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Purpose: Bi-objective simultaneous optimization of catheter positions and dwell times for high-
dose-rate (HDR) prostate brachytherapy, based directly on dose-volume indices, has shown promis-
ing results. However, optimization with the state-of-the-art evolutionary algorithm MO-RV-GOMEA
so far required several hours of runtime, and resulting catheter positions were not always clinically
feasible. The aim of this study is to extend the optimization model and apply GPU parallelization to
achieve clinically acceptable computation times. The resulting optimization procedure is compared
with a previously introduced method based solely on geometric criteria, the adapted Centroidal Voro-
noi Tessellations (CVT) algorithm.
Methods: Bi-objective simultaneous optimization was performed with a GPU-parallelized version
of MO-RV-GOMEA. This optimization of catheter positions and dwell times was retrospectively
applied to the data of 26 patients previously treated with HDR prostate brachytherapy for 8–16 cathe-
ters (steps of 2). Optimization of catheter positions using CVTwas performed in seconds, after which
optimization of only the dwell times using MO-RV-GOMEAwas performed in 1 min.
Results: Simultaneous optimization of catheter positions and dwell times using MO-RV-GOMEAwas
performed in 5 min. For 16 down to 8 catheters (steps of 2), MO-RV-GOMEA found plans satisfying
the planning-aims for 20, 20, 18, 14, and 11 out of the 26 patients, respectively. CVT achieved this for
19, 17, 13, 9, and 2 patients, respectively. The P-value for the difference between MO-RV-GOMEA and
CVTwas 0.023 for 16 catheters, 0.005 for 14 catheters, and <0.001 for 12, 10, and 8 catheters.
Conclusions: With bi-objective simultaneous optimization on a GPU, high-quality catheter positions
can now be obtained within 5 min, which is clinically acceptable, but slower than CVT. For 16 cathe-
ters, the difference between MO-RV-GOMEA and CVT is clinically irrelevant. For 14 catheters and
less, MO-RV-GOMEA outperforms CVT in finding plans satisfying all planning-aims. © 2020 The
Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.14505]

Key words: bi-objective optimization, catheter positions, HDR brachytherapy, prostate neoplasms,
treatment planning

1. INTRODUCTION

Treatment planning for high-dose-rate (HDR) prostate
brachytherapy consists of two parts. First, the positions of the
catheters to be placed inside the patient have to be deter-
mined. For this, either (semi-)manual planning or inverse
planning can be used at the time of catheter placement. A
commonly used (semi-)manual planning approach is the
peripheral loading technique where the majority of the cathe-
ters is placed at the periphery of the prostate with relatively
few catheters close to the urethra, used in our hospital.

Typically 14–20 catheters are used, depending on the prostate
size. Alternatively, a commonly used inverse planning
approach is hybrid inverse planning optimization (HIPO).1

Second, once the catheters are placed, the dwell times for
the source dwell positions have to be determined. For this,
current practice is to optimize the dwell times using auto-
mated methods such as the inverse planning simulated
annealing (IPSA)2 or more recently the hybrid inverse plan-
ning optimization (HIPO)1 algorithms. Other methods have
been investigated for optimizing the dwell times directly on
dose-volume indices,3–5 as well as (dose-volume based)
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approaches that consider multiple objectives.6–10 A multi-ob-
jective optimization method that directly optimizes dose-vol-
ume indices has been proposed by leveraging the Multi-
Objective Real-Valued Gene-pool Optimal Mixing Evolution-
ary Algorithm (MO-RV-GOMEA).11 This method was shown
to be capable of outperforming both the current clinical prac-
tice of dwell time optimization12 as well as parameter tuning
for IPSA and HIPO.13

The model optimized with GOMEA is bi-objective and
gives insight into the trade-off between covering the targets
and sparing the organs at risk (OARs). However, the quality
of the treatment plans that can be achieved in dwell time opti-
mization only, depends on the catheter positions. Optimizing
not only the dwell times, but also the catheter positions could
therefore have added value over optimizing only dwell times.
In literature, two different approaches for catheter position
optimization have been described.14

The first approach is to optimize the catheter positions
independent of the dwell times,15–17 based solely on geomet-
rical properties of target and organs at risk shapes, without
clinical evaluation criteria such as dose-volume indices. Such
approaches have been shown to perform well when compared
to the clinical treatment plans. Among such approaches,
especially the adapted Centroidal Voronoi Tessellations
(CVT) algorithm has shown promising results,17 outperform-
ing existing optimization methods18 such as HIPO catheter
position optimization. In CVT, 3D organ shapes are projected
onto a plane as 2D contours, and catheter positions are opti-
mized solely based on their distribution in these projections.
The disadvantage of this approach is that the objectives of
catheter position optimization and the objectives of dwell
time optimization are decoupled. For catheter position opti-
mization, the distribution of the catheter positions in the
organ projections is evaluated, whereas for dwell time opti-
mization, properties of the dose distribution are evaluated,
which are ultimately the most important. Therefore, the over-
all optimal catheter positions may not be found.

The second approach is to simultaneously optimize cathe-
ter positions and dwell times.1,19–21 The advantage of this
approach is that the objectives are identical to the case of
optimizing only dwell times. The disadvantage is that a
simultaneous approach often requires large computation
efforts, especially when optimizing directly on dose-volume
indices. In particular, straightforwardly extending GOMEA to
also optimize catheter positions requires several hours of run-
time.21 Since determining catheter positions is part of the pre-
planning done in the operating room, these runtimes are not
clinically feasible. Moreover, preliminary results of previous
research showed that use of the optimization model (also
used for only dwell times) did not guarantee finding catheter
positions that would be acceptable to radiation oncologists:
in particular, hot spots in the healthy tissue were observed,
and catheters were placed too close to OARs.21

In this study, we improve on GOMEA prostate catheter
position optimization21 to obtain a clinically feasible opti-
mization method. First, we extend the previously used opti-
mization model to ensure treatment plans are found that are

acceptable to radiation oncologists. Second, we apply paral-
lelization on a Graphics Processing Unit (GPU) to speed up
the computation and achieve clinically acceptable runtimes.
We compare the results of GOMEA catheter position opti-
mization with CVT,17 to study the possible advantages and
disadvantages of simultaneous optimization of both catheter
positions and dwell times, with respect to the geometry-based
method CVT.

2. BACKGROUND

2.A. Bi-objective optimization model

The bi-objective optimization model is based directly on
the dose-volume indices in the clinical protocol. In general,
there is an intuitive key trade-off in a given clinical protocol
between the planning-aims for the targets (i.e., prostate and
seminal vesicles should receive enough dose) and those for
OARs (i.e., bladder, rectum, and urethra should not receive
too much dose). This can be captured by using two objectives,
i.e., a bi-objective approach. Optimization then does not result
in a single treatment plan, but in a set of plans, each of which
has a different trade-off between the two objectives. This set
of optimized plans is called the approximation set and their
corresponding objective values make up the approximation
front, as it is an approximation of the Pareto front that contains
all theoretically (Pareto-) optimal solutions. The physician can
choose a plan from this front, potentially using additional
patient information such as age and previous treatments.

The bi-objective optimization model is based on the clini-
cal protocol for HDR prostate brachytherapy at the Amster-
dam UMC. Before undergoing brachytherapy, patients have
received 20 External Beam Radiation Therapy (EBRT) frac-
tions of 2.20 Gy. The planning-aim dose for brachytherapy is
13 Gy (terminology based on the ICRU 89 report,22 often
called prescribed dose). The constraints on the EQD2 of the
combined treatment are Dbladder

1cm3 < 78 Gy, Dbladder
2cm3 < 70 Gy,

Drectum
1cm3 < 73 Gy, Drectum

2cm3 < 70 Gy, and Durethra
0:1cm3< 95 Gy. Using

an α=β-ratio of 3, the resulting constraints on the brachyther-
apy are shown in Table I. The dose-volume indices of the
protocol are combined into two objectives to be maximized,
the Least Coverage Index (LCI) and the Least Sparing Index
(LSI).

TABLE I. The high-dose-rate (HDR) prostate brachytherapy planning protocol
at the Amsterdam UMC.

Targets OARs

Prostate
Seminal
vesicles Bladder Rectum Urethra

V100% > 95% V80% > 95% D1cm3 < 86% D1cm3 < 78% D0:1cm3 < 110%

V150% < 50% D2cm3 < 74% D2cm3 < 74%

V200% < 20%

Volume indices have an index in percentage of the planning-aim dose of 13 Gy
and a unit in percentage of total organ volume. Dose indices have an index in abso-
lute volume in cm3 and a unit in percentage of planning-aim dose. The seminal
vesicles are considered to harbor microscopic disease (in contrast to the macro-
scopic disease in the prostate), hence 80% of the planning-aim dose is sufficient.
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2.B. Organ reconstruction settings

The 3D organ shapes are reconstructed from delineated
2D organ contours. The organ reconstruction settings are
based on our clinically used treatment planning system,
Oncentra Brachy v4.5. In particular:

1. The urethra is considered as part of the organs it inter-
sects;

2. Contour interpolation is used to add interpolated con-
tours between each pair of delineated contours (which
was performed on each slice);

3. Most caudal/cranial contours span the half-slice thick-
ness in the direction of the other contours of that organ.

The resolution of the slices (craniocaudal direction) is
lower than the in-plane resolution and organ surfaces are
smoothed in that direction by applying contour interpola-
tion.23 In particular, shape-based interpolation using a cham-
fer distance24 is used. Since interpolation can be performed
in parallel before calculating the dose-rate matrix, the influ-
ence on optimization time is negligible. The impact of these
organ reconstruction settings on dose-volume indices has
already been explored in our previous work.23

2.C. Catheter position optimization

The orientations of the catheters are modeled to be parallel
in relation to each other, following the usual clinical implan-
tation procedure. The feasibility of catheter positions is
checked by projecting all organs and catheters onto a plane
parallel to the planes in which the organ contours were delin-
eated (Fig. 1), along the direction of the catheters.

The positions of the catheters during optimization are
unrestricted, in the sense that no fixed template of catheter
positions is used. However, at the start of optimization, a fine
two-dimensional rectangular grid of parallel catheters is

placed over the organ projection plane. During optimization,
nearest neighbor interpolation is used on the catheter posi-
tions with respect to the catheter positions in the grid, effec-
tively limiting catheter positions to these grid positions. The
advantage of this grid is that dose-rates only have to be calcu-
lated at the beginning of optimization, speeding up the overall
optimization process. By using a very fine grid, all catheter
positions can effectively still be chosen. This is in accordance
with clinical practice at the Amsterdam UMC, where a cathe-
ter can be placed at any desired position by using a template
enabling movement of the catheter-guidance arm in lateral
and ventro-dorsal direction.

The size of the grid is set depending on the shape of the
targets. A bounding rectangle around the projections of pros-
tate and seminal vesicles is determined, with length dX and
width dY . Then, for a grid of up to G catheters, we define the

grid as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G �dX=dYpj k

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G �dY=dXpj k

catheters. Once

the grid is placed, dose-calculation points are sampled in the
targets, OARs, and healthy tissue. Next, a dose-rate matrix is
constructed, containing the dose-rate from each dwell posi-
tion in each of the grid catheters to each of the sampled dose-
calculation points.

2.D. MO-RV-GOMEA

MO-RV-GOMEA is an evolutionary algorithm. As such,
it maintains a set of potential solutions during optimization,
rather than a single solution. This set is called the population
and the number of potential solutions is called the population
size.

An important feature of GOMEA is its ability to exploit
dependencies between variables. This is typically done
through a so-called linkage tree.25 The bottom of this tree
consists of all sets containing only a single variable. Hence,
for n variables x1, . . .,xn, n sets xif g for i¼ 1, . . .,n are created.
Next, sets with variables that are highly dependent on each

FIG. 1. Illustration of the organ projections on a plane parallel to the planes in which the organ contours were delineated (for patient 18). The box defining the
catheter grid for GOMEA catheter position optimization is shown in gray lines. Solid lines show the organ projections, dashed lines show the used margins from
the organ projections to the centers of the catheter positions (hence taking into account the radius of a catheter). [Color figure can be viewed at wileyonlinelibra
ry.com]
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other are repeatedly merged, until the top set with all vari-
ables x1, . . .,xnf g is created, resulting in a total of 2n�1
sets. The set containing all these sets is called the Family
of Subsets (FOS). Therefore, each set on its own is called
a FOS element. Dependencies are now exploited by loop-
ing over the FOS elements in a random order, iteratively
changing variables in a FOS element together, and check-
ing if the change leads to an improvement. This increases
the efficiency if strong dependencies are present. Actual
changes to variables are made via the estimation and sam-
pling of Gaussian distributions, rendering the algorithm lar-
gely derivative-free. For more details, we refer the
interested reader to the literature.25

2.E. CVT

The catheter positions used in clinical practice at the Ams-
terdam UMC are determined by the radiation oncologists
based on experience, in combination with a HIPO generated
plan, which is the clinical standard for inverse optimization.
However, the adapted CVT algorithm has been shown to out-
perform HIPO catheter position optimization.18 We therefore
compare GOMEAwith the adapted CVT algorithm.

The adapted CVT algorithm17 samples many points inside
organ projections and runs a procedure much like the well-
known k-means clustering procedure to place k catheters.
Catheter positions are restricted to be inside the prostate pro-
jection, and outside of the urethra and rectum projections
(without using margins). The algorithm has three important
parameters: the number of catheters, the number of iterations,
and the number of points sampled in the organ projections.
Following literature,17 the number of iterations is set to 100,
and the number of sample points is set to 2500. After the
catheter positions have been determined, the dwell times can
be optimized independently. In previous work, the inverse
planning simulated annealing algorithm (IPSA) was used17;
here, we use GOMEA dwell time optimization5 for a fair
comparison.

3. MATERIALS AND METHODS

3.A. Optimization model

For the optimization model, the following definitions are
used:

Vo
a% Volume of organ o that receives at least a% of the planning-aim

dose of 13 Gy, as percentage of total organ volume.
�Vo
a% Volume of organ o that receives at least a% of the planning-aim

dose of 13 Gy, in cm3.

Do
acm3 Lowest dose to the most irradiated a cm3 of organ o, as percentage

of the planning-aim dose of 13 Gy.

N Number of catheters.

; Catheter diameter of 2.35 mm.

xi,yið Þ Center of the projection of catheter i.

tk Dwell time k.

Po
a Projection of organ o with a mm margin.

The optimization model is as follows:

Maximize

LCI¼ min Vprostate
100% �95,Vvesicles

80% �95
� �

(1)

LSI¼ min
86�Dbladder

1cm3 ,74�Dbladder
2cm3 ,78�Drectum

1cm3 ,74�Drectum
2cm3 ,110�Durethra

0:1cm3,

50�Vprostate
150% ,20�Vprostate

200%

( )

(2)

subject to

C¼
�Vhealthy tissue
200% �0:125N, for LSI ≥ �25

�Vhealthy tissue
200% �0:125N 1þ�25�LSI

100

� �
, for LSI<�25

8><
>:

9>=
>;≤0

(3)

xi,yið Þ∈ Pprostate
� ;=2þ1ð Þ ∪ Pvesicles

0

� �
∩ Purethra

;=2þ1 ∪Prectum
;=2þ1

� �c
(4)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi� xj
	 
2þ yi� yj

	 
2q
≥ ; þ 18i≠ j

tk ≥ 08k
(5)

Equations (1) and (2) define the Least Coverage Index
(LCI) and the Least Sparing Index (LSI).

We have previously shown that when optimizing cathe-
ter positions based on the clinical protocol, a constraint is
necessary to restrict dose to healthy tissue outside of delin-
eated targets and OARs,21 especially since dwell positions
outside of the prostate can be used for dose planning. In
clinical practice at the Amsterdam UMC, this is usually
described in terms of the in-slice diameter of hot spots in
healthy tissue, but this is time-consuming to calculate dur-
ing optimization. In contrast, dose-volume indices such as
the V200% can be calculated more quickly and have been
applied previously to limit dose to healthy tissue,26 but
cannot distinguish between multiple small hot spots occur-
ring in a plan with many catheters, and few large hot spots
typical for a plan with fewer catheters. We therefore define
a constraint on the V200% of the healthy tissue, which is
dependent on the number of catheters (N). Our investiga-
tions (described in the appendix) have led to the following
constraint: �Vhealthy

200% tissue≤0:125N.
If this constraint is added as is to the optimization

model, the feasible search space is shrunk to the extent
where all initial solutions in the optimization process are
infeasible, making optimization unnecessarily more diffi-
cult. However, this constraint is mainly important when
plans are of sufficient high quality. Hence, the constraint
can be relaxed if solutions are still far from optimal,
thereby ensuring that initial solutions are also feasible in
terms of the optimization model, making optimization itself
more efficient and effective. Particularly, we relax this
healthy tissue constraint when the LSI is already below a
certain threshold. The healthy tissue constraint is used as a
hard constraint in the optimization, separate of the LCI
and the LSI, to ensure that all treatment plans in the final
front satisfy it (Eq. (3)).

Medical Physics, 47 (12), December 2020
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Catheters are constrained to be inside the prostate or semi-
nal vesicles, as well as at least 1 mm away from rectum and
urethra (measured from the catheter surface). For fixation of
catheters in the patient, it is preferable that catheters intersect
the prostate, and not just touch the surface. Therefore, cathe-
ters have to be at least 1 mm (measured from the catheter sur-
face) away from the edge of the projection of the prostate
(Eq. (4)). The minimum distance between catheters (mea-
sured from the catheter surface) is 1 mm (Eq. (5)), where the
angle between the catheters and the projection plane should
be taken into account.

The algorithm contains a parameter describing how far
catheters can intersect the bladder. In our experiments, cathe-
ters cannot intersect the bladder (including the 5 mm long
catheter tip which does not contain dwell positions) but may
touch the bladder. A grid size G of 400 catheters is used.

3.B. GPU parallelization

The GPU parallelization of the simultaneous optimization
of catheter positions and dwell times using GOMEA expands
previous work focused only on dwell time optimization.5 In
this approach, sets of treatment plans are evaluated in paral-
lel, and the dose in each dose-calculation point of each of
these treatment plans is calculated on a separate thread. The
programming for the GPU was done in CUDA (NVIDIA
Corporation, Toolkit v8.0.61) and was run on an NVIDIA
Titan Xp GPU, which contains 12 GB of memory. In order
to improve efficiency, two algorithmic changes are made as
well, which are explained in this section.

In general, the performance of an evolutionary algorithm
is dependent on the population size. For dwell time optimiza-
tion on a GPU, a fixed population size of 96 (a multiple of
the selected GPU block size of 16) was reported to lead to
good results.5 However, catheter position optimization
requires a larger population size than dwell time optimization
as the search space is both larger and more intricate with
strong dependencies between catheter position variables and
dwell times. A fixed population size of 300 was reported to
lead to good results.21 Although automatic population-sizing
schemes are available,11 they tend to induce an overhead for
the total runtime. As clinical constraints require short compu-
tation times, we opted for tuning the population size experi-
mentally to find a good value near 300 that is compatible
with the use of a GPU. For catheter position optimization on
a GPU, this resulted in the use of a fixed population size of
288 (also with a GPU block size of 16).

Secondly, for dwell time optimization, the dependency
between two dwell times is based on the distance between the
corresponding dwell positions. After changing the variables
in a FOS element, the dose-volume indices of the treatment
plan have to be re-evaluated. Therefore, FOS elements with
only a few variables are relatively expensive: the treatment
plan is only slightly changed, but all dose-volume indices
have to be recalculated. Hence, to achieve the shortest run-
time of the GPU parallelization, all subsets with <5 variables
are removed from the FOS, following previous work.5

For catheter position optimization, we compute the dis-
tance between catheters and between dwell positions by first
computing the average catheter positions over the population.
For the two different types of variables, namely catheter posi-
tion variables and dwell time variables, these distances are
used to build two separate Linkage Trees. For the Linkage
Tree of the dwell time variables, all subsets with <5 variables
are removed. For the Linkage Tree of the catheter position
variables, no subsets are removed. The remaining sets of both
Linkage Trees are combined into one FOS, to be used for
optimization.

3.C. Patient data

The patient data consisted of 26 patients who consecu-
tively underwent prostate HDR brachytherapy between
February 2015 and April 2017. After catheter implantation,
MRI scans were acquired with a resolution in the axial planes
of 0.52 × 0.52 mm and a slice thickness of 3.3 mm (includ-
ing a 0.3 mm gap). Reconstruction of catheters and organ
contours was performed using manual delineations on most
of the axial slices, using the delineations suggested by the
interpolation algorithm of the clinical treatment planning sys-
tem on the rest. Only the base of the seminal vesicles was
delineated. Contour interpolation was used to add three inter-
polated contours between each pair of delineated contours, in
line with previous work.5 The data on the implanted catheters
were not used when performing catheter position optimiza-
tion.

3.D. Experiments

The two approaches, GOMEA simultaneous catheter posi-
tion and dwell time optimization, and CVT catheter position
optimization followed by GOMEA dwell time optimization, are
compared as follows. Dose-rate matrices were calculated with
the mHDR-v2 source,27 following clinical practice. Optimiza-
tion was performed on 4.000 dose-calculation points per organ.
The resulting fronts were re-evaluated on 20.000 dose-calcula-
tion points per organ. These are the numbers of dose-calculation
points with which the bi-objective dwell time optimization
approach was introduced and validated,12,25 and for which the
difference between optimized and re-evaluated values was
shown to be small.5 For healthy tissue, optimization was already
performed on 20.000 dose-calculation points, to avoid slight
violations of the constraint during re-evaluation. The healthy tis-
sue was defined as the smallest parallelepiped containing all
active dwell positions in the catheter grid, with an added 5 mm
margin, excluding all delineated organs (and tumor).

All considered algorithms have a stochastic component.
Moreover, for each organ, the set of dose-calculation points
used for optimization is randomly sampled. The resulting
fronts thus have a small dependency on the initial random
seed used. Therefore, to increase reproducibility, all results
shown are the median of 11 runs. Previous work shows that a
runtime of GOMEA dwell time optimization of 30 s is suffi-
cient for optimization in clinical practice.5 Since the healthy
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tissue constraint doubles the number of dose-calculation
points, GOMEA dwell time optimization is run for 1 min.
GOMEA simultaneous catheter position and dwell time opti-
mization is run for 5 min. Both CVT and GOMEA are run
for each patient for 8, 10, 12, 14, and 16 catheters, where 16 is
the number of catheters most frequently used in clinical prac-
tice at the Amsterdam UMC. For comparison, GOMEA dwell
time optimization is also performed on the catheters that were
used in the clinical treatment plans.

The Golden Corner25 is defined as the area where LCI>0
and LSI>0. To allow for a simple, yet meaningful comparison
between GOMEA simultaneous catheter position and dwell
time optimization, and CVT catheter position optimization fol-
lowed by GOMEA dwell time optimization, each front is
described by a single value L, based on the treatment plan on
the front that is closest to the Golden Corner in both LCI and
LSI. Specifically, for each patient and number of catheters,

L :¼ median
fronts j¼1, ...,11

max
plans i in front j

min LCIi,LSIif gf g
� �

is used. If L>0, then the median front contains treatment
plans satisfying all planning-aims. Hence, if L>0, then the
median front goes through the Golden Corner. If �1<L≤0,
then we say that the median front came within 1% of the
Golden Corner.

3.E. Statistical tests

The difference between GOMEA simultaneous catheter
position and dwell time optimization, and CVT catheter posi-
tion optimization followed by GOMEA dwell time optimiza-
tion, was tested with a Wilcoxon signed-rank test on L for 16,
14, 12, 10, and 8 catheters separately:

4. RESULTS

A few typical examples of the resulting fronts are visual-
ized in Fig. 2. The results for L are shown in Fig. 3 (full
tables are in the appendix, as well as figures for the different
dose-volume indices). A few typical examples of the resulting
catheter positions are visualized in Fig. 4.

For 16 catheters, GOMEAwas able to find treatment plans
satisfying all planning-aims for 20 out of the 26 patients, and
the front came within 1% of the Golden Corner for two other
patients. CVT reached the Golden Corner for 19 patients and
came within 1% for three other patients. The P-value for the
difference between the values of L for the two catheter posi-
tion optimization methods was 0.023.

There are four patients for whom GOMEAwas not able to
come within 1% of the Golden Corner with 16 catheters, their
organ projections are shown in Fig. 5. Although the conver-
gence is slowest for such patients, 5 min of optimization was
still sufficient (see also Figure A2 in the appendix). For these
patients, the organ shape and position at the time of MRI
scanning may not have been identical to those at the time of
catheter placement, due to the difference in posture and the

absence of the rectum probe. In particular, the clinical cathe-
ters were placed in a way that at the time of MRI scanning
would have intersected the rectum. For patient 25, the large
standard deviation in the values of L for GOMEA catheter
position optimization (up to 4.79%) indicates a premature
convergence of the optimization.

For 14 catheters, GOMEAwas able to find treatment plans
satisfying all planning-aims for 20 out of the 26 patients, and
the front came within 1% of the Golden Corner for one
patient. CVT reached the Golden Corner for 17 patients and
came within 1% for three patients. The P-value for the differ-
ence between the values of L for the two catheter position
optimization methods was 0.005.

For 12, 10, and 8 catheters, GOMEA was able to find treat-
ment plans satisfying all planning-aims for 18, 14, and 11 of the
26 patients, and the front came within 1% of the Golden Corner
for two, four, and two patients. CVT reached the Golden Corner
for 13, nine, and two patients and came within 1% for four,
three, and two patients. For each of these numbers of catheters,
the P-value for the difference between the values of L for the
two catheter position optimization methods was <0.001.

5. DISCUSSION

The results show that both GOMEA and CVT can obtain
catheter positions in a clinically feasible runtime, where
GOMEA takes 5 min. CVT has not been optimized for run-
time, but it has already been reported to be able to obtain 10
catheter configurations ranging from 9 to 18 catheters in
<10 s.17 One advantage of GOMEA is that the resulting front
contains multiple configurations of catheter positions, where
the final decision is left to a radiation oncologist. In contrast,
CVT only provides a single configuration of catheter posi-
tions. Both methods require the number of catheters as input,
which could be based on experience for previous patients.
Additional experience could retrospectively be gained by run-
ning the optimization for multiple numbers of catheters.

The bi-objective optimization model for dwell time opti-
mization has been validated in an observer study with radia-
tion oncologists.12 For bi-objective catheter position
optimization, treatment plans have previously been discussed
with a radiation oncologist as well21 (see also appendix),
resulting in the additional constraints to the healthy tissue
and additional margins to the organ projections, both of
which were developed in an iterative process together with
the radiation oncologist. Therefore, we are confident about
the clinical feasibility of the treatment plans.

Simultaneous optimization as done by GOMEA is slower
than separate optimization as done by CVT catheter position
optimization in combination with GOMEA dwell time opti-
mization, due to the larger optimization problem. The longer
runtime is however associated with better results: catheter
positions obtained with GOMEA were better than those
obtained with CVT. This advantage increased when the num-
ber of catheters decreased. For the use of 16 catheters that is
currently clinical practice in our clinic, the added value in
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performing simultaneous optimization is very small. How-
ever, simultaneous optimization shows the potential to reduce
the number of catheters used in clinical practice. Depending
on the individual patient anatomy, possibly a reduction to as
low as 8 catheters appeared feasible. The use of <14 catheters
has been significantly associated with reduced toxicity.28

However, plans with lower numbers of catheters are also
expected to have a lower robustness.

Robustness was not considered in the experiments. For
CVT, it has been shown that the catheter positions are robust
to small perturbations in random directions in the insertion
plane if afterwards the dwell times are re-optimized,17 at least

FIG. 2. Results for four patients (columns) for three numbers of catheters (rows) using either GOMEA simultaneous catheter position and dwell time optimiza-
tion (light blue), Centroidal Voronoi Tessellations catheter position optimization followed by GOMEA dwell time optimization (dark blue), or the 16 clinical
catheters in combination with GOMEA dwell time optimization (brown). (Color versions of graphs are available online.) The Golden Corner is defined as the
area where both objectives Least Coverage Index (LCI) and Least Sparing Index (LSI) are greater than zero. Each front can be described by a single value L,
based on the treatment plan on the front that is closest to the Golden Corner in both LCI and LSI. The front either reached the Golden Corner (0<L), came
within 1% of the Golden Corner (�1<L ≤ 0), or was at least 1% away from the Golden Corner (L ≤ �1). [Color figure can be viewed at wileyonlinelibrary.c
om]
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in combination with IPSA dwell time optimization. It is there-
fore a reasonable assumption that this is also valid for CVT in
combination with GOMEA dwell time optimization. How-
ever, perturbations in the depth to which each catheter was
placed were not tested. For GOMEA, no robustness analysis
to catheter perturbations has been performed yet.21 It would
be of high practical value to be able to use robust optimiza-
tion, to search for catheter positions that are robust to small
perturbations.

Another limitation of this study is that the patient data
used in the experiments was obtained only after the catheter
placement, and in a different posture. At the time of catheter
placement, the patient was in the operating room in the litho-
tomy position and an ultrasound was used. For acquisition of
MRI scans for a final check of the catheter positions and the
treatment planning, the patient was moved to an MRI scanner
and positioned in supine position during scanning. Therefore,
the organs at the time of scanning may not have been

FIG. 3. The results for GOMEA simultaneous catheter position and dwell time optimization, and Centroidal Voronoi Tessellations (CVT) catheter position opti-
mization followed by GOMEA dwell time optimization, for 8, 10, 12, 14, and 16 catheters. For each patient, the median over 11 runs is taken, after which a box-
plot over all patients is shown (median at 50%, box from 25% to 75%, whiskers at 0% and 100%, excluding outliers based on 1.5 times the interquartile range).
The left figure shows the values of L for both GOMEA and CVT, each moved slightly to either left or right for improved visualization. The right figure shows the
difference between GOMEA and CVT. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Organ projections with the catheter positions for GOMEA and Centroidal Voronoi Tessellations for 16, 12, and 8 catheters (for patient 18) corresponding
to the value L. The black rectangles correspond to the catheter grids used by GOMEA, the black dots are the catheter positions. [Color figure can be viewed at
wileyonlinelibrary.com]
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representative of the organs at the time of catheter placement,
which is when in clinical practice the optimization would take
place. A few patients were already highlighted for this reason,
for whom none of the optimized treatment plans satisfied all
planning-aims. For future work, the use of actual patient data
from the time of catheter placement would be preferable.

Finally, the optimization model was based on the clinical
protocol used at the Amsterdam UMC. Combining dose
indices and volume indices into a single objective worked
well for this protocol, but this may not be the case in general.
For future work, involving other protocols, normalization of
the dose-volume indices may be required.

6. CONCLUSIONS

With bi-objective simultaneous optimization of catheter
positions and dwell times, high-quality catheter positions
optimized directly for dose-volume indices of clinical interest
can now be obtained within a clinically feasible runtime of
5 min. Especially for lower numbers of catheters, better plan
quality can be achieved compared to the use of the state-of-
the-art CVT approach.
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Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Data S1. The Supporting Information consists of our investi-
gations for the healthy tissue constraint, our investigations
into the convergence of the optimization, figures of the differ-
ent dose-volume indices, and full tables of the results.
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