

(
m2 log n

∑
j∈Nd ν2j

)−1/d
.

Then it is easy to see that |I| ≤ Id ≤ n
(
m2 log n

∑
j∈Nd ν2j

)−1
holds. Note that

|I| ≥ 1 holds because m is small enough. Furthermore, in view of the upper bound
p(j, d) ≤ 1

2

(
j−1
d−1

)
+ 1/2 ≤ jd on the d partition of j ∈ N, we get that

δn = n
∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ ≤ n
∑
j∈Nd

ν2j
∑
ℓ≥I

ℓde−aℓ

≲ nIde−aI
∑
j∈Nd

ν2j ≲ (n/m)2e−aI(log n)−1 (3.6.7)

Since β ≥ d/2, we have

aI = (n/σ2)−1/(2β+d) log(n/σ2)n1/dm−2/d(log n)−1/2

∑
j∈Nd

ν2j

−1/d

≳ n
2β−d

d(2β+d)m−2/d(log n)1−1/d ≥ L log n.

Hence the right hand side of (3.6.7) is o(n−L), for arbitrary L > 0, when m =

o(n
2β−d

2(2β+d) ) concluding the proof of the corollary using Theorem 3.2.2.

§3.6.3 Proof of Corollary 3.3.2

We proceed by proving that the conditions of Theorem 3.3.1 hold for this choice of
the kernel and the parameters, which directly provides us the statements.

Let us take N = {j ∈ Nd : Πdk=1jk ≤ Jα} with Jα := (n/σ2)1/(2α+d) in (3.6.1).
The cardinality of this set is o(n), see (3.6.2). Furthermore, in view of α ≤ β,

sup
θ0∈Θβ(B)

∥∥∥P̃ (θ0)∥∥∥2
2
≲ sup
θ0∈Θβ(B)

[
σ4

n2
max
j∈N

(
d∏
i=1

ji

)4α/d+2( d∑
i=1

ji

)−2β ∑
j∈N

(
d∑
i=1

ji

)2β

θ20,j

+ sup
j /∈N

(
d∑
i=1

ji

)−2β ∑
j /∈N

(
d∑
i=1

ji

)2β

θ20,j

]
≲ (n/σ2)−2J4α/d−2β/d+2

α B2 + J−2β/d
α B2 ≲ (n/σ2)−2β/(2α+d).

Then, in view of Lemma 3.7.5, νj ≤ 1 and the preceding display,

σ2

n

∑
j∈Nd

νj ≍
σ2

n
Jα (log Jα)

d−1
= (n/σ2)−2α/(2α+d)

(
log(n/σ2)

)d−1
≳ sup
θ0∈Θβ(B)

∥∥∥P̃ (θ0)∥∥∥2
2
,

when α ≤ β. Finally in view of Corollary 3.2.3 we have that

δn = o
(
(n/σ2)−2α/(2α+d)

)
= o

σ2

n

∑
j∈Nd

νj

 ,
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finishing the proof of the corollary.

§3.6.4 Proof of Corollary 3.3.3

We again prove that the conditions of Theorem 3.3.1 hold in this setting.
In view of assertions (3.6.5) and (3.6.6), we get for a ≲ (σ2/n)1/(2β+d) log(n/σ2)

that ∥∥∥P̃ (θ0)∥∥∥2
2
≲
σ2

n

∑
j∈Nd

νj .

Furthermore, the cardinality of the set {j ∈ Nd : nµj ≥ σ2} is o(n), see (3.6.4). Fi-
nally, in view of Corollary 3.2.4, δn = o(n−c), hence the condition δn = o

(
σ2

n

∑
j∈Nd νj

)
of Theorem 3.3.1 also holds, concluding the proof.

§3.7 Technical lemmas

Lemma 3.7.1. Consider the local regression problem (3.1.1) for arbitrary k ∈ {1, ...,m}
and let ϑ ∈ L2(X ). Then there exists a universal constant C not depending on ϑ such
that

E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

ϑ(X
(k)
i )K

X
(k)
i

− EX [ϑ(x)Kxdx]

∥∥∥∥∥∥
2

2

≤ C

n/m
∥ϑ∥22

∑
j∈Nd

ν2j ,

(3.7.1)

where X is a uniform random variable on X , and νj’s are the eigenvalues of the

operator F̃ .

Proof. For simplicity we omit the reference to the local k machine in the proof by

writing Xi = X
(k)
i . Let ϑ =

∑
j∈Nd ϑjψj ∈ L2(X ). Since

ϑ(X)KX =
∑
j,k∈Nd

µjϑkψj(X)ψk(X)ψj ,

and (ψj)j∈Nd is an orthonormal basis of L2(X ), we have EX [ϑ(X)KX ] =
∑
j∈Nd µjϑjψj .

Furthermore, the linearity of the operator F̃ ◦F−1 implies that F̃ ◦F−1(ϑ(X)KX) =∑
j,k∈Nd νjϑkψj(X)ψk(X)ψj , providing

F̃ ◦ F−1 (EX [ϑ(X)KX ]) =
∑
j∈Nd

νjϑjψj ,

F̃ ◦ F−1

 1

n/m

n/m∑
i=1

ϑ(Xi)KXi

 =
1

n/m

n/m∑
i=1

F̃ ◦ F−1 (ϑ(Xi)KXi
)

=
1

n/m

n/m∑
i=1

∑
j,k∈Nd

νjϑkψj(Xi)ψk(Xi)ψj . (3.7.2)
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Then using the inequality (a+ b)2 ≤ 2(a2 + b2) we get

E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

ϑ(Xi)KXi
− EX [ϑ(X)KX ]

∥∥∥∥∥∥
2

2

= E0

∥∥∥∥∥∥
∑
j,k∈Nd

νjϑkψj

 1

n/m

n/m∑
i=1

ψj(Xi)ψk(Xi)− δjk

∥∥∥∥∥∥
2

2

=
∑
j∈Nd

ν2j
n/m

E0 (ϑ(Xi)ψj(Xi)− ϑj)
2

≤ 2
∑
j∈Nd

ν2j
n/m

(
E0ϑ

2(Xi)ψ
2
j (Xi) + ϑ2j

)
≤

2(C2
ψ + 1)∥ϑ∥22
n/m

∑
j∈Nd

ν2j ,

finishing the proof of the statement.

Lemma 3.7.2. Consider the local regression problem (3.2.1) for arbitrary k ∈ {1, ...,m}.
Then for any finite index set I ⊂ Nd, |I| ≤ nC and data dependent function ϑ̂(k) :

Xn/m 7→ R, ∥ϑ̂(k)∥2 ≤ nC , for some C > 0,

E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

ϑ̂(k)(X
(k)
i )K

X
(k)
i

− EX [ϑ̂(k)(X)KX ]

∥∥∥∥∥∥
2

2

≲
|I| log n
n/m

∑
j∈Nd

ν2jE0

∥∥∥ϑ̂(k)∥∥∥2
2
+ E0

∥∥∥ϑ̂(k)Ic

∥∥∥2
H

∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ + n−C0 , (3.7.3)

where X is a uniform random variable on X , νj’s are the eigenvalues of the operator

F̃ , C0 can be chosen arbitrarily large, and ϑ̂
(k)
Ic (·) =

∑
j∈Ic ϑ̂

(k)
j ψj(·).

Proof. For simplicity we omit the reference to the kth local problem and write Xi =

X
(k)
i and ϑ̂ = ϑ̂(k). Let us next define the set AI,j ⊂ Xn/m as

AI,j =


 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

2

≤
8C2

ψC log n

n/m
, ℓ ∈ I

 . (3.7.4)

Note that by Hoeffding’s inequality, for arbitrary ℓ ∈ I,

P
(
Ac

I,j
)
≤ |I|P


 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

2

>
8C2

ψC log n

n/m


≤ 2|I| exp

{
−
4C2

ψC log n

C2
ψ

}
≤ O(|I|n−3C).
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Then using (a+ b)2 ≤ 2a2 + 2b2 and Cauchy-Schwarz inequality

E0

∥∥∥∥∥∥
(
F̃ ◦ F−1

) 1

n/m

n/m∑
i=1

ϑ̂(Xi)KXi
− EX [ϑ̂(X)KX ]

∥∥∥∥∥∥
2

2

= E0

∥∥∥∥∥∥
∑
j∈Nd

∑
ℓ∈Nd

νj ϑ̂ℓψj

 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

∥∥∥∥∥∥
2

2

≲ E0

∑
j∈Nd

ν2j

∑
ℓ∈I

ϑ̂ℓ

 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

2

+ E0

∑
j∈Nd

ν2j

(∑
ℓ∈Ic

|ϑ̂ℓ|(C2
ψ + 1)

)2

≲ E0

∑
j∈Nd

ν2j |I|
∑
ℓ∈I

ϑ̂2ℓ

 1

n/m

n/m∑
i=1

ψj(Xi)ψℓ(Xi)− δjℓ

2

+
∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓE0

∑
ℓ∈Ic

ϑ̂2ℓµ
−1
ℓ

≤
∑
j∈Nd

ν2jE0∥ϑ̂∥22

(
8C2

ψC|I| log n
n/m

+ 1Ac
j,I

|I|

)
+ E0∥ϑ̂Ic∥2H

∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ

≲
|I| log n
n/m

∑
j∈Nd

ν2jE0

∥∥∥ϑ̂∥∥∥2
2
+ E0

∥∥∥ϑ̂Ic

∥∥∥2
H

∑
j∈Nd

ν2j
∑
ℓ∈Ic

µℓ +O(n−C),

where C can be chosen arbitrarily large, concluding the proof of our statement.

Lemma 3.7.3. There exists C > 0 such that

E0∥K̂I,(k)
x,n /m− F̃ (Kx)∥2H ≤ C

∑
j∈Nd

ν2j .

Proof. First note that

∥K̂I,(k)
x,n /m− F̃ (Kx)∥2H ≤ 2m−2∥K̂I,(k)

x,n ∥2H + 2∥F̃ (Kx)∥2H.

The second term on the right hand is bounded by

∥F̃ (Kx)∥2H =
∑
j∈Nd

µ−1
j ν2j µ

2
jψj(x)

2 ≤ C2
ψ

∑
j∈Nd

µjν
2
j ≲

∑
j∈Nd

ν2j .
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Since K̂
I,(k)
x,n is a KRR estimator, we get that

E0σ
2∥K̃(k)

x,n∥2H ≤ E0

n/m∑
i=1

(K̃(k)
x,n(X

(k)
i )−Kx(X

(k)
i ))2 + σ2∥K̃(k)

x,n∥2H


≤ E0

n/m∑
i=1

(F̃ (Kx)(X
(k)
i )−Kx(X

(k)
i ))2 + σ2∥F̃ (Kx)∥2H


≤
n/m∑
i=1

E0P̃ (Kx)
2(X

(k)
i ) + σ2∥F̃ (Kx)∥2H = O(

∑
j∈Nd

ν2j ),

where the last inequality follows from (3.5.27).

Lemma 3.7.4. Assume that the eigenvalues µj of the covariance kernel K satisfy∑
j∈Nd µj < ∞, |{j ∈ Nd : nµj ≥ σ2}| ≤ n, and σ2 ≥ c > 0. Then the expectation of

the posterior variance is of the following order

E0EX Var (θ(X)|Dn) ≍ σ2
∑
j∈Nd

µj
σ2 + nµj

,

where the expectation EX corresponds to the random variable X ∼ U [0, 1]d and the
multiplicative constant depends on

∑
j∈Nd µj and c.

Proof. It is shown in Section 6 of (Opper and Vivarelli, 1999) that the expectation
of the posterior variance, named “generalization error”, is bounded from below as
follows

E0EX Var (θ(X)|Dn) ≥ σ2
∑
j∈Nd

µj
σ2 + nµjEXψ2

j (X)
= σ2

∑
j∈Nd

µj
σ2 + nµj

.

In (Ferrari-Trecate et al., 1998), it has been shown that for stationary GPs, for
any J ⊂ Nd, with |J | ≤ n, the learning curve is bounded from above by

E0EX Var (θ(X)|Dn) ≤
∑
j∈Nd

µj − n
∑
j∈J

µ2
j

cj
,

where

cj = (n− 1)µj + σ2 +
∑
j∈Nd

µj .

Let us take J = {j ∈ Nd : nµj ≥ σ2} and by assumption its cardinality is
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bounded by n. Then∑
j∈Nd

µj − n
∑
j∈J

µ2
j

cj
=
∑
j∈J

µj
cj − nµj

cj
+
∑
j /∈J

µj

=
∑
j∈J

µj

∑
j∈Nd µj + σ2 − µj∑

j∈Nd µj + σ2 + (n− 1)µj
+
∑
j /∈J

µj

≤ σ2
∑
j∈J

µj

∑
j∈Nd µj/σ

2 + 1

σ2 + nµj
+ 2σ2

∑
j /∈J

µj
σ2 + nµj

≲ σ2
∑
j∈Nd

µj
σ2 + nµj

,

concluding our proof.

Lemma 3.7.5. For νj, j ∈ Nd, defined in (3.2.5) with eigenvalues µj polynomially
decaying according to Assumption 3.1.2 and k ∈ N,∑

j∈Nd

νkj ≍ Jα log
d−1 Jα,

where Jα = (n/σ2)d/(2α+d).

Proof. Let N := {j ∈ Nd : nµj ≥ σ2} = {j ∈ Nd :
∏d
i=1 ji ≤ CJα} and we apply

Lemma 3.7.8 [with I=N , I=CJα and γ = k(2α/d+1)−1]. First, we prove the upper
bound, ∑

j∈Nd

νkj =
∑
j∈Nd

(nµj)
k

(σ2 + nµj)k

≤
∑
j∈N

1 + (n/σ2)k
∑
j /∈N

µkj

≲ Jα log
d−1 Jα + (n/σ2)kJ−k(2α/d+1)+1

α logd−1 Jα

≲ Jα log
d−1 Jα.

The lower bound follows similarly,∑
j∈Nd

νkj ≥
( n

2σ2

)k ∑
j /∈N

µkj ≳ (n/σ2)kJ−k(2α/d+1)+1
α logd−1 Jα ≳ Jα log

d−1 Jα.

Lemma 3.7.6. For νj, j ∈ Nd, defined in (3.2.5) with eigenvalues µj exponentially
decaying according to Assumption 3.1.2 with b = 1, a < 1 and k ∈ N,∑

j∈Nd

νkj ≍ Jda ,

where Ja = a−1 log(n/σ2).
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Proof. Let Nd := {j ∈ Nd : nµj ≥ σ2} = {j ∈ Nd :
∑d
i=1 ji ≤ Ja + c/a} with c > 0

a positive constant. Then it is easy to see that |Nd| ≤ 2dJda . Moreover, we will show
by induction on d that∑

j /∈Nd

e−ak
∑d

i=1 ji ≲ a−d(n/σ2)−k logd−1(n/σ2).

Let us start with the case d = 1. We can directly see that

∑
j>Ja

e−akj ≤ Ce−akJa
eak

eak − 1
≲ a−1(n/σ2)−k.

Now, assume that our assumption holds for d and consider the case d+ 1, then∑
j /∈Nd+1

e−ak
∑d+1

i=1 ji ≲
∑

j1:d∈Nd

e−ak
∑d

i=1 ji
∑

jd+1>max(Ja−
∑d

i=1 ji,0)

e−akjd+1

≲
∑

j1:d∈Nd

(e−ak
∑d

i=1 ji ∧ e−akJa) eak

eak − 1

≲
∑

j1:d∈Nd

a−1e−akJa +
∑

j1:d /∈Nd

a−1e−ak
∑d

i=1 ji

≲ a−1|Nd|(n/σ2)−k + a−d−1(n/σ2)−k logd−1(n/σ2)

≲ a−d−1(n/σ2)−k logd(n/σ2),

which concludes the induction proof.
Using these two results, we can easily show that∑
j∈Nd

νkj ≲
∑
j∈Nd

1 + (n/σ2)k
∑
j /∈Nd

e−ak
∑d

i=1 ji ≲ |Nd|+ a−d logd−1(n/σ2) ≲ Jda .

On the other hand, we can show by induction that for all J > d, the cardinality
of Nd := {j ∈ Nd :

∑d
i=1 ji ≤ J} is bounded from below as follows

|Nd| ≥ (J − d)d/d!.

Note that it holds trivially for d = 1. Now assume it holds for d, then we can write
Nd+1 as a partition as follows

Nd+1 =

{
j ∈ Nd+1 :

d+1∑
k=1

jk ≤ J

}
=

J−d⋃
i=1

{
j ∈ Nd+1 : jd+1 = i;

d∑
k=1

jk ≤ J − i

}
.

According to our induction assumption, the cardinality of all these subsets are bounded
from below by (J − d− i)d/d!, hence we have

|Nd+1| ≥
J−d∑
i=1

(J − d− i)d

d!
≥
∫ J−d

1

(J − d− t)d

d!
dt =

(J − d− 1)d+1

(d+ 1)!
,
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which concludes our induction proof. Using this result, we can now show that∑
j∈Nd

νkj ≥
∑
j∈Nd

1 = |Nd| ≳ Jda ,

concluding the proof.

Lemma 3.7.7. For arbitrary θ0 ∈ ℓ2(L) we get that

E0∥∆θ̂(k)n ∥2H ≤ Cn,

for some universal constant C > 0.

Proof. First note that

∥∆θ̂(k)n ∥2H ≤ 2∥θ̂(k)n ∥2H + 2∥F̃ (θ0)∥2H.

For θ0 ∈ ℓ2(L) the second term on the right hand is bounded by

∥F̃ (θ0)∥2H =
∑
j∈Nd

µ−1
j ν2j θ

2
0,j ≤

∑
j∈Nd

n2µj
(σ2 + nµj)2

θ20,j ≤ nL2/σ2.

Then by the definition of θ̂
(k)
n we get that

σ2∥θ̂(k)n ∥2H ≤
n/m∑
i=1

(
θ̂(k)n (X

(k)
i )− Y

(k)
i

)2
+ σ2∥θ̂(k)n ∥2H

≤

n/m∑
i=1

(
F̃ (θ0)(X

(k)
i )− θ0(X

(k)
i )− ε

(k)
i

)2
+ σ2∥F̃ (θ0)∥2H


≤ 2

n/m∑
i=1

P̃ (θ0)
2(X

(k)
i ) + 2

n/m∑
i=1

(ε
(k)
i )2 + σ2∥F̃ (θ0)∥2H. (3.7.5)

We conclude the proof by taking the expectation of both sides

σ2E0∥θ̂(k)n ∥2H ≲
n/m∑
i=1

E0P̃ (θ0)
2(X

(k)
i ) +

n/m∑
i=1

E0(ε
(k)
i )2 + σ2∥F̃ (θ0)∥2H = O(n).

Lemma 3.7.8. The cardinality of the set

II,d =

{
j ∈ Nd+ :

d∏
i=1

ji ≤ I

}
(3.7.6)

satisfies that |II,d| ≤ 2dI logd−1 I. Furthermore,

∑
j∈Ic

I,d

d∏
i=1

j−γ−1
i ≍ I−γ (log I)

d−1
, (3.7.7)

for some large enough constant Cγ,d.
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Proof. We prove both statements by induction, starting with the first one. For d = 1
it is trivial. Let us assume that it holds for d and consider the case d + 1. We
distinguish cases according the value of jd+1. If jd+1 = 1, then

∏d
i=1 ji ≤ I holds, if

jd+1 = 2, then
∏d
i=1 ji ≤ I/2 holds, and so on. Hence we can write that

|II,d+1| ≤
I∑

jd+1=1

∣∣II/jd+1,d+1

∣∣ ≤ 2d
I∑

jd+1=1

I

jd+1
logd−1 I

jd+1
< 2d+1I logd I,

where in the last inequality we have used that
∑n
i=1 1/i < 1 + log n < 2 log n.

Note again that for d = 1 the second statement holds trivially (using Riemann
sums for instance). Then assume that it holds for d and consider the case d+1. First
we deal with the upper bound, where we note that

∑
j∈Ic

I,d+1

d+1∏
i=1

j−γ−1
i =

I∑
jd+1=1

j−γ−1
d+1

∑
j∈Ic

I/jd+1,d

d∏
i=1

j−γ−1
i

+

∞∑
jd+1=I

j−γ−1
d+1

d∏
k=1

∞∑
jk=1

j−γ−1
k

≲
I∑

jd+1=1

1

jd+1
I−γ (log I/jd+1)

d−1
+

∞∑
jd+1=I

j−γ−1
d+1

≤ I−γ logd−1 I

I∑
jd+1=1

1

jd+1
+ I−γ ≤ I−γ logd I.

Finally, it remained to deal with the lower bound. First, note that it is sufficient
to show the result for I ≥ C, for some C large enough (depending only on d and
γ). Then by noting that for x ≥ ed−1 the function x 7→ x−1 logd−1 x is monotone
decreasing, we get that

∑
j∈Ic

I,d+1

d+1∏
i=1

j−γ−1
i ≥

I∑
jd+1=1

j−γ−1
d+1

∑
j∈Ic

I/jd+1,d

d∏
i=1

j−γ−1
i

≳ I−γ

 I∑
jd+1=1

j−1
d+1 log

d−1 I −
I∑

jd+1=1

j−1
d+1 log

d−1 jd+1


≥ I−γ

(
logd−1 I

∫ I

1

x−1dx−
ed−1∑
jd+1=1

j−1
d+1 log

d−1 jd+1

−
∫ I

ed−1

x−1 logd−1 xdx
)

≥ I−γ
(
logd I − Cd,γ − logd I/2)

)
≳ I−γ logd I,

concluding the proof of our statement.
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Lemma 3.7.9. There exists an event A
(k)
n such that for any θ0 ∈ L∞(L) and n ≤

(n/m)C1 , for some C1 ≥ 1 there exist constants C2, C3 > 0 such that∥∥∥∆θ̂(k)n

∥∥∥
2
1
A

(k)
n

≤ (n/m)C2 ,

Eθ0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
1
(A

(k)
n )c

= e−C3n/m.

Proof. Let us take A
(k)
n = {

∑n/m
i=1 (ε

(k)
i )2 ≤ (n/m)C0}, for arbitrary C0 > 1. Then in

view of (3.7.5) we have on the event A
(k)
n that∥∥∥∆θ̂(k)n

∥∥∥
2
≤
∥∥∥θ̂(k)n

∥∥∥
2
+ ∥F̃ (θ0)∥2 ≲ n1/2 + (n/m)C0 + L ≲ (n/m)C0∨C1/2.

Furthermore, note that∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
≲
∥∥∥∆θ̂(k)n

∥∥∥2
2
+
∥∥∥F̃ ◦ F−1 ◦ Ŝ(k)

n (F̃ (θ0))
∥∥∥2
2

≲ n+

n/m∑
i=1

(ε
(k)
i )2 + n2

∥∥∥Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
.

Furthermore from the definition of Ŝ
(k)
n , the boundedness of X and ∥K∥∞ = O(1)

we get that

∥∥∥Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
≤
∥∥∥Ŝ(k)

n (F̃ (θ0))
∥∥∥2
∞

≲

 1

n/m

n/m∑
i=1

|ε(k)i |

2

+ ∥θ0∥2∞

≲
1

n/m

n/m∑
i=1

(ε
(k)
i )2 + 1.

Since Wn = (n/m)−1
∑n/m
i=1 (ε

(k)
i )2 ∼ χ2

n/m, note that for n/m large enough

Eθ0

∥∥∥∆θ̂(k)n − F̃ ◦ F−1 ◦ Ŝ(k)
n (F̃ (θ0))

∥∥∥2
2
1
(A

(k)
n )c

≲ Eθ0
(
(n/m)2C1Wn + (n/m)2C1

)
1Wn>(n/m)C0 = O(e−n/m),

concluding the proof of the lemma.

Lemma 3.7.10. Let r, s > 0 such that r > s/d and f : [1,∞)d → R defined as

f(x) =

(
d∏
i=1

xi

)r ( d∑
i=1

xi

)−s

.

Then f is bounded from above by d−sJr−s/d on the set N := {x ∈ [1,∞)d :
∏d
i=1 xi ≤

J} with J > 1.
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Proof. From the inequality of arithmetic and geometric means, we know that for all
x ∈ [1,∞)d

d∑
i=1

xi ≥ d

(
d∏
i=1

xi

)1/d

.

Thus, we can bound f from above by

f(x) ≤ d−s

(
d∏
i=1

xi

)r−s/d
≤ d−sJr−s/d,

on N concluding the proof.

Lemma 3.7.11. Let s > 0 and f : [1,∞)d → R defined as

f(x) = (

d∑
i=1

xi)
−s.

Then f is bounded from above by d−sJ−s/d on the set N := {x ∈ [1,∞)d :
∏d
i=1 xi ≥

J} with J > 1.

Proof. Since f is differentiable on its domain, we can compute its gradient

(∇f)ℓ = −s(
d∑
k=1

xk)
−s−1 < 0,

for all ℓ ∈ {1, ..., d}. Thus, the function attains its maximum at
∏d
i=1 xi = J . At

the maximum point, in view of the inequality of arithmetic and geometric means,∑d
i=1 xi ≥ d

(∏d
i=1 xi

)1/d
= dJ1/d. The statement of the lemma follows by raising

both sides to the −s power.
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CHAPTER 4
Optimal recovery for spatially
distributed Gaussian process

regression

Abstract. This chapter delves into spatially distributed Gaussian process regres-
sion. Even though it has been seen that distributed Bayesian non-parametric regres-
sion not only allow tractable computation, but can also lead to optimal contraction
rate and good coverage of the credible sets when the data is distributed uniformly
randomly across the machines when the smoothness of the underlying parameter is
known. Nonetheless, the knowledge of said smoothness is often not realistic in prac-
tice. Therefore, we look into another way to split the data between the machines. We
see that if the data is distributed spatially, in other words, if machines receive data
from non-overlapping sub-regions of the design points, then appropriately scaled and
aggregated local priors result in adaptive global posterior contraction rates. Further-
more, this result holds true when using a fully Bayesian adaptive procedure without
any knowledge of the smoothness of the true parameter.

§4.1 Spatially distributed GP regression

In our analysis we consider the non-parametric regression model, where the observed
data Y = (Y1, Y2, ...., Yn) satisfy the regression relation

Yi = θ0(xi) + εi, εi
iid∼ N (0, σ2), i = 1, ..., n,

where x1, ..., xn are the fixed covariates and the goal is to estimate the unknown
regression function θ0 belonging to a Hölder regularity class (i.e. θ0 ∈ Cβ([0, 1])). For
simplicity of the analysis we take σ = 1 known. Then the data is distributed over m
machines spatially in the following way. The kth machine, k ∈ {1, ...,m} received the
observations Yi with design points belonging to the kth equidistant sub-interval, i.e.
xi ∈ (k−1

m , km ]. For convenience we introduce the shorthand notation S(k) = (k−1
m , km ],

x(k) = {xi : xi ∈ S(k)}, and Y (k) = {Yi : xi ∈ S(k)}.
In the Bayesian approach we endow the functional parameter θ0 in each machine

with the same Gaussian Process prior Gt supported on t ∈ [0, 1]. These Gaussian
processes are often endowed by scaling factor a which can be adjusted to achieve
bigger flexibility. As a next step the corresponding local posteriors are computed
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4. Optimal recovery for spatially distributed Gaussian process regression

based on the data available at the local machines. Finally the local Gaussian processes
are aggregated to a global one by restricting them to the intervals the corresponding
data falls and pasting them together, i.e. a draw θ from the aggregated posterior is
defined as

θ(x) =

m∑
k=1

1( k−1
m , k

m ](x)θ
(k)(x),

where θ(k) is a draw from the kth local posterior. Then the aggregated posterior
measure takes the form

Πn,m(θ ∈ B|Y) =

m∏
k=1

Π(k)(θ(k) ∈ Bk|Y(k)),

for any set of functions B, where Bk is the measurable set of functions whose restric-
tions to S(k) is equal to the corresponding restriction of an element of B, i.e

Bk =
{
ϑ : ∃θ ∈ B such that ϑ(x) = θ(x), x ∈ S(k)

}
,

and Π(k)(·|Y(k)) the kth posterior distribution.

§4.1.1 Posterior contraction for distributed GP

We investigate the contraction rate of the aggregate posterior constructed this way
Πn,m(·|Y). To this end we introduce the local version of the concentration function
originally introduced in (van der Vaart and van Zanten, 2008) for the non-distributed
model. Let us formally restrict the prior in the kth machine to the S(k) = (k−1

m , km ]
interval and define

ϕ
(k)
θ0

(ε) = inf
ϑ∈H(k):∥θ0−ϑ∥∞,k≤ε

∥ϑ∥2H(k) − log Π (θ : ∥θ∥∞,k < ε) ,

where ∥θ∥∞,k = supx∈S(k) |θ(x)| denotes the L∞-norm restricted to S(k) , and ∥.∥H(k)

is the norm corresponding to the Reproducing Kernel Hilbert Space (RKHS) H(k) of
the Gaussian Process prior Gt on S(k). Then the aggregated posterior contraction
rate can be expressed with the help of the local concentration functions.

Theorem 4.1.1. Let θ0 be a bounded function and assume that there exists εn → 0,

(n/m2)ε2n → ∞, such that ϕ
(k)
θ0

(εn) ≤ ε2n(n/m), k = 1, ...,m. Then

E0Πn,m (θ : ∥θ − θ0∥n ≥Mnεn|Y) → 0,

for arbitrary Mn → ∞, where ∥ · ∥n denotes the empirical L2-norm, i.e. ∥θ∥2n =
n−1

∑n
i=1 θ(xi)

2.

The proof is deferred to Section 4.3.1.
In Section 4.3.3 we apply the above results to provide minimax contraction rates

for a properly tuned Gaussian Process priors: the integrated Brownian motion.
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A common practice to tune the GP is to insert a time scale parameter a, i.e.
consider a GP t 7→ Gat := Gat instead of the original process. Even though the
qualitative smoothness of the sample paths should not change for any a, a dramatic
impact on the posterior contraction rate can be observed when a = an goes to infinity
or zero with the sample size n. For a > 1 this entails shrinking a process on a bigger
time set to the time set [0, 1], whereas a < 1 corresponds to stretching. Intuitively
shrinking makes the sample paths more variable, as the randomness on a bigger time
set is packed inside a smaller one, whereas stretching creates a smoother process.

§4.1.2 Adaptation

The time scale parameter a usually depends on the regularity or smoothness class of
the underlying function θ0. However, since the regularity class of θ0 is typically not
available in practice, one would like to provide a method which doesn’t rely on this
knowledge and uses a data driven tuning of the Gaussian Process. In this chapter
we consider a fully Bayesian approach, where the scaling parameter a is taken to be
a random variable A, i.e. we consider the hierarchical prior GA = {GAt : t ∈ [0, 1]}
restricted to [0, 1] and endow A with another layer of prior. We will denote by g
the Lebesgue density of A. In each local model we take an iid random variable Ak,
k = 1, ...,m resulting in the independent hierarchical priors

ΠAk(·) =
∫

Π(a)(·)g(a)da. (4.1.1)

Then the aggregated posterior is constructed similarly as in the non-adaptive case,
i.e. a draw θ from the aggregated posterior is defined as

θ(x) =

m∑
k=1

1( k−1
m , k

m ](x)θ
(k)(x),

where θ(k) is a draw from the kth local hierarchical posterior. Then the aggregated
posterior measure takes the form

ΠAn,m(B|Y) =

m∏
k=1

ΠAk(Bk|Y(k)), (4.1.2)

for any set of the form B =
⊗m

k=1Bk, where Bk is a measurable set of functions

restricted to the interval (k−1
m , km ], and Π(k)(·|Y(k)) the kth posterior distribution.

Theorem 4.1.2. Let θ0 be a bounded function and assume that there exists a sieve

B
(k)
n,m, such that for all local hierarchical prior ΠAk given in (4.1.1) it holds that

ΠAk(θ : θ /∈ B(k)
n,m) ≤ e−4(n/m)ε2n (4.1.3)

ΠAk(θ : ∥θ − θ0∥∞,k ≤ εn) ≥ e−(n/m)ε2n (4.1.4)

logN(εn, B
(k)
n,m, ∥.∥∞,k) ≤ (n/m)ε2n, (4.1.5)
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with εn → 0. Then for m satisfying (n/m2)ε2n → ∞ the aggregated hierarchical
posterior ΠAn,m(·|Y) achieves the following contraction rate, i.e.

E0Π
A
n,m(∥θ − θ0∥n ≥Mnεn|Y) → 0, (4.1.6)

for arbitrary Mn → ∞, where ∥.∥n denotes the empirical L2-norm.

The proof is deferred to Section 4.3.2.

We will apply this result as well in Section 4.3.3 in order to obtain minimax
contraction rates for the integrated Brownian motion with adaptive rescaling.

§4.2 Application to the Integrated Brownian Mo-
tion

The ”released” ℓ-fold integrated Brownian motion is defined as

Gt := B

ℓ∑
j=0

Zjt
j

j!
+ IℓWt,

with t ∈ [0, 1], random variables (Zj)
ℓ
j=1

iid∼ N (0, 1) independent from the Brownian

motion Wt, and constant B > 0. The functional operator Iℓ is defined recursively
as I1 = I and Iℓ = Iℓ−1I for all ℓ ∈ N with IWt =

∫ t
0
Wsds. It is considered as

a way of smoothing out the rough Brownian motion Wt. Indeed, the sample paths
of this process are ℓ times differentiable and their last derivative is Hölder of order
almost 1/2. It has been seen in Section 11.4 of (Ghosal and Van der Vaart, 2017) that
the posterior contraction rate for this particular Gaussian process prior achieves the
minimax rate for β-regular functions if and only if β = ℓ+ 1/2. Since this condition
is restrictive, we introduce some form of rescaling of the prior.

It is known that the integrated Brownian motion is self-similar of order ℓ + 1/2.
Accordingly, a time rescaling is equivalent to a space rescaling with another coefficient.
That is why we consider a time rescaling of IℓWt and introduce

Gat := B

ℓ∑
j=0

Zj(at)
j + IℓWat, t ∈ [0, 1], (4.2.1)

where a > 0 is a rescaling factor on the time axis. This process has been studied in
Section 11.5 of (Ghosal and Van der Vaart, 2017) where they have demonstrated that

taking a := an = n
ℓ+1/2−β

(ℓ+1/2)(2β+1) also leads to optimal contraction rate in the minimax
sense around θ0 ∈ Cβ [0, 1] for β ≤ ℓ+ 1, i.e.

Πan
(
f : ∥θ − θ0∥n ≳ n

−β
2β+1 |Yn

)
→ 0.

We will show that choosing a = an for all local distributions allows us to achieve the
same contraction rate for the distributed version of this process.
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Corollary 4.2.1. Let β > 1/2 and consider the rescaled integrated Brownian motion

prior Gat (4.2.1) for some ℓ ≥ β − 1, a = n
ℓ+1/2−β

(ℓ+1/2)(2β+1) and B2 > n
−1

2β+1m. Let
Πan,m(·|Y ) the corresponding aggregated posterior; then for all θ0 ∈ Cβ([0, 1]), if m =

o(n
1/2

2β+1 )

E0Π
a
n,m

(
θ : ∥θ − θ0∥n ≥Mnn

−β
2β+1 |(Yi)ni=1

)
→ 0,

for arbitrary Mn → ∞, where ∥.∥n is the empirical L2-norm on [0, 1].

This result shows that the aggregated posterior based on an appropriately rescaled
integrated Brownian motion prior contracts around any Hölder smooth truth at an
optimal rate provided that the number of machines does not increase at more than a
sub-linear polynomial rate with the number of data points. Although the contraction
rates are optimal, the procedure necessitates knowledge of the smoothness level ahead
of time, considering it appears in the expression of the optimal rescaling factor. This
is generally not realistic in practice; the smoothness of the function of interest is
typically not known. Fortunately, it will be shown further that if each local rescaling
factors Ak are iid random variables independent of W , and follow the hyper-prior
distribution gℓ,n,m verifying, for positive constants C1, D1, C2, D2, non-negative
constant p and every a > 0,

C1a
p exp{−D1

n
1

2(ℓ+1)

m
a

ℓ+1/2
ℓ+1 } ≤ gℓ,n,m(a) ≤ C2a

p exp{−D2
n

1
2(ℓ+1)

m
a

ℓ+1/2
ℓ+1 }, (4.2.2)

then the optimal contraction rate can be achieved in the distributed case as well.

Corollary 4.2.2. Consider the hierarchical prior (4.1.2) with the Gaussian Process
(4.2.1) taken as the rescaled integrated Brownian motion with some ℓ ≥ 1. Then if

m = o(n
1

4(ℓ+1/2) ) and θ0 ∈ Cβ([0, 1]), for some 1/2 < β ≤ ℓ+1/2 the posterior adapts
to the optimal minimax contraction rate, i.e.

E0Π
A
n,m

(
θ : ∥θ − θ0∥n ≥Mnn

−β
2β+1 |(Yi)ni=1

)
→ 0,

for arbitrary Mn → ∞, where ∥.∥n is the empirical L2-norm on [0, 1].

The proof is given in Section 4.3.4.

In the above theorem, we can see that if all the local rescaling parameters follow
a suitably chosen hyper-prior, the resulting aggregated posterior will, in some way,
adapt to the true Hölder smoothness of the function of interest. Indeed, the con-
traction rates around the true function will be optimal for all smoothness β in some
interval as long as the hyper-prior and the number of experts are chosen appropriately.

§4.3 Proofs of the general results

In this section we have collected the proofs of the abstract contraction rate theorems
both for the non-adaptive and adaptive settings.
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§4.3.1 Proof of Theorem 4.1.1

In view of Theorem 3.3 of (van der Vaart and van Zanten, 2008) and Theorem 4 of
(Ghosal and van der Vaart, 2007) the local contraction functions provides us that

E0Π
(k) (θ : ∥θ − θ0∥n,k ≥Mnεn|Y) ≲

1

(n/m)ε2n
,

where ∥θ∥2n,k = 1
n/m

∑
i∈S(k) θ(xi)

2. Note that

∥θ∥2n =
1

n

n∑
i=1

θ2(xi) =
1

m

m∑
k=1

1

n/m

∑
xi∈S(k)

θ2(xi) =
1

m

m∑
k=1

∥θ∥2n,k.

Then by triangle inequality

E0Πn,m (θ : ∥θ − θ0∥n ≥Mnεn|Y)

≤
m∑
k=1

E0Πn,m (θ : ∥θ − θ0∥n,k ≥Mnεn|Y)

=

m∑
k=1

E0Π
(k) (θ : ∥θ − θ0∥n,k ≥Mnεn|Y) ≲

m2

nε2n
= o(1),

concluding the proof of the statement.

§4.3.2 Proof of Theorem 4.1.2

The result in the adaptive case is based on a comparison between the comparisons
of the Kullback–Leibler divergence and variance, and the norm ∥ · ∥n to the uniform
norm on the Gaussian process as seen in (van der Vaart and van Zanten, 2008) and
(Ghosal and van der Vaart, 2007). Indeed, (van der Vaart and van Zanten, 2008) and
van der Vaart and van Zanten (2009a) showed that (4.1.3)-(4.1.5) map one-to-one
to the conditions of Theorem 1 of (Ghosal and van der Vaart, 2007) over posterior
contractions rates.

We make use of the latter theorem in order to bound the expected adaptive local
posterior distribution

E0Π
Ak (θ : ∥θ − θ0∥nk

≥Mnεn|Y) ≲
1

(n/m)ε2n
.

Then by triangle inequality

E0Π
A
n,m (θ : ∥θ − θ0∥n ≥Mnεn|Y)

≤
m∑
k=1

E0Π
A
n,m (θ : ∥θ − θ0∥n,k ≥Mnεn|Y)

=

m∑
k=1

E0Π
Ak (θ : ∥θ − θ0∥n,k ≥Mnεn|Y) ≲

m2

nε2n
= o(1),

concluding the proof of the statement.
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§4.3.3 Proof of Corollary 4.2.1

We show below that for θ0 ∈ Cβ [0, 1] with B2 > a2ℓ+1mε
2(ℓ+1−β)

β , a ≳ ε
ℓ−β
ℓβ and

β ≤ ℓ + 1, the following bounds are satisfied for C∗
1 , C

∗
2 > 0 not depending on ε, m

and n

inf
h:∥θ0−h∥∞,k≤ε

∥h∥2Ha,(k) ≤ C∗
1

a−2ℓ−1

m
ε

−2(ℓ+1−β)
β , (4.3.1)

− log Πa (θ : ∥θ∥∞,k < ε) ≤ C∗
2

a

m
ε

−1
ℓ+1/2 , (4.3.2)

where Πa is the prior associated with the rescaled GP Gat and Ha,(k) is its RKHS on
S(k). The local modulus inequality is hence verified for

εn ≥ K∗
(
a

−β(ℓ+1/2)
ℓ+1 n

−β
2(ℓ+1) ∨ (a/n)

ℓ+1/2
2(ℓ+1)

)
,

for some large enough constant K∗ > 0. For a ≍ n
ℓ+1/2−β

(ℓ+1/2)(2β+1) the above inequality

results in εn ≥ Kn
−β

2β+1 for B2 > n
−1

2β+1m. Therefore, the statement is a direct
consequence of Theorem 4.1.1.

Proof of (4.3.1) Let θ0 ∈ Cβ([0, 1]) with β ≤ ℓ+1. By Whitney’s theorem, we can
extend θ0 ∈ Cβ([0, 1]) to a function θ0 ∈ Cβ(R) with compact support. We notice,
as in the proof of Lemma 11.31 in (Ghosal and Van der Vaart, 2017), that for any
ℓth order kernel ψ (an integrable function with

∫
ψ(s)ds = 1,

∫
xlψ(s)ds = 0 for all

l ≤ ℓ, and
∫
|s|ℓ+1ψ(s)ds <∞), the scaled version ψσ(·) := 1

σψ(
·
σ ) satisfies

sup
0≤x≤1

|θ0 − θ0 ∗ ψσ|(x) ≲ σβ ,

where θ0 ∗ ψσ is the convolution between θ0 and ψσ. Moreover, for all β ≤ l + 1

sup
0≤x≤1

|(θ0 ∗ ψσ)(l+1)(x)| ≲ σ⌊β⌋−l−1,

because (θ0 ∗ ψσ)(l+1) = θ
(⌊β⌋)
0 ∗ ψ(l+1−⌊β⌋)

σ using the fact that the derivative of the
convolution f ∗ g is given as

(f ∗ g)′ = f ′ ∗ g = f ∗ g′.

Taking h ∈ Ha,(k) defined as

h(t) := Iℓ+1
(
(θ0 ∗ ψσ)(ℓ+1)1[ k−1

m , k
m ]

)
(t) +

ℓ∑
j=0

(t− k−1
m )j

j!
(θ0 ∗ ψσ)(j)

(
k − 1

m

)
,

where t ∈
[
k−1
m , km

]
, leads to h(ℓ+1) = (θ0 ∗ ψσ)(ℓ+1) and h = θ0 ∗ ψσ on [k−1

m , km ].
Therefore, h verifies the inequality ∥h− θ0∥∞,k ≤ σβ . Moreover, in view of Lemmas
4.3.1 and 4.3.2, the local RKHS norm of h is

∥h∥2Ha,(k) = B−2
ℓ∑
j=0

h(j)(0)2

a2j
+ a−2ℓ−1

∫ k
m

k−1
m

(θ0 ∗ ψσ)(ℓ+1)(s)2ds.
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The second part of the right hand-side of this display can be directly bounded
from above by a−2ℓ−1σ−2(ℓ+1−β)/m. On the other hand, the first part is bounded as
follows

ℓ∑
j=0

h(j)(0)2

a2j
≤

ℓ∑
j=0

1

a2j

 ℓ∑
r=j

(−1)r−j(k − 1)r−j

mr−j(r − j)!
(θ0 ∗ ψσ)(j)

(
k − 1

m

)2

≤
ℓ∑
j=0

(ℓ+ 1− j)

a2j

ℓ∑
r=j

(k − 1)2r−2j

m2r−2j((r − j)!)2
(θ0 ∗ ψσ)(j)

(
k − 1

m

)2

≤
ℓ∑
j=0

(ℓ+ 1− j)2

a2j
σ2⌊β⌋−2j

≲ (σ−2(ℓ−β)a−2ℓ ∨ 1).

If we choose σ = ε1/β , we can deduce that

inf
h:∥θ0−h∥∞,k≤ε

∥h∥2Ha,(k) ≲ B−2 +
a−2ℓ−1

m
ε

−2(ℓ+1−β)
β ,

when a ≳ ε
ℓ−β
ℓβ . The right-hand side of the display is dominated by a−2ℓ−1

m ε
−2(ℓ+1−β)

β

when B2 > a2ℓ+1mε2
(ℓ+1−β)

β , which concludes the proof.

Proof of (4.3.2) For θ ∼ B
∑ℓ
j=0 Zj(at)

j+IℓW a
t , the centered small ball probability

is lower bounded by

Πa (θ : ∥θ∥∞,k < ε) ≥ Π
(
∥IℓW a∥∞,k < ε/2

)
Π

∥B
ℓ∑
j=0

Zj(at)
j∥∞,k < ε/2


≥ Π

(
∥IℓW a∥∞,k < ε/2

)
Pr

 ℓ∑
j=0

|Zj | <
ε

2B(aℓ ∨ 1)

 .

The small ball probability of the ℓ-fold integrated Brownian motion on S(k) can be
bounded from below as follows

Π

 sup
a(k−1)

m ≤t≤ ak
m

|IℓWt| < ε/2

 ≥ Ck exp

{
−aC

mε1/(ℓ+1/2)

}

using Lemma 4.3.3 [with x0 = a(k−1)
m and x1 = ak

m ].

On the other hand, the probability of the sum of absolute values of (Zj)
ℓ
j=1 being

smaller than ε/(2B(aℓ ∨ 1)) can be bounded from below by the probability of the
absolute value of the ℓ + 1 independent standard normal random variables being
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bounded by ε/(B(ℓ+ 1)(aℓ ∨ 1)). Consequently

Pr

 ℓ∑
j=0

|Zj | <
ε

2B(aℓ ∨ 1)

 ≥ 2ℓ+1

(
Φ

(
ε

2B(ℓ+ 1)(aℓ ∨ 1)

)
− Φ(0)

)ℓ+1

≥ 2ℓ+1
exp

{
−ε2

8B2(ℓ+1)2(a2ℓ∨1)

}
(2π)(ℓ+1)/2

(
ε

B(ℓ+ 1)(aℓ ∨ 1)

)ℓ+1

,

using the standard lower bound of an integral on a closed set.
Applying the function x 7→ − log(x) to the centered small ball probability provides

us the following lower bound

− log Πa (θ : ∥θ∥∞,k < ε) ≤ C1

(
a

m
ε

−1
ℓ+1/2 +

ε
−2(ℓ+1)

β

(a2ℓ ∨ 1)a2ℓ+1m
+ log(ε/aℓ)

)
+ C2,

since B2 > a2ℓ+1mε2
(ℓ+1−β)

β . We note that the upper bound is dominated by the

first term when ε ≥ n−L1 and ε
1

2ℓ+1−
ℓ+1
β ≤ a2ℓ+1 ≤ nL2 , for arbitrary L1, L2 > 0

concludes the proof of the upper bound in (4.3.2).

Lemma 4.3.1. The RKHS Ha of the rescaled process Gat given in (4.2.1) on [0, 1] is
the Sobolev space Sℓ([0, 1]) with inner product

⟨ϑ1, ϑ2⟩Ha = B−2
ℓ∑
j=0

ϑ
(j)
1 (0)ϑ

(j)
2 (0)

a2j
+ a−2ℓ−1

∫ 1

0

ϑ
(ℓ+1)
1 (s)ϑ

(ℓ+1)
2 (s)ds.

Proof. Lemmas 11.29 and 11.52 of (Ghosal and Van der Vaart, 2017) tell that the
RKHS of the integrated Brownian motion part of Gat is the subset of the Sobolev
space Sℓ+1([0, 1]) of functions ϑ with ϑ(0) = ... = ϑ(ℓ)(0) = 0 under the following
inner product

⟨ϑ1, ϑ2⟩ = a−2ℓ−1

∫ 1

0

ϑ
(ℓ+1)
1 (s)ϑ

(ℓ+1)
2 (s)ds.

In addition, the RKHS of the rescaled polynomial process is the set of ℓth degree
polynomials with inner product the Euclidean product of the rescaled coefficients.
In other words, for ϑ1 and ϑ2 two ℓth degree polynomials in this RKHS, their inner
product is

⟨ϑ1, ϑ2⟩ = B−2
ℓ∑
j=0

ϑ
(j)
1 (0)ϑ

(j)
2 (0)

a2j
.

The RKHS Ha of the process Gat can then be obtained by applying the general
result for the RKHS of a sum of independent Gaussian random elements (Lemma I.18
in (Ghosal and Van der Vaart, 2017)), which concludes the proof.

Lemma 4.3.2. Let Gt be a Gaussian process on [0, 1] with RKHS H. The local RKHS
HI of the process Gt on I ⊂ [0, 1] is contained in the set of functions h ∈ H restricted
to I, with the norm

∥h∥HI = inf
h∗∈H;h∗(t)=h(t):t∈I

∥h∗∥H.
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Proof. Let zH ∈ HI , then according to the definition of the RKHS of a mean zero
Gaussian process, there exists a random element H ∈ lin(Gt : t ∈ I) such that

zH(t) = EHGt

for all t ∈ I. Since H ∈ lin(Gt : t ∈ I), it is also an element of lin(Gt : t ∈ [0, 1])
which means there is an element z∗H ∈ H such that

z∗H(t) := EHGt = zH(t)

for all t ∈ I. Moreover, by the definition of the inner product in the RKHS of a
Gaussian process, one can notice that

∥zH∥HI = ∥z∗H∥H.

The next step is to show that the norm of any zH∗ ∈ H such that

zH∗(t) = zH(t)

for all t ∈ I is larger than ∥zH∥HI . By the definition of the H norm, we can directly
see that

∥zH∗∥H =
√
E(H∗)2

with H∗ ∈ lin(Gt : t ∈ [0, 1]). Since for all t ∈ I, we have zH∗(t) = zH(t), then

E(H∗ −H)Gt = 0.

This in turn, following from H ∈ lin(Gt : t ∈ I), implies that

E(H∗)2 = E(H∗ −H)2 + EH2 ≥ EH2

concluding the proof.

§4.3.4 Proof of Corollary 4.2.2

In view of Theorem 4.1.2 it is sufficient to construct a sieve B
(k)
n,m such that the

assumptions (4.1.3), (4.1.4) and (4.1.5) hold. The construction of the sieves B
(k)
n,m

for a rescaled integrated Brownian motion is analogous to its counterpart in van der
Vaart and van Zanten (2009a) for a squared exponential Gaussian process.

Let us take K2
n,m := 8C0(n/m)ε2n and rn := nε

2+ 1
ℓ+1/2

n /D2. Define

B(k)
n,m = {θ(x)1S(k)(x) : θ ∈

⋃
a<rn

(
Kn,mHa,(k)1

)
+ εnB(k)

1 }, (4.3.3)

where Ha,(k)1 is the unit ball in the RKHS of the local rescaled integrated Brownian

motion Gat on S
(k) and B(k)

1 is the unit ball in the Banach space of functions on S(k)

equipped with the supremum norm, denoted by C(S(k)).
It will be shown below that when εn ≲ n−1/4 and

m = o
(
n

1
1+2β ∧ n

β
(ℓ+1/2)(1+2β)

)
,
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which is true for m = O(n
1

4ℓ+2 ) since 1/2 < β ≤ ℓ + 1/2, the following bounds are
satisfied

logΠ
(
GAk,(k) /∈ B(k)

n,m

)
≤ −K1(n/m)ε2n, (4.3.4)

− log Π
(
GAk,(k) : ∥GAk,(k) − θ0∥∞,k ≤ εn

)
≤ K2

ε
−1/β
n

m
, (4.3.5)

logN
(
εn, B

(k)
n,m, ∥.∥∞,k

)
≤ K3(n/m)ε2n, (4.3.6)

for θ0 ∈ Cβ [0, 1].

The local conditions on B
(k)
n,m are hence automatically verified for ε

−1/β
n ≤ K∗nε2n

for some large enough constant K∗ > 0. Therefore, the statement is a direct conse-
quence of Theorem 4.1.2.

Proof of (4.3.4) We first consider the local small ball exponent ϕa,(k)(ε) for the
rescaled process Ga

ϕa,(k)(ε) = − log Πa (θ : ∥θ∥∞,k < ε) ,

and the corresponding concentration function for θ0

ϕ
a,(k)
θ0

(ε) = inf
h:∥θ0−h∥∞,k≤ε

∥h∥2Ha,(k) − log Πa (θ : ∥θ∥∞,k < ε) .

In view of Borell’s inequality,

Π(Ga,(k) /∈ B(k)
n,m) ≤ Π(Ga,(k) /∈ Kn,mHrn,(k)1 + εnB(k)

1 )

≤ 1− Φ(Φ−1(e−ϕ
rn,(k)(εn)) +Kn,m).

Let εn < ρ so that e−ϕ
1,(k)(ρ) < 1/4. Seeing as m = o(ε

−1
ℓ+1/2
n ), we can have ρ ≲

m−ℓ−1/2 so ρ ≲ kℓ+1/2−jm−ℓ−1/2 for all 1 ≤ k < m and 0 ≤ j ≤ ℓ; hence in
view of Lemma 4.3.3 [with x0 = k−1

m and x1 = k
m ], ρ exists. Consequently, for all

n−
(ℓ+1/2)
2(ℓ+1) < εn < ρ, we have rn > 1 and thus e−ϕ

rn,(k)(εn) < e−ϕ
1,(k)(εn) < 1/4.

Furthermore, it is possible to rewrite K2
n,m as follows

K2
n,m = 8C0D2

rnε
−1

ℓ+1/2
n

m
.

Similarly to the proof of (4.3.2), we can lower bound for the local centered small
ball probability

e−ϕ
rn,(k)(εn) ≥ Π

(
∥IℓW rn∥∞,k < εn/2

)
Pr

 ℓ∑
j=0

|Zj | <
εn

2B(rℓn ∨ 1)

 ,

where the small ball probability of the rescaled ℓ-fold integrated Brownian motion is
bounded from below as follows

Π

 sup
rn(k−1)

m ≤t≤ rnk
m

|IℓWt| < εn/2

 ≥ Ck exp

{
−rnC

mε
1/(ℓ+1/2)
n

}
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as long as m = o(nε2n) and εn ≳ n−1/2 using Lemma 4.3.3 [with x0 = rn(k−1)
m and

x1 = rnk
m ], while the probability of the sum of absolute values of (Zj)

ℓ
j=1 being smaller

than εn/(2B(rℓn ∨ 1)) is also bounded from below

Pr

 ℓ∑
j=0

|Zj | <
εn

2B(rℓn ∨ 1)

 ≥ 2ℓ+1
exp

{
−ε2n

8B2(ℓ+1)2(a2ℓ∨1)

}
(2π)(ℓ+1)/2

(
εn

B(ℓ+ 1)(aℓ ∨ 1)

)ℓ+1

.

Therefore, we can deduce the following

ϕrn,(k)(εn) ≤ C1

rnε −1
ℓ+1/2
n

m
+

ε
−2(ℓ+1)

β
n

(r2ℓn ∨ 1)r2ℓ+1
n m

+ log(εn/r
ℓ
n)

+ C2,

as long as B2 > r2ℓ+1
n mε

2
(ℓ+1−β)

β
n . We note that the upper bound is dominated by the

first term when εn ≳ n−1/2 and ε
1

2ℓ+1−
ℓ+1
β

n ≤ r2ℓ+1
n ≤ nL, for arbitrary L > 0. Hence,

we can conclude that

K2
n,m ≥ 16ϕrn,(k)(εn),

as long as m = o(nε2n) and εn ≳ n−1/2. In accordance to Lemma 4.4.4 [with u =
exp{−ϕrn(k)(εn)}], the inequality K2

n,m ≥ −2Φ−1(exp{−ϕrn,(k)(εn)}) holds; thus,

Π(Ga,(k) /∈ B(k)
n,m) ≤ 1− Φ(Kn,m/2)

≤ e−K
2
n,m/8,

using Lemma 4.4.5. The local remaining masses can then be bounded from above as
follows,

Π(GAk,(k) /∈ B(k)
n,m) ≤ P (Ak > rn) +

∫ rn

0

Π(Ga,(k) /∈ B(k)
n,m)g(a)da

≤ 2C2r
p+ 1

2(ℓ+1)
n e−D2n

1
2(ℓ+1) r

ℓ+1/2
ℓ+1

n /m + e−K
2
n,m/8 ≤ e−c(n/m)ε2n ,

for some c > 0 small enough in view of Lemma 4.4.3. Thus, to conclude it suffices

that m = o

(
ε

−1
ℓ+1/2
n ∧ nε2n

)
, so that the inequality (4.3.4) be satisfied.

Proof of (4.3.6) Lemma 11.52 of (Ghosal and Van der Vaart, 2017) [with α = ℓ+

1/2] implies that the setHa1 can be rewritten as aℓ+1/2H1; hence
⋃
a<rn

(Kn,mHa,(k)1 ) =

r
ℓ+1/2
n Kn,mH(k)

1 = Hrn,(k)1 , and we get

N

(
2εn,

⋃
a<rn

(Kn,mHa,(k)1 + εnB(k)
1 ), ∥.∥∞,k

)
≤ N

(
εn,Kn,mHrn,(k)1 , ∥.∥∞,k

)
.
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Since the function x 7→ log(x) is increasing on its domain, and in view of Lemma 4.4.2

logN

(
2εn,

⋃
a<rn

(Kn,mHa,(k)1 + εnB(k)
1 ), ∥.∥∞,k

)
≲

1

m

(rℓ+1/2
n Kn,m

εn

)1/(ℓ+1)

=
1

m

((
nε

2+ 1
ℓ+1/2

n

)ℓ+1/2√
n/m

)1/(ℓ+1)

=
1

m

(
m−1/2nℓ+1ε2ℓ+2

n

)1/(ℓ+1)

= m
−2ℓ−3
2(ℓ+1) nε2n

≲ (n/m)ε2n,

since m = o(nε2n); hence (n/m)ε2n → +∞ and εn/(Kn,mr
ℓ+1/2
n ) ↓ 0. From this

display, we have that the assertion (4.3.6) is verified.

Proof of (4.3.5) Suppose that θ0 ∈ Cβ([0, 1]). In view of assertion (4.3.1), there
exists C∗

1 > 0 such that

inf
h:∥θ0−h∥∞,k≤ε

∥h∥2Ha,(k) ≤ C∗
1

a−2ℓ−1

m
ε

−2(ℓ+1−β)
β ,

provided that B2 > a2ℓ+1mε
2(ℓ+1−β)

β and a ≳ ε
ℓ−β
ℓβ . Additionally, (4.3.2) tells that

there exists C∗
2 > 0 such that

ϕa,(k)(ε) ≤ C∗
2

a

m
ε

−1
ℓ+1/2 .

Therefore,

ϕ
a,(k)
θ0

(ε) = inf
h:∥θ0−h∥∞,k≤ε

∥h∥2Ha,(k) + ϕ(k)(a−ℓ−1/2ε)

≤ 1

m

(
C∗

1a
−2ℓ−1ε

−2(ℓ+1−β)
β + C∗

2aε
−1

ℓ+1/2

)
.

By taking a which verifies

ε
1

ℓ+1/2
− 1

β ≤ a ≤ 2ε
1

ℓ+1/2
− 1

β ,

one can find a constant C0 > 0 such that the local concentration function is bounded
from above as follows

ϕ
a,(k)
θ0

(ε) ≤ C0
ε−1/β

m
.

Let α := 1
β − 1

ℓ+1/2 so that there exists a constant C > 0 such that,

ΠA(∥GA − θ0∥∞,k ≤ 2εn) ≥
∫ ∞

0

e−ϕ
a,(k)
θ0

(εn)g(a)da

≥
∫ 2ε−α

n

ε−α
n

exp
{
− c0ε

−1/β
n /m

}
g(a)da.
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The integral on the right-hand side is larger than the infimum of the integrand mul-
tiplied by ε−αn ; hence, if we apply the function x 7→ − log(x) to both sides of the
display, we obtain the following bound

− log ΠA(∥GA − θ0∥∞,k ≤ 2εn) ≲
ε
−1/β
n

m
+
n

1
2(ℓ+1) ε

−α (ℓ+1/2)
ℓ+1

n

m
+ log εn.

which concludes the proof of (4.3.5) when εn ≲ n
−β

1+2β .

Lemma 4.3.3. Let (IℓWt : t ∈ [x0, x1]) be the ℓ-fold primitive of Brownian motion
Wt on [x0, x1] with 0 < x0 < x1 ≤ T , then the process (IℓWt : t ∈ [x0, x1]) has the
same distribution as (IℓWt+x0

: t ∈ [0, x1 − x0]). Moreover,

IℓWt+x0
= IℓW ∗

t +

ℓ∑
j=0

tj

j!
Iℓ−jWx0

,

with W ∗
t a Brownian motion independent from Wt, and for any ε verifying

ε ≤ (ℓ+ 1)(x1 − x0)
jx
ℓ+1/2−j
0

ℓ!
√
2ℓ+ 1

,

for all 0 ≤ j ≤ ℓ, we obtain the following bounds

−q2(x1 − x0)

ε
1

ℓ+1/2

≤ logPr

(
sup

x0≤t≤x1

|IℓWt| < ε

)
≤ −q1(x1 − x0)

ε
1

ℓ+1/2

when x1 − x0 ≤ x0, where the constants q1, q2 > 0 depend only on ℓ.

Proof. For Wt a standard Brownian motion, let W ∗
t := Wx0+t − Wx0

for a given
x0 > 0, then the process (W ∗

t )t≥0 is also a standard Brownian motion independent
from (Wt)0≤t≤x0 because Brownian motions are translation invariant.

In order to prove the first part of the lemma, it is possible to first show by induction
that

IℓW ∗
t = IℓWx0+t −

ℓ∑
j=0

tj

j!
Iℓ−jWx0

.

Indeed, the identity is trivial for ℓ = 0. Moreover, if the claim is true for ℓ, then

Iℓ+1W ∗
t =

∫ t

0

IℓW ∗
s ds

=

∫ t

0

IℓWx0+sds−
ℓ∑
j=0

∫ t

0

sj

j!
Iℓ−jWx0ds

= Iℓ+1Wx0+t − Iℓ+1Wx0
−

ℓ∑
j=0

tj+1

(j + 1)!
Iℓ−jWx0

= Iℓ+1Wx0+t −
ℓ+1∑
j=0

tj

j!
Iℓ+1−jWx0

,

which confirms the claim for ℓ+ 1.
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Using this newfound identity, one can rewrite the small ball probability of (IℓWt :
t ∈ [x0, x1]) as follows

Pr

(
sup

x0≤t≤x1

|IℓWt| < ε

)
= Pr

 sup
0≤t≤x1−x0

∣∣∣∣∣∣IℓW ∗
t +

ℓ∑
j=0

tj

j!
Iℓ−jWx0

∣∣∣∣∣∣ < ε

 .

Then, we can use Anderson’s theorem and the self-similarity of IℓWt with index ℓ+1/2
in order to bound this probability from above

Pr

(
sup

x0≤t≤x1

|IℓWt| < ε

)
≤ Pr

(
sup

0≤t≤1
|IℓW ∗

(x1−x0)t
| < ε

)
= Pr

(
sup

0≤t≤1
|IℓW ∗

t | < (x1 − x0)
−ℓ−1/2ε

)
.

Hence, there exists a q1 > 0 such that

log Pr

(
sup

x0≤t≤x1

|IℓWt| < ε

)
≤ −q1(x1 − x0)

ε
1

ℓ+1/2

.

Besides, one can bound the small ball probability of (IℓWt : t ∈ [x0, x1]) from below
as follows

Pr

(
sup

x0≤t≤x1

|IℓWt| < ε

)
= Pr

 sup
0≤t≤x1−x0

∣∣∣∣∣∣IℓW ∗
t +

ℓ∑
j=0

tj

j!
Iℓ−jWx0

∣∣∣∣∣∣ < ε


≥ Pr

(
sup

0≤t≤x1−x0

|IℓW ∗
t | < ε/2

)
×

Pr

(
sup

0≤t≤x1−x0

∣∣∣∣∣∣
ℓ∑
j=0

tj

j!
Iℓ−jWx0

∣∣∣∣∣∣ < ε/2

)
.

The logarithm of the first part can be bounded from below by a constant multiplier

of −(x1 − x0)ε
−1

ℓ+1/2 because IℓW ∗ is self-similar with index ℓ + 1/2. On the other
hand, one can bound the probability in the second part as follows

Pr

(
sup

0≤t≤x1−x0

∣∣∣∣∣∣
ℓ∑
j=0

tj

j!
Iℓ−jWx0

∣∣∣∣∣∣ < ε

)
≥ Pr

(
ℓ∑
j=0

sup
0≤t≤x1−x0

tj

j!

∣∣Iℓ−jWx0

∣∣ < ε

)

≥
ℓ∏
j=0

Pr

(
(x1 − x0)

j

j!

∣∣Iℓ−jWx0

∣∣ < ε/(ℓ+ 1)

)
.

The variance of the elements Iℓ−jWx0 for 0 ≤ j ≤ ℓ can be derived as follows

Var
(
Iℓ−jWx0

)
= E

(
Iℓ−jWx0

)2
=

1

(ℓ− j − 1)!2

∫ x0

0

∫ x0

0

(x0 − s)ℓ−j−1(x0 − u)ℓ−j−1EWsWududs
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using the Cauchy formula for repeated integration and Fubini’s theorem. The ex-
pectation inside the integral is simply the covariance kernel of the Brownian motion
min(s, u). Without loss of generality, let’s compute this integral when u ≤ s

2

∫ x0

0

∫ s

0

(x0 − s)ℓ−j−1(x0 − u)ℓ−j−1ududs

= 2

∫ x0

0

(x0 − s)ℓ−j−1

(
xℓ+1−j
0

(ℓ+ 1− j)(ℓ− j)
− x0(x0 − s)ℓ−j

(ℓ+ 1− j)(ℓ− j)
− s(x0 − s)ℓ−j

ℓ+ 1− j

)
ds

=: I1 + I2 + I3.

The integrals I1, I2 and I3 can be computed straightforwardly:

I1 =
2x2ℓ+1−2j

0

(ℓ+ 1− j)(ℓ− j)2

I2 =
−x2ℓ+1−2j

0

(ℓ+ 1− j)(ℓ− j)2

I3 =
−x2ℓ+1−2j

0

(2ℓ+ 1− 2j)(ℓ+ 1− j)(ℓ− j)
.

Consequently, the total integral is

2

∫ x0

0

∫ x0

0

(x0 − s)ℓ−j−1(x0 − u)ℓ−j−1ududs =
x2ℓ+1−2j
0

(2ℓ+ 1− 2j)(ℓ− j)2
,

and the variance of the integrated Brownian motion at point x0 is

Var
(
Iℓ−jWx0

)
=

x2ℓ+1−2j
0

(2ℓ+ 1− 2j)(ℓ− j)!2
.

Accordingly, it is possible to obtain the following bound for all 0 ≤ j ≤ ℓ

Pr

(
(x1 − x0)

j

j!

∣∣Iℓ−jWx0

∣∣ < ε/(ℓ+ 1)

)
≥ 2Φ

(
εj!(ℓ− j)!

√
2ℓ+ 1− 2j

(ℓ+ 1)(x1 − x0)jx
ℓ+1/2−j
0

)
− 1.

It can be verified that the function given by x 7→ log(2Φ(x) − 1) is increasing from
−∞ to 0, and that log(2Φ(x)−1) ≥ −1−| log x| when x is small enough. This implies
that the log-probability of interest is bounded from below by

−1−

∣∣∣∣∣log
(

εj!(ℓ− j)!
√
2ℓ+ 1− 2j

(ℓ+ 1)(x1 − x0)jx
ℓ+1/2−j
0

)∣∣∣∣∣ .
Furthermore, seeing as −1− | log x| ≥ −1/x for small values of x and because

ε ≤ (ℓ+ 1)(x1 − x0)
jx
ℓ+1/2−j
0

ℓ!
√
2ℓ+ 1

≤ (ℓ+ 1)(x1 − x0)
jx
ℓ+1/2−j
0

j!(ℓ− j)!
√
2ℓ+ 1− 2j
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for all 0 ≤ j ≤ ℓ, we have that

log Pr

(
(x1 − x0)

j

j!

∣∣Iℓ−jWx0

∣∣ < ε/(ℓ+ 1)

)
≥ −1−

∣∣∣∣∣log
(

εj!(ℓ− j)!
√
2ℓ+ 1− 2j

(ℓ+ 1)(x1 − x0)jx
ℓ+1/2−j
0

)∣∣∣∣∣ .
≳

−(x1 − x0)
jx
ℓ+1/2−j
0

ε

≳
−(x1 − x0)

ε
1

ℓ+1/2

.

The last inequality results from the fact that ε is of smaller order than

ε ≲ (x1 − x0)
jx
ℓ+1/2−j
0

≲ (x1 − x0)
(j−1)(ℓ+1/2)

ℓ−1/2 x
(ℓ+1/2−j)(ℓ+1/2)

(ℓ−1/2)

0 ,

for all 0 ≤ j ≤ ℓ when x1 − x0 ≤ x0. We conclude the proof by noting that the
logarithm of a product is the sum of the logarithm of the terms.

§4.4 Auxiliary Lemmas

Lemma 4.4.1 (Proposition 11.19 of (Ghosal and Van der Vaart, 2017)). For any
mean zero Gaussian random element G in a separable Banach space, any θ in the
closure of its RKHS and any ε > 0

ϕθ(ε) ≤ − log Π(∥G− θ∥ < ε) ≤ ϕθ(ε/2),

where the norm is taken as the norm of the Banach space.

Lemma 4.4.2 (Proposition C.7 of (Ghosal and Van der Vaart, 2017)). For M > 0,
k ≥ 0 and a > 0, let Ha1 the unit ball in the RKHS of Ga on X where G is defined as
in (4.2.1), then there exists a constant K such that

logN(ε,MHa1 , ∥.∥∞) ≤ KVol(X )a
ℓ+1/2
ℓ+1

(
M

ε

) 1
ℓ+1

.

Lemma 4.4.3. If the random variable A has a density gℓ,n,m that satisfies (4.2.2),

then for a
ℓ+1/2
ℓ+1 > 2mn

−1
2(ℓ+1) |1− 2(ℓ+ 1)p|/(D2(2ℓ+ 1) and a > e,

P (A > a) ≤ 2C2a
p+ 1

2(ℓ+1) e−D2n
1

2(ℓ+1) a
ℓ+1/2
ℓ+1 /m

Proof. As this lemma is analogous to Lemma 4.9 of (van der Vaart and van Zanten,

2009b), the proof follows the same steps. Set jp(a) = ap exp{−D2n
1

2(ℓ+1) a
ℓ+1/2
ℓ+1 /m}

and Jp(a) =
∫ +∞
a

jp(t)dt with p ≥ 0. The derivative of the function jp can, with
the help of the chain rule, be expressed as the sum of two terms. By integrating this
identity we see that

jp(a) =
D2n

1
2(ℓ+1)

(ℓ+1/2)
ℓ+1

m
Jp− 1

2(ℓ+1)
(a)− pJp−1(a).
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4. Optimal recovery for spatially distributed Gaussian process regression

The first term on the right is non-negative, while the second is negative if and only if
p > 0. By the transformation p− 1

2(ℓ+1) → p we conclude that

D2n
1

2(ℓ+1)
(ℓ+1/2)
ℓ+1

m
Jp(a)−

∣∣∣p+ 1

2(ℓ+ 1)

∣∣∣Jp− ℓ+1/2
ℓ+1

(a) = jp+ 1
2(ℓ+1)

(a).

Here

J
p− ℓ+1/2

ℓ+1
(a) =

∫ +∞

a

t
−(ℓ+1/2)

ℓ+1 jp(t)dt ≤ a
−(ℓ+1/2)

ℓ+1 Jp(a).

By substituting this inequality in the left-hand side and rearranging we obtain the
bound (

D2n
1

2(ℓ+1)
(ℓ+1/2)
ℓ+1

m
− a

−(ℓ+1/2)
ℓ+1

∣∣∣p− 1

2(ℓ+ 1)

∣∣∣) Jp(a) ≤ jp+ 1
2(ℓ+1)

(a)

on P (A > a) ≤ C2Jp(a) asserted by the lemma.

The following lemmas are standard results from the literature.

Lemma 4.4.4. For Φ the standard normal cumulative distribution function, Φ−1(u) ≥
−
√

2 log(1/u) for u ∈ (0, 1) and Φ−1(u) ≤ −1/2
√
log(1/u) for u ∈ (0, 1/2).

Lemma 4.4.5. For Φ the standard normal cumulative distribution function, 1 −
Φ(u) ≥ e−u

2/2 for u > 0.
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5. Simulation study

CHAPTER 5
Simulation study

Abstract. In this chapter we investigate the numerical properties of the differ-
ent Gaussian process regression techniques using distributed methods. Distributed
methods use a divide-and-conquer strategy: the supposedly large data set is divided
among m machines. This strategy helps reducing the computational costs of the typ-
ical Bayesian non-parametric regression. It should be noted that there exist multiple
ways of partitioning the data among the machines

§5.1 Distributed GP regression

Gaussian process regression is arguably a very useful tool in machine learning since
it can elegantly capture complex relationships in data (Rasmussen and Williams,
2006). However, it scales very poorly in computation and memory (O(n3) and O(n2)
respectively, where n is the number of data points). This limitation inspired different
approximation approaches, among which the divide-and-conquer strategy where the
design is partitioned into m ”expert” machines; then, the kth partition, with k ∈
{1, ...,m} of size nk is modeled by the ”expert” to which it was assigned. Different
models arose according to the way the data is allotted to the expert machines. A
uniformly random partition model (see (Cao and Fleet, 2014) and (Tresp, 2000)) are
built by allotting each machine a random subset of the data of size n/m in order to
independently compute predictive distributions which will be aggregated. These have
been shown to not only be Kolmogorov inconsistent (Samo and Roberts, 2016), but
also to have posterior which contracts at a sub-optimal rates (Szabó and van Zanten,
2019).

On the other hand, spatial partition models are based on a division of the design
space into non-overlapping region. Each machine is assigned a specific region and
inference is made using the data in this region. For instance, the Naive-Local-Experts
model (Kim et al., 2005) models each region with an independent GP. Its main draw-
back is the introduction of discontinuities in the prediction at the border of each
region. There exist multiple ways to address the issue. Patched GPs (see (Park and
Huang, 2016) and (Park and Apley, 2018)) for instance impose continuity constraints
such that two adjacent local GPs are patched to share the nearly identical predictions
on the boundary. Two-step Mixtures introduce a latent variable to the model which
dynamically selects an expert to draw prediction on a given point (Tresp, 2001), (Ras-
mussen and Ghahramani, 2002), (Meeds and Osindero, 2006). Recently, hierarchical
spatial partitioning models (Ng and Deisenroth, 2014) have been developed. They
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typically result in posterior predictive distributions in the form of an average of all
the ”expert” predictions with a weight supposed to indicate how the confidence level
of each prediction.

§5.1.1 Uniformly random

The data can be randomly split among the m machines. Each machine will receive
a random sub-sample of the data, and will therefore solve a smaller version of the
initial regression by computing a local posterior. The different posteriors will then be
aggregated to form a global posterior. As seen in (Szabó and van Zanten, 2019), some
adjustments should be made locally in order to obtain theoretical guaranties for this
method. In this simulation study, we chose to adjust the local prior by raising it to
the power 1/m and to average the local posteriors. However, (Szabó and van Zanten,
2019) also shows that despite the modifications on the local prior, adaptation leads
to sub-optimal contraction rates and bad coverage for some true functions.

§5.1.2 Spatial

The data can also be split into subsets of the design point set. Each machine will
receive data such that the design points belong to a certain sub-region. The sub-
regions are not to overlap. The machine can then be seen as local experts; each expert
is specialized in one particular sub-region of design points. A draw from the global
posterior will thus consist of the local posterior draws restricted to their corresponding
intervals and pasted together. Due to the localized structure, there is no need for
alterations in the local prior. Moreover, this structure allows the local posterior to
adapt to the unknown smoothness as we showed in Chapter 4. Unfortunately, the
global posterior obtained by this procedure contains unwanted discontinuities at the
border of each regions.

§5.1.3 Weighted-average model

One can note that both global posteriors produce samples in the form of a weighted
average of the local samples. In the first scenario, a global posterior draw θ is defined
as

θ(x) =
1

m

m∑
k=1

θ(k)(x),

for all x ∈ X where the θ(k)’s are local draws. In the second scenario, a global
posterior draw can be written as

θ(x) =

m∑
k=1

1Dk
(x)θ(k)(x),

where Dk’s are the sub-regions into which the design points are partitioned. This
observation explains the discontinuities in the latter case, since the weights are dis-
continuous themselves. In order to palliate this problem, we propose using data-driven
weight functions which are both continuous and close to indicator functions. One can
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find in the literature (Ng and Deisenroth, 2014) weights proportional to the inverse
variances:

θ(x) = Σ(x)

m∑
k=1

θ(k)(x)

σ2
k(x)

,

where the σ2
j ’s are the local posterior variance and Σ(x) =

(∑m
k=1 σ

−2
k (x)

)−1
. Al-

though these weights are data-driven and continuous, we will see that the correspond-
ing global posterior exhibit sub-optimal asymptotic characteristics in an adaptive set-
ting. Indeed, adapting to local smoothnesses may lead to shrinking variances for some
machines, which in turn will lead the corresponding weight to be overly large even
outside of the expert’s domain. That is to say that experts are overly confident about
the behavior of the true function in the whole space when this function is particularly
smooth in this expert’s domain. That is why we propose a modification of the weight
functions so that they shrink quickly outside of their corresponding region minimizing
the behavior of indicator functions. Namely, we choose

θ(x) =W (x)

m∑
k=1

wk(x)θ
(k)(x),

where wk(x) = e−m
2(x−ck)2/σ2

k(x) with ck being the center of gravity of Dk, and

W (x) =
(∑m

k=1 wk(x)
)−1

. These weights are both continuous and data-driven.

§5.2 Numerical study

§5.2.1 Simulated Data

First, we consider Gaussian process regression with simulated data that will allow
us to compare the different distributed techniques to the non-distributed Gaussian
regression, which will act as a benchmark. We see that if the smoothness of the true
function is known and the Gaussian process parameters are chosen accordingly, all
proposed distributed methods behave similarly. They present comparable L2 distance
between the true function and the posterior mean, and they portray similar coverage
for their point-wise credible sets. Moreover, if the number of machines m does not
grow too fast, these distributed methods are also similar to our benchmark. On the
other hand, we show that in the adaptive setting, the way the data is distributed
among the machines affect greatly the performance of the regression.

In this model we assume to observe n independent pairs of random variables
(X1, Y1), ...(Xn, Yn), where

Yi = θ0(Xi) + εi, εi
iid∼ N (0, σ2), Xi

iid∼ U(0, 1),

and the aim is to estimate the unknown non-parametric regression function θ0. In
the Bayesian approach we endow θ0 with a Gaussian process prior with squared
exponential kernel and estimate the tuning parameter using the MMLE. In addition,
we wish to reduce the computational time by distributing the n pairs of random
variables among m machines such that each machine only deals with the independent
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pairs (X
(k)
1 , Y

(k)
1 ), ...(X

(k)
nk , Y

(k)
nk ) which represent a subset of the original sample and

nk = n/m is the number of random variable pairs in the corresponding machine. All
the posterior means, credible sets, and the empirical Bayes posteriors in the adaptive
setting are all computed using the MatLab package gpml. Let us consider the function
θ0 ∈ L2[0, 1] given by the coefficients θ0,i = i−3/2 sin(i), for i ≥ 3 and θ0,i = 0
otherwise, relative to the cosine eigenbasis ψi(t) =

√
2 cos(π(i − 1/2)t). Note that

although the function lies outside of the self-similar function class, it has essentially
the same behavior.

We take σ2 = 1, but in the procedure it is considered to be unknown and esti-
mated with the MMLE σ̂2. We plot in figures the true function (black), the pos-
terior mean (colored), and the posterior point-wise credible intervals (shaded area)

[θ̂(x)−q0.025
√
ĉ(x, x), θ̂(x)+q0.025

√
ĉ(x, x)], where θ̂ is the posterior mean, qα the α-th

quantile of the standard normal distribution and ĉ(., .) the posterior covariance kernel.
We consider the non-distributive method (at the top) along with the four distributed
methods proposed. We will compare the methods in different figures depending on
the setting (non-adaptive or adaptive), the sample size ( n = 100, 500, 1000 or 2000)
and the number of machines (m = 10, m ≈ n1/3 or m = n/100).

We also investigate empirically the rate at which the posterior mean concentrates
around the truth and the frequentist coverage probabilities of the point-wise credi-
ble sets by repeating the experiment 100 times and reporting the average integrated
mean squared error and the frequency that the function at given points (we con-
sider x = (0.5, 0.41148, 0.31143) with 0.41148 = argminx∈[0,1]θ0(x) and 0.31143 =
argmaxx∈[0,1]θ0(x)) is included in the credible interval. See Tables 5.1afor the aver-
age L2-norm between the posterior mean and the true function, and see Tables 5.2for
the frequentist coverage of the credible sets.

The different methods we study are summed up in this table:

Method Description
1 uniformly random partitioning + adjusting the prior with power 1/m
2 spatial partitioning
3 spatial partitioning + inverse local post variance weights
4 spatial partitioning + inverse centered squared-exponential weights

Figure 5.1 illustrates that when m increases at sub-linear rate with n, the global
posterior means obtained via the different methods are similar in a non-adaptive
setting. Besides, these global posteriors means look similar to the traditional posterior
mean. Nonetheless, the global posteriors as wholes do not behave similarly. Method
2, for instance, produces visible discontinuous predictions on the boundaries of sub-
regions One can also see in Table 5.4 that global posteriors of distributed Bayesian
regression take substantially less time to compute. It should also be taken into account
that the all computations have been done sequentially; the parameters of all local
posteriors have been computed and stored in the same computer. This may explain
why adding more experts does not necessarily decreases the computation time. In
practice, one can imagine that these running times might be reduced using multiple
machines or cores, and that the effective time of the operation would roughly equal
the present computation time divided by the number of machines.

Observe in Table 5.1a that the posterior mean in all distributed methods concen-
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Figure 5.1: Non-adaptive posterior density for the function θ0 (drawn in black) on x ∈ [0, 1]. The
posterior means are drawn by solid line, while the 95% point-wise credible sets are shaded between two
dotted lines. In the first column, we plot the non-distributed method, in the second column the distributed
method with random partitioning, the third column the distributed method with spatial partitioning, while
in the fourth and fifth column we plot the distributed method with spatial partitioning with inverse variance
weights and exponential weights respectively. From top to bottom the sample size is n = 1000, 5000, 10000
and the number of experts is m = 10, 15, 20.

n = 1000 4500 10000

BM 39.0041 23.5635 17.0517

m = 10 M 1 48.0590 26.1719 18.6091

M 2 47.5648 27.4998 19.5424

M 3 36.5442 24.0340 17.8270

M 4 42.1584 25.5088 18.3610

m ≈ n1/3 M 1 48.0590 27.0015 19.2581

M 2 47.5648 29.4000 22.1400

M 3 36.5442 24.3732 18.6893

M 4 42.1584 26.7001 20.0192

m = n
100 M 1 48.0590 36.5080 35.7912

M 2 47.5648 37.7861 32.7527

M 3 36.5442 24.9314 23.6126

M 4 42.1584 31.7063 25.9903

(a) Average L2 distance between θ0 and the posterior mean
for the squared exponential Gaussian process prior in a non-
adaptive setting.

1000 4500 10000

49.9397 28.4795 20.3814

64.2480 30.9439 22.2252

67.2354 31.2043 23.6621

56.6046 28.7473 22.2875

55.1067 29.5429 22.5838

64.2480 31.9520 23.1445

67.2354 33.4671 26.8086

56.6046 29.5770 23.6461

55.1067 30.9875 24.7048

64.2480 61.4936 84.4595

67.2354 43.1683 39.6620

56.6046 30.5618 23.9152

55.1067 36.9440 32.3062

(b) Average L2 credible ball radius for
the squared exponential Gaussian process
prior in a non-adaptive setting.

Table 5.1: BM: Benchmark, Non-distributed method. M 1: Random partitioning, M 2: Spatial parti-
tioning, M 3: Spatial partitioning with inverse variance weights, M 4: Spatial partitioning with exponential
weights. From left to right the sample size is n = 1000, 4500, 10000.

trates around the true function at a similar rate in a non-adaptive setting. When
m ≲ 3

√
n, the contraction rate of the distributed posterior mean is virtually the same

as the non-distributed case. However, as soon as the number of machine increases
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x = 0.5 x = 0.41148 x = 0.31143
N = 1000 4500 10000 1000 4500 10000 1000 4500 10000

Benchmark 0.99 0.96 0.95 0.96 0.91 1.00 0.57 0.48 0.30

m = 10 Method 1 0.98 0.97 0.94 0.93 0.92 0.99 0.73 0.62 0.43

Method 2 0.97 0.99 0.98 0.97 0.95 1.00 0.91 0.80 0.46

Method 3 0.99 0.98 0.97 0.99 0.95 1.00 0.69 0.60 0.37

Method 4 1.00 0.98 0.99 1.00 0.97 1.00 0.94 0.76 0.55

m ≈ 3
√
n Method 1 0.98 0.95 0.97 0.93 0.96 0.98 0.73 0.66 0.49

Method 2 0.97 0.97 0.98 0.97 0.95 0.98 0.91 0.67 0.45

Method 3 0.99 0.99 0.97 0.99 0.95 0.99 0.69 0.47 0.28

Method 4 1.00 0.97 0.99 1.00 0.97 0.98 0.94 0.63 0.52

m = n
100 Method 1 0.98 0.95 1.00 0.93 0.91 1.00 0.73 0.78 0.70

Method 2 0.97 0.95 1.00 0.97 0.94 0.98 0.91 0.98 0.98

Method 3 0.99 0.98 0.96 0.99 0.95 0.78 0.69 0.38 0.04

Method 4 1.00 0.97 1.00 1.00 0.97 1.00 0.94 0.97 0.96

Table 5.2: Frequencies that θ0(x) is inside of the corresponding credible interval for the squared ex-
ponential Gaussian process prior in a non-adaptive setting at given points x ∈ {0.5, 0.41148, 0.31143}.
Benchmark: Non-distributed method. Method 1: Random partitioning, Method 2: Spatial partitioning,
Method 3: Spatial partitioning with inverse variance weights, Method 4: Spatial partitioning with expo-
nential weights. From left to right the sample size is n = 1000, 4500, 10000.

N = 1000 4500 10000
Benchmark 0.93 0.96 0.95

m = 10 Method 1 0.96 0.95 0.92

Method 2 0.95 0.95 0.95

Method 3 0.99 0.98 0.99

Method 4 0.99 0.96 0.98

m ≈ 3
√
n Method 1 0.96 0.93 0.93

Method 2 0.95 0.98 0.99

Method 3 0.99 0.99 1.00

Method 4 0.99 0.97 1.00

m = n
100 Method 1 0.96 1.00 1.00

Method 2 0.95 1.00 1.00

Method 3 0.99 0.98 0.57

Method 4 0.99 0.98 1.00

Table 5.3: Frequencies that θ0 is inside of the credible ball for the squared exponential Gaussian process
prior in a non-adaptive setting at given points x ∈ {0.5, 0.41148, 0.31143}. Benchmark: Non-distributed
method. Method 1: Random partitioning, Method 2: Spatial partitioning, Method 3: Spatial partitioning
with inverse variance weights, Method 4: Spatial partitioning with exponential weights. From left to right
the sample size is n = 1000, 4500, 10000.

linearly with the quantity of data available, the posterior means of the distributed
methods concentrates at a sub-optimal rate. On the other hand, we can notice on
Table 5.1b that the radius of the L2 credible ball for every methods is bigger than the
L2 distance between the posterior mean and the true function on average. Further-
more, Tables 5.2 and 5.3 corroborate this statement by showcasing that the coverage
obtained by distributed methods in a non-adaptive setting is as good as in the non-
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n = 1000 4500 10000

Benchmark 1.9800 sec 16.5773 sec 70.5413 sec

m = 10 Random 1.8536 sec 8.2083 sec 18.3162 sec

Spatial 1.8900 sec 8.1137 sec 18.3614 sec

m ≈ 3
√
n Random 1.8536 sec 8.8279 sec 18.1707 sec

Spatial 1.8900 sec 8.6763 sec 18.5524 sec

m = n
100 Random 1.8536 sec 8.5768 sec 18.5996 sec

Spatial 1.8900 sec 8.3238 sec 18.4250 sec

Table 5.4: Average running time for the computation of the posterior for θ0 for the squared exponential
Gaussian process prior in a non-adaptive setting. Benchmark: Non-distributed method. Method 1: Ran-
dom partitioning, Method 2: Spatial partitioning. From left to right the sample size is n = 1000, 4500, 10000

distributed case. It is also noted that Method 2 and 4 may lead to better point-wise
coverage than using a non-distributed regression method. This may be due to the ca-
pacity of spatially distributed regression to capture localized properties of the ”truth”.

Figure 5.2: Adaptive posterior density for the function θ0 (drawn in black) on x ∈ [0, 1]. The posterior
means are drawn by solid line, while the 95% point-wise credible sets are shaded between two dotted lines.
In the first column, we plot the non-distributed method, in the second column the distributed method with
random partitioning, the third column the distributed method with spatial partitioning, while in the fourth
and fifth column we plot the distributed method with spatial partitioning with inverse variance weights
and exponential weights respectively. From top to bottom the sample size is n = 1000, 5000, 10000 and the
number of experts is m = 10, 15, 20.

Although the last-mentioned empirical results draw an optimistic picture of dis-
tributed methods, these results are only valid when the exact smoothness β of the
function θ0 is known in advance. In real life applications, this might not be realistic
and the smoothness is generally learned before doing any inference on the true func-
tion. One can for example estimate the Gaussian process prior parameter from the
data using a frequentist technique. We will be using the maximum marginal likeli-
hood estimator (MMLE) in the present study. Despite exhibiting reasonably good
contraction rates, the Gaussian process with squared exponential kernel where the
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n = 1000 4500 10000

BM 32.1979 20.2424 16.0613

m = 10 M 1 43.3699 34.1139 18.4541

M 2 41.1122 22.3420 15.6854

M 3 46.9816 41.1088 33.6787

M 4 36.6261 21.9179 15.9172

m ≈ n1/3 M 1 43.3699 38.6536 36.6079

M 2 41.1122 24.2863 17.9899

M 3 46.9816 44.6756 43.7188

M 4 36.6261 22.5384 15.6955

m = n
100 M 1 43.3699 45.1984 46.0332

M 2 41.1122 33.8245 32.4338

M 3 46.9816 47.9000 48.2887

M 4 36.6261 27.5078 26.9132

(a) Average L2 distance between θ0 and the posterior mean for
the squared exponential Gaussian process prior in an adaptive
setting.

1000 4500 10000

46.6420 27.5647 20.4758

40.9491 21.6266 17.2895

62.1316 39.4716 33.1512

23.6971 17.5376 18.1167

42.4518 30.6414 27.0113

40.9491 19.4399 14.3160

62.1316 43.3218 38.5396

23.6971 15.0748 15.0664

42.4518 32.0551 28.8076

40.9491 26.2542 27.0996

62.1316 55.1480 46.9959

23.6971 11.1716 16.3951

42.4518 37.2899 38.5320

(b) Average L2 credible ball radius for
the squared exponential Gaussian process
prior in an adaptive setting.

Table 5.5: BM: Benchmark, Non-distributed method. M 1: Random partitioning, M 2: Spatial parti-
tioning, M 3: Spatial partitioning with inverse variance weights, M 4: Spatial partitioning with exponential
weights. From left to right the sample size is n = 1000, 4500, 10000.

x = 0.5 x = 0.41148 x = 0.31143
n = 1000 4500 10000 1000 4500 10000 1000 4500 10000

Benchmark 0.96 0.97 0.96 0.79 0.89 0.96 0.14 0.04 0.01

m = 10 Method 1 0.61 0.68 0.89 0.34 0.51 0.79 0.11 0.02 0.00

Method 2 0.84 0.96 0.93 0.77 0.90 0.98 0.47 0.65 0.42

Method 3 0.00 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00

Method 4 0.62 0.74 0.83 0.59 0.85 0.96 0.21 0.34 0.24

m ≈ 3
√
n Method 1 0.61 0.48 0.23 0.34 0.12 0.03 0.11 0.00 0.00

Method 2 0.84 0.91 0.94 0.77 0.92 0.95 0.47 0.63 0.67

Method 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Method 4 0.62 0.73 0.84 0.59 0.83 0.95 0.21 0.17 0.36

m = n
100 Method 1 0.61 0.09 0.11 0.34 0.06 0.05 0.11 0.03 0.02

Method 2 0.84 0.64 0.73 0.77 0.75 0.79 0.47 0.72 0.92

Method 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Method 4 0.62 0.43 0.54 0.59 0.72 0.64 0.21 0.32 0.32

Table 5.6: Frequencies that θ0(x) is inside of the corresponding credible interval for the squared exponen-
tial Gaussian process prior in an adaptive setting at given points x ∈ {0.5, 0.41148, 0.31143}. Benchmark:
Non-distributed method. Method 1: Random partitioning, Method 2: Spatial partitioning, Method 3: Spa-
tial partitioning with inverse variance weights, Method 4: Spatial partitioning with exponential weights.
From left to right the sample size is n = 1000, 4500, 10000.

rescaling parameter is estimated using the MMLE is known to provide unreliable un-
certainty coverage since the credible sets based thereon fail to cover the true function,
see Chapter 2. We will witness this pattern in the following results, in particular in
Table 2.7.

In Figure 5.2, one can observe that as soon as one considers adaptation, the
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N = 1000 4500 10000
Benchmark 0.87 0.79 0.60

m = 10 Method 1 0.33 0.30 0.38

Method 2 0.98 0.99 0.99

Method 3 0.09 0.00 0.02

Method 4 0.72 0.88 0.93

m ≈ 3
√
n Method 1 0.33 0.05 0.01

Method 2 0.98 0.98 1.00

Method 3 0.09 0.00 0.02

Method 4 0.72 0.90 0.98

m = n
100 Method 1 0.33 0.13 0.15

Method 2 0.98 1.00 1.00

Method 3 0.09 0.00 0.09

Method 4 0.72 0.95 0.99

Table 5.7: Frequencies that θ0 is inside of the credible ball for the squared exponential Gaussian process
prior in an adaptive setting at given points x ∈ {0.5, 0.41148, 0.31143}. Benchmark: Non-distributed
method. Method 1: Random partitioning, Method 2: Spatial partitioning, Method 3: Spatial partitioning
with inverse variance weights, Method 4: Spatial partitioning with exponential weights. From left to right
the sample size is n = 1000, 4500, 10000.

n = 1000 4500 10000

Benchmark 8.0086 sec 3.40244 min 23.81 min

m = 10 Random 3.7013 sec 20.6797 sec 79.5956 sec

Spatial 3.6724 sec 21.5390 sec 81.8753 sec

m ≈ 3
√
n Random 3.7013 sec 17.5368 sec 49.5480 sec

Spatial 3.6724 sec 16.36173 sec 49.1387 sec

m = n
100 Random 3.7013 sec 16.4724 sec 29.9921 sec

Spatial 3.6724 sec 15.0549 sec 32.0985 sec

Table 5.8: Average running time for the computation of the posterior for θ0 for the squared exponential
Gaussian process prior in an adaptive setting. Benchmark: Non-distributed method. From left to right
the sample size is n = 1000, 4500, 10000

distributed methods do not behave similarly any longer. Indeed, the way the data
is partitioned influences how well the true function can be recovered with the global
posteriors. For instance, if we randomly partition the data across the machines and
the draw local Bayesian inference using local empirical Bayes estimates, the global
posterior will not contract optimally around the true function. This phenomenon
has already been studied theoretically in (Szabó and van Zanten, 2019) in the signal-
in-white-noise model. Using spatial partitioning could seem more sensible since each
machine could adapt to the smoothness locally on a smaller region. This method does
result in a global posterior which behaves similarly to the non-distributed method, and
yet the discontinuities it inherently produces make it unattractive to practitioners.
Fortunately, putting appropriate weights on each draw of the local posteriors, namely
ωk(x) = W (x)wk(x), where wk(x) = e−m

2(x−ck)2/σ2
k(x) with ck being the center of

the local data region andW (x) =
(∑m

j=1 wk(x)
)−1

, alleviate the issue of the ”jumps”
at the border of the different partitioning regions while preserving the optimal recovery
property of the method.

135
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Tables 5.5a, 5.5b, 5.6 and 5.7 support the conclusion drawn from Figures 5.2.
They illustrate that if one wants to adapt the priors to the smoothness locally be-
fore computing the global posterior, then the distributed method of choice influences
greatly the performance of the corresponding posterior. Some methods (Methods
1 and 3) result in very poor performances, which can be exacerbated if the number
of experts increases with the data. Considering this dysfunction, it may seem that
distributed adaptation sometimes leads to a global posterior behaving as bad as the
worst local posterior in terms of contraction around the true function and credible
set coverage. On the other hand, the other methods (Methods 2 and 4) exhibit
promising results when that m ≲ 3

√
n. Not only are the rates at which the posterior

means approach the true function for those methods on par with their non-distributed
counterpart, both the point-wise and the L2 coverage are sometimes slightly improved
due to the localized aspect of the former methods. Moreover, we can notice that the
coverage is still good even when the number of machines increases linearly with n,
which indicates that even when the methods do not achieve optimal recovery, the
global posterior does not concentrate too much around the global posterior mean. It
should be taken into account that these results are nonetheless only numerical.

While Table 5.4 highlighted the gain in computation times distributed methods
offer when the smoothness of the true function is correctly assumed, Table 5.8 em-
phasizes that this gain is considerable in an adaptive setting. As a matter of fact, the
computation of the MMLE is also heavily influenced by the size of the data which
explains why the computation of distributed methods takes much less time than the
computation of the classical posterior.

Overall, most methods are of interest, especially when the smoothness is assumed
to be known, although some of them perform sub-optimally in the adaptive setting.
It seems that spatial partitioning with exponentially decreasing weights is the method
that generates a global posterior closest to the long-established conventional posterior
when the number of experts increase reasonably fast.

§5.2.2 Airline Delays (USA Flight)

Next, we will compare the performance of our different distributive method on a large-
scale data set: flight arrival and departure times for every commercial flight in the
USA from January 2008 to April 2008. This data set covers more than 5 million flights
and contains exhaustive information about the flights, including delays at arrival (in
minutes). The average delay in first the quarter of 2008 was about 30 minutes, but
one may be interested in estimating this delay more accurately thanks to wealth of
data available. However, the usual non-parametric Bayesian regression is discouraged
due to the mere size of the data set

This data set has already been studied before by (Hensman et al., 2013), (Gal
et al., 2014), (Ng and Deisenroth, 2014) and (Ng and Deisenroth, 2015) using var-
ious methods to speed-up the regression. (Hensman et al., 2013) used Stochastic
Variational inference (SVI) with inducing points, whereas (Ng and Deisenroth, 2015)
compared different distributed methods with random partitioning, among which their
robust Bayesian Committee Machine (rBCM) performed the best. We decided to fol-
low the same procedure described in those articles; in order to predict the delay at
arrival we select P = 70K, 2M and 5M data points to train our models and 100, 000
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P = 70K 2M 5M
CT RMSE SE CT RMSE SE CT RMSE SE

SVI − 33.0 − − − − − − −
rBCM 13 s 27.1 < 0.3 39 s 34.4 < 0.3 90 s 35.5 < 0.3

M 1 24.2 m 29.1 0.52 35.4 m 34.8 0.49 41.3 m 41.5 0.5

M 2 22.5 m 25.0 0.12 31.1 m 27.1 0.14 39.9 m 30.2 0.17

M 3 24.6 m 33.4 0.35 35.0 m 40.4 0.29 40.8 m 45.1 0.28

M 4 23.7 m 26.6 0.15 35.5 m 31.5 0.14 42.1 m 31.8 0.15

Table 5.9: US Flight Data Set. Performance of different method in terms of computation time (CT), root-
mean-square error (RMSE) and standard error (SE). SVI and rBCM results are reported from (Hensman
et al., 2013) and (Ng and Deisenroth, 2015) respectively. Best and worse performance by training size
are highlighted in blue and red, respectively. M 1: Random partitioning, M 2: Spatial partitioning, M 3:
Spatial partitioning with inverse variance weights, M 4: Spatial partitioning with exponential weights.

other data points to test them. The dependent variable is of dimension 8 and encom-
pass: the age of the aircraft (number of years since deployment), distance between
the two airports (in miles), airtime (in minutes), departure time, arrival time, month,
day of the week and day of the month. We conducted 10 experiments with 256, 512
and 1024 machines respectively. The computation times, the root-mean-square errors
and the standard errors (i.e. root of the mean of the squares of the deviations within
the training set) of the different methods are all reported in Table 5.9, along with the
reported performance of the SVI and the rBCM. All the simulation have been made
on a single workstation using an Intel Core i7-8700 CPU operating at 3.40 GHz and
16 GB of RAM using sequential computation of the different local GP posteriors (i.e.
all the local posteriors have been computed and stored on the same station).

On the table, one can observe a decrease in performances with the number of train-
ing data which has already been reported in Ng and Deisenroth (2015). Nonetheless,
it is also noticeable that partitioning randomly the data across machines leads to
similar RMSE as the one obtaining by an rBCM, which is not surprising. It is notice-
able that the spatial partitioning consistently outperforms all the other GP methods.
Nonetheless, we should remind the reader that despite those performance, the result-
ing global posterior contains multiple discontinuity regions. The table draws however
a dark picture on the prediction of weighting the local posterior with inverse variance
after a spatial partitioning of the data. Luckily, this can be compensated by expo-
nential weights which largely improve the prediction. Indeed, Method 4 achieves
consistently better RMSE than other reported methods in the literature while still
providing a global posterior with continuous draws.
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Yoo, W. W. and Ghosal, S. (2016). Supremum norm posterior contraction and credible
sets for nonparametric multivariate regression. Ann. Statist., 44(3):1069–1102.

145



Bibliography

146



Summary

Summary

This thesis investigates the frequentist properties of Bayesian procedures, specifically
the use of Gaussian process priors in Bayesian nonparametric statistics. Typically,
in Bayesian statistics, there is no fixed unique parameter of our model, but rather a
realization of a random variable which will act as a parameter. To this end, an prior
distribution on the parameters is assumed. After observing the data, this leads to a
posteriori distribution on the parameters, which is used to compute estimates of the
parameters. Although this paradigm differs significantly from frequentist statistics, it
is still interesting to see how the posterior distribution behaves as a random measure
which depends on the “true” parameter.

One, very appealing advantage of the Bayesian framework is that it readily pro-
vides built-in uncertainty quantification. Indeed, since it is possible to sample from
the posterior, the construction of credible sets containing a fraction of the posterior
mass is relatively simple. In Chapter 2, we study the coverage of those credible sets
resulting in from Gaussian process priors with squared exponential covariance kernel.
As the sample paths of the process are infinitely smooth, the common practice is to
rescale it in order to recover the underlying functional parameter. The optimal scal-
ing depends on the smoothness of this parameter, which is generally unknown. The
scaling hyper-parameter is thus generally learnt from the data using either hierarchi-
cal Bayes or Empirical Bayes techniques. Unfortunately, both methods initially lead
to overconfident, unreliable uncertainty statements for a large class of parameters in
the context of the Gaussian white noise model. However, blowing up the credible
sets with a logarithmic factor or modifying the estimated hyper-parameter with a
logarithmic term can get good frequentist coverage while maintaining a reasonable
adaptive size.

The following chapters focus on the scalability of Bayesian methods in the context
of Gaussian process nonparametric regression. Coming from the Bayesian paradigm,
Gaussian process regression allows to make probabilistic statements the regression
function based on the data. Moreover, when the noise in the model is Gaussian, it
is possible to make use of conjugacy to obtain a closed form solution for the pos-
terior distribution of the regression function. Nonetheless, this model is extremely
greedy as its computational complexity scales cubicly with the number of observa-
tions. Distributed methods allow to divide the data across different machines which
will all perform a local Bayesian nonparametric regression. The local solutions will
then be collected by a global machine and aggregated into a global distribution for
the regression function.

The naive approach is to simply perform a Gaussian process nonparametric re-
gression with a random subset of the data in each machine and average all the local
distributions into a global one. This approach quickly shows its frequentist limits as
the convergence rate of the posterior will depends on the number of machines. Other
methods are possible: down-scaling the prior locally and then averaging the results,
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or up-scaling the likelihood and find the Wasserstein-barycenter of the resulting local
distributions for instance. If the smoothness parameter of the Gaussian process prior
matches the true regularity of the regression function, then both methods lead to
near-optimal recovery and good uncertainty quantification, provided the number of
machines does not increase too fast compared to the number of observations.

Another approach would be to partition the design space of the regression such
that each machine performs a regression on one of the non-overlapping resulting sub-
regions. Though the final posterior distribution contains discontinuities at the borders
of each partitions, it will contract optimally to the “true” regression function when the
rescaling hyper-parameter of the prior is well chosen. Furthermore, this approach can
also lead to adaptive optimal contraction rates. Even when the “true” regularity is
unknown, it is possible to learn the hyper-parameter using a hierarchical framework.
This will also lead to optimal recovery of the regression function.

This approach can be seen as an aggregation of the posterior samples obtained by
the different machines combined with weight functions. Indeed, the weight functions
would be indicator functions of a sub-region of the design space. The discontinuities
of the latter are then the result of the discontinuities of the weights. A thorough
simulation study suggests that by choosing appropriate, data-driven weights, it is
possible to achieve adaptive near-optimal recovery and coverage of the underlying
regression function.

148



Samenvatting

Samenvatting

Dit proefschrift onderzoekt de frequentistische eigenschappen van Bayesiaanse proce-
dures, met name het gebruik van Gauss-proces als a-priori -verdeling in Bayesiaanse
niet-parametrische statistiek. In Bayesiaanse statistiek is er typisch geen vaste unieke
parameter van het model, maar eerder een realisatie van een stochastische variabele
die als parameter zal fungeren. Daartoe wordt een a-priori -verdeling op de parame-
ters aangenomen. Na waarneming van de data leidt dit tot een a-posteriori -verdeling
op de parameters, welke gebruikt wordt om tot een schatting van de parameters te
komen. Hoewel dit paradigma aanzienlijk verschilt van de frequentistische statistiek,
is het toch interessant om te zien hoe de a-posteriori -verdeling zich gedraagt als een
willekeurige maat die afhangt van de ”ware” parameter.

Een zeer aantrekkelijk voordeel van het Bayesiaanse framework is dat het gemakke-
lijk ingebouwde kwantificering van onzekerheid biedt. Aangezien het mogelijk is een
steekproef te nemen uit de a-posteriori -verdeling, is de constructie van geloofwaardig-
heidsgebieden die een fractie van de a-posteriori -verdelingsmassa bevatten relatief
eenvoudig. In hoofdstuk 2 bestuderen we de dekking van die geloofwaardigheidsgebied
die het resultaat zijn van Gauss-proces als a-priori -verdelingen met gekwadrateerde
exponentiële covariance kernel. Omdat de steekproefpaden van het proces oneindig
glad zijn, bestaat de gangbare praktijk erin de schaal te wijzigen om de onderliggende
functionele parameter terug te vinden. De optimale schaling hangt af van de gladheid
van deze parameter, die meestal onbekend is. De hyperparameter voor de schaling
wordt dus meestal uit de gegevens geleerd met behulp van hierarchical Bayes of Em-
pirical Bayes technieken. Helaas leiden beide methoden aanvankelijk tot overmoedige,
onbetrouwbare onzekerheidsuitspraken voor een grote klasse parameters in de context
van het Gaussian white noise model. Door echter de geloofwaardigheidsgebieden op
te blazen met een logaritmische factor of de geschatte hyperparameter aan te passen
met een logaritmische term kan een goede frequentistische dekking worden verkregen
met behoud van een redelijke adaptieve grootte.

De volgende hoofdstukken richten zich op de schaalbaarheid van Bayesiaanse me-
thoden in de context van niet-parametrische regressie op basis van Gauss-proceses.
Vanuit het Bayesiaanse paradigma maakt Gauss-procesregressie het mogelijk proba-
bilistische uitspraken te doen over de regressiefunctie op basis van de gegevens. Wan-
neer de ruis in het model Gaussisch is, is het bovendien mogelijk gebruik te maken
van conjugatie om een relatief eenvoudig formule voor de a-posteriori-verdeling van
de regressiefunctie. Dit model is echter zeer inhalig, want de rekencomplexiteit ervan
schaalt kubiek met het aantal waarnemingen. Gedistribueerde methoden maken het
mogelijk de gegevens te verdelen over verschillende machines die allemaal een lokale
Bayesiaanse niet-parametrische regressie uitvoeren. De lokale oplossingen worden dan
door een globale machine verzameld en samengevoegd tot een globale verdeling van
de regressiefunctie.

De näıeve aanpak bestaat erin gewoon een niet-parametrische Gaussische regressie
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uit te voeren met een willekeurige subset van de gegevens in elke machine en het
gemiddelde van alle lokale verdelingen te nemen als globale verdeling. Deze aanpak
toont al snel zijn frequentistische grenzen, doordat de convergentiesnelheid van de
a-posteriori -verdeling afhangt van het aantal machines. Andere methoden zijn mo-
gelijk: de a-priori -verdeling lokaal omlaag schalen en dan de resultaten middelen,
of de aannemelijkheid omhoog schalen en bijvoorbeeld het Wasserstein-barycentrum
van de resulterende lokale verdelingen vinden. Indien de gladheidsparameter van de
prior van het Gaussische proces overeenkomt met de werkelijke regelmaat van de
regressiefunctie, dan leiden beide methoden tot een bijna optimaal terugvinding en
een goede kwantificering van de onzekerheid, mits het aantal machines niet te snel
toeneemt ten opzichte van het aantal waarnemingen.

Een andere aanpak zou zijn om de ontwerpruimte van de regressie zodanig te par-
titioneren dat elke machine een regressie uitvoert op een van niet-overlappende resul-
terende subgebieden. Hoewel de uiteindelijke a-posteriori -verdeling discontinüıteiten
bevat aan de grenzen van elke partitie, zal die optimaal samentrekken tot de ”ware”
regressiefunctie wanneer de herschalingshyperparameter van de prior goed gekozen is.
Bovendien kan deze aanpak ook leiden tot adaptieve optimale contractiesnelheden.
Zelfs wanneer de ”ware” regelmaat onbekend is, is het mogelijk de hyperparameter
te leren met behulp van een hiërarchisch framework. Ook dit leidt tot een optimaal
herstel van de regressiefunctie.

Deze aanpak kan worden gezien als een aggregatie van de proefsteken van de a-
posteriori -verdeling verkregen door de verschillende machines in combinatie gewichts-
functies. De gewichtsfuncties zouden immers indicatorfuncties zijn van een subregio
van de ontwerpruimte. De discontinüıteiten van deze laatste zijn dan het gevolg van
de discontinüıteiten van de gewichten. Uit een grondige simulatiestudie blijkt dat
het mogelijk is om door het kiezen van passende, gegevensgestuurde gewichten een
adaptief bijna-optimaal herstel en dekking van de onderliggende regressiefunctie te
bereiken.
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