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Abstract
Background: The receptor for advanced glycation end products (RAGE) and Toll-like 
receptor 4 (TLR4) is implicated in COPD. Although these receptors share common 
ligands and signalling pathways, it is not known whether they act in concert to drive 
pathological processes in COPD. We examined the impact of RAGE and/or TLR4 gene 
deficiency in a mouse model of COPD and also determined whether expression of 
these receptors correlates with airway neutrophilia and airway hyperresponsiveness 
(AHR) in COPD patients.
Methods: We measured airway inflammation and AHR in wild-type, RAGE−/−, TLR4−/− 
and TLR4−/−RAGE−/− mice following acute exposure to cigarette smoke (CS). We also 
examined the impact of smoking status on AGER (encodes RAGE) and TLR4 bronchial 
gene expression in patients with and without COPD. Finally, we determined whether 
expression of these receptors correlates with airway neutrophilia and AHR in COPD 
patients.
Results: RAGE−/− mice were protected against CS-induced neutrophilia and AHR. In 
contrast, TLR4−/− mice were not protected against CS-induced neutrophilia and had 
more severe CS-induced AHR. TLR4−/−RAGE−/− mice were not protected against CS-
induced neutrophilia but were partially protected against CS-induced mediator re-
lease and AHR. Current smoking was associated with significantly lower AGER and 
TLR4 expression irrespective of COPD status, possibly reflecting negative feedback 
regulation. However, consistent with preclinical findings, AGER expression correlated 
with higher sputum neutrophil counts and more severe AHR in COPD patients. TLR4 
expression did not correlate with neutrophilic inflammation or AHR.
Conclusions: Inhibition of RAGE but not TLR4 signalling may protect against airway 
neutrophilia and AHR in COPD.
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1  | INTRODUC TION

Chronic obstructive pulmonary disease (COPD) is characterized by 
progressive loss of lung function and deterioration in health sta-
tus. Cigarette smoking is one of the major risk factors for COPD, 
and however, several host factors including genetic background, 
low lung function at an early age and airway hyperresponsive-
ness (AHR) also contribute.1 Currently, there is significant interest 
in the role of the receptor for advanced glycation end products 
(RAGE) in COPD pathogenesis as it is both a genetic determinant 
of low lung function and COPD susceptibility. It is also involved 
in the cellular and molecular response to cigarette smoke (CS) 
exposure.1-4

Increased RAGE protein expression is observed in bronchial bi-
opsy tissue from smokers with COPD compared to smokers without 
COPD and never smokers.5 In addition, studies using mouse models 
of COPD have demonstrated a role for RAGE in several pathological 
processes associated with COPD, particularly airway neutrophilia 
and emphysema.6-10 AHR, defined by an exaggerated response of 
the airways to specific and nonspecific stimuli is a feature of COPD 

in some individuals.11 However, despite considerable investigation 
of the ligand-RAGE axis in COPD, its functional role in AHR has not 
been investigated.

RAGE interacts with a broad repertoire of endogenous ligands 
such as HMGB1 and the heterodimeric complex S100A8/A9 which 
are also elevated in COPD.5,12,13 While HMGB1 and S100A8/A9 
are major RAGE ligands, they also signal via Toll-like receptor 4 
(TLR4), another pattern recognition receptor implicated in COPD 
pathogenesis.14,15 Increased levels of TLR4 protein are observed in 
the bronchial mucosa of patients with stable COPD, compared to 
nonsmoking control subjects,16 while studies in mice have demon-
strated a role for TLR4 in the acute neutrophilic response to CS 
exposure.17-21 Moreover, HMGB1 facilitates LPS-mediated and 
TLR4-dependent inflammatory responses by engaging RAGE, thus 
suggesting functional interaction between RAGE and TLR4 signal-
ling.22 This notion is further supported by evidence that RAGE uti-
lizes the TLR4 adaptor proteins TIRAP and MyD88 to mediate its 
biological effects.23

In the general population, the presence of asymptomatic AHR 
is a powerful predictor of respiratory symptoms and future risk of 
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G R A P H I C A L  A B S T R A C T
In mice, the absence of receptor for advanced glycation end products (RAGE) protects against neutrophilia and increased airway reactivity induced 
by acute smoke exposure, but this protection is largely lost when Toll-like receptor 4 (TLR4) is also absent. In humans, smoking is associated with 
lower advanced glycation end product receptor (AGER) (encodes RAGE) and TLR4 expression irrespective of chronic obstructive pulmonary disease 
(COPD) status. AGER gene expression correlates with neutrophilic inflammation and more severe airway hyperresponsiveness in COPD patients.
Abbreviations: AGER, advanced glycation end product receptor; COPD, chronic obstructive pulmonary disease; MCh, methacholine; RAGE, 
receptor for advanced glycation end products;  TLR4, toll-like receptor 4.
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     |  1125ALLAM et al.

developing COPD.24,25 Moreover, among patients with COPD, AHR 
is associated with rapid decline in lung function, measures of gas 
trapping, airway inflammation and increased risk of respiratory 
mortality.11,26-28 AHR is thought to occur as a result of variable and 
fixed components. The variable components largely derive from the 
acute release of pro-inflammatory mediators, while the persistent 
components result from structural changes in the airways and loss 
of elastic recoil due to emphysema.1 Previous studies have shown 
that acute CS exposure for a period of three to 4 days leads to in-
duction of AHR in mice.29,30 Thus, acute CS exposure in mice is use-
ful for the investigation of early signalling events that mediate AHR 
relevant to the nascent stages of COPD, as it removes the addi-
tional impact of structural changes which develop following chronic 
smoke exposure.31

In this study, we utilized a mouse model of acute CS exposure to 
test the hypothesis that RAGE, either alone or in co-operation with 
TLR4, promotes airway neutrophilia and AHR. We also examined the 
impact of smoking on AGER (which encodes RAGE) and TLR4 bron-
chial gene expression in healthy control subjects and COPD patients. 
Finally, we determined whether expression of these receptors cor-
relates with airway neutrophilia and AHR in COPD.

2  | METHODS

A full description of methods is provided in the Appendix S1.

3  | RESULTS

3.1 | RAGE but not TLR4 mediates acute CS-
induced airway neutrophilia and AHR in mice

To investigate whether RAGE and TLR4 co-operate in the initial inflam-
matory response to acute CS exposure, we exposed wild-type (WT), 
TLR4−/−, RAGE−/− and TLR4−/−RAGE−/− mice to either fresh air (FA) or 
CS from three cigarettes three times a day for 4  days. This protocol 
elicited a twofold increase in total inflammatory cells in WT mice, that 
could be almost completely attributed to the increase in the number 
of neutrophils 24-hours post-CS exposure, similar to previous stud-
ies32 (Figure 1A-C). It also led to a significant increase in S100A8 and 
CCL3 protein levels in BALF, as well as a trend towards increased levels 
of CXCL1 (Figure  1D-F). Other pro-neutrophilic mediators, including 
TNFα, IL-6, IL-17A and IL-17E, were not detected (data not shown).

F I G U R E  1   RAGE but not TLR4 
mediates acute cigarette smoke-induced 
airway neutrophilia in mice. WT, RAGE−/−, 
TLR4−/− and TLR4−/−RAGE−/− mice 
were exposed to either fresh air (FA) or 
cigarette smoke (CS) from 3 cigarettes 
3 times a day for 4 d. A, Total (B) 
macrophage and (C) neutrophil cell counts 
in BALF. (C) CXCL1 (D) CCL3 and (E) 
S100A8 protein concentrations in BALF. 
Data represent mean ± SEM *P < .05, 
***P < .001, ****P < .0001 vs respective 
fresh air-exposed mice. #P < .05, 
##P < .01, ###P < .001 and ####P < .001 
vs cigarette smoke-exposed WT mice. 
N = 5-8 mice per group
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RAGE−/− mice were protected against acute CS-induced in-
flammation. This was evidenced by significantly reduced numbers 
of infiltrating neutrophils (Figure 1C) and significant attenuation 

in BALF levels of both S100A8 and CCL3 compared to WT mice 
(Figure 1E and F). Reduced airway neutrophilia in RAGE−/− mice 
was not associated with attenuated CXCL1 expression. Notably, 
TLR4−/− mice were not protected against airway neutrophilia 
nor inflammatory mediator release in the BALF (Figure  1C-F). 
TLR4−/−RAGE−/− mice were also not protected against airway 
neutrophilia, even though they had significantly reduced levels 
of CCL3 and a trend towards reduced levels of S100A8 in BALF.

The contributions of RAGE and/or TLR4 to airway reactiv-
ity were also assessed. There was no difference in any of the 
in vivo lung function parameters measured at baseline prior to 
MCh administration in WT, RAGE−/−, TLR4−/− or TLR4−/−RAGE−/− 
mice. Notably, however, in the fresh air groups, the increases in 
total respiratory resistance (Rrs), total elastance (Ers) and distal 
airway dampening (G) in response to MCh were approximately 
50% greater in RAGE−/− and TLR4−/− mice than in WT mice, indi-
cating that RAGE and TLR4 inherently regulate airway reactivity 
(Figure 2A-C). Although the increases in Rrs, Ers and G in response 
to MCh tended to be greater in TLR4−/−RAGE−/− mice than WT 
mice, they were not significantly increased (Figure 2A-C). Changes 
in total compliance (Crs), proximal airway resistance (Rn) and tis-
sue elastance (H) with increasing MCh were similar between all 
groups (data not shown).

Acute CS exposure induced AHR to MCh, as indicated by sig-
nificant increases in Rrs, Ers and G in WT mice relative to their 
fresh air controls (Figures  3A and 4A-C). Despite the increased 
responses of RAGE−/− mice to FA, RAGE−/− mice were protected 
from further increases in Rrs, Ers and G following acute CS expo-
sure (Figures 3B and 4A-C). In contrast, MCh-induced increases 
in all these parameters were further elevated with CS exposure 
in TLR4−/− mice (Figures 3C and 4A-C), whereas only Rrs was ele-
vated in TLR4−/−RAGE−/− mice (Figures 3D and 4A-C).

3.2 | Impact of RAGE and TLR4 on small airway 
reactivity ex vivo

We have previously shown that acute CS exposure in vivo modu-
lates small airway reactivity to contractile stimuli in mouse pre-
cision cut lung slices (PCLS) ex vivo.33 Thus, we extended our 
studies to determine whether loss of RAGE and/or TLR4 also alters 
CS-induced changes in small airway reactivity ex vivo. Although 
air-exposed TLR4−/− and RAGE−/− mice exhibited enhanced airway 
reactivity to MCh relative to WT mice in vivo, this inherent AHR 
was not reflected in the small airways ex vivo. The contractile 
responses to MCh in PCLS from air-exposed RAGE−/−, TLR4−/− and 
TLR4−/−RAGE−/− mice were comparable to air-exposed WT mice, 
with maximum reductions in airway area of 40%-50% (Figure 5A).

In vitro responsiveness to MCh in PCLS from WT was signifi-
cantly attenuated rather than increased following acute smoke 
exposure. The maximum reduction in airway area of 50% was re-
duced by approximately 20% in PCLS from CS-exposed WT mice 
(Figure  5B). However, there were no differences in small airway 

F I G U R E  2   Impact of TLR4 and/or RAGE gene deficiency on in 
vivo airway reactivity in mice exposed to fresh air. WT, RAGE−/−, 
TLR4−/− and TLR4−/−RAGE−/− mice were exposed to fresh air (FA) 3 
times a day for 4 d. Comparison of (A) total respiratory resistance 
(Rrs), (B) total elastance (Ers) and (C) tissue dampening (G) in all four 
strains. Data represent mean ± SEM. δP < 0.05, δδP < 0.01 vs fresh 
air-exposed WT mice. N = 6-10 mice per group
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     |  1127ALLAM et al.

F I G U R E  3   Impact of TLR4 and/or RAGE gene deficiency on in vivo airway reactivity in mice exposed to cigarette smoke. WT, RAGE−/−, 
TLR4−/− and TLR4−/−RAGE−/− mice were exposed to either fresh air (FA) or cigarette smoke (CS) from 3 cigarettes 3 times a day for 4 d. Total 
respiratory resistance (Rrs), total elastance (Ers) and tissue dampening (G) following exposure to FA or CS in (A) WT, (B) RAGE−/−, (C) TLR4−/− 
and (D) TLR4−/−RAGE−/− mice. Data represent mean ± SEM. *P < .05, **P < .01 ***P < .001 vs respective fresh air-exposed mice. N = 6-10 
mice per group
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contractility to MCh in PCLS from CS-exposed RAGE−/−, TLR4−/− 
and TLR4−/−RAGE−/− mice compared to their matched air-exposed 
groups (Figure 5C-E).

3.3 | Smoking lowers AGER and TLR4 gene 
expression in bronchial biopsies from healthy and 
COPD patients

We have previously shown that current smoking is associated with 
significantly lower levels of AGER bronchial gene expression in 
healthy subjects34 (Figure  6A; Table  1). Thus, we extended these 
studies to determine whether smoking impacts TLR4 bronchial gene 
expression in healthy subjects and whether it impacts AGER and 
TLR4 gene expression in COPD patients. Compared to healthy never 
smokers, healthy smokers had significantly lower levels of TLR4 
mRNA in bronchial biopsy tissue (Figure 6B). Healthy smokers also 
had significantly lower levels of other TLR family members, including 
TLR5, TLR7 and TLR10 mRNA, indicating this effect is not specific 
to TLR4 (Figure  6E, Table  1). Notably, we also found that current 
smokers with COPD had significantly lower levels of AGER, TLR4, 
TLR5, TLR7 and TLR10 when compared to ex-smokers with COPD 
(Figure 6C, D, F; Table 1). These data indicate that smoking down-
regulates the expression of multiple pattern recognition receptors 
and that this effect is not specific to COPD.

3.4 | AGER gene expression correlates with sputum 
neutrophils and AHR in COPD

We determined whether TLR4 and AGER gene expression correlates 
with airway neutrophilia or AHR in patients with COPD. We ob-
served a significant albeit weak correlation between AGER gene ex-
pression and sputum neutrophil counts in COPD patients (ρ = 0.330, 
n = 46, P = .025, Figure 7A). Furthermore, there was also a signifi-
cant weak correlation between AGER gene expression and AHR 
severity as determined by the provocative concentration of metha-
choline that results in a 20% drop in FEV1 (PC20) (ρ = −0.285, n = 50, 
P = .045) (Figure 7B). There was no correlation between TLR4 gene 
expression, sputum neutrophils (ρ = 0.027, n = 46, P = .861) or AHR 
(ρ = −0.266, n = 50, P =  .062) in these patients (Figure 7C and D). 
Correlations of AGER gene expression with PC20 and sputum neu-
trophil counts remained significant after correcting for TLR4 (data 
not shown).

4  | DISCUSSION

In this study, we demonstrated that the pattern recognition recep-
tors TLR4 and RAGE regulate AHR in mice. Intriguingly, however, 
although RAGE and TLR4 share a number of common ligands and 
signalling pathways, these receptors differentially regulate the 

F I G U R E  4   RAGE and TLR4 differentially regulate in vivo airway 
reactivity induced by acute cigarette smoke exposure in mice. 
WT, RAGE−/−, TLR4−/− and TLR4−/−RAGE−/− mice were exposed 
to either fresh air (FA) or cigarette smoke (CS) from 3 cigarettes 
3 times a day for 4 d. Maximal increase in (A) total respiratory 
resistance (Rrs), (B) total elastance (Ers) and (C) tissue dampening 
(G) following exposure to FA or CS in all four strains. Data represent 
mean ± SEM. *P < .05, **P < .01, ***P < .001 vs respective FA 
groups. δP < 0.05, δδP < 0.01 vs fresh air-exposed WT mice. 
#P < .05, ##P < .01 vs cigarette smoke-exposed WT mice. N = 6-10 
mice per group

WT RAGE–/– TLR4–/– TLR4–/–RAGE–/–

WT RAGE–/– TLR4–/– TLR4–/–RAGE–/–

WT RAGE–/– TLR4–/– TLR4–/–RAGE–/–

0

10

20

30

G
at

M
ax

im
al

M
C

h
re

sp
on

se

**

***
##

δδ
δδ

0

40

80

120

Er
s

at
m

ax
im

al
M

C
h

re
sp

on
se

*

**
##

δ δ

0

1

2

3

4

5

R
rs

at
m

ax
im

al
M

C
h

re
sp

on
se

**

*** **
## #

δδ δ

FA
CS

(A)

(B)

(C)

 13989995, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.14563 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [23/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



     |  1129ALLAM et al.

airway response to acute CS exposure. We demonstrated that 
RAGE signalling augments AHR induced by acute CS exposure in 
mice and that this effect was associated with RAGE-dependent 
neutrophil infiltration into the airway lumen. Consistent with this, 
AGER gene expression was associated with neutrophilic inflamma-
tion in sputum and more severe AHR in patients with COPD. In 
contrast, we demonstrated that TLR4 signalling protects against 
acute CS-induced AHR in mice without impacting the neutrophilic 
response. We did not observe any correlation between TLR4 gene 
expression and sputum neutrophils or AHR in patients with COPD. 
Our findings suggest that inhibition of RAGE but not TLR4 signal-
ling is likely to afford protection against airway neutrophilia and 
AHR in COPD.

In the absence of CS exposure, RAGE−/− and TLR4−/− mice ex-
hibited a greater degree of airway reactivity to methacholine in 
vivo compared to their WT counterparts, without any evidence 
of increased airway inflammation. Increased airway reactivity to 

methacholine in the absence of any environmental insult has previ-
ously been reported in RAGE−/− mice35,36 but not in TLR4−/− mice.37 
Aberrant expression of RAGE in the lung, irrespective of whether 
it is increased or decreased, is associated with abnormal lung mor-
phogenesis, airspace enlargement and the development of em-
physema-like pathology.7,38-42 Moreover, TLR4−/− mice develop 
emphysema as they age, largely as a result of increased oxidant gen-
eration and elastolytic activity.43,44 Thus, collectively, the current 
evidence indicates important roles for RAGE and TLR4 in maintain-
ing lung homeostasis, structure and function and further emphasizes 
the need to better understand the role of these receptors in the lung, 
both in health and disease.

Accordingly, the studies reported here are the first to examine 
both the individual and combined impact of TLR4 and RAGE gene 
deficiency on the airway response to acute CS exposure. Consistent 
with previous studies, we have shown that RAGE mediates lung 
neutrophil recruitment following acute CS exposure in mice.6-10 In 

F I G U R E  5   RAGE and TLR4 do not mediate cigarette smoke-induced changes in small airway reactivity ex vivo. WT, RAGE−/−, TLR4−/− 
and TLR4−/−RAGE−/− mice were exposed to either fresh air (FA) or cigarette smoke (CS) from 3 cigarettes 3 times a day for 4 d. A, Airway 
contraction expressed as % initial airway lumen area in all four strains w exposure to fresh air only. B, Airway contraction expressed as % 
initial airway lumen area in individual strains exposed to fresh air or cigarette smoke
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F I G U R E  6   Smoking lowers AGER and TLR4 gene expression in bronchial biopsies from healthy and COPD patients. Bronchial biopsy gene 
expression of (A) AGER and (B) TLR4 in healthy (asymptomatic) smokers (n = 37) and never smokers (n = 40). Bronchial biopsy gene expression 
of (C) AGER and (D) TLR4 in COPD current smokers (n = 38) and ex-smokers (n = 18). Heatmap of AGER and TLR family bronchial biopsy gene 
expression of (E) healthy smokers (n = 37) and never smokers (n = 40) and (F) COPD current smokers (n = 38) and ex-smokers (n = 18)
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addition, we demonstrated that this effect is associated with con-
comitant induction of AHR since RAGE deficiency protected against 
both of these outcomes. However, in contrast to a similar acute 
CS exposure study,18 our data suggest that TLR4 does not directly 
regulate CS-induced lung neutrophil recruitment. While the reason 
for this difference in findings is not clear, our data are consistent 
with a chronic CS exposure study which also found that TLR4 defi-
ciency does not protect against CS-induced airway inflammation in 
mice.45 Intriguingly, however, the protective effects of RAGE gene 

deficiency were largely lost in TLR4−/−RAGE−/− mice, as airway neu-
trophil numbers in these mice were similar to those in WT mice, de-
spite some reduction in inflammatory mediator release. Protection 
observed in the absence of RAGE might therefore be partially de-
pendent on TLR4 or, alternatively, loss of both TLR4 and RAGE may 
lead to the activation of compensatory pathways that operate inde-
pendently of these receptor pathways. These possibilities raise an 
added level of complexity that requires further investigation.

We have demonstrated for the first time that RAGE and TLR4 dif-
ferentially regulate AHR in the context of acute CS exposure. Indeed, 
while our findings show that RAGE−/− mice were protected against 
AHR, possibly as a consequence of reduced neutrophil infiltration, 
TLR4−/− mice had worse CS-induced AHR than WT controls, despite 
a similar increase in neutrophils. Since TLR4 acts as a tonic suppressor 
of the NADPH oxidase enzyme Nox3 in lung endothelial cells and 
loss of TLR4 leads to a profound increase in lung oxidant generation 
in the absence of overt lung inflammation,43 this may underpin the 
phenotype observed in TLR4−/− mice. In contrast to TLR4, RAGE sig-
nalling leads to the activation of the NADPH oxidase system in en-
dothelial cells46 and neutrophils47; thus, protection against AHR in 
RAGE−/− mice may be due to reduced neutrophil infiltration and an 
overall decrease in lung oxidant generation. Mice deficient in both 
TLR4 and RAGE were partially but not completely protected against 
CS-induced AHR as some but not all measures of airway function 
were normalized. This finding is consistent with opposing outcomes 
observed in single-gene-deficient strains and further substantiates 
the differential effects of TLR4 and RAGE signalling on AHR.

TA B L E  1   Change in AGER and TLR gene expression in bronchial 
biopsy tissue from healthy smokers relative to never smokers and 
COPD current smokers relative to ex-smokers

Gene

Healthy COPD

log2 fold 
change P value

log2 fold 
change P value

TLR1 −0.043 7.213E-01 NA NA

TLR10 −0.709 5.830E-04 −1.502 4.160E-06

TLR2 0.071 4.403E-01 −0.050 7.256E-01

TLR3 0.132 2.076E-01 0.117 3.059E-01

TLR4 −0.676 8.040E-10 −0.839 4.324E-07

TLR5 −0.323 3.390E-06 −0.292 2.489E-03

TLR6 0.032 8.167E-01 −0.009 9.552E-01

TLR7 −0.505 5.908E-03 −0.732 1.133E-02

TLR8 −0.314 1.292E-01 −0.629 3.464E-02

AGER −0.360 6.209E-03 −0.404 8.193E-03

F I G U R E  7   AGER gene expression 
correlates with sputum neutrophils and 
more severe AHR in COPD patients. 
Correlation between AGER normalized 
gene expression and (A) log sputum 
neutrophil counts and (B) the provocative 
concentration of methacholine that 
results in a 20% drop in FEV1 (PC20). 
*P < .05
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To gain further insight into the relative contributions of RAGE 
and TLR4 in the disease process in COPD, we examined the im-
pact of current smoking status on AGER and TLR gene expression 
in two independent data sets consisting of healthy control and 
COPD patients. As such, it was not possible to determine whether 
AGER and TLRs were differentially expressed between these pop-
ulations. However, current smoking was associated with significant 
repression of AGER, TLR4, TLR5, TLR7 and TLR10 bronchial gene 
expression in both populations, indicating a broad inhibitory effect 
of current smoking on pattern recognition receptor expression, ir-
respective of disease status. We are aware of only one other study 
which examined the impact of current smoking status on TLR family 
gene expression in airway tissue samples ex vivo as we have done 
here.48 Consistent with our findings, current smoking was associated 
with lower levels of TLR4 and TLR5 mRNA expression in small airway 
epithelium samples from healthy subjects. Moreover, although the 
impact of current smoking on TLR expression in tissue samples from 
COPD subjects was not examined, there was further repression 
of TLR5 but not TLR4 in smokers with COPD compared to healthy 
smokers. Experimental CS exposure in mice is associated with in-
creased TLR4 and RAGE expression in lung immune and structural 
cells which appears contradictory to our findings here.20,21,45,49 
However, reduced TLR and AGER expression in current smokers 
most likely reflects a host protective response that acts to coun-
teract continuous activation of the immune response by TLR4 and 
RAGE ligands which may be derived exogenously from cigarette 
smoke, such as the potent RAGE ligand methylglyoxal or produced 
endogenously by airway epithelial cells in response to CS.20,50-53 
Consistent with this idea, Goldklang and colleagues showed that 
while lung RAGE protein expression was increased after 4 weeks of 
CS exposure in mice, it returned to baseline levels after an extended 
CS exposure period of 16 weeks.49

Despite the repressive effects of current smoking, AGER bron-
chial gene expression was weakly but significantly associated with 
higher sputum neutrophil counts and more severe AHR in COPD 
patients. It was not possible to stratify our analysis according to 
smoking status due to the small sample size, although given smok-
ing was associated with lower levels of AGER mRNA while airway 
neutrophilia and more severe AHR were associated with higher lev-
els, it is unlikely that the observed correlations were confounded by 
smoking but this needs to be clarified in future studies. Together 
with the preclinical findings, these data suggest that RAGE might 
promote the development of airway neutrophilia and AHR in COPD. 
Indeed, we and others have previously shown that RAGE is critically 
required for type 2 cytokine-driven airway inflammation and AHR 
in mouse models of allergic asthma.35,36,54-56 Moreover, Oczypok 
and colleagues identified a critical role for RAGE in IL-33 secretion 
and IL-33-dependent accumulation and activation of group 2 innate 
lymphoid cells (ILCs) in asthma which may potentially be relevant to 
mechanisms in COPD.55 In a seminal paper, Kearley and colleagues 
reported increased IL-33 expression in the bronchial epithelium 
of patients with severe COPD and further showed that acute and 
chronic CS exposure in mice leads to increased expression of IL-33 

in airway epithelial cells. Notably, however, they showed that CS al-
ters the cellular distribution of the IL-33 receptor ST2 in the lung, 
decreasing its expression in ILC2s while at the same time increasing 
its expression in macrophages and natural killer (NK) cells. Hence, 
in this way CS silences ILC2 type 2 cytokine production in response 
to IL-33 and amplifies IL-33-mediated type 1 cytokine production 
in macrophages and NK cells. Although CS enhances IL-33 expres-
sion in epithelial cells it does not promote IL-33 secretion into the 
extracellular space and indeed Kearley showed that a second signal 
such as viral-induced epithelial cell damage was required for IL-33 
secretion.57 Thus, future studies should investigate whether RAGE 
is involved in CS-induced epithelial IL-33 expression and whether it 
regulates IL-33 secretion and the immune response to IL-33 in COPD 
as this may potentially identify a common pathway that leads to ab-
normal airway function in chronic airways disease.

Studies using irradiated, bone marrow chimeric mice have shown 
that loss of RAGE in structural but not hematopoietic cells signifi-
cantly inhibits neutrophilic inflammation and lung emphysematous 
changes in a mouse model of emphysema.6 While this suggests 
that RAGE activity in structural cells is likely to be of critical impor-
tance in COPD pathogenesis, it does not exclude the involvement 
of immune cells or crosstalk between immune and structural cells. 
Indeed, in patients with COPD, increased expression of RAGE and 
its major ligand HMGB1 are detected in alveolar macrophages, bron-
chial epithelial and smooth muscle cells,5 indicating that RAGE activ-
ity in both immune and structural cells contributes to pathological 
processes in COPD. Similarly, in mouse models of asthma, loss of 
RAGE in structural tissue cells but not haematopoietic cells impacts 
airway inflammatory responses and AHR, further emphasising this 
point.36,55 However, there still remains little understanding of the 
role of RAGE in cellular and molecular mechanisms of chronic air-
ways disease and certainly this should be the focus of future studies.

In contrast to our studies in mice, we did not observe any rela-
tionship between TLR4 bronchial gene expression and AHR in pa-
tients with COPD. These findings are also in contrast to a study by 
Di Stefano and colleagues which reported significant correlations 
between epithelial TLR4 protein expression and measures of airflow 
obstruction in patients with COPD,16 indicating that TLR4 activity 
in airway epithelial cells adversely impacts lung function. The lack 
of association between TLR4 gene expression and clinical features 
of COPD in our study suggests that post-translational events that 
regulate TLR4 protein expression and other components of the TLR4 
signalling complex in airway epithelia and other cell types are likely 
to be critical determinants of the functional response to TLR4.58

Given the small airways are a major site of disease pathology 
in COPD, we extended our studies to determine whether the dif-
ferences in reactivity to MCh in vivo associated with RAGE and/or 
TLR4 deficiency were also evident in small airways ex vivo. We ini-
tially showed that contraction to MCh was similar in PCLS from all 
air-exposed wild-type and gene-deficient mice. This suggests that 
any structural changes in the airways or surrounding parenchyma 
associated with RAGE and/or TLR4 deficiency that might contrib-
ute to in vivo AHR in the absence of inflammation may be too subtle 
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to be detectable ex vivo in individual small airways. Despite caus-
ing in vivo AHR, acute CS exposure was associated with a signif-
icant reduction in small airway reactivity in PCLS from wild-type 
mice but not RAGE−/−, TLR4−/− or RAGE−/−TLR4−/− mice relative to 
matched air-exposed groups. Since RAGE−/− mice were protected 
against both CS-induced neutrophilia and in vivo AHR, and ex vivo 
contraction to MCh was unchanged, the persistent presence of the 
inflammatory milieu due to CS itself or the specific influence of 
neutrophilic inflammation, as occurs in vivo, may be required for 
increased airway contraction. We have yet to define the mechanism 
for the unexpected decrease in contraction in PCLS from wild-type 
mice and why it is abrogated in TLR4−/− and TLR4−/−/RAGE−/− mice 
which had similar neutrophilia but relatively higher in vivo AHR 
after acute CS exposure.

In summary, the current study has increased our understand-
ing of relative contributions of RAGE and TLR4 signalling to acute 
neutrophilic inflammation and AHR that might be relevant to the 
initiation of COPD. Collectively, our findings further substantiate a 
possible role for RAGE as a therapeutic target in COPD and provide 
further impetus for the investigation of this receptor in COPD and 
related airway diseases, taking into account the complicated effects 
of (current) smoking.
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