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ABSTRACT
The main clock in mammals, located in the suprachiasmatic nucleus (SCN) of hypothalamus, not 
only regulates the daily rhythms in physiological and behavioral activities, but also plays a key role 
as one of the control nodes in the brain regulating behavioral activity. As such, it induces scale- 
invariance in the temporal patterns of behavioral activity and of multi-unit neural activity of the SCN 
network. In particular, the scale-invariant patterns maintain across multiple time scales from 
3 minutes to 10 hours, characterized by a scaling exponent around 1. Thus far, no study found 
the origin of the scale-invariance of the SCN network. Using the method of correlation-dependent 
balance estimation of diffusion entropy (cBEDE), we found that scale-invariance also exists in the 
individual neurons of the SCN, and the scale invariance properties are significantly increased when 
the neurons are coupled in a network of neurons. Improved scale invariance in the single neurons is, 
therefore, imposed by the emergent network properties of the SCN network. Our findings show 
that the scale-invariance of the SCN can already be found at the level of the individual neurons and 
that the application of a scale invariance measure, such as cBEDE, can help in determining the 
network status of the SCN.
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Introduction

The main clock, which is located in the suprachiasmatic 
nucleus (SCN) of hypothalamus, regulates the circadian 
(~24 h) rhythms in physiology and behavior in mammals 
(Vansteensel et al. 2008; Welsh et al. 2010). As such, the 
SCN has been identified as one of the control nodes in the 
brain regulating normal behavioral activity (Hu et al. 2007). 
This activity is characterized by a fractal, or scale invariant, 
organization over a wide range of time scales. Scale invar
iance is thought to be a measure for the optimal balance in 
the brain between flexibility and rigidity (Gu et al. 2019). 
Using the method of Detrended Fluctuation Analysis 
(DFA), a scaling exponent can be obtained from time series 
data which evaluates correlations in fluctuations over time. 
A scaling exponent of 1 indicates the optimal balance 
between flexibility and rigidity, while a scaling exponent 
of 0.5 indicates uncorrelated randomness, and that of 1.5 
indicates overly rigid regularity (Gu et al. 2015). In control 
animals, the scaling exponent found in experimental data 
from behavioral activity was characterized by a scaling- 
exponent of ~1.0, and is maintained over multiple time
scales from 3 min up to ~10 h (Hu et al. 2007, 2009). 
Dysfunction of the SCN disrupts these scale invariant 
patterns. A cross-over point emerges with intact scale 
invariant patterns (scaling exponent ~1) from 3 min to 

~1.5 h for humans (Hu et al. 2009) and to ~4 h for rats (Hu 
et al. 2007) and a scaling component of 0.5 from the cross- 
over point up to ~10 h. The emergence of this break 
suggests that the SCN controls the time scale from several 
hours (1.5 h for human and 4 h for rat) to at least ~10 h in 
the temporal patterns of behavioral activity. Note that the 
length of the data recordings have not enabled investiga
tion of time scales longer than 10 h.

The scale-invariant behavior has also been found in 
the patterns of the multi-unit electrical activity (MUA) 
of the SCN network, itself, using the DFA method (Hu et 
al. 2012). Both the range of the scale-invariant scales and 
the scaling exponents for the MUA are close to the ones 
found for behavioral activity, i.e., the range is from min 
up to 10 h, and the exponent is ~1. This finding supports 
the view that the SCN is involved in the regulation of 
scale-invariance in the patterns of behavioral activity.

These studies have shown that the brain network is 
important for optimal functioning of the circadian sys
tem. To investigate this network more, it is necessary to 
also investigate the building blocks for the SCN network, 
the single cells, and their interconnections. Unfortunately, 
no study has explored whether scale-invariant patterns 
exist in single SCN neurons or whether coupling between 
the neurons plays a role in scale-invariance. In this article, 
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we examined the scale-invariant patterns for single SCN 
neurons as well as the role of coupling between these 
neurons for scale-invariance. Bioluminescence traces of 
single neurons were used as previously reported (Abel et 
al. 2016). To reduce the coupling between the neurons, 
tetrodotoxin (TTX) was applied, and to restore the cou
pling the TTX was washed out (Abel et al. 2016). Because 
the length of the time series for the bioluminescence 
reporter data is much shorter than the time series coming 
from behavioral recordings or electrical activity record
ings, DFA may not be suitable for these analyses. With 
only ~200 data points in the bioluminescence time series, 
the application of DFA may lead to misleading results, 
because DFA requires the length of the time series to be 
larger than ~1000 (Ren et al. 2018). Accordingly, a 
method which is tailored to measure scale-invariance in 
shorter time series (with a minimum of only around 100 
data points), is correlation-dependent balance estimation 
of diffusion entropy (cBEDE), which is applied in the 
present study (Pan et al. 2014a, 2014b; Qi and Yang 
2011; Zhang et al. 2012).

The rest of the article is organized as follows. Section 
II introduces the bioluminescence reporter time series 
and the cBEDE method. In Section III, the results, 
including the scaling-invariant behaviors in both the 
single neurons and the SCN network, are compared 
between the different conditions, during the application 
of TTX and after the washout of TTX. In addition, we 
also examined the scale-invariant behaviors for the 
shuffled data. Finally, the conclusions and the discus
sions are presented in Section IV.

Data description and methods

Data description

We selected bioluminescence reporter data of four dis
tinct SCN mouse explants, each of which contains ~400 
cells. The data were recorded each hour either during 
TTX application or after washout of TTX (Abel et al. 
2016). The experimental process lasted 6 d during TTX 
application; therefore, the length of the time series was 
~140 data points. After these 6 d, the recordings lasted 
for an additional 8 − 12 d in the stage when TTX was 
washed out. In order to remove the aftereffects of TTX 
on SCNs, the data of the first 48 h after washout of TTX 
was not taken into account, which resulted in the time 
series to be composed of ~140-230 data points.

For comparison, we also examined the scale-invariant 
behavior in so-called shuffled time series. The shuffled data 
were obtained as follows: In a time series, the position of 
each data point in the time series was exchanged with the 

position of a randomly selected data point. Therefore, in 
the shuffled time series, the data values are the same, but 
the organization of the data are different from the original 
time series. For each phase, the TTX phase and the washout 
phase, this was done separately for each time series.

Methods

The method of correlation-dependent balance estima
tion of diffusion entropy (cBEDE) is used to examine the 
scale-invariance of entropy in short stationary time ser
ies or non-stationary time series after removing any 
trend. In this section, we introduce the definition of 
the scale-invariance, and how to de-trend the data, the 
method of Diffusion Entropy, and the methods of 
Diffusion Entropy Analysis (DEA) and cBEDE, which 
are developed from the method of Diffusion Entropy. 
The details for the method of Diffusion Entropy, DEA, 
and cBEDE can be found elsewhere (Feng et al. 2019; 
Grigolini et al. 2001; Pan et al. 2014a, 2014b; Qi and 
Yang 2011; Zhang et al. 2012).

1) Definition of scale-invariance: For a stochastic 
placement x at time t, we use p x; tð Þ to represent its 
probability distribution function (PDF), which could 
describe the stochastic process of x. If p x; tð Þ satisfies: 

p x; tð Þ
~1
tδF

x
tδ

� �
(1) 

The stochastic process behaves scale-invariant, where δ 
and Fð�Þ represents the scaling exponent and a function, 
respectively. If x

tδ is replaced by xp x; tð Þ~1tαF x
tα

� �
, p x; tð Þ

remains unchanged. Accordingly, the Shannon entropy 
reads, 

S tð Þ; � ò
þ1

� 1
p x; tð Þln p x; tð Þ½ �d xð Þ ¼ Aþ δln tð Þ (2) 

Eq. (2) stands for any form of the probability distribu
tion function. Hence, the slope for the linear relation
ship of entropy versus natural logarithm of time scales 
are an unbiased estimation of the scaling exponent. A 
scaling exponent of δ > 0:5 represents a fractal with a 
persistent behavior, while δ< 0:5 represents a non-per
sistent behavior (Carbone et al. 2004; Li 2010; Li and Li 
2017; Mäkikallio et al. 1999).

2) Removing the trend of the data: Before we calculate 
the scale-invariant behaviors of SCN neurons, the raw time 
series Y ¼ y1; y2; . . . ; yNf g obtained from the experi
ment (Abel et al. 2016) must be de-trended, where N 
represents the length of the time series (Zhang et al. 
2012). The raw data yi is de-trended by Fourier fitting to 
remove the periodic trend, and the fitted sequence of the 
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trend X ¼ x1; x2; . . . ; xNf g is obtained. Then, we obtain 
the residuals or the difference between X and Y, 
Z ¼ z1; z2; . . . ; zNf g, which reads, 

Z ¼ Y � X: (3) 

After normalizing series Z, we gained the stationary and 
de-trended time series Q ¼ �1; �2; . . . ; �Nf g, which is, 

Q ¼
Z � mean Zð Þ

std Zð Þ
(4) 

3) Method of Diffusion Entropy: First, we mapped series 
Q to a diffusion process with a length or duration of s. 
That is, the time series Q is split into N � sþ 1 seg
ments. The segments Ri are described by, 

Ri ¼ �i; �iþ1; . . . ; �iþs� 1f g; i ¼ 1; 2; . . . ;N � sþ 1
(5) 

Each segment Ri is regarded as a realization of a stochas
tic process trajectory of a particle starting at the original 
point, whose displacement is 
r sð Þ ¼ r1 sð Þ; r2 sð Þ; . . . ; rN� sþ1 sð Þf g, where, 

ri sð Þ ¼
Xs

j¼1
Ri jð Þ ¼

Xs

j¼1
�iþj� 1; i ¼ 1; 2; . . . ;N � sþ 1:

(6) 

In order to find the distribution of the displacements 
r sð Þ between the intervals min r sð Þð Þ;max r sð Þð Þ½ �, we 
divided this interval into M sð Þ bins of the same size 
max r sð Þð Þ� min r sð Þð Þ

M sð Þ . The number of displacements appear
ing in jth bin with duration s is denoted as n j; sð Þ, 
j ¼ 1; 2; . . . ;M sð Þ. Therefore, the PDF can be approxi
mately represented by the relative frequency, 

p j; sð Þ~̂p j; sð Þ ¼
n j; sð Þ

N � Sþ 1
; j ¼ 1; 2; . . . ;M sð Þ (7) 

The naive diffusion entropy of the original time series 
Y ¼ y1; y2; . . . ; yNf g can be estimated by, 

SDE sð Þ~Snaive
DE sð Þ ¼ �

XM sð Þ

j
p̂ j; sð Þln p̂ j; sð Þ½ � (8) 

4) Method of DEA and cBEDE: If the time series behaves 
scale invariant, consequently, p j; sð Þ follows Eq. (1), 

p j; sð Þ ¼
1
sδ F

min r sð Þð Þ þ j � 0:5ð Þ � ε
sδ

� �

;
1
Sδ F

rc
j sð Þ
sδ

� �

; j ¼ 1; 2; . . . ;M sð Þ;
(9) 

where ε is the size of the bins that are generally chosen 
to be a certain fraction of the standard deviation of the 
original time series and independent of bin size s, which 

is chosen to be 1
2 of the standard deviation of the 

original time series in the present study, namely 
ε ¼ 1

2� std Qð Þ. The term rc
j sð Þ; min r sð Þð Þ þ

j � 0:5ð Þ � ε represents the central point of the jth bin. 
We submit Equation (9) into equation (8), and obtain 
the naive estimation of diffusion entropy after a simple 
effectively projection process. The diffusion entropy 
could be rewritten as, 

Snaive
DE sð Þ ¼ �

XM sð Þ

j¼1

ε
sδ F

rc
j sð Þ
sδ

� �

ln εð Þ ln F
rc

j sð Þ
sδ

� �

� δlns
� �

¼ Aþ δln sð Þ
(10) 

where A ¼ � ò

max r sð Þ½ �

min r sð Þ½ �

d r sð Þ
sδ

� �
F r sð Þ

sδ

� �
lnF r sð Þ

sδ

� �
is a constant. 

Eq.(10) expressing any shape of PDF can be used to esti

mate scaling exponent δ in time series, which is the key 

idea of the DEA method (Scafetta and Grigolini 2002).
However, the scaling exponent is strongly affected 

by the bias using the DEA method in practical con
duction (Xiong et al. 2017). In particular, 
p̂ j; sð Þln p̂ j; sð Þ½ � is a biased estimation 
ofp j; sð Þln p j; sð Þ½ �, because the existence of the non
linear relationship within p k; sð Þ leads to a rough 
estimation of bias, Sbias

DE ;SDE sð Þ � Snaive
DE sð Þ ¼ M sð Þ� 1

2 N� sþ1ð Þ
þ

O M sð Þ½ � (Roulston 1999). What’s more, the bias will 
be unreasonable larger than the actual value if the 
number N � sþ 1 becomes smaller.

Accordingly, the cBEDE method can simultaneously 
reduce the bias and variance of estimation of diffusion 
entropy, and is presented elsewhere (Feng et al. 2019; 
Grigolini et al. 2001; Pan et al. 2014a, 2014b; Qi and 
Yang 2011; Zhang et al. 2012). Briefly, the cBEDE method 
can estimate the entropy, and derive a reliable scaling 
exponent δ for short time series with a length of only 
several hundred data points, and is characterized by the 
following equation: 

ScBEDE sð Þ¼
1

N � sþ1þM sð Þ

XM sð Þ

j¼1
n j;sð Þþ1½ �

XN� sþ1þM sð Þ

k¼n j;sð Þþ2

1
k
:

(11) 

The cBEDE method reliably evaluates the scaling expo
nent for very short time series with a length of ~100 (Pan 
et al. 2014b).

Results

The temporal evolutions of the bioluminescence data for 
two selected cells, and the mean of bioluminescence data 
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for one SCN slice (or network) are shown in Figure 1, 
including the original data (a) and shuffled data (b). In 
(a), the circadian patterns are different between the TTX 
condition and the washout-condition. It is visible that 
the circadian rhythms are robust and of high amplitude 
for both the single neurons and the mean in the wash
out-condition; whereas, the circadian rhythms are weak 
for both the single neurons and the mean in the TTX 
condition. In addition, the neurons are synchronized in 
the washout-condition but not synchronized during 
TTX application. In (b), for the shuffled data, the circa
dian rhythms are lost for single neurons and the mean in 
both conditions.

In the following, we examine the scale-invariance of the 
entropy for both the individual neurons and the network 
and compare this with the shuffled data, to correct for 
randomness of the data. Note, that the data for each SCN 
slice is represented by the mean of bioluminescence data.

The scale-invariance for the averaged biolumines
cence traces of each whole SCN slice individually are 
shown during-TTX and washout conditions, respec
tively, in Figure 2. We observe that the scale-invariance 

exists in the entropy estimations versus duration time s 
for both conditions. However, a difference is observed in 
the scale-invariant range and slope (scaling exponent) 
between these two conditions. The scale-invariant scales 
s show different ranges in the different conditions, the 
ranges being from the lower limit of 2 h, 2 h, 2 h, and 2 h 
to upper limit of 14 h, 19 h, 15 h, and 28 h in the TTX 
condition, and from 2 h, 2 h, 2 h, and 2 h to 35 h, 47 h, 
48 h, and 57 h in the washout-condition, for the four 
slices, respectively. Accordingly, the upper limit of the 
range is significantly (p = .002, paired t-test) larger for 
the washout condition (47 h ± 9 h; mean ± SD) than for 
the TTX condition (19 h ± 6 h; mean ± SD). The scaling 
exponent (slope) is 0.76, 0.79, 0.69, and 0.70 for the TTX 
condition, and for 0.96, 0.98, 0.94, and 0.93 for the 
washout condition, within each slice, respectively. The 
scaling exponent is significantly (p < .001, paired t-test) 
larger for the washout condition (0.95 ± 0.02; mean ± 
SD) than for TTX (0.74 ± 0.04; mean ± SD), and as such 
much closer to 1.

Next, the scale-invariant behaviors for every neuron 
in a slice were averaged over all neurons within that 

Figure 1. The bioluminescence traces (blue thin-line and red thin-line) of two single cells randomly selected and of the mean 
bioluminescence concentration of all cells (black thick-line) in first SCN slice. (a) Original time series; (b) shuffled time series.

Figure 2. The scale-invariant behaviors for each SCN slice calculated from the averaged whole SCN bioluminescence trace in the stage 
of TTX or washout. (a) Slice 1. (b) Slice 2. (c) Slice 3. (d) Slice 4. ln sð Þ is the logarithmic value of window size s, and ScBEDE sð Þ is the entropy 
which is calculated from the averaged bioluminescence reporter data of each whole SCN slice by the cBEDE method. The parameter δ 
represents the slope (scaling exponent). The dashed lines indicate the upper limit of the scale-invariant range for the stage of TTX.
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slice. These average scale-invariant slopes are shown 
during TTX application and washout, respectively in 
Figure 3. We observe that the scale-invariance exists in 
the entropy estimations versus duration time s for both 
the TTX and washout conditions. However, the differ
ence is observed in the scale-invariant range and the 
scaling exponent between these two conditions. The 
scale-invariant range s is from 2 h, 2 h, 2 h, and 2 h to 
35 h, 35 h, 35 h, and 33 h for the TTX condition, and 
from 2 h, 2 h, 2 h, and 2 h to 35 h, 47 h, 48 h, and 57 h for 
the washout condition, for these four slices, respectively. 
Accordingly, the upper limit of the scale-invariant range 
is significantly larger (p = .04, paired t-test) for washout 
(35 h ± 1 h) compared to TTX (47 h ± 9 h). The scaling 
exponent (slope) is 0.70, 0.64, 0.64, and 0.72 in the TTX 
condition, and for the washout condition it is 0.80, 0.93, 
0.91, and 0.87, for these four slices, respectively. The 
scaling exponent is significantly (p = .02, paired t-test) 
larger for washout (0.88 ± 0.05; mean±SD) than TTX 
(0.68 ± 0.04; mean ± SD), and also much closer to 1.

Figure 4 is the counterpart of Figure 2 for the rando
mized shuffled data. It is evident that the scale-invar
iance maintains across the investigated scales, and the 
scaling exponent is around 0.5 for both the TTX and 
washout conditions. The scaling exponents are not sig
nificantly different (p = .10, paired t-test) between the 
TTX (0.51 ± 0.01; mean ± SD) and the washout condi
tion (0.50 ± 0.01; mean ± SD). As the data are rando
mized, the slopes are also close to 0.5, which indeed 
indicates uncorrelated randomness in these shuffled 
time series.

Figure 5 shows the same type of information as 
Figure 3, but for the shuffled data. It is evident that 
the scale-invariance maintains across the investigated 
scales, and the scaling exponent is around 0.5 for both 
the TTX and washout conditions. The scaling expo
nents are not significantly (p = .06, paired t-test) 
different between the TTX (0.55 ± 0.02; mean ± SD) 
and the washout condition (0.58 ± 0.01; mean ± SD), 
again close to 0.5.

Figure 3. The averaged scale-invariant behaviors taken from every individual neuron in a SCN slice in the state of TTX or washout. (a) 
Slice 1. (b) Slice 2. (3) Slice 3 (d) Slice 4. ln sð Þ is the logarithmic value of window size s, and ScBEDE sð Þ is the averaged entropy of all 
neurons within each SCN slice by the method of cBEDE. The parameter δ represents the slope (scaling exponent).

Figure 4. The scale-invariant behaviors for each SCN slice calculated from the averaged whole SCN bioluminescence trace based on the 
shuffled data. (a) Slice 1. (b) Slice 2. (c) Slice 3. (d) Slice 4. ln sð Þ is the logarithmic value of window size s, and ScBEDE sð Þ is the entropy 
which is calculated from the mean of shuffled bioluminescence reporter data from all cells within each SCN slice by the method of 
cBEDE. The parameter δ represents the slope (scaling exponent). This figure corresponds to Figure 2
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Conclusions and discussions

In the present study, the scale-invariant behaviors of 
single neurons were examined during the application of 
TTX, indicating a decline of the network connectivity in 
the brain slice, and after the washout of TTX, indicating a 
condition where the network was restored. We used an 
entropy approach on the bioluminescence traces of these 
neurons. We found that the scale-invariant behaviors 
significantly differ in individual neurons as well as in the 
SCN slice as a whole between the conditions of reduced 
network connectivity (TTX) and restored network con
nectivity (washout). In particular, the upper time limit, 
which is the bin size, where the scale-invariant range is 
still present is significantly larger in the washout condi
tion (47 h ± 9 h, mean ± SD for individual neurons; 
47 h ± 9 h, mean ± SD for SCN slice) than during TTX 
application (35 h ± 1 h, mean ± SD for individual neu
rons; 19 h ± 6 h, mean ± SD for SCN slice), and the 
scaling-exponents are also significantly closer to 1 in the 
washout condition (0.88 ± 0.05, mean ± SD for individual 
neurons; 0.95 ± 0.02, mean ± S D for SCN slice) compared 
to the TTX condition (0.68 ± 0.04, mean ± SD for indivi
dual neurons; 0.74 ± 0.04, mean ± SD for SCN slice). For 
comparison, the scaling exponents do not differ signifi
cantly between the randomized shuffled data of these two 
conditions, both being close to 0.5, which is indicative of 
complete randomness in the data. This shows that our 
results found in the actual data are not coincidental.

In a previous study (Hu et al. 2012), the scale-invariant 
range of the SCN network was found to range from 
minutes to 10 h in multi-unit activity data, based on the 
DFA method. This restriction of 10 h was due to the 
restricted length of the data time series and the use of 
the DFA method. In the present study, time series of 
bioluminescence were used that contained much fewer 
data-points per 24 h than the time series used in previous 

studies, but the recordings lasted for more days. Due to 
the restricted number of data points in these time series, 
the cBEDE method was used, which is tailored for use in 
short time series. This new method enables us to examine 
the scale invariance at real circadian time scales, being 
days. The upper limit of the scales is 46.8 h, almost two 
daily cycles of 24 h, which is evidently longer than 10 h. 
The upper limit of 46.8 h suggests that the SCN controls 
scale-invariant behaviors even at the scale of about 2 d. 
Note that, because the interval of concurrent data points 
in the time series (bins) is 1 h for the present data, it was 
obviously not possible to examine time ranges of less than 
2 h, which is longer than minutes in the previous studies. 
The difference in both the scaling-invariant range and the 
scaling exponents between the current and previous study 
may be due to differences in the data as well as methods to 
determine the scale-invariance.

Experimental studies have found that the application 
of TTX leads to decoupling between the SCN neurons, 
and the washout of TTX restores coupling between the 
neurons (Abel et al. 2016). As the scaling-exponent in the 
washout condition is much closer to 1 than in the TTX 
condition, we show that the neuronal coupling is essential 
for scale invariant behavior in both the individual neu
rons and the SCN network. In the TTX condition, the 
scaling exponent is much closer to 0.5, indicating more 
randomness in the network. However, the scaling-expo
nent in the TTX condition is still slightly larger than 0.5 
for the corresponding randomized shuffled data, which 
suggests that the coupling is not completely lost after the 
application of TTX. Our interpretation of these results is 
that the value of the scaling-exponent may be indicative of 
the strength of the coupling in the SCN network, which 
means that the coupling is reduced in the TTX condition 
compared to the washout condition, but not completely 
abolished. The reduced coupling strength leads to a cir
cadian system that may not be able to maintain a stable 

Figure 5. The averaged scale-invariant behaviors taken from every individual neuron in a SCN slice based on the shuffled data. (a) Slice 
1. (b) Slice 2. (c) Slice 3. (d) Slice 4. ln sð Þ is the logarithmic value of window size s, and ScBEDE sð Þ is the averaged entropy of shuffled data 
from individual neurons within each SCN slice by the method of cBEDE. The parameter δ represents the slope (scaling exponent).
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rhythm when challenged even by mild external distur
bances. The system reacts too fast to each external influ
ence, because the optimal balance between flexibility and 
rigidity is nudged toward too much flexibility.

As shown in Figure 1, after the application of the TTX, 
not only the cellular coupling but also the amplitudes of the 
individual neurons are reduced. Thus, the alternation of 
the scale-invariance may not only result from reduction of 
coupling strength but also reduction of amplitudes after the 
application of the TTX. In future, it will be worthwhile to 
identify whether the amplitude, the cellular coupling, or 
both determine the scale-invariance behaviors.

The scaling-exponent of ~0.6 suggests that there is a 
weaker positive correlation in the entropy in the TTX 
condition, and the scaling-exponent of ~1.0 suggests 
that a stronger positive correlation exists in the entropy 
for the washout condition. Interestingly, the scaling 
exponent of ~0.5 suggests that no correlation exists for 
the shuffled data. Therefore, it implies that the positive 
correlations for the original data result from the tem
poral patterns of organization in the data that stem from 
the emergent network properties, and that the actual 
values of the recorded data do not matter that much. 
The application of a scale-invariance measure on the 
data of single SCN neurons confirms the importance of 
the network in the SCN, but also that cBEDE can be a 
good tool to investigate the state of the SCN network, as 
this is reflected in the temporal patterns in the data.
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