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Abstract
Novel iterative image reconstruction methods can help reduce the required radiation dose in x-ray
diagnostics such as computed tomography (CT), while maintaining sufficient image quality. Since
some of the established image quality measures are not appropriate for reliably judging the quality
of images derived by iterative methods, alternative approaches such as task-specific quality
assessment would be highly desirable for acceptance or constancy testing. Task-based image quality
methods are also closer to tasks performed by the radiologists, such as lesion detection. However,
this approach is usually hampered by a huge workload, since hundreds of images are usually
required for its application. It is demonstrated that the proposed approach works reliably on the
basis of significantly fewer images, and that it correlates well with results obtained from human
observers.

1. Introduction

Diagnostic examinations making use of x-rays are among the most frequently used in Radiology. Especially
for x-ray computed tomography(CT), the number of examinations is steadily increasing. Although the
fraction of CT examinations is small compared to conventional x-ray examinations or dental ones, its
contribution to the overall population dose is significant with an increasing tendency (see, for example,
European Commission 2015).

Suppliers have developed improvements of the CT procedure, such as automatic exposure control and
novel image reconstruction methods, with the aim of reducing the radiation dose while maintaining a
sufficiently high quality of the diagnostic images. Especially in the case of so-called iterative image
reconstruction methods, suppliers claim to be able to reduce the required dose significantly (Vaishnav et al
2014, Viry et al 2018, Willemink and Noël 2019). Iterative reconstruction methods violate the assumptions of
system linearity and shift-invariance, required to apply some of the methods traditionally accepted to
quantify image quality (Illers et al 2005, ICRU 2006, Samei et al 2019).

In order to overcome this problem, task-specific image quality assessment methods, including model
observers, have been investigated and applied for quite some time (Barrett and Myers 2003, ICRU 2006, He
and Park 2013, Barrett et al 2015, Verdun et al 2015). These methods have picked a simplified diagnostic task,
for example, classifying an image as belonging either to class 0 (no lesion visible) or to class 1 (lesion visible),
and have used the probability of correct classification as a quantitative measure of image quality.
Uncertainties associated with the results of the obtained quality assessment have typically been characterised
by methods from classical statistics (see, for example, Wunderlich et al 2015), but also Bayesian methods
have been proposed lately (Reginatto et al 2017, Khanin et al 2018). A model observer is a mathematical
object which attributes a number (a test statistic) to an image and performs a classification according to that
test statistic and thus mimicks the classification by a radiologist. In recent years, two model observers have
gained more attention than others: the channelized Hotelling observer (CHO) due to its optimality (Myers
and Barrett 1987, Abbey and Barrett 2001, Gifford et al 2000, Barrett and Myers 2003, Wunderlich et al 2015,
Racine et al 2018, Ba et al 2018), and the non-prewhitening matched filter with eye filtering (NPWE) due to
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its good correlation with human observers which have been successfully applied to several imaging
modalities (Burgess 1994, Barten 1999, Abbey and Barrett 2001, Bouwman et al 2017, Balta et al 2018).
However, both types of model observer require quite a large number of image pairs (of the order of several
hundreds) for a reliable image quality assessment.

For the NPWE, the number of required images can be reduced by using a template which is constructed
based on prior knowledge of the image instead of using training data (see, for example, Hernandez-Giron
et al 2014). For images of technical phantoms, like the low-contrast module of the Catphan (The Phantom
Laboratory, Salem, NY, USA), the size and the shape of the target to be detected are precisely known, so a
model of the image, the template, can be easily generated. Recently, the parametric modified simple observer
for pooled images (MSOpi) has been proposed (Anton et al 2018), which is applicable to images from simple
technical phantoms. The MSOpi compares the mean signal with the mean background, assuming a common
white noise model. While the MSOpi observer has been shown to be very sensitive and able to reduce efforts
in mammography quality assurance (Kretz et al 2019), it does not appear to correlate sufficiently well with
results obtained by human observers in CT. The reason for this probably lies in its simplified white noise
model, which neither reflects realistic noise characteristics in images, nor accounts for human perception.
These findings prompted a further, and more universal, development, which accounts for realistic noise
modelling and more general settings of noise and background models with the aim that results correlate well
with results from human observers.

The basic idea of the new observer is to approximate the images as well as their covariance matrix by
few-parameter models and to derive a detectability index from the fit parameters, which is why it is called the
regression detectability index (RDI). The approach reduces the number of unknowns to be determined from
the image data significantly, compared to established observers like the CHO and the NPWE. Therefore, only
approximately an order of magnitude fewer images are required for the new observer than for established
ones. The signal model is built by incorporating some blurring, which better accounts for mispositioning of
the phantom and the limited resolution of human perception. Likewise, modelling covariances appears to
yield a detectability index, which is closer to human perception than simple white noise models.

This publication is organized as follows: section 2 gives a short introduction to task-specific quality
assessment in general, we briefly review the CHO and the NPWE, which are used for comparisons with our
newly developed observer.

Our proposed method (RDI, regression detectability index) as a new image quality measure will be
described in section 3: first, the scientific background related to object detectability in phantoms, second, the
outline of the method to construct a model of the images, followed by the estimation method of the
covariance matrix, and ending with practical calculation issues and the estimation of the uncertainty of the
RDI. Section 4 shows the application of the RDI to CT images of an in-house phantom for a range of dose
levels and two reconstruction methods to depict its general performance. In section 5, RDI results are
compared to human scorings and model observer results from a previously published study with a different
phantom, for benchmarking. Section 6 closes the paper with a discussion of the results and a brief outlook. A
detailed description of the CT imaging data is shifted to the appendix, as well as details of the covariance
matrix estimation procedure.

2. Task-specific quality assessment

Task-specific quality assessment quantifies the image quality by emulating a situation encountered by a
radiologist. A typical simple example is the detection of a lesion in an x-ray image. In order to make this task
accessible to a mathematical model observer, it is usually greatly simplified. In the following, we treat the
so-called signal-known-exactly (SKE) / background-known-statistically (BKS) paradigm.

The task of detecting a lesion can be formulated as a binary classification. Assume an image is stored as a
column vector y of length n, where n is the number of pixels. A test statistic z can then be obtained by
multiplying y by the transpose of a vector x of the same length, which may be a template or a signal obtained
from a set of training images:

z= xT · y. (1)

The image y is classified as belonging to class 1 if z exceeds a chosen threshold value γ, and as belonging to
class 0 otherwise:

z≥ γ → y ∈ class 1: with the signature of a lesion

z< γ → y ∈ class 0: with no signature of a lesion

2
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When the threshold γ is varied, the fraction of correctly classified images changes accordingly. A plot of the
correctly ‘positive’ (i.e. with the signature of a lesion) classified fraction of images (TPF, true positive
fraction) as a function of the incorrectly ‘positive’ classified fraction (FPF, false positive fraction) is called the
ROC—or receiver operating characteristic—curve. For a perfect classifier, the ROC curve immediately jumps
to TPF= 1 at FPF= 0. When the classification is equivalent to pure guessing, the ROC curve is a straight line
connecting the origin with the point (1,1) in the plot. The area under the ROC curve (AUC) is a useful figure
of merit for the quantification of image quality, and it is equivalent to the probability that a randomly drawn
image from class 1 will result in a higher value of the test statistic than a randomly drawn image from class 0
(see, for example, Barrett and Myers 2003, Pepe 2003, ICRU 2006). If the test statistics are normally
distributed, the AUC is connected to the signal-to-noise ratio SNR through

AUC=Φ

(
SNR√

2

)
, (2)

where Φ is the cumulative distribution function of the standard normal distribution and the SNR is given by

SNR2 =
(z1− z0)

2

0.5 · (σ2(z1)+σ2(z0))
. (3)

In equation (3), zi is the expectation of z-values obtained from images y belonging to class i, and the σ2(zi)
are the variances of the two distributions (see, for example, Barrett et al 1998, Barrett et al 2015). The SNR
represents the distance of the centres of the two distributions relative to their mean width. In the following,
we will mainly use the SNR or the detectability index d′ (which are synonyms) as a quantifier for the image
quality. The reason for this is that d′-values may well be distinguishable while the corresponding AUC values
might all be close to unity and hence close to each other. Furthermore, the relations of d′ to other parameters
such as the target size can be simpler.

2.1. NPW and NPWE
One of the simplest observers is the so-called non-prewhitening matched filter (NPW). If a set of images
without a lesion and a set of images with a lesion are available, its test statistic is constructed as

zNPW = (x1− x0)T · y , (4)

where x1 and x0 denote the means of all images with and without a lesion, respectively, and y is a single image
that shall be classified. However, better correlation with the performance of a human observer is achieved
when the images are transformed by a so-called eye filter, which reflects the contrast sensitivity of the human
eye. The eye filter was introduced by Burgess (1994), and an elaborated model of the contrast sensitivity of
the human eye was developed by Barten (1992) (see also Barten 1999). For the test statistic, the image vectors
in (4) have to be replaced by their filtered versions. In this work, the eye filter implemented by
Hernandez-Giron et al (2014) was used which is based on the one proposed by Burgess (1999):

E( fα) = fα · exp
(
− fα
rα

)
; (5)

E quantifies the contrast sensitivity of the eye, the maximum of which is reached at fα = rα, where fα is the
spatial frequency in deg−1. Usually, rα = 4 deg−1 is assumed.

For the practical calculations, the image data set is either split in training and testing groups, or a
template accompanying the image data is used. In the first case, x1− x0 is obtained from the training images,
and test statistics zi are obtained from two groups of test images y0 and y1. In the second case, a template xT
is used instead of x1− x0, as described by Hernandez-Giron et al (2014) and all available images are used for
testing. If zi denotes the test statistic according to equation (4) for test images yi of class i, the detectability
index d′ is obtained by

d′ =
|z1− z0|√

0.5 ·σ2
1 + 0.5 ·σ2

0

, (6)

where the overline denotes averaging and σi is the standard deviation of zi (compare equation (3)). It is
connected to the AUC via d′ =

√
2 ·Φ−1(AUC), where Φ−1 is the inverse of the standard cumulative normal

distribution function.

3
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In order to establish the relation of the detectability of the average human observer d′human to the
detectability of the NPWE d′NPWE, Hernandez-Giron et al (2014) have defined an efficiency η as the slope of
an assumed linear relationship between the squares of the d′-values:

(d′human)
2 = η · (d′NPWE)

2. (7)

It was shown that a value of η= 0.44 resulted from the data used in their publication.
The uncertainty of d′NPWE in this work has been evaluated by applying a bootstrap technique (Efron

1982) as follows. Subsets were drawn repeatedly from the set of all images and used to estimate d′NPWE

through the application of equation (6). From the resulting distribution of values of d′NPWE, an interval was
selected that covered 95% of these results. In our case, we chose a size of 40 images for the subsets. An
approximate 95% confidence interval associated with the detectability of the NPWE when applied to all
images was then constructed by rescaling the obtained interval with the factor

√
40/N, where N denotes the

number of all images.

2.2. CHO
The optimum linear classifier is the Hotelling observer (HO) that can be formulated as

zHO = (x1− x0)T ·V−1 y, (8)

where V is the covariance matrix of the images. The effect of multiplying an image y by V−1 is that the noise
in the image gets decorrelated. It is assumed that the covariances for the two classes of images do not differ
(small signal approximation). In that case, an estimate V̂ of the covariance matrix is obtained as

V̂=
1

N0+N1− 2
·

(
N0∑
k=1

(x0− x0(k)) · (x0− x0(k))T +
N1∑
l=1

(x1− x1(l)) · (x1− x1(l))T
)
, (9)

where N i are the number of images xi in each class, and xi denotes the average over all N i images within class
i. However, even for a very moderately sized square image with an edge length of 64 pixels (px), V has the size
4096× 4096. Therefore, a channelized version is usually implemented. The images are projected to a lower
dimension p by using a channel matrix U of size n× p:

x̃i = U
Txi, (10)

ỹ= UTy, (11)

Ṽ= UTV U (12)

zCHO = (x̃1− x̃0)T · Ṽ
−1
ỹ (13)

The˜(tilde) denotes the channelized versions of the image vectors and covariance matrix. Usually, Ṽ is not
calculated as given in (12), but is rather calculated from the channelized images x̃i directly. The detectability
and its 95% coverage interval were calculated using the routine exactCI_CHO from a software toolbox
published by Wunderlich (2015). We have used p= 40 Gabor channels as described by Wunderlich et al
(2015); the size of the covariance matrix is therefore reduced to a size of 40× 40 which is tractable.

3. RDI—a regression detectability index

Common phantoms used for quality assurance in CT share two important features: the targets to be detected
by a human or a mathematical model observer exhibit a circular cross section, and the background material
is homogeneous. Two examples are the low-contrast module CTP515 of the Catphan phantom or the MITA
body phantom CCT189 (both by The Phantom Laboratory, Salem, NY, USA). This prior knowledge can be
exploited for the construction of a detectability index which assesses image quality on the basis of
significantly fewer images than the application of conventional model observers requires.

We propose a new detectability index called the RDI, which exploits the known image structure by fitting
a regression model to the image. Apart from the fact that this approach requires fewer images, RDI does not
need two classes of images. An estimate of the detectability index is obtained using only images with the
signature of the target, and no separate background images are needed.

4
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Figure 1. Amodel of the mean image. Left: a pseudocolour plot of the signal modelm1, the bright zone indicates the region where
the signal of the target is expected, the dark region is where only background is found. Middle: cross section of the background
modelm0 andm1 for r0 = 9 px and a square image of 64 px edge length. Right: cross section of a fit of the model to an average of
100 images from data set EXP1 (see appendix A.1), FBP reconstruction at 80 mAs. The fit parameters in this case are θ0 =−1.17
and θ1 = 1.12.

Previous investigations (see, for example, references in the review by Barrett et al (2015), section 3.3.6,
but also Verdun et al (2015) or Bouwman et al (2017)) have shown that the correlation of established
observers—such as the CHO or the NPWE—with the performance of human observers can be related to the
fact that both implement properties of the human visual system. The CHO uses channels—such as Gabor
channels—to replicate the human cortex visual perception: the information of the visual stimulus is
decomposed into ‘channels’, that when certain thresholds are reached, triggers detection. In addition, it is
assumed that the human visual system also has the capability to—at least partly—decorrelate the noise
structure of the images. The NPWE, on the other hand, includes a model of the contrast sensitivity of human
vision. The detectability index proposed in this paper implements some of these aspects: decorrelation is
achieved by employing a simplified model of the covariance matrix. In this way, the incomplete decorrelation
by the human visual system is emulated. The limited contrast sensitivity is taken into account by softening
edges in the regression model of the image.

In the following, we will describe the novel detectability index, including the design of the regression
function emulating the limited contrast sensitivity of human observers, the estimation of a simplified model
for the covariance matrix, the evaluation of uncertainty, as well as practical issues in the implementation of
the approach.

3.1. Regression detectability index
The x-ray image is assumed to consist of a signal and a background part, which is illustrated on the left of
figure 1. While the signal and background are separated in the technical phantom, we model the image by a
smooth transition between the two regions to account for the limited contrast sensitivity of human vision.
The transition chosen is described below. The image is then modelled as a superposition of these two parts.
Specifically, the vector of image pixels y= (y1, . . . ,yn)T is modelled as

y|θ,V∼N (Mθ,V) , (14)

where n denotes the number of pixels,N (µ,V) stands for a multivariate Gaussian distribution with mean
vector µ and covariance matrix V, θ = (θ0,θ1)

T includes the two regression parameters involved, and the
n× 2 matrixM= (mT

0 ,m
T
1 ) is the design matrix. The first column vectormT

0 ofM relates to the background
part, and the second column vectormT

1 to the signal part. Figure 1 illustrates the choice of these two
functions in comparison with the known structure of the technical phantom. Note that within a transition
zone, both regression functions are non-zero. The n× nmatrix V is the covariance matrix. V is non-diagonal
in general, which reflects the presence of correlations.

The new idea implemented as the RDI is to assess image quality in terms of how well the contrast
between the two regions is distinguished within model (14). To this end, the detectability index

d′ =

√
(θ1− θ0)2

var(θ0)+ var(θ1)− 2 · cov(θ0,θ1)
(15)

5
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is taken. The detectability index is of a similar form to the SNR in (3). The nominator is large when the mean
signal and mean background are well separated. The denominator equals the variance of (θ0− θ1) and
models the squared uncertainty associated with the difference (θ0− θ1). Large detectability indices are
favoured by large mean differences between the signal and the background and by small variances of this
difference.

In addition to the regression parameters θ, also the covariance matrix V in model (14) is unknown. We
estimate V through a simple parametric model in advance and ignore the uncertainty associated with that
estimate. Next we will describe the selection of the design matrixM, followed by the estimation of the
covariance matrix V. Then we describe the estimation of d′ in (14), including the assignment of an associated
uncertainty. Finally, we give some practical guidance for carrying out the calculations.

3.2. Modelling the mean image
The matrixM in (14) describes a model of the mean image. The most common phantoms used for quality
assurance in CT imaging have simple targets of a circular cross section. Therefore, we restrict the model to a
square region of interest (ROI) with a circular target of variable diameter in its centre, see figure 1. We will
use a logistic function to model a smooth transition between the two regions. The reason for this is twofold:
first, positioning will almost never be exact, i.e. boundaries that are too sharp may cause systematic
deviations of fitting a non-smooth model to the image. Second, there are two processes which will cause the
sharp edges of the target object to soften in the perceived image, the finite resolution of the imaging device,
commonly modelled by its modulation transfer function (MTF), and the contrast sensitivity of the human
eye. The latter is probably the stronger limiting factor. By modelling the mean image through a smooth
transition between the signal and the noise region, it is expected to better resemble human perception.

More precisely, we model the mean image as a superposition of the columns of the n× 2 matrixM as
follows. The first column, denoted bym0, is taken as

m0(ri) = (1+ exp [−k(ri − r0)])
−1

, i= 1, . . . ,n , (16)

where ri denotes the distance of the ith pixel from the centre of the image, and r0 is the radius of the inner
disc containing the signal area. All distances are given in units of pixels (px). For pixels i with values of
ri ≫ r0 in the background region, this function takes a value of approximately 1, while for ri ≪ r0, its value
approaches zero. The selection of k is described below. The second column ofM,m1, is taken as

m1(ri) = 1− (1+ exp [−k(ri − r0)])
−1

, i= 1, . . . ,n (17)

and it describes the complement of (16). For pixels with values of ri ≪ r0 in the signal region, this function
takes a value of approximately 1, while for ri ≫ r0, its value approaches zero.

For the selection of k in (16) and (17), the following procedure is proposed. Let f 50%α in deg−1 denote the
spatial frequency, where the contrast sensitivity in (5) drops to half its maximum. The corresponding width
on a display can be calculated as

w50%
px =

π

180deg
·R · S · 1

f 50%α

, (18)

where R is the resolution of the display and S is the viewing distance. For our calculations we used f 50%α =
10.7 deg−1, R= 4.3 px·mm−1 and S= 50 cm, yielding w50%

px = 3.54 px. The width w50%
px = 3.54 px is

identified with the width of the transition region in the models (16) and (17). For the latter, we define the
width as the distance∆95 between the points where each of the model functionsmi attain the values of 0.05
and 0.95, that is

∆95 =
2

k
ln

(
0.95

0.05

)
. (19)

For our choice of w50%
px = 3.54 px, setting∆95 = w50%

px resulted in the value k= 1.66 px−1. The second
parameter r0 can be directly derived from the known scale of the CT image and the known sizes of the target,
or from templates that are available with the data. We refer to figure 1 for an illustration of the chosen mean
model and to the appendix for further details concerning our image data.

3.3. Estimation of the covariance matrix
The elements V ij, i, j= 1,…, n, of the covariance matrix V are modelled as a Gaussian kernel

Vij = f(dij) = a1 · exp
(
−a2 · d2ij

)
(20)

6
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with a1,a2 > 0, where

d2ij = ∥xi − xj∥22 . (21)

In equation (21), xi is the 2× 1 vector of the spatial position of the ith pixel, and xj that of the jth pixel. ∥ · ∥2
stands for the Euclidean norm. Hence, (20) models the covariance as a simple function decaying with
distance, allowing for a possible correlation even between remote pixels. Underlying assumptions are that the
pixel covariances are shift invariant and rotationally symmetric, which can be viewed as a natural assumption
in this context (see also appendix A.4).

The unknowns a1 and a2 in (20) are obtained by a least-squares fit to the observed covariances

V̂ij =
1

N− 1

N∑
l=1

(
yi − y(l)i

)(
yj − y(l)j

)
(22)

from a set of N images y(1), . . . ,y(N). Please recall that only one class of images containing the signal is used.
In (22), yi denotes the mean across images of the ith pixel. In what follows, V always denotes the fitted model
matrix according to equation (20). After having obtained estimates for a1 and a2, it is checked whether the
obtained matrix V is numerically positive-definite and has a sufficiently small condition number. If these
conditions are not met, the matrix is modified as described in section 3.5.

3.4. Estimation of the detectability index
We propose estimating d′ for a single image through

d̂′
(1)

=

√√√√ (
θ̂1− θ̂0

)2
(1,−1) C (1,−1)T

, (23)

where C is the covariance matrix of the estimate θ̂ of the parameters θ

cov(θ̂) = C=
(
MTV−1M

)−1
(24)

and

θ̂ = CMTV−1y . (25)

We refer to subsection 3.5 below for guidance as to how (24) and (25) are actually calculated.

Let N denote the number of images taken for estimating d′, and d̂′
(l)
, l= 1, . . . ,N, the corresponding

estimates obtained for each single image. Following the Guide to the expression of uncertainty in
measurement (GUM) (JCGM100 2008), we recommend taking the final estimate as the mean

d̂′ =
1

N

N∑
l=1

d̂′
(l)
, (26)

along with its associated squared standard uncertainty

u2(d′) =
1

N

1

(N− 1)

N∑
l=1

(
d̂′ − d̂′

(l)
)2

, (27)

and the 95% coverage interval1

I0.95 =
[
d̂′ − t(N−1),0.975u(d

′), d̂′ + t(N−1),0.975u(d
′)
]
, (28)

where tν,α denotes the α-quantile of a t-distribution with ν degrees of freedom.

3.5. Practical calculation issues
Fitting the model for the covariances (20) to the observed covariances (22) was done in a least-squares sense
using a Levenberg-Marquardt algorithm (Gill et al 1981). In order to stabilize the fit, and to ease the choice of
starting values, scaling of the observed covariances is recommended, for example, using

1 Following the notation of the GUM (JCGM100 2008), the term coverage interval is used.

7
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Figure 2. Flow chart summarising the necessary steps to obtain d′ and its uncertainty for the RDI observer.

λ=

1

n

n∑
j=1

V̂jj

−1

. (29)

After having fitted the model covariance matrix to the scaled observed covariances, the obtained model
covariance matrix is re-scaled by 1/λ. Examples are shown in figures A6 and A7 in appendix D below.

It may happen that the modelled covariance matrix V in (20) is numerically close to singular, in which
case it is modified. Therefore, first the decomposition

V=QTΛQ (30)

is formed, where the n× nmatrixQ is orthonormal and the n× n diagonal matrix Λ contains the eigenvalues
of V. If any of the eigenvalues of V are negative, or if the condition number of Λ is larger than the selected
upper bound for the condition number of V, Λ is modified by adding the identity matrix to it ε times , where
ε is chosen such that all Λii > 0 and the condition number of the modified Λ equals the chosen upper bound.
In our calculations, we used 103 as an upper bound for the condition number. (The value of ε is usually
small. ε relative to the maximum diagonal element of V is of the order of 0-0.1% for the FBP reconstructions
and approximately 1% for the iterative reconstructions investigated below.) The inverse V−1 is given through

V−1 =QTΛ−1Q , (31)

where Λ denotes the possibly modified matrix of eigenvalues of V. Expression (31) can then be used to
calculate the 2× 2 matrix

MTV−1M=MTQTΛ−1QM , (32)

8
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Figure 3. Detectability d′ as a function of the time-current product; data set EXP1 (see appendix A.1). Open circles: CHO using
800 images; open triangles: NPWE using 400 images for training and 400 images for testing; filled squares: RDI using 40 images.
Error bars represent the 95% coverage intervals, lines are shown only to guide the eye.

and subsequently its inverse (24), the covariance matrix of θ. The estimate θ̂ in (26), is finally obtained by
solving the linear system of equations for θ(

MTV−1M
)
θ =MTV−1y . (33)

The whole procedure is summarized in a flow chart in figure 2.

4. Application of the RDI—general performance

In order to explore the general performance of the RDI, we have applied it to two experimental CT image
data sets that were obtained using the PTB’s CT scanner, a General Electric Optima™ CT660 and a
custom-built low-contrast phantom. In both cases, the time-current product is varied while other settings
are held constant; image reconstructions using filtered back projection (FBP) and the iterative reconstruction
ASiR of GE are compared. For the sake of the readability of this article, we have shifted detailed descriptions
of the data sets to appendices A.1 and A.2.

The general behaviour of the RDI is shown in figure 3: CHO, NPWE and RDI have been applied to data
set EXP1. The detectability d′ is shown as a function of the time-current product for the standard
filtered-back-projection (FBP) reconstruction (left panel) and the adaptive statistical iterative reconstruction
(ASiR) of General Electric (GE, right panel; GE Molecular Imaging & Computed Tomography, USA). Error
bars represent the 95% coverage interval. The results for the CHO with 40 Gabor channels are shown as open
circles and were obtained as described in section 2.2. 400 images with and without a signal were supplied to
the CHO. Gabor channels were chosen to obtain highest possible d′-values, in order to contrast the RDI with
what could ideally be achieved2. The open triangles represent the results obtained using the NPWE as
described in section 2.1. Here, 200 images with and without a signal each were used for training; the same
number was used for testing. The RDI results are shown as filled squares. The parameters were set as
explained in section 3, and only 40 images were used. Note that the size of the RDI error bars is comparable
to that of the NPWE and the CHO, although only 5% of the images were necessary. The NPWE and the CHO
both used 800 images in total.

The detectability obtained by the RDI appears to be rather lower than the one of the NPWE. This is not
critical, since the investigations of Hernandez-Giron et al (2014) showed that the corresponding detectability
of a human observer would approximately amount to

√
η =66% of the NPWE’s (see equation (7)), albeit for

CT images of the Catphan phantom and a different CT manufacturer and iterative reconstruction algorithm.
Both NPWE and RDI estimate a higher d′ and hence a better image quality for the iterative reconstruction at
the same time-current product, compared to the FBP reconstruction. For the RDI, this effect is smaller than

2 DDOG channels yielded almost identical results.
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Figure 4.Detectability d′ as a function of the time-current product in mAs obtained using the RDI with 40 images for each setting
of data set EXP2 (see appendix B). The lower x-axis refers to the open symbols, which represent the results using
FBP-reconstructed images, the upper x-axis refers to the filled symbols, which show the results from GE’s iterative algorithm
ASiR. Error bars represent the 95% coverage intervals.

Figure 5. RDI detectability d′ as a function of the number N of images used. Error bars indicate the 95% coverage interval. Data
from set EXP1 (see appendix A.1), FBP at 20 mAs, target radius of approximately 9 px.

for the NPWE. The NPWE detectability is—on average—higher by 75% for the iterative reconstruction; for
the RDI the increase is only 24%. The difference is smaller for the highest time-current products. The
comparatively low performance of the RDI may appear surprising in view of its prewhitening property
compared with the NPWE; note, however, that the detectability index defined by the RDI is different from
that underlying the NPWE. The intersection of the NPWE and the RDI curves is due to the fact that for the
NPWE a training/testing approach was used, where the quality of the template also degrades with decreasing
time-current product, whereas the model template of the RDI is independent of I · t.

For the CHO, no dependence of d′ on the reconstruction method is observed, which may be due to its
optimality: by accounting for all covariances, the noise is disentangled, independent of the image
reconstruction method used. In what follows, we compare the new observer to the NPWE alone.

Figure 4 shows the results of the RDI for data set EXP2 (see appendix A.2). The RDI detectability
d′—obtained from 40 images—is plotted as a function of the time-current product. Error bars indicate the
95% coverage intervals. Open squares represent the detectability obtained from FBP-reconstructed images
whereas the filled circles show the detectability for the ASiR method. Note that there are two x-axes: the
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Figure 6. Top frame: RDI detectability d′ as a function of the target diameter using experimental data (EXP3, see appendix C,
40 mAs with FBP reconstruction). The dots represent the 20 different d′-values obtained using 21 images every time. The bottom
frame shows the standard uncertainty as a function of the target diameter. The open circles represent the standard deviation u
obtained from the 20 repetitions, whereas the filled squares indicate the mean of the 20 uncertainty estimates obtained from the
scatter of d′ over 21 images each, calculated according to (27).

bottom axis refers to the FBP data, the top one to the ASiR results. The RDI detectability with the ASiR
method is—on average—only (20± 15)% lower than the RDI detectability for FBP at twice the time-current
product and hence twice the dose.

These results lead to the question: how far can we go?—i.e. how many images are really necessary?
figure 5 demonstrates the influence of the number of images on the RDI results using a part of the
experimental data set EXP1 (see appendix A.1). The detectability obtained from the RDI is displayed as a
function of the number N of images used. The error bars represent 95% coverage intervals. Figure 5
illustrates that the expectation value of the estimate d′ for the image quality does not appear to depend on N,
as expected, only its uncertainty decreases with an increasing number of images used. The number of images
has to be chosen according to the requirements on the uncertainty. When using N = 40 images, for example,
a relative uncertainty of d′ of less than 15% (half-width of the 95% coverage interval) is achieved. This
number (of course) depends on the type of image under investigation.

Another open question is: how consistent are estimation of detectability and its uncertainty evaluation?
In order to investigate this, we have used data set EXP3 (see appendix C), where images with different target
sizes are available. For every target size, the evaluation of the detectability index according to equation (26)
was repeated 20 times, each time using 21 randomly drawn images. In figure 6, d′ is displayed as a function of
the target diameter in mm (top panel). The black dots represent the 20 different d′-values per target
diameter. The scatter of these 20 values is quantified by its standard deviation, which is shown in the lower
panel as the open symbols. The filled symbols in the bottom panel represent the mean of the 20 uncertainty
estimates calculated using equation (27) that were obtained from the scatter of the 21 images per repetition.
As a result, the uncertainty estimate as evaluated from (27) appears to reliably predict the observed standard
deviation of the mean.

5. Application of the RDI—comparison to human observer data

For a comparison of the RDI to human observer data and to a different NPWE evaluation, data that had
been used for the publication by Hernandez-Giron et al (2014) were partly re-used. A description of the
dataset that was obtained at the Leiden University Medical Center on a Toshiba Aquilion ONE™ CT with the
low-contrast module of the Catphan Phantom (The Phantom Laboratory, Salem, NY, USA) is given in
appendix C. There are nine different target sizes of the Catphan phantom with a nominal contrast of 1%. For
every target size, images at five different time-current products are available (10 mAs to 250 mAs). For every
setting (diameter and time-current product) two reconstructions were obtained, one with FBP and one with
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Figure 7. Detectability d′ as a function of the target diameter in mm, data set EXP3 (see appendix A.3), FBP reconstruction at
40 mAs time-current product. NPWE results (shown as open symbols) were obtained using a template and 84 images with and
without the target, RDI results (filled symbols) were obtained using only 21 images showing the signature of the target. Error bars
represent the 95% coverage intervals. Straight-line fits are shown to guide the eye.

Table 1. Slope a in mm−1 and offset b of a straight line d′ = a ·D+ b fitted to d′ (NPWE) as a function of target diameter D in mm for
different values of the time-current product in mAs (leftmost column). u( ) denotes the standard uncertainty. The column χ2

red denotes
the reduced χ2 of the fit as in equation (35).

NPWE FBP AIDR 3D

I · t a± u(a) a± u(a)
in mAs in mm−1 b± u(b) χ2

red in mm−1 b± u(b) χ2
red

10 0.16± 0.02 0.07± 0.11 0.59 0.21± 0.02 0.08± 0.13 0.89
20 0.26± 0.02 0.17± 0.15 0.09 0.29± 0.02 0.10± 0.15 0.16
40 0.40± 0.03 −0.02± 0.21 0.39 0.49± 0.04 −0.13± 0.23 0.91
150 0.76± 0.05 0.01± 0.33 0.14 0.81± 0.05 0.12± 0.35 0.10
250 1.07± 0.07 0.43± 0.44 1.68 1.20± 0.08 0.39± 0.48 2.36

Table 2. Slope a in mm−1 and offset b of a straight line d′ = a ·D+ b fitted to d′ (RDI) as a function of target diameter D in mm for
different values of the time-current product in mAs (leftmost column). u( ) denotes the standard uncertainty. The column χ2

red denotes
the reduced χ2 of the fit as in equation (35).

RDI FBP AIDR 3D

I · t a± u(a) a± u(a)
in mAs in mm−1 b± u(b) χ2

red in mm−1 b± u(b) χ2
red

10 0.15± 0.01 −0.02± 0.11 0.80 0.16± 0.01 −0.17± 0.11 1.05
20 0.23± 0.02 0.14± 0.13 0.50 0.28± 0.02 −0.28± 0.13 1.18
40 0.35± 0.02 −0.17± 0.15 1.39 0.38± 0.02 −0.15± 0.17 0.34
150 0.67± 0.03 −0.23± 0.26 0.80 0.68± 0.03 0.08± 0.26 0.53
250 0.94± 0.05 0.03± 0.35 0.64 1.02± 0.05 −0.20± 0.37 0.63

Toshiba’s adaptive iterative dose reduction algorithm (AIDR 3D, Toshiba Medical Systems Corporation, now
a subsidiary of Canon Medical Electronics, Otawara, Tochigi, Japan).

We analysed all available data with the NPWE as described above, using a template instead of (x1− x0) in
equation (4) and all 84 available image pairs for testing (y1 with a ‘lesion’, y0 without, see Hernandez-Giron
et al 2014). The RDI was applied as detailed above, using only 21 images y1 per setting. As an example, the
results for one setting, i.e. for FBP reconstruction at 40 mAs are shown in figure 7, where d′ is displayed as a
function of the target diameter. The NPWE results are shown as open circles, the RDI results are given as
filled squares. Error bars indicate 95% coverage intervals. Straight-line fits are shown in addition to guide the
eye. Since the number ν of pixels inside the target scales with the square of the diameter, and on the other
hand, the signal is expected to scale with

√
ν, a linear relation between the detectability and the target

diameter is plausible.
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Table 3. The threshold visibility Dlim in mm (related to AUC= 75%, equivalent to d′ = 0.954) as determined from straight-line fits to
NPWE and RDI results for d′ along with its standard uncertainty u as a function of the time-current product in mAs.

NPWE RDI

FBP AIDR 3D FBP AIDR 3D

I · t in mAs Dlim ± u in mm

10 5.7± 0.4 4.3± 0.3 6.4± 0.3 7.3± 0.3
20 3.1± 0.4 2.9± 0.3 3.5± 0.4 4.5± 0.3
40 2.5± 0.4 2.2± 0.3 3.2± 0.3 2.9± 0.3
150 1.2± 0.4 1.0± 0.4 1.8± 0.3 1.3± 0.3
250 0.5± 0.4 0.5± 0.4 1.0± 0.3 1.1± 0.3

For all settings (reconstruction method, time-current product), linear fits to d′ as a function of the target
diameter D were obtained using a weighted total least-squares fit (TLS, see Krystek and Anton 2007) and the
relation

d′ = a ·D+ b. (34)

The results for the fit parameters a and b are listed in table 1 and table 2 for the NPWE and the RDI,
respectively. In addition, χred is given, which is defined as

χ2
red =

χ2

k− l
, (35)

where k is the number of data pairs used for fitting and l= 2 is the number of fit parameters of the straight
line. χ2 is given by

χ2 =
k∑

j=1

[
(Dj −D( fit)

j )2

u2(Dj)
+

(d′j − d′( fit)j )2

u2(d′j)

]
, (36)

where (Dj,d′j) are the data points, u(Dj) and u(d′j) are their respective standard uncertainties and

(D( fit)
j ,d′( fit)j ) are the corresponding points obtained from the TLS fit. For u(Dj), a constant value of 0.5 mm

was assumed, which corresponds to the size of one pixel. Ideally, χ2
red should be close to unity.

From the straight-line fit, a visibility threshold Dlim is calculated by determining the intersection of the
straight line with the horizontal at d′lim, where

d′lim =
√
2 ·Φ−1(AUClim) (37)

is obtained from AUClim (see equation (2) and the comment underneath equation (6)). AUClim was chosen
as 75%, which defines the threshold visibility Dlim as the size of the target where the AUC attains the middle
between guessing (AUC= 50%) and certainty (AUC= 100%). Results for the threshold visibility Dlim are
tabulated in table 3, along with the standard uncertainty of Dlim.

The Dlim results can be directly compared to the data for a contrast of 1% listed in table 3 of the
publication by Hernandez-Giron et al (2014). For 10 mAs, 20 mAs and 40 mAs, the newly evaluated NPWE
results agree with the published data within the limits of uncertainty. It has to be kept in mind that the
published data were obtained from fits of a psychometric curve to the AUC as a function of the target
diameter D (Hernandez-Giron et al 2014), not from a straight-line fit to d′ as in the present work. Only for
the highest time-current products, is the threshold visibility derived from the straight-line fit significantly
lower than the published data. This statement is valid for both FBP- and AIDR 3D–reconstructed
images.

The evaluation of the RDI, on the other hand, yields overall slightly higher values of Dlim than the
NPWE. For the FBP-reconstructed images, the visibility thresholds are quite close to the ones predicted by
the NPWE. In the case of the AIDR 3D reconstruction, the RDI predicts slightly higher visibility thresholds
than for FBP, which is somewhat surprising since iterative reconstruction methods are generally believed to
improve the visibility. However, the differences are not really significant. The expected behaviour is observed
for the NPWE, which predicts a (slightly) better visibility for AIDR 3D for all time-current products except
for the highest value of 250 mAs, although the differences are not significant in view of the uncertainties.
This statement is in accordance with the published findings in Hernandez-Giron et al (2014), where only
small differences between FBP and AIDR 3D were reported.
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Figure 8. Threshold visibility diameter Dlim in mm as a function of the time-current product in mAs, evaluation of data set EXP3.
Top panel: FBP; bottom panel: AIDR 3D. Open symbols: NPWE; filled symbols: RDI; black dots: NPWE (HG) from
Hernandez-Giron et al (2014); grey curve: average human observer results (HG) from the same publication. The error bars and
the shaded areas indicate the 95% coverage intervals. For details concerning the calculation of Dlim, please consult the text.

Table 4. Threshold visibility diameter Dlim (AUC= 75%) and its standard uncertainty u in units of mm for different values of the
time-current product in mAs (leftmost column). The following columns display the results for the NPWE and the RDI observer, for
both FBP- and AIDR 3D–reconstructed images. d′ data were scaled using equation (7) and η= 0.44 for the NPWE results and η= 0.60
in the case of the RDI results. The right part of the table reproduces the results from Hernandez-Giron et al (2014) for the NPWE
(η= 0.44) and for the human observers.

this work Hernandez-Giron et al 2014

NPWE (η= 0.44) RDI (η= 0.6) NPWE (η= 0.44) Human

FBP AIDR 3D FBP AIDR 3D FBP AIDR 3D FBP AIDR 3D

I · t in mAs Dlim ± u in mm Dlim ± u in mm

10 8.8± 0.5 6.6± 0.3 8.3± 0.4 9.0± 0.4 6.8± 0.2 6.0± 0.3 6.5± 0.5 6.8± 0.2
20 4.9± 0.3 4.6± 0.3 4.7± 0.3 5.5± 0.3 4.6± 0.1 4.3± 0.2 4.5± 0.1 4.6± 0.1
40 3.7± 0.3 3.2± 0.3 4.0± 0.3 3.6± 0.3 3.8± 0.1 3.2± 0.1 3.6± 0.1 3.8± 0.1
150 1.9± 0.3 1.6± 0.3 2.2± 0.3 1.7± 0.3 2.5± 0.3 2.3± 0.1 2.9± 0.1 2.5± 0.3
250 0.9± 0.4 0.9± 0.4 1.3± 0.3 1.4± 0.3 2.0± 0.1 1.8± 0.1 1.9± 0.1 2.0± 0.1

The detectabilities obtained by the NPWE as well as those achieved through RDI will not directly match
those of human observers. This is not an issue, as long as the automatically determined detectabilities and
those obtained by the human observers are connected through relation (7), in which case the automatically
determined detectabilities can be rescaled such that they do correspond to results of a human observer. For
the NPWE, such a scaling was carried out by Hernandez-Giron et al (2014) using η= 0.44. For the RDI d′, a
value of η was determined such that a fair agreement between the threshold visibility Dlim—as derived from
the scaled RDI d′—with the human observer data was achieved, leading to η = 0.60. The results obtained for
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the rescaled detectabilities of NPWE and RDI are shown in figure 8, where Dlim is displayed as a function of
the time-current product. The top panel shows the results for the FBP reconstruction, and the bottom one
shows the results for AIDR 3D, the iterative reconstruction. Open symbols indicate the present evaluation of
the NPWE, whereas the filled symbols indicate the RDI results. The published data from Hernandez-Giron
et al (2014) are also shown. Their rescaled NPWE results are indicated by the dots, whereas the average
human observer results are shown as the continuous curve. Error bars and—for the human observer
results—the shaded areas, represent the 95% coverage intervals.

The results are also tabulated in table 4, where the current results are given along with their standard
uncertainties on the left and the published data with their uncertainties are reproduced on the right of the
table, for the convenience of the reader3. The comparatively large differences between the NPWE results are
explained by the different analysis methods: whereas the published data (Hernandez-Giron et al 2014) had
been obtained from a fit of psychometric curves to the AUC as a function of target diameter, the present
results were obtained using a straight line fit to d′ as outlined above.

6. Summary and outlook

A novel regression detectability index for the task-specific image quality assessment of CT images has been
proposed. The detectability index can be calculated reliably using as few as 20–40 images, and only images of
one class containing the signature of a lesion or a target are needed. These properties of the detectability
index are relevant practical advantages compared to current tools in task-specific image quality assessment.

The new detectability index has a prewhitening property, by the aid of a simplified model of the
covariance matrix. Simplification of the covariance model turned out to be necessary in order to achieve
robust results. Note that the quantity underlying the new detectability index differs from that of the
prewhitening matched filter (CHO). Note further that the size of the image has an influence on the
uncertainty of the proposed figure of merit, which may not be the case for the established observers. This
means that some care has to be taken as to provide a sufficient number of pixels as well for the lesion part of
the image as for the background part.

Applying the proposed detectability index to two sets of images from a GE CT indicated that the ASiR
algorithm yields the same low-contrast detectability d′ at a lower time-current product than the standard
FBP reconstruction. For images obtained from a Toshiba Aquilion One CT, applying the proposed
detectability index showed a high correlation with the detectabilities obtained from human observers. A
comparison of the novel approach with human observers for images obtained from other CT imaging
systems is highly desirable.

Currently, the novel regression detectability index is restricted to images of technical phantoms with
circular targets and a homogeneous background. However, the approach may be generalized by using more
complex models, consisting of more than the two regression functions of ‘background’ and ‘signal’. The
proposed treatment carries over immediately regarding the estimation of the covariance matrix and the
regression step; however, a new way of determining the final figure(s) of merit would have to be developed. It
would also be of interest to see whether the new observer could be adapted to also work with more complex
backgrounds such as anatomical ones, which could be investigated using images of anthropomorphic
phantoms. Among other modifications, this would require to drop the assumption of a rotationally
symmetric covariance matrix.

Due to the widespread use of iterative image reconstruction methods, practical task-specific quality
assessment methods are urgently needed for acceptance and constancy testing in CT imaging and elsewhere.
Although only CT data were used for demonstrating the properties of the RDI observer, it may also be
applicable to other imaging modalities, such as mammography. Applying current observers, such as the
NPWE, is often challenging due to its huge workload. We are confident that the developed regression
detectability index can facilitate the use of task-specific image quality in many routine quality assurance
procedures.
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Figure A1. Image of the PTB low-contrast phantom. The interval of Hounsfield units displayed is [−25, 25], the contrast of the
rods is approximately 2 Hounsfield units.

Appendix A. Data sets used

A.1. Data set EXP1: GE CT, PTB phantom
Experimental images were obtained using a low-contrast phantom designed and built at the
Physikalisch-Technische Bundesanstalt (PTB), which is described in detail in section 4.2 of a previous
publication (Anton et al 2018). The images were taken using the PTB’s CT scanner, a General Electric
Optima™ CT660. With a voltage of 120 kV, the product of current and exposure time was varied in five steps
(5 mAs, 10 mAs, 20 mAs, 40 mAs and 80 mAs). The images were taken in ‘axial scan’ mode, with a slice width
of 10 mm. For the reconstruction, the ‘head’ filter, corresponding to the phantom size, and the ‘standard’
convolution kernel were chosen. Every image was reconstructed using both the standard filtered back
projection (FBP) procedure and GE’s iterative algorithm (ASiR). The ASiR setting was chosen as 100%,
which is not accessible for clinical praxis. There, a maximum setting of 50% is accessible, which was chosen
for data set EXP2 (see appendix A.2).

Figure A1 shows an average of 100 images of the low-contrast phantom taken at a setting of 80 mAs,
reconstructed using FBP. For this average, the signals are clearly visible. The four regions of interest (ROIs)
that were used to produce images containing a signal are indicated by the squares. Images without a signal
were produced by selecting ROIs that covered areas of the phantom that did not include the signal. The edge
length of each of the eight square sub-images extracted from one slice was 64 px corresponding to 31.3 mm.
The images of the rods had a radius of 10 pixels. In total, 400 images (ROI) with a signal and 400 images
(ROI) without a signal were produced for each setting of the time-current product and constitute data set
EXP1.

A.2. Data set EXP2: GE CT, PTB phantom
Data set EXP2 is similar to EXP1 (see appendix A.1), only the slice width—which is 0.625 mm in this
case—and the time-current product are changed. The images that were reconstructed with GE’s iterative
algorithm, ASiR, were acquired at approximately half of the time-current product as the FBP images. ASiR
was set to 50%. Following the GE CT’s manual, ASiR images at a setting of 50% should yield an image quality
equal to FBP-reconstructed images acquired at a 1/0.49 times larger time-current product. Therefore, FBP
images were acquired at 51.5 mAs, 77 mAs, 100 mAs, 156 mAs, 204 mAs and 404 mAs, whereas ASiR images
were acquired at 25.5 mAs, 38 mAs, 50 mAs, 78 mAs, 102 mAs and 200 mAs. Other settings were identical.
Again, 400 square ROIs with an edge length of 64 px (31.3 mm), containing a target and 400 equivalent ROIs
showing only background were extracted per time-current setting. Some characteristic features of the data
are illustrated in figure A2 and figure A3, for FBP and ASiR. The examples are also typical of data set EXP1.

A.3. Data set EXP3: Toshiba Aquilion ONE, Catphan low-contrast module
Data set EXP3 comprises images of the low-contrast module of a Catphan phantom acquired at Leiden
University Medical Center (LUMC) using a Toshiba Aquilion ONE CT, with both FBP and Toshiba’s iterative
algorithm AIDR 3D. The data set EXP3 is a subset of the data that were used in the publication by
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Figure A2. Data set EXP2, FBP,≈50 mAs. Left: average over 25 images; Middle: normalized noise power spectrum (NPS) as a
function of spatial frequency in px−1, upper panel: raw data, lower panel: eye filtered data; Right: mean normalized covariance as
a function of pixel-to-pixel distance. These graphics are also representative of data set EXP1.

Figure A3. Data set EXP2, ASiR,≈50 mAs. Left: average over 25 images; Middle: normalized NPS as a function of spatial
frequency in px−1, upper panel: raw data, lower panel: eye filtered data; Right: mean normalized covariance as a function of
pixel-to-pixel distance. These graphics are also representative of data set EXP1.

Figure A4. Data set EXP3, FBP, 40 mAs, target diameter 6 mm. Left: average over 25 images; Middle: NPS as a function of spatial
frequency in px−1, upper panel: raw data, lower panel: eye-filtered data; Right: mean normalized covariance as a function of
pixel-to-pixel distance.

Hernandez-Giron et al (2014). The images are square ROIs with an edge length of 57 px corresponding to
26.7 mm, centred on the targets. The targets are the group of nine areas with a stated contrast of 1% with
diameters between 2 mm and 9 mm (in steps of 1 mm) plus a 15 mm target. For each of the five settings of
the time-current product (10 mAs, 20 mAs, 40 mAs, 150 mAs and 250 mAs), images reconstructed using
FBP and AIDR 3D are available. For each time-current product setting, 84 images with a target, 84 images
without a target and a template are available. The template is a noise-free image of the corresponding target,
including the MTF of the CT. A detailed description of the data preparation procedure can be found in
Hernandez-Giron et al (2014). An important reason for re-investigating this data set is that human observer
data are available for comparison. Some characteristic features of the data are illustrated in
figures A4 and A5, for FBP and AIDR 3D image reconstruction.

A.4. Fits of the covariance model to experimental data
The left part of figure A6 shows an example of the mean normalized covariance calculated from data set
EXP2 (see appendix A.2) for the whole range of pixel-to-pixel distances for the square image with an edge
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Figure A5. Data set EXP3, AIDR 3D , 40 mAs, target diameter 6 mm. Left: average over 25 images; Middle: NPS as a function of
spatial frequency in px−1, upper panel: raw data, lower panel: eye-filtered data; Right: mean normalized covariance as a function
of pixel-to-pixel distance.

Figure A6. Example of data set EXP2 (see appendix A.2), GE CT, PTB phantom and ASiR. Left: mean normalized covariance as a
function of pixel-to-pixel distance; Right: close-up of the mean normalised covariance for short pixel-to-pixel distances, the
continuous line represents a simplified fitting curve according to (20).

Figure A7. Normalized covariance as a function of pixel-to-pixel distance, fit function equation (20), continuous line: GE CT,
PTB phantom, FBP reconstruction; dashed line: GE CT, PTB phantom, ASiR image; dotted line: Toshiba Aquilion ONE CT, FBP
reconstruction; dash-dotted line: Toshiba Aquilion ONE CT, AIDR 3D reconstruction.

length of 64 px, where ‘normalized’ means that a scaling as in equation (29) is applied. The mean is over all
pixels with identical distances. The disturbances visible for large distances are artefacts caused by the finite
image size. Therefore, the fit is usually restricted to a shorter pixel-to-pixel distance (≈25–35 for an image
size of 64× 64). A close-up of the fit for the nearest pixels is shown in the right of figure A6. figure A6 also
shows that negative covariances can emerge and that hence the chosen covariance model yields an
approximation of the true covariances only. However, according to our experience, the results achieved by
using the approximate covariance model are significantly more robust than those employing a refined and
more flexible covariance model.

Fitting results for data from PTB’s GE CT (data sets EXP1 and EXP2) are compared to fits to CT data
from the LUMC’s Toshiba Aquilion ONE (data set EXP3) in figure A7, where the normalized covariance is
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shown as a function of the pixel-to-pixel distance. The continuous curve represents the fit to data from EXP2
(see appendix A.2) with FBP reconstruction, whereas the dashed line shows the fit to the corresponding data
obtained using ASiR. The dotted curve shows the fit to data from set EXP3 (see appendix A.3) reconstructed
by FBP, whereas the dash-dotted line represents the fit to the corresponding iterative reconstruction (AIDR
3D). The results are representative in the sense that the parameters of the fit essentially depend on the type of
CT (GE vs. Toshiba) and the type of reconstruction algorithm. Other parameters such as the time-current
product have no noticeable influence. For both CTs, the normalized covariance drops faster in the case of
FBP reconstruction. The main differences between Toshiba and GE are different noise power spectra (see
figures A2–A5) and that the undershoot seen in the normalized covariance is much less pronounced for the
data from the Toshiba CT.
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