
Self-regulation of phenotypic noise synchronizes emergent
organization and active transport in confluent microbial environments
Dhar, J.; Thai, A.N.P.; Ghoshal, A.; Giomi, L.; Sengupta, A.

Citation
Dhar, J., Thai, A. N. P., Ghoshal, A., Giomi, L., & Sengupta, A. (2022). Self-regulation of
phenotypic noise synchronizes emergent organization and active transport in confluent
microbial environments. Nature Physics, 18(8), 945-951. doi:10.1038/s41567-022-01641-9
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3512607
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3512607


Articles
https://doi.org/10.1038/s41567-022-01641-9

1Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg. 2Instituut-Lorentz, 
Universiteit Leiden, Lieden, The Netherlands. ✉e-mail: anupam.sengupta@uni.lu

Microbial life, at the level of individual cells, is inherently 
noisy due to the intrinsic stochasticity of gene expres-
sions1–3, compounded by variations in the biotic and 

abiotic components in microbial habitats4–6. In bacteria, hetero-
geneity in phenotypic traits, including cell geometry, motility and 
surface association, enhance fitness and functionality7–9, modulate 
chemotactic attributes10,11, support homeostasis12,13 and regulate 
bet-hedging strategies14,15. Whether the ramifications of related phe-
notypic noise, that is, cell-to-cell variability, on growing populations 
are suppressed or reinforced have been studied in single phenotypic 
contexts16, yet, in nature, phenotypic traits can diversify concur-
rently17,18. It thus remains to be understood how variability across 
multiple phenotypes co-emerges and, crucially, if crosstalk therein 
could rectify noisy effects to trigger emergent collective properties, 
which are statistically deterministic in nature.

Recent experiments and modelling of growing bacterial colo-
nies—a focal point in ecology, medicine and industry—have indi-
cated the critical role of cell geometry and growth dynamics in 
shaping the properties of growing bacterial layers19–25. The emer-
gence of structural order and low-dimensional topological attri-
butes, including singularities (topological defects), are implicated in 
the morphogenesis of two-dimensional (2D) sessile colonies to 3D 
biofilms over longer timescales. Specifically, the mono-to-multilayer 
transition (MTMT)—a critical step in biofilm development—initi-
ates due to a biomechanical interplay of geometry, order and topo-
logy26,27, as has also been observed in motile surface-associated 
swarms28,29. The ability of bacteria to collectively exploit topological 
properties for optimal navigation strategies30, localizing sporulation 
sites31 and, potentially, for driving local nutrient fluxes32,33 showcases 
emergent functionalities that bacteria can harness across a range of 
physiological timescales.

Despite recent mechanistic insights, the consequence of pheno-
typic noise on population-scale attributes, specifically in the context 
of emergent collective properties of microbial active matter, is yet 

to be understood. In this Article we bridge this conspicuous gap by 
combining single-cell time-lapse imaging, particle image velocimetry, 
numerical simulations and continuum modelling to quantify pheno-
typic noise associated with key traits, and analyse the role of noise in 
shaping two fundamental collective and correlated properties of con-
fluent colonies: structural organization driving MTMT, in spatial cor-
relation with the embedded topological defects, and the emergence 
of active local transport. We study the bacterial species Escherichia 
coli (strains C600-wt and NCM3722 delta-motA, hereafter Strain-1 
and Strain-2, respectively) and Serratia marcescens (PCI 1107), grow-
ing under different conditions, allowing us to span a range of growth 
rates underpinning the expansion of confluent colonies (Methods 
section Bacterial cultures and bacteria-microparticle assays).

By tracking the expansion of confluent colonies through MTMT 
(Methods sections Time-lapse imaging and Image analysis and  
Fig. 1a,b), we quantify trait-specific phenotypic noise from the 
distri butions of phenotypic traits at the critical time, tc, the onset of 
the MTMT event (Supplementary sections A1 and A2). Our results 
reveal that trait-specific phenotypic noise autoregulates with growth 
(that is, colony age), such that with increasing intra-colony vari-
ability in time, the inter-colony variability reduces (Supplementary 
Fig. 1 and Supplementary section A3). At MTMT, phenotypic noise 
terms can differ over two orders of magnitude relative to each other: 
the cell aspect ratio (AR) and the critical colony area (Ac, colony 
area at tc) are highly noisy, but the noise associated with tc was the 
least (two orders lower), rendering MTMT a statistically precise 
event across all growth rates. We rationalize the emergence of the 
narrow tc window—despite noisy phenotypic traits—with a con-
tinuum model of growing confluent colonies, uncovering a mitiga-
tion effect between the noise in the cell geometry and in the growth 
rate that tightens the distribution of tc. Spatially, the out-of-plane 
extrusion occurs upon cell division, closer to the +1/2 than to the 
−1/2 defects present in the colony. We use a combination of particle 
tracking experiments and data-based theoretical computations over 
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multiple layers to demonstrate that the structural dynamics in con-
fluent colonies drive active transport in the micro-environment in a 
time-synchronous manner. By spanning diverse growth conditions 
and species, our work captures how autoregulation of phenotypic 
noise enables correlated collective phenomena—in structure, defect 
kinetics and active hydrodynamics—thereby establishing a general 
mechanistic framework to understand the emergence of statistically 
precise collective events within active systems comprising individuals  
that are intrinsically noisy or susceptible to systemic noise.

Critical time is deterministic despite high phenotypic noise. 
Cellular phenotypic traits, including length at birth (ℓb) and AR 
(= ℓ/w, where ℓ and w are the bacterial length and width, respec-
tively; Fig. 1c), show high variance at MTMT across all tempera-
tures, following log-normal distributions (Supplementary sections 
A1 and A2 and Supplementary Figs. 3a,e, 4 and 5), in agreement 
with previous reports34,35. The log-normal nature of the ℓb and AR, 
which we confirm theoretically (equation (10a)), is observed fre-
quently in natural systems and stems from the underlying indepen-
dent random variables34–37. This confirms that the distribution of 
AR is ultimately determined by that of ℓb, provided the variability 
in growth rate remains low, as reported previously38.

Despite the high variability in cell- and colony-scale descriptors 
at MTMT (Supplementary sections A1 and A2 and Supplementary 
Fig. 3), tc is statistically precise, suggesting noise mitigation mecha-
nisms across the phenotypic variabilities. Although Ac, both mea-
sured and predicted, is randomly distributed, with an overall high 
standard deviation (s.d.) across the growth temperatures (Fig. 1d), 
the mean and variation of tc show an inverse relation with tem-
perature (Fig. 1e). In contrast, the log-normal distribution of AR 
at MTMT suggests a high phenotypic noise across temperatures 
(Fig. 1f and Supplementary Fig. 3a), species and nutrient conditions 
(Supplementary Table 2 and Supplementary section B1). We discern 
the emergent crosstalk between phenotypic noise using a simple 
continuum model of an expanding colony, following ref. 26 (Methods 
section Hydrodynamic model and Supplementary Fig. 7), wherein 
MTMT occurs when cells experience longitudinal forces larger than

fc ≈ d0kaℓ, (1)

where d0 is the cell diameter and kaℓ, with ka a constant and ℓ the 
cell length, is the total stiffness of the adhesion complex anchoring 

a cell to the substrate. As a consequence, newly divided cells are 
more likely to be extruded once the pressure in their surroundings 
exceeds the threshold Pc = fc/Acap, where Acap = πd20/2 is the area of 
the cells’ spherical cap. The pressure field P = P(r, t), with r the dis-
tance from the centre and t time, varies across the colony propor-
tionally to the local packing fraction ϕ = ϕ(r, t), that is, P = P0(ϕ − 1), 
where P0 is a constant independent of the growth rate20. Specifically, 
at the colony’s centre (the probable site for the MTMT)

ϕ(0, t) ≈ A(t)
A0

, (2)

where A(t) = A0 exp kdt, with kd = τ−1
d log2 and τd the area  

doubling time, is the colony’s area (the approximation holds for  
long times; Methods section Hydrodynamic model). Thus, taking 
P(0, t) = Pc and solving for the area gives

Ac = A0(ℓ/ℓa + 1), (3a)
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Fig. 1 | From noisy phenotypes to a statistically precise mono-to-multilayer  
transition event. a, Cells streaked on nutrient-rich agar plate (1) are 
transferred in the liquid medium (2), then seeded within the microfluidic 
chamber, here Ci denotes individual colonies (3), for phase-contrast 
time-lapse imaging (4) in the swimming pool (S). b, Raw images of growing 
colonies (1) are binarized to extract phenotypic traits (2) and colour-coded 
to visualize local cell orientation (3,4). c, Single-cell geometric traits: AR 
and ℓb. d,e, Ac is independent of growth temperature (d), as revealed both 
in our theory and experiments, whereas tc is temperature-dependent (e). 
Blue and red points indicate distinct biological replicates (including multiple 
technical replicates) for Ac and tc experimental data. Ac has large variance 
across all T, whereas tc has low variance, which minimizes further with the 
growth temperature. Dashed lines and shaded regions indicate the mean 
and s.d. predicted using equations (5a) and (6a). Insets: the cell aspect  
AR ratio follows a log-normal distribution regardless of T, fitted by the  
LNy versus LNx curve (Supplementary Fig. 3a). f, Trait-specific phenotypic 
noise, quantified as the normalized variance, F = var(⋯)/〈⋯〉2, across  
T: ℓb (blue squares), Ac (red triangles), cell length doubling time τsc (black 
diamonds), AR (magenta triangles) and tc (green circles). Despite the 
high phenotypic noise at individual scales (ℓb, AR and τsc), tc is statistically 
precise (corresponding noise is orders of magnitude lower across all T).  
The error bar denotes the standard deviation of F across colonies.
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tc = k−1
d log(ℓ/ℓa + 1), (3b)

where ℓa = P0Acap/(kad0) is a constant length scale, expressing the 
typical extension of the adhesion molecules when stretched by  
force P0Acap.

Equations (3a) and (3b) imply that the statistics of Ac and tc are 
entirely determined by the probability distribution of the cellular 
length ℓ, which, in turn, is log-normal as shown in Fig. 1f. Thus, 
normalizing ℓ by ℓa and taking

PDF(ℓ/ℓa) =
1

√

2πσ2 ℓ/ℓa
exp

[

−

(logℓ/ℓa − μ)2

2σ2

]

, (4)

with μ = ⟨logℓ/ℓa⟩ and σ2 = var(logℓ/ℓa), yields the approximation 
for mean value and variance of Ac

⟨Ac⟩ = A0(⟨ℓ/ℓa⟩+ 1) (5a)

varAc = A2
0var(ℓ/ℓa), (5b)

and time

⟨tc⟩ = k−1
d log(⟨ℓ/ℓa⟩+ 1), (6a)

var tc =
(

k−1
d

⟨ℓ/ℓa⟩+ 1

)2

var(ℓ/ℓa), (6b)

where we have expanded tc at the linear order about 〈ℓ/ℓa〉 to obtain 
equations (6a) and (6b). Then, using equation (4) allows us to 
explicitly compute the mean and variance of ℓ/ℓa in the form

⟨ℓ/ℓa⟩ = eμ+ 1
2 σ2

, (7a)

var ℓ/ℓa = e2μ+σ2(

eσ2
− 1

)

. (7b)

Finally, because the cellular length grows exponentially in time until 
reaching twice the length ℓb:

ℓ(t) = 2t/τdℓb. (8)

μ and σ2 are, in principle, determined by the statistics of ℓb and τd, 
and, for sufficiently long times, the distribution of the doubling 
time is unimportant, because the mean and variance of the length 
solely depend on ℓb statistics. Specifically, normalizing both sides of  
equation (8) by ℓa and taking the logarithm gives

logℓ/ℓa = logℓb/ℓa + (t/τd)log 2. (9)

Now, for t ≫ τd, the colony comprises a large number of cells, 
whose age is sufficiently diversified, their lengths thereby span-
ning the entire range ℓb ≤ ℓ ≤ 2ℓb, and the time t in equations (8) 
and (9) can be treated as a uniformly distributed random variable 
in the range 0 ≤ t ≤ τd. Consequently, t/τd is a uniformly distributed 
random variable in the unit interval, from which 〈t/τd〉 = 1/2 and 
var(t/τd) = 1/12. Hence

μ = ⟨logℓb/ℓa⟩+
1
2 log 2, (10a)

σ
2 = varℓb/ℓa +

1
12 (log 2)

2. (10b)

In summary, our theoretical analysis reveals that the statistics 
of Ac and tc are ultimately determined by the distribution of ℓb, 
which, in turn, is log-normal, consistent with previous reports34,35. 
Given that temperature mainly affects the cell growth rate, while 
leaving the statistics of the length at birth essentially unaltered 
(Supplementary Fig. 3a–e), we infer that, regardless of the strains, 
both 〈Ac〉 and 

√

varAc  are independent of temperature, whereas 〈tc〉 
and 

√

vartc  vary inversely with T, because kd ~ T (Supplementary 
Fig. 3d). By comparing the measured and predicted mean Ac and tc 
(Fig. 1d,e), we show that the blue (red) shaded regions are delimited 
by the respective standard deviations, obtained from the square root 
of equations (5b) and (6b). Consistent with our predictions, 〈Ac〉 is 
temperature-independent, whereas 〈tc〉 varies inversely with T.

The phenotypic noise, quantified as the normalized variance of 
the measured parameters, F = var(⋯)/〈⋯〉2 (Fig. 1f), spans nearly 
two orders of magnitude for a growth temperature. The noise is 
maximum for Ac (red triangles, F ≈ 0.1), whereas tc (green circles) 
shows the least noise, F ≈ 0.001. The noise associated with other 
traits fall within these values (0.001 < F < 0.1). Our experimental 
data, supported by theory, suggest that the noise associated with cell 
elongation rate (ksc) and the cell length distribution (ℓ/ℓa) crosstalk 
to yield a mitigation effect, resulting in ℓ/ℓa ~ f(ksc) (see Methods 
section Hydrodynamic model for the correlation between kd and 
ksc).The noise in Ac and tc, differing by two orders of magnitude, is 
reasonably validated in our theoretical model (equation (18) and 
Methods section Noise and activity underpin emergent trade-off). 
The dependence of ℓ on ksc reduces the variance in tc as the growth 
rate increases, ultimately leading to a noise-mitigating effect that 
regulates the precise timing of the MTMT events.

Bacteria extrude out of plane near +1/2 topological defects. 
Topological defects nucleate at the intersection of nematic micro-
domains in expanding bacterial colonies due to the anisotropic cell 
shape, AR > 1 (refs. 20,21,26,27,31). A snapshot of defects at the MTMT 
is shown in Fig. 2a (right column) and Supplementary Fig. 8. The 
out-of-plane extrusion of the bacterial monolayer is triggered by 
freshly divided cells within the P-zone (Supplementary Fig. 7), a 
region in confluent colonies where the growth-induced in-plane 
active stresses and the surface-induced vertical restoring forces 
favour extrusion26. Figure 2a (left column) shows that multiple 
extrusion sites, lying in the vicinity of the topological defects, can 
emerge in an expanding colony (indicated by yellow arrow heads). 
Although all extrusion events were localized close to topological 
defects, not every defect triggers extrusion. MTMT occurs close  
to defects only when the defects lie within the P-zone (Fig. 2a  
and Supplementary Fig. 7) at the instance of cell division, shown in 
Fig. 2b. The probability of the out-of-plane extrusion decreases as 
one moves away from the colony centre, because the critical stress 
criterion is no longer fulfilled. So, despite cells dividing outside the 
P-zone, they do not trigger extrusion. Spatially, the extrusion sites 
are weakly correlated with the nature of the topological defects: the 
probability of extrusion is slightly higher next to the +1/2 topo-
logical defects (Fig. 2c,d and Supplementary Fig. 9a,b). Overall, the 
trend is comparable with other living systems39, but in confluent 
bacterial colonies, the probabilities are not markedly different.

As the maximum AR varies with growth stage and conditions 
(Supplementary Figs. 1, 3a and 6), the number of potential defect 
sites—at the intersection of the domains—depends on the character-
istic size of the nematic microdomains within a colony20. At MTMT, 
the number of defects, Nd, and the defect density (Cd = Nd/A), did 
not show a dependence on the growth rate, staying nearly uniform 
(Fig. 2e,f and Supplementary Fig. 8). For Strain-1, Nd was in the 
range 6 < Nd < 8, and for Strain-2 it was in the range 8 < Nd < 11. At 
37 °C, 30 °C and 25 °C, the number of defects for Strain-1 (Strain-2) 
varied, respectively, as (mean ± s.d.) 6 ± 1 (8 ± 1), 7 ± 2 (11 ± 1) and 
5 ± 2 (10 ± 3). In contrast, the rate of generation of defects at MTMT, 
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ΔNd/Δt, increases with temperature. Because higher temperatures 
accelerate the cascade of biophysical events, ΔNd/Δt shows a direct 
dependence on both the population growth rate, kn, and the cell 
elongation rate, ksc (Supplementary Figs. 3 and 9c). Taken together, 
our results demonstrate that, at MTMT, the kinetics of topological 
defects is regulated weakly by the temperature-dependent activity 
and more profoundly by the cell AR. This, thus allows for consider-
ing AR as a fundamental determinant of the topological manifesta-
tions in growing confluent colonies.

Emergent organization cascades to 3D active local transport. The 
log-normal statistics, alongside anisotropic morphology, underpin 
the statistically precise critical time of MTMT (tc), establish the 
topological kinetics and regulate time-synchronous active trans-
port properties. The flow vorticity and divergence distributions  
(Fig. 3a,b), extracted from time-lapse data (Methods and Supple-
mentary Figs. 11, 12 and 13), present the growth-mediated hydro-
dynamics of confluent colonies. Positive and negative vortices, 
distributed equally (Fig. 3b, left and middle panel insets) alongside 
flow divergence, gain strength with increasing activity, thus reaching 
a maximum at 37 °C (Supplementary Fig. 12). The mean absolute 
vorticity (MAV, Fig. 3b), equivalent to the normalized enstrophy40, 
measures the growth-induced kinetic energy input to the expanding 
colony. This, together with positive net mean divergence, suggests 
that, post-MTMT, confluent colonies can activate transport in their 
micro-environment. As growth temperature increases, the peaks  
of MAV and vorticity frequency become increasingly correlated 
with the MTMT event (Fig. 3b, right panel inset and Supplementary 
Fig. 3f), and vice versa, confirming a time-synchronous cascade 
from the structural transition to the emergent hydrodynamics in 
confluent bacterial colonies.

Sessile bacteria lack motility, so emergent hydrodynamics can be 
consequential for active transport in the colony micro-environment. 
Using numerical modelling, we characterized local transport around 
expanding colonies (Methods and Supplementary Figs. 14 and 15). 

Figure 3b (right) presents the enhanced transport, (D/DB)z=z1, as 
the ratio of the effective and Brownian diffusion, simulated based  
on our experimental data, shown here for Strain-1 (Supplementary 
Fig. 12 presents the results for Strain-2). Despite lacking cellular 
motility, remarkably, expanding colonies enhance local transport, 
which increases with activity (here, T). For monolayers, the enhance-
ment (D/DB)z=z1 was approximately fourfold for 200-nm-diameter 
micro-cargo and tunable via temperature-dependent growth. 
Importantly, we captured a time-synchrony between the peak of 
(D/DB)z=z1 relative to tc (Fig. 3b, right, inset), suggesting temporal 
programmability of the local transport properties mediated by the 
structural changes.

At MTMT, the structural transition results in an out-of-plane  
vertical speed Wz=z2 that we obtain from the PIV analysis of multi-
layer confluent colonies (Fig. 4a,b, orange). The expansion of the  
second layer contributes to the transport enhancement (D/DB)z=z2,  
its magnitude set by the areal expansion rate of the second layer 
(Methods section Bacterial cultures and bacteria-microparticle 
assays and Supplementary Figs. 17 and 16). With active transport 
generated by each of the subsequent layers, the cumulative trans-
port in the micro-environment becomes integrated as monolayers 
transform into multiple layers (Supplementary Fig. 17). The choice 
of viscosity (50 Pa s) in our in silico experiments represents a con-
servative estimate, as mucilaginous and exopolymeric substances 
associated with bacterial colonies can be as high as 103 Pa s (ref. 41). 
Such viscous-dominated settings can amplify active transport non-
linearly, as demonstrated through the phase space of local viscosity 
and micro-cargo size (Supplementary Fig. 15; see Methods section 
Data-based transport simulations for details). For viscosity below 
1 Pa s and for particles smaller than 100 nm in diameter, no effective 
enhancement was measured.

We visualized the ramifications of activity-driven enhanced 
transport using tracer experiments. The trajectories of tracers (mean 
diameter of 2 μm) suspended around confluent colonies reveal 
micro-cargo transport. Remarkably, despite the low local viscosity 
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(~0.25 Pa s), the expanding confluent colonies could substantially 
displace tracers and their self-organized clusters (Fig. 4c for t = 0 
and 3.5 h and Supplementary Figs. 18–21). The enhanced transport 
de-clustered tracers over time, reducing the coordination number 
CN, the number of direct neighbours with which each particle is 
in contact (Fig. 4d, top inset). For the control case (without bacte-
ria), the CN remained constant over a long time (Supplementary 
Video 2C). The rate of change of CN depends on the bacterial 
activity (and hence growth temperature; Supplementary Figs. 19  
and 20). Finally, variation of the area of ellipses bounding the  
clusters (Ap) over time gives a measure of the strength of the active 
flows and their temperature-dependent modulation (Fig. 4d and 
Supplementary Fig. 19 and 20). Here we would like to highlight 
that Brownian diffusion of tracer clusters—orders of magnitude 
lower than single tracer particles42—fails to break apart isolated 
clusters (control case, Supplementary Video 2C). However, clusters 
in the colony micro-environment were successfully de-clustered. 
In view of the transport-driven de-clustering, our analytical model 
(developed for single particles) under-predicts the strength of the 
transport observed in our experiments, suggesting active transport 
regimes that are potentially stronger than what we have predicted. 
Experiments are underway to discern the nature of interactions 
between the passive clusters and confluent colonies.

From noise-mediated active processes to biological functions. 
By harnessing temperature as a tractable parameter for tuning 
biophysical activity, we could control the emergent structure and 
active transport in confluent bacterial colonies. We establish a gen-
eralized mechanistic link between biological activity and emergent 
properties in noisy systems that is applicable for different growth 

conditions and species. The data-based continuum modelling, 
combined with hydrodynamic simulations, quantifies how auto-
regulation of cellular phenotypic noise mitigates colony-scale vari-
ability, to ultimately drive structural transition, topological defect 
kinetics and active transport at the onset of biofilm formation. 
Time-synchrony, the specific temporal sequence of emergent struc-
ture and active flow phenomena, along with the activity-governed 
ability of colonies to tailor local transport attributes—despite noisy 
phenotypic traits—suggests potential physiological functions of 
such active phenomena, including molecular and material cargo 
transport at microscales. Expanding colonies exhibit strain- and 
activity-dependent phenotypic noise, yet, crucially, we discover 
that 2D to 3D morphological transitions are insulated from noise, 
rendering MTMT a statistically precise process in the life of a con-
fluent colony. Downstream, MTMT triggers time-synchronized 
active hydrodynamic properties, ultimately driving enhanced 
transport in colony micro-environments. In natural settings, such 
time-synchronized active phenomena could enable the extruded 
cells forming the second layer (and beyond) to access resources, 
as these cells lose direct access to nutrients through contact with 
the nutrient-rich substrate. Interestingly, the high local viscosity 
characteristic of exopolymeric substance-rich bacterial colonies 
(103 Pa s; ref. 41) promotes enhancement of active transport non-
linearly, potentially enabling patchy-to-homogenized resource dis-
tribution (for example, molecular concentrations) at the onset of  
the extrusion events. Further afar, confluent colonies can harness 
active flows for shuttling sub-micrometre- to micrometre-sized 
microbial cargo (fungal spores and bacterial cells), liposomes and 
extracellular vesicles delivering genetic or biochemical cargo, hitch-
hiking bacteriophages and synthetic beads and capsules relevant 
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for drug delivery (see discussion in Supplementary section A4). 
Confluent microbial active matter is a multifield topological sys-
tem43 in which the topology of structure, active hydrodynamics and 
microscale transport emerge sequentially with respect to the onset 
of the MTMT. The geometric and topological interplay ultimately 
translates into multifold enhancement of the transport in the colony 
vicinity, despite the cells being non-motile. The multifield topological  
facets uncovered here further our mechanistic understanding of 
diverse confluent systems39,44–46, extending our classical view of active 
and emergent properties, specifically in the context of cell-scale 
phenotypic noises and their mitigating effects on population-scale 
variability, across geometric, topological and hydrodynamic prop-
erties. The biological significance of the time-synchronous nexus 
of structure–flow–transport is multi-pronged: strict timing of the 
extrusion events presents MTMT as a proxy to quorum-like sensing 
between the colonies, with potential ramifications of and in synchro-
nous selection for resistant cells (for example, against antibiotics). 
Disrupting the well-defined MTMT timing could offer future alter-
natives to inhibit quorum-sensing, and thereby tailor bacterial resis-
tance to antibiotics. Looking ahead, it will be critical to understand 
how inter-colony communications emerge under stressful environ-
ments, in the parameter space of intrinsic noise and structure–flow 
time-synchronicity. Finally, the noise-mediated spatio-temporal 

phenomena presented here could provide key missing insights into 
the biophysics of morphogenesis in systems with higher complexity,  
including polymicrobial consortia observed in human and plant 
microbiomes, and multicellular tissue systems relevant for embry-
onic and cancer development (Supplementary section A4).
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Methods
Bacterial cultures and bacteria-microparticle assays. Bacterial cultures. We 
used two non-motile strains of E. coli bacteria, namely C600-WT and NCM3722 
(Strain-1 and Strain-2, respectively). We considered a minimum of three biological 
replicates for our bacterial experiments at each temperature and for each strain 
in this study. As a first step, the cells were streaked on standard agar plates replete 
with lysogeny broth (LB). The plated cells were grown for a day, after which 
isolated cell colonies were identified and scraped using a sterile microbiological 
loop. Depending on the downstream experimental requirements, the growth 
temperature in each step of cell culturing was set to one of the temperatures 
considered in this work (25 °C, 30 °C and 37 °C). The scraped cells were then 
transferred to liquid LB medium, and allowed to divide in a shaker for ~12 h. 
The culture was subsampled at regular intervals to track the cell growth over 
time, using the optical density (OD) measurement technique. After nearly 12 h of 
liquid culture growth, the cells were transferred into fresh LB medium at a 1:1,000 
ratio of cells to fresh medium, then grown for ~2 h, before they were introduced 
onto the specially designed substrates (Fig. 1) for time-lapse imaging of the 
colony expansion at 25 °C, 30 °C and 37 °C. We used growth temperature, a key 
determinant of physiology, viability and pathogenicity of bacteria47–50, to regulate 
the biophysical activity of the proliferating colonies. The effects of temperature on 
bacterial metabolism are well supported by mathematical models and data-backed 
empirical formulations50, yet temperature-dependent tuning of the biophysical 
activity, at either individual or colony scales, has remained unexplored in bacterial 
active matter. The single-cell-to-colony dynamics was observed using time-lapse 
microscopy on a 2-mm-thick layer of agarose gel. The gel was uniformly mixed 
with LB medium, a nutrient-rich medium commonly used for growing bacteria 
under laboratory settings (Fig. 1a). This nutrient-rich layer was sandwiched 
between two glass slides, and a 2-mm-thick Gene Frame (spacer) was used to 
enclose the glass-agarose system. A time-lapse phase-contrast microscope was used 
to image the cell dynamics from below. The protocols for the experiments with an 
additional species (S. marcescens PCI1107) and nutrient-limited NCM3722 are 
presented in Supplementary section B1.

Bacteria-particle assay for quantification of transport properties. To culture the 
bacteria along with the microparticles we used 2-μm-sized polystyrene beads 
(initial concentration of 98% vol/vol; Sigma-Aldrich). We first diluted the particles 
in sterilized de-ionized (DI) water (50 μl of the 2-μm particle solution in 1 ml of 
DI water). The mixture was vortexed and treated in a sonication bath for 2 min, 
then centrifuged (at 600 r.p.m.) for another 2 min. The agglomerated beads were 
separated and resuspended in DI water and the steps repeated, before introducing 
the suspension into 1 ml of LB medium. The mixture was sonicated again and then 
centrifuged for 2 min each, sequentially. The process was repeated three times to 
ensure the beads were finally suspended in 1 ml of LB medium, to reach a low final 
concentration of ~103 particles per ml. Finally, the 1 ml of LB medium + beads 
mixture was mixed with 5 ml of pure LB medium and sonicated for 2 min to hinder 
flocculation or particle sedimentation. The bacterial strains were cultured in 6 ml 
of LB + particle medium for each temperature used in the study. For propagation 
of the bacterial culture at each temperature in the LB + beads medium, we followed 
the same method as in the previous section. After an interval of 2 h, we observed 
the growth of the bacterial strain under the microscope to ascertain its fitness 
in the medium with beads. Our observations indicated that its fitness remained 
unchanged in the presence of beads. Bio-compatibility was tested by allowing 
the bacterial cells to grow in this dilute medium over multiple generations. We 
compared the growth rate and the geometry of individual cells (microscopy) 
across all temperatures, and compared them against the control data (cells grown 
without the microparticles). No difference could be statistically measured between 
the two sample sets, statistically ruling out cytotoxic effects due to the dilute 
particle suspension. After fabrication of the agarose substrate (described earlier, 
Fig. 1), growth of the colonies and concomitant particle transport were visualized 
at ×60 and ×40 magnifications, while maintaining the sample at a particular 
temperature (Time-lapse imaging). For visualization, we selected six colonies for 
each temperature and noted the x–y coordinates of their initial positions. After 
an interval of 30 min, the change in the positions of the beads was captured (an 
example is shown in Supplementary Fig. 21). From the captured images, the 
microparticles were identified and their centroids extracted using image analysis 
tools. The evolution of the position of the centroid of the beads was extracted 
using the Mosaic track package in ImageJ. The trajectories of the beads for all the 
captured colonies at each temperature provided us with the effective diffusion 
coefficient from the mean-squared displacement analysis. The evolution of the 
particle centroids was also used to quantify the coordination number, the bounding 
elliptical area of particle locations and the circularity of the bounding ellipse (see 
Supplementary Fig. 21 for details). For measurement of the coordination number, 
two particles were considered to be in contact when the centre-to-centre distance 
was less than the sum of the particle radii, with a tolerance of 10% of the particle 
radius.

Time-lapse imaging. For experimentation at each particular temperature, we 
cultured the cells overnight in LB medium and maintained the culture in a 
temperature-controlled shaker. For the present study, we maintained the cultures 

in 25 °C, 30 °C and 37 °C. A dilute concentration was extracted from the culture 
and placed on an agarose plate on which a single bacterium was spotted. The 
subsequent growth of this single bacterium into colonies was imaged while 
maintaining a temperature corresponding to the growth of the culture within the 
microscope environment. Such a single bacterium acts as the nucleating site for 
the growth of monoclonal colonies. For each strain and temperature we performed 
three sets of experiments. The statistics of our analysis were measured over all 
replicates. For the analysis of MTMT, we visualized more colonies in some cases to 
ascertain its lower variance. We observed a variability in morphological parameters 
such as length at birth and length at transition within colonies, even under similar 
conditions potentially attributable to phenotypic heterogeneity.

The colony growth in two dimensions and subsequent penetration to the third 
dimension was visualized using time-lapse phase-contrast microscopy. Images 
were acquired using a Hamamatsu ORCA-Flash camera (1 μm = 10.55 pixels) 
coupled to an inverted microscope (Olympus CellSense LS-IXplore) with a ×60 
oil objective. Overall, this gave a resolution of 0.11 μm. The microscope stage was 
enclosed within a thermally insulated temperature-controlled incubator (Pecon), 
which could be regulated precisely to set the temperature, and we monitored 
the temperature at the sample with a resolution of 0.1 °C. Each experiment 
typically lasted between 15 h and 18 h, allowing us to capture the mono- to bilayer 
transitions (Supplementary Fig. 5) and further transitions from bi- to tri- and 
quadri-layers. Before initiation of capturing the images, we identified and recorded 
multiple locations on the agarose surface where a single bacterium was present. 
The microscope was automated to scan these pre-recorded coordinates and 
capture the images of the gradually increasing colonies at 3-min intervals while 
maintaining the focus across all the colonies captured. The images captured and 
saved over hours gave us the necessary data to analyse the MTMT, dynamics 
and transport within the bacterial colonies. We extracted the dimensions (width 
and length), position (centroid) and orientation of each bacteria from the 
phase-contrast images using a combination of the open-source packages of Ilastik51 
and ImageJ as well as MATLAB (MathWorks), as detailed in the next section. 
Upon extraction of the cell morphological properties, we were able to generate the 
orientation maps of the colony (Fig. 1b).

Image analysis. Image segmentation, cell geometry analysis and cell counting. The 
counting process consisted of cell segmentation followed by counting the number 
of individual entities. Cell segmentation was performed using a combination 
of Ilastik–MATLAB coding that helped to extract the bacterial length and 
orientation in the colony for each time frame of the bacterial colony growth. The 
process was continued until the colony encountered MTMT, because after this the 
image contrast and focus became too limited for subsequent segmentation to be 
carried out (PIV analysis, described in the following, was still feasible). Initially, 
pre-processing of the raw images was performed by a combination of background 
filling and weighted bottom-hat and top-hat filter application Supplementary Fig. 
S5. On the pre-processed image, Ilastik was trained for bacterial segmentation. 
The training process involved iteration until a reasonably satisfactory extraction 
was obtained. A labelled image was extracted from the segmentation process 
and identified in MATLAB. A bacillus-shaped water-shedding technique 
was performed to separate out joint bacterial cells. Finally, these individual 
entities (segmented cells) were coloured (Supplementary Fig. 4f) or outlined 
(Supplementary Fig. 6) for counting and analysis. The orientation of the individual 
bacteria led to an effective director profile of the microdomains emerging with 
the expanding colony (as shown in Fig. 1b). Details of the orientational analysis 
for microdomain detection are presented in ref. 20. Once the microdomains were 
tracked, the topological defects were identified as the intersection of three or more 
microdomains, and further verified visually for all colony data. Depending on the 
rotational nature of the change in the microdomain orientations at the intersection 
(clockwise or counterclockwise, as for the polarization optics of topological defects 
in ordered materials), the defect sign was assigned as (+)ve or (−)ve.

Colony extraction and PIV analysis. Image processing was carried out using 
the MATLAB Image Processing module. In the following we describe the 
image-processing steps we used to extract the bacterial colony (in sequence): 
adaptive thresholding, image dilating and filling, then image labelling. The label 
that coincides with a given centre, which is any point on the first bacterial cell, was 
then extracted and dilated, again followed by image filling, then finally an image 
erosion was applied. A Boolean intersection carried out between the image from 
the last step and the original (raw) image satisfactorily extracted the outline of the 
colony at each time frame. The colony outline gave an effective colony area that 
changed with time and was tracked for each experiment.

PIV analysis was performed on the final extracted colony images (frames 
that not only preclude background noise in the flow due to colony growth and 
light interference, but also help focus on a single colony in cases where multiple 
colony growths were captured in a single frame). For the PIV analysis, the 
Contrast-Limited Adaptive Histogram Equalization (CLAHE) filter was initially 
applied to each image for better contrast. The fast Fourier transform-based 
cross-correlation algorithm was found to be optimal with a three-pass interrogation 
area. Specifically, the desired outputs from the PIV analysis are the two velocity 
components (U, V) and the vorticity field at each time frame, which is generated 
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within the bacterial colony due to its spread. To capture the out-of-plane velocity, 
multiple layers were captured by focusing on each bacterial plane. The individual 
layers were then extracted and analysed using PIV, allowing us to extract the U, V 
velocity field for each plane (Supplementary Fig. 16). Applying a no-slip boundary 
condition and continuity equation ∇ ⋅ v, we obtained the out-of-plane velocity 
field W. Knowing the velocity of the first layer and using the above constraints, the 
velocity of the second layer (after MTMT), was computed, as presented in Fig. 4b. 
The U, V velocity field was used to compute the local diffusion coefficient for each 
layer (Fig. 4b). The PIV analysis with the processed images was carried out with 
PIVlab—the particle image velocimetry (PIV) toolbox of MATLAB52.

Hydrodynamic model. Next we provide a derivation of equation (2). The late 
temporal dynamics of growing colonies can be conveniently described upon 
modelling the colony as a 2D continuum, whose total mass M = ∫d2rρ (ρ = ρ(r, t) 
is the density) grows exponentially in time and whose momentum density ρv 
(v = v(r, t) is the velocity) evolves under the combined effect of pressure gradients 
and drag. The corresponding hydrodynamic equations are given by

∂tϕ + ∇ · (ϕv) = kdϕ, (11a)

ρcell[∂t(ϕv) + ∇ · (ϕvv)] = −∇P − ζϕv, (11b)

where ϕ = ρ/ρcell (ρcell is the average density of individual cells) is the local packing 
fraction, kd = τ

−1
d log 2 (τd is the area doubling time), P is the pressure and ζ is a 

kinetic drag coefficient. On neglecting inertial effects, equation (11b) can be readily 
solved to give a Darcy-like expression for the velocity field, namely

ϕv = −
1
ζ
∇P. (12)

Then, using the equation of state introduced in section Critical time is 
deterministic despite high phenotypic noise, that is P = P0(ϕ − 1), taking the 
divergence of equation (12) and replacing the resulting expression in equation 
(11a), yields a single partial differential equation for the packing fraction ϕ, that is

∂tϕ = D∇2
ϕ + kdϕ, (13)

where D = P0/ζ is an effective diffusion coefficient. Equation (13) can be readily 
solved with initial conditions ϕ(r, 0) = A0δ(r), where A0 is the initial area of the 
colony. This gives

ϕ(r, t) =

A(t)
4πDt e

−

r2
4Dt , (14)

where

A(t) =

∫
d2rϕ(r, t) = A0ekd t, (15)

is the area of the colony at time t. Now, at the centre of the colony one can approximate

ϕ(0, t) = exp
(
kdt − log 4πDt

A0

)
kd t≫1
→ ekd t, (16)

as long as

kd < 4πD
A0

. (17)

Finally, dividing and multiplying the right-hand side of equation (16) by A0 and 
using equation (15) yields equation (2). Note that areal diffusion D and initial 
area A0 have orders of magnitudes of 10−13 m2 s−1 and 10−11 m2. This makes the 
right-hand side of the ratio in the above equation in the range of 0.1 s−1 to 0.01 s−1. 
With doubling time being on the order of minutes, the corresponding value of 
kd becomes 10−3 s−1 or less, thereby bringing about experimental agreement with 
the above relation. We note that the relation τd ~ τsc holds strongly for colonies 
with nearly perfect packing, that is, NAsc = A (where Asc is the area of a single cell), 
and constant bacterium width, as observed in the majority of our experiments 
(Supplementary Fig. 320). Note that ksc = τsc

-1log2.

Noise and activity underpin emergent trade-off. To obtain the value F as  
a function of temperature (that is, biophysical activity) and noting that 
F(x) = var(x)/〈x〉2, we recast equation (6a) as

F(tc) =

F(ℓ/ℓa)
k2d(

1
⟨ℓ/ℓa⟩

+ 1)2⟨tc⟩2
=

F(Ac)

k2d⟨tc⟩
2 . (18)

A simplification of the above equation can be obtained by using equations (5a), 
(5b) and (6a), (6b). We can relate the magnitude of noise associated with the critical 
area and the time with that of the noise associated with the cell length, which in 

turn originates from the intrinsic randomness of the cell division process. Dividing 
equation (5a) by equation (5a) and using the fact that ℓ ≫ ℓa, one readily finds

F(Ac) =

varℓ/ℓa
(⟨ℓ/ℓa⟩ + 1)2

≈ F(ℓ), (19)

F(tc) =

varℓ/ℓa
(kd⟨tc⟩)2(⟨ℓ/ℓa⟩ + 1)2

≈
F(ℓ)

(kd⟨tc⟩)2
. (20)

Thus, although the critical area is affected by the same amount of noise as the cell 
length, from which noise originates, the critical time is substantially less noisy. This 
is by virtue of the fact that 〈tc〉 ≫ τd and thus kd〈tc〉 ≫ 1 and F(tc) ≪ F(ℓ).

Data-based transport simulations. To obtain a data-based effective diffusion 
coefficient from the colony-mediated hydrodynamics, we used the particle 
tracing approach, in which a certain number of particles are placed randomly 
in the flow field induced by the expanding bacterial colony. The positions 
of the particles are then tracked over time. Here the evolution of the particle 
position is achieved by simplifying the generalized Langevin equations. The 
force balance using 2D generalized Langevin equation formulations for massless 
particles with a background flow field reads ζ dx

dt = ζv + ζ
√
4DW(t), where v 

is the velocity field (induced due to the bacterial growth), W(t) is a normally 
distributed random noise satisfying <W> = 0 (< > denotes a mean), ζ is the 
fluid friction force coefficient, D is the diffusion coefficient and x is the particle 
position. The velocity is applied to the equation depending on the position 
the particle occupies at any particular time in the domain. The corresponding 
probability density function PDF(x, t) as solved from the Fokker–Planck 
equation is given by PDF(x, t) =

1
√

4πDt exp(−
(x−vt)2

4Dt ). The first and second 
moments of the particle position are M1(x) =

∫
∞

−∞

xPDF(x, t) = <vt> and 

M2(x) =

∫
∞

−∞

x2PDF(x, t) = <v2t2> + 4Dt (ref. 53). The second moment equals 
the MSD of the particle positions. The above relation subtly implies that the MSD 
is no longer a linear function of time. The diffusion coefficient magnitude in the 
second moment is replaced using the fluctuation-dissipation theorem, which 
states the classical Stokes–Einstein formulae as DB =

kBT
6πμap  (where kB, T, μ and ap 

are the Boltzmann constant, absolute temperature, medium viscosity and particle 
radius, respectively). Using the M2 relation, we find the evolution of the particle 
position with time. From these particle trajectories, we employ the MSD analysis 
to obtain the effective diffusion coefficient for each bacterial layer (z = z1, 2, ..). 
The diffusion coefficient is plotted normalized by the pure Brownian diffusion 
(DB) to get a measure of the enhancement in diffusion due to bacterial colony 
growth, corresponding to the bacterial layers, (D/DB)z1, 2, .... Besides the normalized 
diffusion coefficient, we also plotted the change in the mean particle position 
(MSD) and the velocity correlation (Supplementary Fig. 14) to quantify the nature 
of the transport phenomena.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.
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