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Abstract
To study radiotherapy-related adverse effects, detailed dose information (3D distribution) is
needed for accurate dose-effect modeling. For childhood cancer survivors who underwent
radiotherapy in the pre-CT era, only 2D radiographs were acquired, thus 3D dose distributions
must be reconstructed from limited information. State-of-the-art methods achieve this by using 3D
surrogate anatomies. These can however lack personalization and lead to coarse reconstructions.
We present and validate a surrogate-free dose reconstruction method based on Machine Learning
(ML). Abdominal planning CTs (n= 142) of recently-treated childhood cancer patients were
gathered, their organs at risk were segmented, and 300 artificial Wilms’ tumor plans were sampled
automatically. Each artificial plan was automatically emulated on the 142 CTs, resulting in 42,600
3D dose distributions from which dose-volume metrics were derived. Anatomical features were
extracted from digitally reconstructed radiographs simulated from the CTs to resemble historical
radiographs. Further, patient and radiotherapy plan features typically available from historical
treatment records were collected. An evolutionary ML algorithm was then used to link features to
dose-volume metrics. Besides 5-fold cross validation, a further evaluation was done on an
independent dataset of five CTs each associated with two clinical plans. Cross-validation resulted in
mean absolute errors≤ 0.6 Gy for organs completely inside or outside the field. For organs
positioned at the edge of the field, mean absolute errors≤ 1.7 Gy for Dmean,≤ 2.9 Gy for D2cc, and
≤ 13% for V5 Gy and V10 Gy, were obtained, without systematic bias. Similar results were found for
the independent dataset. To conclude, we proposed a novel organ dose reconstruction method that
uses ML models to predict dose-volume metric values given patient and plan features. Our
approach is not only accurate, but also efficient, as the setup of a surrogate is no longer needed.

1. Introduction

Patients undergoing radiotherapy (RT) are prone to develop radiation-related Adverse Effects (AEs)
(Birgisson et al 2005, van Dijk et al 2010, Cheung et al 2017). To improve the design of future multi-modality
treatments, clinicians are interested in better understanding the relationship between radiation dose and
onset of AEs. Modern research efforts in this direction delve into dosimetric details, employing dose
distribution metrics to a specific organ (or sub-volume) as explanatory variables. Such rich information is
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obtained by simulating the RT plan on 3D imaging of the patient (i.e. CT scans) with organ segmentations in
a Treatment Planning System (TPS) (Donovan et al 2007, Feng et al 2007, Bölling et al 2011).

Unfortunately, when so-called late AEs (onset can be decades after RT) need to be studied, it is not always
possible to straightforwardly obtain detailed information on dose distributions (Birgisson et al 2005). For
patients who underwent RT before the use of planning CTs became commonplace (in the following,
historical patients), 2D radiographs were used for treatment planning (e.g. this was the case until the 1990s in
the Netherlands (van Dijk et al 2010)), meaning no 3D anatomical imaging is available. Consequently, no
simulations can be performed in a TPS to estimate 3D dose distributions for these patients (Stovall et al
2006, Verellen et al 2008, Ng et al 2012). The information available for historical patients normally consists of
what was reported in treatment records, e.g. features of the patient such as age and gender, and features of the
plan such as prescribed dose, geometry of the plan, and the use of blocks. Additionally, 2D radiographs can
be available, from which information can be gathered on the internal anatomy (mainly bony anatomy, as
internal organs are normally not clearly distinguishable), and on the plan configuration with respect to the
patient’s anatomy (Leisenring et al 2009, van Dijk et al 2010).

To improve the understanding of late AEs, recent research is striving to develop increasingly accurate dose
reconstructionmethods, i.e. methods to estimate the 3D dose distribution received by historical patients
(Stovall et al 2006, Ng et al 2012, Xu 2014, Lee et al 2015). State-of-the-art approaches employ phantoms, i.e.
3D surrogates of the human anatomy upon which the RT plan can be simulated, to compute the dose
distribution. Phantoms exist in different forms: physical or virtual, made by simple geometrical shapes or by
adopting and morphing actual CT scans and organ segmentations (Stovall et al 2006, Xu 2014, Lee et al
2015). Generally, phantoms are built to represent average anatomies, for categories of patients (e.g. for a
certain age range), and are collected into so-called phantom libraries (Cassola et al 2011, Segars et al 2013,
Geyer et al 2014). Whenever dose reconstruction for a historical patient is needed, the phantom that
represents the category that the patient belongs to is retrieved from the library and used as surrogate for
simulation of the RT plan.

As the largest source of error related to phantom-based dose reconstruction comes from the mismatch
between the anatomy of the phantom and the true anatomy of the patient (Bezin et al 2017), it is important to
define the best way to match phantoms to patients. This issue is still under research, and different approaches
employ different heuristic matching criteria that are normally hand-crafted and based upon statistics and
guidelines drawn from large population studies (e.g. ICRP89, NANTHES) (Valentin 2002, Cassola et al 2011,
Segars et al 2013, Geyer et al 2014). However, the use of heuristic matching criteria has been hypothesized to
be too simplistic to capture the high variability of internal human anatomy (de la Grandmaison et al 2001,
Geyer et al 2014, Xu 2014, Virgolin et al 2018b, Wang et al 2019). For example, a popular phantom-based
dose reconstruction approach uses solely age and gender for surrogate matching (Howell et al 2019). Our
group’s recent work focusing on Wilms’ tumor (the most common type of kidney cancer for childhood
cancer patients) irradiation for pediatric patients showed that utilizing surrogate CTs using age- and
gender-based matching can lead to poor dose reconstruction quality in individual cases (Wang et al 2018).

To improve the resemblance of a surrogate phantom, there have been efforts to replace the normally
hand-crafted heuristic matching criteria with data-driven decisions. For example, statistical models inferred
from CTs and 3D organ segmentations of adult patients have been used to drive a deformable image
registration procedure that adapted 3D organ segmentations to the 2D anatomy of a specific patient, given
features of the latter as measurable from 2D radiographs (Ng et al 2012, Mishra et al 2013). Using a
state-of-the-art Machine Learning (ML) algorithm, it has been shown that features typically available for
historical patients treated for Wilms’ tumor can be linked to different 3D anatomy similarity metrics based
on organ segmentations and CTs (Virgolin et al 2018b). Our group recently proposed an automatic pipeline
that uses ML to steer the assembling of a new original anatomy based on 3D CTs and organ segmentations of
multiple patients using the features of a historical patient (Virgolin et al 2019, Virgolin et al 2020b).
However, it is important to realize that maximizing some form of overall anatomical resemblance is difficult.
Moreover, from the standpoint of optimizing dose reconstruction accuracy, it can be considered sub-optimal
for RT dosimetry purposes. This is because in RT dosimetry, what part of anatomy is most meaningful
largely depends on the particular RT plan (Wang et al 2019).

Highly-individualized phantoms, it is important to realize that, from the standpoint of optimizing dose
reconstruction accuracy, maximizing some form of overall anatomical resemblance can be considered
sub-optimal.

To the best of our knowledge, although both patient anatomy and plan geometry play a key role in
determining dose-volume metrics for Organs At Risk (OARs), existing dose reconstruction approaches
focused solely on patient anatomy information, to obtain a representative surrogate. Plan information is
used only later, to calculate the dose on the surrogate. The purpose of this article is to develop and validate an
ML approach to predict dose-volume metrics for OARs based on patient anatomy and plan geometry
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information. Specifically, we propose to use ML to directly learn what dose-volume metrics for an OAR are
likely given information on the patient and on the plan, without the need to select or craft any surrogate
anatomy. We argue that this is a sensible choice because ML can directly be trained upon what ultimately
matters, i.e. dose reconstruction accuracy. Further, we present a method to generate artificial plans
automatically, to obtain sufficient data to train and validate our ML-based dose reconstruction approach. In
addition, we assess whether training ML on artificial plans generalizes to a small set of clinical plans.

2. Materials &Methods

We considered pediatric flank RT, and in particular RT for Wilms’ tumor, as an application for our dose
reconstruction method, in continuity with our previous work. The choice to focus on pediatrics is because
children are the most prone to develop late AEs (Cheung et al 2017), and are typically underrepresented in
existing phantom libraries (Xu 2014). Moreover, more than 85% of pediatric patients survives Wilms’ tumor
five years or longer, but considerable chances of the onset of late AEs remain (van Dijk et al 2010).

2.1. Patient data
To be able to create a ground-truth to learn dose-volume metrics from, CT scans were needed. Hence, a total
of 142 pediatric planning CTs were collected by involving the following institutes (number of CTs in
brackets): Amsterdam University Medical Centers / Emma Children’s Hospital (n= 38), University Medical
Center Utrecht / Princess Máxima Center for Pediatric Oncology (n= 42), The Christie NHS Foundation
Trust (n= 33), Princess Margaret Cancer Centre (n= 18), and Institute of Oncology Ljubljana (n= 11). Five
further CTs were collected from the Amsterdam University Medical Centers and kept aside to be used
exclusively for an additional assessment (section 2.5).

The inclusion criteria were: patient age at scan acquisition between 1 to 8 years; the CT field of view
including a common abdominal region from the tenth thoracic (T10) vertebral body to the first sacral (S1)
vertebral body; presence of five lumbar vertebrae (rare cases of patients with six exist); patient scanned in
supine position; quality of CT sufficient to perform organ segmentations. The patients underwent RT
between 2002 and 2018, mostly but not exclusively for abdominal cancers. The median CT slice resolution
was 0.94× 0.94 mm, the median slice thickness was 3 mm.

As we focused on Wilms’ tumor treatment, four OARs were considered: the liver, the spleen, the
contralateral kidney (left or right, depending on the side of the tumor), and the spinal cord (between T10
and S1). We prepared the OAR segmentation in all CTs (n= 142+ 5) by either manual or automatic
segmentation, followed by potential adaptation and approval by two clinical experts (I.W.E.M. van Dijk and
B.V. Balgobind). Some patients did not have both kidneys intact, due to nephrectomy prior to RT. The
number of CTs that had only a complete right kidney, only a complete left kidney, and two complete kidneys
were 36, 40, and 71, respectively.

2.2. Automatic generation of artificial Wilms’ tumor plans
A method to automatically generate historical-like abdominal flank irradiation plans (i.e. artificial plans) for
Wilms’ tumor treatment based on information visible on 2D radiographs was created, in order to obtain
large plan variations.

Figures 1(a) and (c) illustrate examples of actual historical plans on respective historical radiographs. As
can be observed, a typical historical flank irradiation field is a rectangular area, with possible shielding
blocks, that is located on the right or on the left flank. Irradiation is done by beams from anterior-posterior
(AP) and posterior-anterior (PA) direction. Along right-left (RL), one field border is located at the edge of
the patient’s body contour, while the other is located as to include the vertebral column (van den
Heuvel-Eibrink et al 2017). In some cases, blocks are placed to protect OARs from irradiation (figure 1(c)).
In historical plans the isocenter is positioned in the center of the treatment field that is projected on the
coronal plane (figure 1) and at the middle of the patient’s AP abdominal diameter.

To generate artificial plans, two reference digitally reconstructed radiographs (DRRs) were considered,
randomly selected from the data. One DRR was derived from a CT of a 5-year old female patient without
nephrectomy (ref 1 in figure 2), and the other was derived from a CT of a 4-year old female patient with
nephrectomy of the left kidney (ref 2 in figure 2). Upon these two DRRs, boundaries defining the extent of
variation for clinically reasonable fields were identified by an experienced pediatric radiation oncologist (B.
V. Balgobind) Note that historical clinical guidelines are slightly different from current ones (e.g. currently
the iliac crests should be safeguarded, unlike in figure 1(c)). Figure 2 shows two examples of landmark
locations identifying possible plan variations, on the two reference DRRs. Specifically, given the boundaries
of possible isocenter positions and field borders, plans with a rectangular field were generated by sampling
uniformly within those boundaries.
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Figure 1. (a) An actual hand-drawn plan on a historical radiograph with a rectangular field (indicated by white corners). (b) An
artificial plan with a rectangular field (in white lines) plotted on the DRR of a recent patient. (c) An actual hand-drawn plan on a
historical radiograph with a rectangular field (in white bars) and an additional block (outlined by dashed yellow lines) to spare
part of the liver. (d) An artificial plan plotted on the DRR of a recent patient with a rectangular field (in white bars) and an
additional block (obtained by multi-leaf collimators, outlined by yellow lines) to spare part of the liver. For each plot, the
isocenter is indicated by a red dot in the middle of the field.

For each plan generated, an additional version of that plan including one block was generated as well. A
block was simulated as the area in the upper lateral corner enclosed by the border of the rectangular field and
a line crossing two randomly sampled endpoints. The endpoints were sampled from two regions roughly
covering the start and end points of rib 9 and rib 12 on the DRRs (regions indicated by the green boxes in
figure 2). This way, a sampled block covered part of the liver (in right-sided plans) or part of the spleen (in
left-sided plans). All plans consisted of two opposing and symmetrical beams in AP-PA directions irradiating
one side of the abdominal flank. Figures 1(b) and (d) illustrate two examples of sampled artificial plans
(without or with a block) on respective DRRs.

A total of 300 artificial plans were generated automatically, of which 150 without a block, and 150 with a
block. The random sampling of the plan side led to 142 left-sided plans and 158 right-sided plans. The same
set of plan features used in our previous work was considered to generate plans in DICOM RTPLAN format
(e.g. gantry and collimator angles, isocenter location, field sizes) (Wang et al 2020).
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Figure 2. Examples of landmark locations to specify geometry variability of two types of artificial plans (left-sided plans in the left
figure and right-sided plans in the right figure). Ref 1 is the DRR derived from the reference CT of a 5-year-old female patient and
ref 2 is the DRR derived from the reference CT of a 4-year-old female patient. The box around the isocenter (IC) specifies the
range of possible isocenter positions. The vertical position of T1/T2 and of B1/B2 specify the lowest/highest position of the upper
and lower border of the field, respectively. The horizontal positions of R1/R2 and L1/L2 specify the rightmost/leftmost position of
the right and left border of the field, respectively. The isocenter and artificial field border positions were sampled uniformly at
random within the specified ranges. The green boxes indicate the regions where two endpoints of a line representing a block
border can be sampled. This line, together with the upper and left/right field borders, encloses the block.

2.3. Generation of the dataset for ML
Figure 3 summarizes the pipeline used to generate the dataset for ML. Firstly, we emulated each of the 300
artificial plans on each of the 142 CT scans by the automatic plan emulation method proposed in our
previous work (Wang et al 2020), leading to a total of 42,600 emulations. The method automatically transfers
a plan prepared on one CT to another CT (with quality comparable to human experts), using landmark
detection upon the respective DRRs. Secondly, for each of the 42,600 plan emulations, dose-volume metrics
of interest (see section 2.3.1) were collected for the different OARs by use of our automatic dose computation
pipeline (Wang et al 2020). The pipeline used the collapsed cone dose calculation algorithm of Oncentra TPS
(version 4.3, Elekta AB, Stockhom, Sweden). Thirdly, features that are plausible to be available for typical
historical cases were collected from the anatomy of the included CTs as visible in the respective DRRs, from
the artificial plans, and from the relationship between anatomy and plan geometry.

2.3.1. Response variables: dose-volume metrics
To select dose-volume metrics to use as response variables for ML, we considered metrics typically used to
validate state-of-the-art dose reconstruction approaches (Ng et al 2012, Lee et al 2015), and typically found
to be of clinical relevance in studies of AEs in adults (e.g. QUANTEC) (Leisenring et al 2009, Bölling et al
2011, Emami et al 1991). Studies on dose-volume response relationships for pediatric patients (so-called
PENTEC studies (Constine et al 2019)) are currently limited. We considered mean organ dose (Dmean), the
minimum dose received by the maximally exposed 2 cubic centimeters of an OAR (D2cc) (similar but more
robust than the maximum dose to a single point), the percentage of OAR volume receiving at least 5 Gy
(V5 Gy), and the percentage of OAR volume receiving at least 10 Gy (V10 Gy). Regarding D2cc, we included this
metric because peak dose values to a small OAR portion may be relevant to explain late AEs related to OARs
that work in a serial fashion (e.g. the spinal cord).

2.3.2. Explanatory variables: features of patients and plans
To assess what information can be available for historical patients, we considered the Dutch records of the
Emma Children’s Hospital/Academic Medical Center childhood cancer survivor cohort, who underwent RT
between 1966 and 1996 (van Dijk et al 2010). For this cohort, along with historical patient records and
treatment plan details, 2D coronal radiographs were consistently taken, hence providing partial information
on the anatomy.

The complete set of features considered in this work is reported in table 1. Note the absence of height and
weight (which are used by some phantom-based methods (Geyer et al 2014)). For 12% of the patients, height
and/or weight data were missing and preliminary experiments using automatic imputation methods showed
no benefit in including them.
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Figure 3. Pipeline for data generation. Artificial plans are sampled automatically. The explanatory and response variables are used
as input to train the ML model. The explanatory variables include features of the plan (e.g. isocenter location, field size), patient
features (e.g. age, nephrectomy), and features on the relationship between the anatomy of the patient and the geometry of the
plan (e.g. signed distance between the 2nd lumbar vertebra and the plan isocenter). The response variables are dose-volume
metrics for each OAR.

For the features related to anatomical geometry, anatomical landmarks from DRRs were detected
automatically using the landmark detection method in our previous work (Wang et al 2020). Note that the
landmarks concerned only bony anatomy because other internal anatomy tissues are not reliably visible in
historical radiographs. Importantly, we normalized features related to measurements of anatomy and
anatomy-plan geometry configuration (e.g. rib-cage width, field sizes, distances between landmarks and the
isocenter) by the width and height of the respective DRR they were measured from (after the DRRs were
cropped to a same region of interest between T10 and S1). This was done because when plans are emulated,
they are scaled based on proportions derived from the landmarks (Wang et al 2018, Wang et al 2020). Since
differences in anatomy solely due to overall anatomy scaling do not result in different dose-volume metric
values, these differences should not be accounted for by the explanatory variables (confirmed in preliminary
experiments).

The abdominal diameter in AP (DiamIC
AP) is the only anatomical feature not measurable from DRRs

generated along AP/PA direction. In historical RT, it was measured using a ruler to determine the isocenter
position along the AP axis, and was subsequently reported in the records. For our cohort, we measured
DiamIC

AP automatically on the CT scans, by using a pre-determined isocenter position of typical abdominal
flank irradiation plans. In particular, the isocenter position along the inferior-superior (IS) axis was set to the
intervertebral disk between the 1st and the 2nd lumbar vertebra (L1 and L2), while the center of mass of the
kidney was used to determine the isocenter position along RL (for CTs including both kidneys, DiamIC

AP was
measured twice and the average was taken).

In our simulations we used for all artificial plans the same fractionation scheme (8× 1.8 Gy), beam
energy (6 MV), and prescribed dose (14.4 Gy at isocenter). These settings are the most common in historical
records, and are still valid in the current Wilms’ tumor RT protocol (van den Heuvel-Eibrink et al 2017).
Moreover, choosing a specific prescribed dose (e.g. 14.4 Gy) does not limit generalizability, since the dose
distribution over the entire anatomy depends linearly on the prescribed dose (i.e. it can be rescaled).

For both fields with and without a block, the features representing field sizes in RL and IS directions
(WField and LField) were set by simply considering the full rectangular area (i.e. irrespective of blocking). For
fields with a block, the slope of the block (note that the block is formed by Multi-Leaf Collimators (MLCs))
and the ratio between the blocked region and non-blocked region of the field (RatioBlock) was computed. In
addition, we considered features that relate to how the plan was configured with respect to the patient’s
anatomy, based on the position of the isocenter and of the bony landmarks. For instance,∆IC

RL(T10
B) links

the bottom of the T10 vertebra to the position of the isocenter in RL direction. Figure 4 shows an example of
the anatomical landmarks and plan geometrical borders used to calculate features describing plan
configuration with respect to the patient’s anatomy.

6



Phys. Med. Biol. 65 (2020) 245021 M Virgolin et al

Table 1. Description of the 33 features considered as explanatory variables for ML.

Feature name Origin Unit Description

Age Records years patient age at CT scanning
ArmsUp DRR yes/no whether the patient had arms in a raised position during scanning
DiamIC

AP Records cm patient AP diameter measured at isocenter
Nephrectomy Records yes/no whether the patient underwent nephrectomy
WRibR DRR cm width (in RL) of right-part of the rib cage (from vertebral column to

location of right-most rib)
WRibL DRR cm width (in RL) of left-part of the rib cage (from vertebral column to

location of left-most rib)
WVC DRR cm average vertebral column width
LVC DRR cm length (in IS) of the vertebral column from T11 to L4
WField Plan cm field width (in RL)
LField Plan cm field length (in IS)
FieldSide Plan right/left whether the plan concerns left-sided or right-sided flank irradiation
InterceptBlock Plan cm distance (in RL) between isocenter and block endpoint of the top field

border
RatioBlock Plan % Area(Block)/Area(Rectangular field), 0 for block-free plans
SlopeBlock Plan – ∆L/∆W of the block (see figure 4); 0 for block-free plans
θC Plan ◦ angle of collimator system with respect to gantry system
∆IC

RL(T10
B) Plan+ DRR cm RL distance between bottom of T10 and isocenter

∆IC
IS (T10

B) Plan+ DRR cm IS distance between bottom of T10 and isocenter
∆IC

RL(T12
R) plan+ DRR cm RL distance between right border of T12 and isocenter

∆IC
IS (T12

R) Plan+ DRR cm IS distance between right border of T12 and isocenter
∆IC

RL(T12
L) Plan+ DRR cm RL distance between left border of T12 and isocenter

∆IC
IS (T12

L) Plan+ DRR cm IS distance between left border of T12 and isocenter
∆IC

RL(L1
B) Plan+ DRR cm RL distance between bottom of L1 and isocenter

∆IC
IS (L1

B) Plan+ DRR cm IS distance between bottom of L1 and isocenter
∆IC

RL(L2
R) Plan+ DRR cm RL distance between right border of L2 and isocenter

∆IC
IS (L2

R) Plan+ DRR cm IS distance between right border of L2 and isocenter
∆IC

RL(L2
L) Plan+ DRR cm RL distance between left border of L2 and isocenter

∆IC
IS (L2

L) Plan+ DRR cm IS distance between left border of L2 and isocenter
∆IC

RL(L4
B) Plan+ DRR cm RL distance between bottom of L4 and isocenter

∆IC
IS (L4

B) Plan+ DRR cm IS distance between bottom of L4 and isocenter
∆IC

RL(Rib
R) Plan+ DRR cm RL distance between location of right-most rib and isocenter

∆IC
IS (Rib

R) Plan+ DRR cm IS distance between location of right-most rib and isocenter
∆IC

RL(Rib
L) Plan+ DRR cm RL distance between location of left-most rib and isocenter

∆IC
IS (Rib

L) Plan+ DRR cm IS distance between location of left-most rib and isocenter

Abbreviations: R (in superscript): right, L (in superscript): left, RL: right-left, AP: anterior-posterior, IS: inferior-superior, IC: isocenter,

VC: vertebral column, W: width, L in LVC and LField : length.

2.3.3. Dataset for supervised learning
Features and dose-volume metrics were finally collected in a dataset. The dataset corresponded to a 2D
matrix, where the rows represented patient-plan combinations, i.e. examples (n= 42, 600), and the columns
represented features (33) and response variables (4 for each OAR).

2.4. Machine learning
In the following sections we describe how ML was performed in terms of training and validation on the
artificial plans. We further introduce the ML algorithms adopted and a control method, and describe the
assessment on clinical plans aimed at evaluating whether artificial plans are good representatives of clinical
plans to train ML models.

2.4.1. Training and evaluation of ML models
Since dose metrics are scalars, we treated the learning problem as a regression problem. We trained a separate
ML model for each combination of dose-volume metric and OAR.

Preliminary analysis showed that right-sided plans and left-sided plans led to markedly different
distributions of possible dose-volume metric values for all OARs except for the spinal cord. Thus, ML models
were set to be composed of two sub-models, each to be trained independently on a particular sub-set of the
data based on plan side (right or left).

The quality of the models was estimated with a 5-fold cross-validation. This means that a random
partition of 1/5th of the total number of patients and plans was held out (test set), and training was
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Figure 4. An example of the beam’s eye view of a plan plotted on a DRR with the landmark locations used to compute the features
concerning plan field configuration on top of the patient’s anatomy. The plot next to the DRR illustrates how the block is
simulated by aligning the center of the leaves with the boundary of the block and how the slope of an MLC-simulated block is
calculated.

performed on the remaining data. Then, the prediction error was measured on the test set. This process was
repeated five times, each time considering a different data partition for the test set. No patient nor plan that
was in the test set was included in the data at training time.

Each training step included hyper-parameter tuning by grid-search with internal 5-fold cross-validation
(upon the training set), as well as feature selection (which resulted in eight features being systematically
discarded, see the supplementary material A (stacks.iop.org/PMB/65/245021/mmedia)). For each
dose-volume metric k ∈ {Dmean,D2cc,V5 Gy,V10 Gy}, the Root Mean Square Error (RMSE) loss was used, i.e.

RMSE(Yk, Ŷk) =

√√√√ 1

ν

ν∑
i=1

(
Yk
i − Ŷk

i

)2
, (1)

where Yk are the ground truth values and Ŷk are the model predictions for the dose-volume metric k, and ν is
the total number of rows in the training set. The RMSE was chosen to regularize ML, i.e. to penalize larger
errors more (Bishop 2006).

To account for the stochastic nature of one of the ML algorithms employed (see section 2.4.2), and the
random partitioning of the data, the 5-fold cross-validation was repeated ten times. The averages and
standard deviations over the 5× 10 validation results (five folds repeated ten times) were considered.

2.4.2. Machine learning algorithms and control method
We considered two ML algorithms. The first one was the ELastic Net (ELN) (Zou and Hastie 2005), a very
popular baseline for regression which combines regularization of the ridge and lasso methods (Hoerl and
Kennard 1970, Tibshirani 1996). The second ML algorithm we considered was the recently introduced
Genetic Programming version of the Gene-pool Optimal Mixing Evolutionary Algorithm (GP-GOMEA), as
it was found to achieve competitive performance on a variety of benchmark problems (including regression
ones (Virgolin et al 2017, Virgolin et al 2020a), as well as in previous work concerning radiotherapy (Virgolin
et al 2018a, Virgolin et al 2019)). Details on the hyper-parameters of ELN and GP-GOMEA and on their
tuning are reported in the supplementary material B.

We further considered a control method inspired by phantom-based dose reconstruction as performed
by Howell et al (2019), where a phantom is chosen as representative surrogate based on age and gender
similarity, and the dose is calculated by emulating the plan on the phantom. In our case, given a test patient,
we selected the CT scan (in the training set) of the patient with most similar age and gender, and considered
the dose volume metrics obtained from automatic plan emulation (section 2.3).

2.5. Assessment of generalization to clinical plans
As aforementioned, the 300 plans used to cross-validate our approach were generated with an automatic
sampling procedure (section 2.2). To assess whether our results on artificial plans can be valid for
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clinically-used plans, we further observed whether errors obtained for an independent set of ten
manually-crafted clinical plans were in line with the errors obtained in the validation of the artificial plans.

To realize the latter step, we trained ML models (as a reminder, one model per OAR - dose-volume metric
combination) on the dataset using the 142 CTs and the 300 artificial plans, and reported their prediction
errors on a separate set of five CTs associated with two clinical plans each. This was repeated ten times.

We gathered five clinical plans (three right-sided, two left-sided) for the aforementioned five CTs. Under
the supervision of an experienced pediatric radiation oncologist (B.V. Balgobind), two adapted versions of
each plan were manually created that both had the isocenter in the middle of the fields. In one plan no block
was used and in the other plan a block was introduced to protect part of the liver or spleen, depending on the
plan side.

3. Results

3.1. Dose-volumemetric data distribution
Among the 300 artificial plans, plan side and OAR type was found to influence the distribution of a
dose-volume metric considerably. To illustrate the effect of OAR type and plan side on the dose, figure 5
shows the distributions found for Dmean and D2cc for the liver and the spleen, in case of left- and right-sided
plans. For Dmean for the liver, distributions approximately resembling the normal distribution were obtained
(in case of right-sided plans with particular high variance and long left tail). The distribution in case of
right-sided plans had a mean of 9.5 Gy (typically a major part of the liver was in-field), the distribution in
case of left-sided plans had a mean of 3.4 Gy (typically a minor part of the liver was in-field). In terms of
D2cc, for the liver we observed values close to the prescribed dose (14.4 Gy) both in case of left- and
right-sided plans. The distributions of Dmean and D2cc for the spleen associated with the different plan sides
had more marked differences than the ones for the liver. In case of right-sided plans, values close to 0 Gy were
obtained for both metrics (typically the spleen was outside the field). For left-sided plans, large values of
Dmean were found to be much more frequent than low values. The distribution of D2cc exhibited a peak
around the prescribed dose. For the contralateral kidney and for the spinal cord the distributions are similar
for both plan sides, as the contralateral kidney should be outside the field and the spinal cord should be
included within the field (according to protocol).

For all OARs, distributions obtained for V5 Gy and V10 Gy largely resembled the ones obtained for Dmean.
In fact, Pearson correlation coefficients above 98% were found when comparing Dmean with V5 Gy and V10 Gy

for almost all OARs. Smaller (yet still large) correlation coefficients were found between Dmean and V10 Gy for
the left and right kidney, with values of 96% and 91%, respectively.

3.2. Validation on artificial plans
For each considered OAR, the Mean Absolute Errors (MAEs) (and standard deviation) at validation time for
Dmean, D2cc, V5 Gy, and V10 Gy from the ten repetitions of the 5-fold cross-validation procedure using the
artificial plans are reported in table 2. We used statistical significance testing (Wilcoxon rank-sum) to
determine whether an outcome is significantly best (p-value < 0.05).

Among the three considered methods, the control method based on age and gender-matching (A&G)
performed overall worst, as it was typically found to be statistically significantly inferior to our ML-based
approach (either by ELN or GP-GOMEA). The control method often achieved larger MAEs and respective
deviations, although dose-volume metric predictions for the spleen and the right kidney for left-sided plans
were notable exceptions. Overall, GP-GOMEA performed better than ELN (among best performing in 18 vs.
14 dose-volume metric - OAR combinations, respectively). We therefore proceed by focusing on the results
obtained by GP-GOMEA.

The errors for Dmean and D2cc were generally below 2 Gy, which corresponds to approximately 14% of the
prescribed dose of 14.4 Gy. For all OARs but for the spinal cord, the plan side had considerable impact on the
magnitude of the errors. As the spinal cord in RL direction was in-field no matter the plan side, the MAEs of
dose-volume metrics predictions were found to be small: < 1 Gy for Dmean and D2cc, < 4% for V5 Gy and
V10 Gy. For OARs that were almost out-of-field, e.g. the spleen in case of right-sided plans, small MAEs of
Dmean were found (< 0.1 Gy), as very low values were obtained across all patient-plan combinations (see
figure 5).

For the liver in case of right-sided plans, and for the spleen in case of left-sided plans, larger MAEs were
found (liver: 1.7 Gy for Dmean, 12.1% for V5 Gy, 12.6% for V10 Gy; spleen: 1.5 Gy for Dmean, 9.3% for V5 Gy,
10.7% for V10 Gy). These errors can be attributed to the particular configuration of the position of these
OARs and the field of the plans.

Among the dose-volume metrics, D2cc for the (partly) in-field OARs had low variability, with a D2cc close
to the prescribed dose (14.4 Gy). For example, small errors were obtained for the D2cc for the liver (< 0.4 Gy),
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Figure 5. Distributions for the liver and the spleen of Dmean and D2cc obtained by the automatic plan sampling procedure used to
generate artificial plans and by applying the plans to the CT scans.

as we consistently obtained a large D2cc value for both left- and right-sided plans (see figure 5). In contrast,
D2cc was harder to predict when the OAR was contralateral to the plan side. The MAEs obtained for D2cc for
the spleen in case of right-sided plans was 1.6 Gy. This was 2.9 Gy for the left kidney, and 1.4 Gy for the right
kidney.
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Table 2.Mean test MAE± standard deviation of ten repetitions of 5-fold cross-validation for each OAR and dose-volume metric on the
artificial plans for the different methods. Bold results are best in that no other method is statistically significantly better.

Side OAR Method Dmean [Gy] D2cc [Gy] V5 Gy [%] V10 Gy [%]

Liver ELN 1.9±1.4 0.3±0.2 13.3±10.0 13.8±10.2
GPG 1.7±1.2 0.2±0.2 12.1±8.7 12.7±9.1
A&G 1.9±1.5 0.3±0.2 13.8±10.9 14.3±11.0

Right (22436
plans)

Spleen ELN 0.1±0.1 1.3±1.7 0.7±0.8 0.3±0.4
GPG 0.1±0.1 1.6±2.1 0.9±1.1 0.4±0.6
A&G 0.2±0.2 1.7±2.8 1.0±1.5 0.4±0.8

Kidn.L. ELN 0.5±0.4 2.5±1.8 4.2±3.7 2.5±2.5
GPG 0.5±0.5 2.9±2.0 4.4±4.0 2.5±2.9
A&G 0.6±0.6 3.1±2.8 5.2±5.5 3.0±3.9

Sp.Cord ELN 0.5±0.4 0.2±0.2 3.8±3.1 3.5±3.0
GPG 0.4±0.4 0.2±0.2 3.2±2.8 3.3±2.8
A&G 0.5±0.5 0.3±0.2 3.3±3.5 3.5±3.6

Liver ELN 0.8±0.7 0.3±0.6 6.1±5.0 6.0±4.8
GPG 0.8±0.6 0.4±0.6 5.8±4.7 5.5±4.4
A&G 1.0±0.7 0.5±0.9 7.7±5.6 7.3±5.4

Left (20164
plans)

Spleen ELN 1.9±1.6 0.3±0.7 12.9±11.8 14.3±12.4
GPG 1.5±1.3 0.3±0.7 9.3±9.7 10.7±10.2
A&G 1.3±1.5 0.4±0.8 8.1±11.2 9.6±12.0

Kidn.R. ELN 0.2±0.3 1.3±1.5 1.9±2.4 0.8±1.3
GPG 0.3±0.7 1.4±1.6 2.4±4.9 0.8±1.9
A&G 0.3±0.4 1.4±2.1 1.8±3.5 0.7±2.2

Sp.Cord ELN 0.6±0.5 0.2±0.2 4.9±4.2 4.7±3.9
GPG 0.4±0.3 0.2±0.2 3.1±2.6 2.9±2.3
A&G 0.6±0.4 0.3±0.2 3.6±3.2 3.8±3.1

Abbreviations: ELN: Elastic net, GPG: GP-GOMEA, A&G: Age and gender-based CT scan matching control method, Kidn.L./R.: Kidney

Left/Right, Sp.Cord: Spinal cord.

The largest MAE obtained by GP-GOMEA (and also by the other methods) was found for D2cc for the left
kidney, amounting to 20% of the prescribed dose. For all dose-volume metrics for the right kidney, and for
D2cc for the spleen, we found that ML predictions were slightly worse compared to using the baseline (note
the negative effect sizes), but not significantly so. Lastly regarding the kidneys, although errors in D2cc were
relatively large, errors in V10 Gy were relatively small (compared with V10 Gy for the other OARs). In fact, only
a small percentage of the contralateral kidney, from 0 to less than 3% typically received at least 10 Gy.

3.3. Assessment on clinical plans
Figure 6 shows the distribution of signed (i.e. non-absolute) errors (as prediction minus actual dose-volume
metric) for the independent set of ten clinical cases after training GP-GOMEA (the overall best performing
ML algorithm) on the artificial plans. The mean prediction of ten repetitions is considered. To put these
errors into perspective, the figure includes the signed errors obtained from the cross-validation on artificial
plans (i.e. corresponding to the results of section 3.2).

Regarding the artificial plans, the figure shows that the errors obtained by GP-GOMEA were unbiased
(similar results were found for ELN): no systematic over- nor under-estimations of dose-volume metrics
were found on average (note the median error being approximately zero for all metrics). Errors obtained for
the clinical plans were mostly within the variation that was observed for the artificial plans, with some
notable exceptions, e.g. for dose-volume metrics related to the spleen. The most notable errors are the
underestimation of approximately 12 Gy for D2cc for both the non-blocked (orange dot) and blocked (orange
cross) version of one right-sided clinical plan. Other notable errors are the overestimation of Dmean and
correlated V5 Gy and V10 Gy for two left-sided plans with blocks (orange crosses). We provide insights on
these aspects in section 4. A break down on the errors obtained for the clinical plans is reported in the
supplementary material C.

4. Discussion

In this article we presented a new and different paradigm in organ dose reconstruction. By leveraging the
modeling power of ML, we showed how patient and plan features can be used to predict organ dose-volume
metrics directly, without the need of adopting a surrogate anatomy. Once the ML models are trained, they
can readily be used to compute dose-volume metric predictions for a new historical patient and plan, by
using their features as input.
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Figure 6. Distribution of signed errors for the ten clinical plans across the dose-volume metrics. Colored dots and crosses
represent signed errors for clinical plans without and with blocks, respectively. Gray dots represent signed errors from the
cross-validation on artificial plans. Wide thick black lines represent the median signed error on the artificial plans, while whiskers
extend to 1.5 times the interquartile range (default). Note the use of different scales for the vertical axes.

Key to obtaining a decent amount of data to perform ML were the collaboration of five international
institutes to gather pediatric patient CTs (147), the development of a new automatic sampling procedure
yielding artificial Wilms’ tumor RT plans, and the creation of an automatic dose reconstruction pipeline to
calculate the dose for all patient and plan combinations. We validated our approach on 300 automatically
generated artificial plans, and further studied whether the results generalized to ten manually created clinical
plans. Our approach showed promising levels of accuracy in dose reconstruction in both settings. From the
results on the artificial plans, it appeared that the models learned with GP-GOMEA were performing overall
slightly better than the ones learned with ELN, yet GP-GOMEA may be harder to implement than ELN.
Moreover, while ELN is considered to deliver interpretable models (Adadi and Berrada 2018, Guidotti et al
2018), for GP-GOMEA this still needs to be validated in clinical practice.

For some metrics and OARs, errors were relatively large for some of the clinical plans. This may be due to
chance, because ten is a small number. For example, the large underestimation observed for the D2cc of the
spleen for one clinical case (with and without block) is due to the ML-based approach wrongly predicting a
value associated with a spleen that is located completely outside of the field. Another reason why errors were
relatively large for the clinical plans is that the artificial plan generation method needs to be improved.
Artificial plans were generated by sampling geometry properties uniformly within predefined boundaries on
two reference DRRs. Uniform sampling might not be representative of the distribution clinical plans have.
Moreover, we consulted a single radiation oncologist to define clinically acceptable boundaries to use in the
sampling of artificial plans. Consulting multiple experts and allowing for a larger variation might better help
covering the extent of variation that is present in historical plans (section 2.2). For example, the isocenter
locations of artificial left-sided plans were never sampled below the 1st lumbar vertebra (see figure 2) and
approximately half of the Dmean values for the spleen in case of the artificial left-sided plans were close to the
prescribed dose (14.4 Gy, see figure 5), which means that the spleen was often almost completely in-field in
our artificially generated set of left-sided plans. When a block was applied, only a small part of the spleen was
spared. However, in clinical practice, isocenter locations can be lower, and a larger part of the spleen might
actually be outside the field (see figure 7). This might explain the relatively large errors observed in the two
outlier cases in figure 6 where the isocenter location of the clinical plans is lower than the sampled range.
Ultimately, effort should be done to improve the sampling of artificial plans.

In the validation performed upon artificial plans as well as in the assessment concerning clinical plans, a
main result that emerges is that dose-volume metrics for an organ are hard to predict when, due to the field
setup, it is unclear whether the OAR is (partially) included in the field or not. For example, the D2cc is very
different when a tiny part of an OAR is inside the field compared to when the OAR is completely outside the
field. As experimentally observed in prior work (Virgolin et al 2018b, Virgolin et al 2019), 2D bony anatomy
provides only coarse information on OAR shape and position even for ML algorithms (e.g. an MAE of
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Figure 7. Effective field shape of two clinical plans without (left column) and with block (right column) plotted on top of the
associated DRR. The fields are placed lower than most of the sampled artificial plans (see figure 2). Consequently, for the plans
with blocks, our approach produced an overestimation of 5 Gy for the Dmean of the spleen (see the two orange crosses in figure 6).

6.4 mm for the prediction of the liver position along the IS axis was reported (Virgolin et al 2019)). Yet,
because bony anatomy is the only structure that is reliably visible in historical radiographs, most of the
anatomical features rely on it. Patients with similar anatomical features derived from bony anatomy may
have different OAR shape and position, and thus different dose-volume metrics. Furthermore, impreciseness
in feature values due to e.g. uncertainties in landmark detection and plan emulation, aggravate the situation.

Compared to conventional dose reconstruction methods (that use surrogate anatomies and heuristics to
decide what surrogate to use), we considered a relatively large number of features: 33. Phantom-based
methods consider, e.g. only age and gender (Stovall et al 2006, Howell et al 2019), or gender together with
height and weight percentiles (Geyer et al 2014). However, if a 2D radiograph is available, the added value of
this information should be exploited. In our work, the majority of the features we considered, i.e. 23 out of
33 (minus eight due to automatic feature selection, see supplementary A), regarded patient anatomy as
visible on a 2D radiograph, which we simulated with DRRs. Our DRRs were generated in a conformal
fashion, e.g. the abdomen was always fully included in RL direction. The automatic landmark detection that
was used to generate features expects this conformity to achieve precise detection (Wang et al 2020). When
dealing with actual historical radiographs, however, several challenges need to be taken into account. For
example, our automatic landmark detection method requires further development to account for noise in
the radiograph (e.g. the presence of hand-writing on the radiograph). Moreover, educated guesses of

13



Phys. Med. Biol. 65 (2020) 245021 M Virgolin et al

landmark locations may be needed in some cases, as some historical radiographs do not include the entire
abdomen (see figure 1(c)). Nevertheless, as long as the features are somehow collected (e.g. manually), they
can be used as input for the ML models to get respective dose-volume metric predictions.

There are disadvantages of our approach compared to conventional dose reconstruction methods that
use surrogate anatomies beyond the need for patient radiographs, which are not always available in
retrospective data. In particular, a key limitation is that ML models do not predict the entire 3D dose
distribution an organ receives, but only the metrics they were trained for. Potentially useful information to
link to AEs may be contained in 3D dose distributions. To predict 3D dose distributions, the ML models
would need to be trained to predict a 3D output. Surrogate-based methods do allow to obtain the entire 3D
dose distribution to an organ, since the distribution can be visualized on the organ of the surrogate anatomy,
after plan simulation. However, considering the magnitude and variations of the errors of organ mean dose
obtained by conventional approaches (Wang et al 2018), it is questionable whether the full 3D distribution
will be sufficiently reliable. Our approach, as currently proposed, can straightforwardly be extended to
predict any (scalar) dose-volume metric that is suspected to be useful to study AEs (it suffices to train ML on
that metric).

Another limitation of our approach is that it does not take into consideration uncertainties related to
OAR motion. For validation, we aimed at reconstructing the dose based on the particular snapshot of
anatomy at the moment the CT (ground-truth) / respective DRR (to simulate historical radiographs) was
taken. Yet, OAR motion plays a key role in the uncertainty of organ positioning at the edge of the field, which
can lead to a discrepancy between the planned dose and the actual delivered dose. In RT practice, radiation
delivery is performed over a number of days, with fractionation schemes. The OAR position can therefore
vary (i.e. inter-fractional position variation). Intra-fractional organ motion due to, e.g. respiration variation,
contributes to the difference between planned dose and delivered dose as well (Huijskens et al 2015).

Lastly, a main limitation of our approach is that the ML models we generated are specific to pediatric
patients (1 to 8 years of age) and Wilms’ tumor RT plans: they can only predict reliable dose-volume metrics
of specific OARs they were explicitly trained for. The RT plans we have sampled were also restricted to a
standard AP-PA setup without considering wedges, boost fields, or other radiation sources such as Cobalt-60.
Moreover, the predictions of the ML models (as well as the validation performed in this study) are based on
the dose calculation algorithm we adopted when preparing training data, which has inaccuracies. Specifically,
we used a collapsed cone algorithm available in Oncentra TPS. Though good accuracy was reported in the
in-field and near-field region (< 5 cm from the field borders, achieves an error of 1-2% of the prescribed
dose), in low dose regions (10–15 cm from the field border) an underestimation of 10% of the dose in the
region was reported (Krieger and Sauer 2005). We remark that the OARs we considered in this study were
mostly within 5 cm near the field border (except for the spleen in case of the right-sided plans). To make the
method more general for OARs far from field borders, more advanced Monte Carlo dose calculation
algorithms should be applied in future implementations.

We remark that our approach could be readily extended to predict dose-volume metrics for other types
of RT plans that use abdominal fields by making use of our feature extraction method based on landmark
detection (section 2.3.2), which is general to the abdominal area. Furthermore, we believe that the core ideas
of our work can be replicated for other cohorts and other types of plans. Essentially, as long as a sufficient
number of anatomies and plans are collected or generated, and a large number of dose reconstructions are
performed to be used as examples, new ML models can be trained to predict how the dose-volume metrics
are linked to anatomy-plan configurations. Beyond this, our algorithm GP-GOMEA is a general machine
learning method that can be used for arbitrary tasks that require a form of regression. As was the case in our
study, the collection and preparation of sufficient data for ML is likely to be the largest required effort.

Our proposed approach presents several advantages compared to traditional dose reconstruction
methods. First of all, the validation results on artificial plans showed that our approach is superior to the
control method based on age and gender-matching, which simulates the conventional way of
surrogate-based dose reconstruction methods. Note that the control method can be considered to operate in
an advantaged setting because the plan of interest is emulated on the surrogate CT (whereas ML needs to
infer salient information by solely relying on plan features).

We also found our validation results to compare favorably with respect to our recent work considering
dose reconstruction for a similar childhood cancer cohort (Wang et al 2018). Table 3 summarizes several
statistics of organ mean dose errors for liver and spleen based on the validation results of our approach and
the values reported in Wang et al (2018). It can be observed that our approach achieved both smaller
prediction errors and smaller interquartile ranges for signed errors. We remark, however, that since the dose
reconstruction accuracy is largely influenced by the particular plans considered, these values may not be a
fair comparison.
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Table 3. A summary of validation results for the Dmean of liver and spleen concerning (Wang et al 2018) and this study.

Study No. CTs included Patient age (yrs) No. plans included OAR MAE (Gy) IQR (Gy)

Wang et al 2018 31 2–5 12 Liver 12 3.6
Spleen 2.6 4.7

This, GPGA 142 1–8 300 Liver 1.3 2.0
Spleen 0.8 1.2

This, GPGC 5 1–8 10 Liver 1.1 1.9
Spleen 1.7 2.2

Abbreviations: IQR: interquantile range, GPGA: GP-GOMEA on artificial plans, GPGC: GP-GOMEA on clinical plans.

We are currently working on a multi-institute study to compare our approach with two state-of-the-art,
phantom-based dose reconstruction approaches (Lee et al 2015, Howell et al 2019). In that study, a same set
of patients and plans will be used for validation.

Finally, a benefit of having ML models is that, once features are collected, they can be used as inputs for
the model to obtain the prediction of a dose-volume metric immediately. Running a model on a computer
simply means to follow the steps encoded by the formula the model represents, which takes a few
milliseconds. Conversely, in a surrogate-based approach (e.g. in the age and gender-matching), the features
are used to craft or select a surrogate anatomy. Then, effort and time must be put to emulate the plan on the
surrogate anatomy, calculate the dose, and obtain the dose-volume metrics (Lee et al 2015, Howell et al 2019,
Wang et al 2020).

5. Conclusion

We presented the first surrogate-free organ dose reconstruction method based on ML. Our method was
enabled by the collection of large amounts of patient and CT data, and the automatic generation of artificial
plans and of dose distribution data. We assembled a dataset of dose-volume metrics corresponding to
features of patient anatomy and plan geometry, and subsequently trained ML models to predict how features
of patient anatomy and of treatment plans influence dose-volume metrics. The predictions were validated
upon both artificial and clinical RT plans, and achieved good accuracy in both cases.
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