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SUMMARY

Endothelial cell (EC) metabolism is an emerging
target for anti-angiogenic therapy in tumor angiogen-
esis and choroidal neovascularization (CNV), but little
is known about individual EC metabolic transcrip-
tomes. By single-cell RNA sequencing 28,337 murine
choroidal ECs (CECs) and sprouting CNV-ECs, we
constructed a taxonomy to characterize their hetero-
geneity. Comparison with murine lung tumor ECs
(TECs) revealed congruent marker gene expression
by distinct EC phenotypes across tissues and dis-
eases, suggesting similar angiogenic mechanisms.
Trajectory inference predicted that differentiation of
venous to angiogenic ECs was accompanied by
metabolic transcriptome plasticity. ECs displayed
metabolic transcriptome heterogeneity during cell-
Context and Significance

Targeting the metabolism of endothelial cells (ECs) is a promi
angiogenesis, for the treatment of diseases like cancer. Und
the single-cell level will aid in identifying novel angiogenic targ
veyed thousands of ECs in pre-clinical models of age-related m
investigation identified genes andmetabolic pathways that are
angiogenesis. Using an integrated analysis, the researchers g
dated the importance of two candidates, SQLE and ALDH18A
as therapeutic targets.
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cycle progression and in quiescence. Hypothesizing
that conserved genes are important, we used an inte-
grated analysis, based on congruent transcriptome
analysis, CEC-tailored genome-scale metabolic
modeling, and gene expression meta-analysis in
cross-species datasets, followed by in vitro and
in vivo validation, to identify SQLE and ALDH18A1
as previously unknownmetabolic angiogenic targets.

INTRODUCTION

Endothelial cell (EC) metabolism regulates angiogenesis, and is

an emerging target for anti-angiogenic therapy (AAT) in cancer

and wet age-related macular degeneration (AMD) (Eelen et al.,

2018). The design of new AATs by targeting EC metabolism

would benefit from a better understanding of individual EC
sing strategy to block pathological blood vessel growth, or
erstanding the landscape of metabolic gene expression at
ets. Here, researchers in Belgium and their colleagues sur-
acular degeneration and lung cancer. Their comprehensive
congruently upregulated across diseases and tissues during
enerated a list of prioritized metabolic candidates and vali-
1, in pathological angiogenesis, supporting their potential
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metabolism, but it remains unknown if ECs express a heteroge-

neous metabolic gene signature and how single ECs reprogram

their metabolic transcriptome signature when forming new ves-

sels in disease. However, metabolomics (measuring metabolite

levels or metabolic fluxes) is insufficiently sensitive to determine

single EC metabolism. Since we documented that changes in

metabolic gene expression signatures at the bulk population

level can be predictive of changes in metabolism in ECs (Bruning

et al., 2018; Cantelmo et al., 2016; Kalucka et al., 2018; Vande-

keere et al., 2018), we analyzed the metabolic transcriptome of

ECs at the single-cell level.

During vessel sprouting, a navigating tip EC leads the way,

while proliferating stalk cells elongate the vessel sprout (Po-

tente et al., 2011); once newly formed vessels become

perfused, ECs adopt a quiescent phalanx phenotype (Welti

et al., 2013). ECs rely on metabolic reprogramming when

switching from quiescence to vessel sprouting (Eelen et al.,

2018; Li et al., 2019; Sawada and Arany, 2017; Yu et al.,

2018). In tumors, bulk metabolic gene expression profiling

identified metabolic targets in tumor ECs (Cantelmo et al.,

2016). AMD is a common blinding disease of elderly people,

characterized by ocular neovascularization. Laser-induced

choroid neovascularization (CNV) is a preclinical model of

AMD (Ambati and Fowler, 2012). Since angiogenic ECs in

AMD/CNV have not been studied at the single-cell level, we

used single-cell RNA sequencing (scRNA-seq) to profile their

(metabolic) transcriptome heterogeneity.

Anti-VEGF drugs are used for the treatment of cancer and

AMD, but resistance limits their efficacy (Jain, 2014; Yang

et al., 2016). Hence, there is an unmet clinical need to identify

novel angiogenic targets. scRNA-seq is a powerful technology

to identify such candidates, but an outstanding challenge is to

prioritize targets for further clinical translation. Here, we present

a strategy, starting from scRNA-seq and complemented with

orthogonal techniques, to prioritize metabolic targets that con-

trol angiogenesis.

RESULTS

Identification and Characterization of CNV-ECs by
scRNA-Seq
To model CNV in mice, we laser-induced 10 lesions per eye and

microdissected choroids 7 days later. We pooled choroids from
6mice and repeated this procedure 3 times, using choroids from

healthymice as controls (6mice per sample, in triplicate) (Figures

1A and 1B). For comparative analysis, we generated a pooled

sample of two choroids from one healthy human donor (see

below). Single-cell suspensions were MACS-enriched for

CD45�/CD31+ ECs (Cantelmo et al., 2016) and subjected to

scRNA-seq. After quality filtering (Table S1), batch correction,

and in silico EC selection, graph-based clustering was per-

formed to group a total of 28,337 ECs according to their gene

expression profile. Clusters were annotated based on marker

genes (Tables S2 and S3) and results were visualized using

t-distributed stochastic neighbor embedding (t-SNE) (Figures

1C, 1D, S1A, and S1B).

CECs from control mice were indistinguishable from healthy

peripheral CECs from lasered mice and clustered together (Fig-

ures 1C–1F). We detected a new separate population in lasered

mice, not present in healthy CECs, representing CNV-ECs (Fig-

ure 1D). Compared to healthy CECs, CNV-ECs expressed acti-

vation markers associated with response to injury such as Sparc

(Bradshaw and Sage, 2001) and Col18a1, a source of the angio-

static endostatin, previously used for CNV treatment (Marneros

et al., 2007), a finding confirmed at the protein level by quantita-

tive mass cytometry (CyTOF) (Figures 1G, S1C, and S1D;

Table S2).

Taxonomy of CECs and CNV-ECs
In CECs, we identified previously unknown sublineages of the

classical arterial, capillary, and venous EC phenotypes (Figures

1E–1G; for more complete description of marker genes and puta-

tive inferred biological activity, see Table S3). For instance, we

identified large supply arteries (P1 on Figure 1D), smaller ramifying

arterioles (P2) and arterial ECs expressing the shear stressmarker

(Pi16) (tentatively coined shear-stress induced arterial ECs [P3]),

and a laser-induced arterial subpopulation (activated arterial

CEC) that upregulated activation markers and matricellular pro-

teins (P4) (Figure 1H). Activated arterial CECs clustered together

with other arterial phenotypes (Figure 1D), suggesting a relatively

normal transcriptome. Capillary CEC phenotypes expressed sig-

natures of the outer (P5) and inner choriocapillaries (P6), charac-

terized by the differential expression of genes involved in fenestra-

tion and VEGF signaling (Blaauwgeers et al., 1999; McLeod et al.,

1995) (Table S2). Venous subclusters included cells expressing

markers of large caliber vessels (P7), venules (P8), shear stress
Cell Metabolism 31, 862–877, April 7, 2020 863
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Figure 1. Heterogeneity of Choroid NEC and CNV-EC Phenotypes

(A) Schematic overview of the choroidal vasculature.

(B) Schematic overview of the study design.

(C) t-SNE plot, color-coded for the sample type. ECs isolated from healthy choroid are depicted in gray (top); ECs isolated from laser-injured choroids in red

(bottom). Red arrowhead and dotted circles indicate an emerging population of laser-injured specific CNV-EC phenotypes.

(D) t-SNE visualization of EC subpopulations in healthy and laser-injured choroids. CNV-EC phenotypes (red arrowhead in C) are boxed in the global t-SNE plot

and shown in a separate t-SNE plot on the lower left. Subclusters of peripheral (p) and intralesional CNV-ECs (c) are numbered.

(legend continued on next page)
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(P9), post-capillary venules (pcvs) (P10) that upregulated a previ-

ously identified CEC signature of resident endothelial stem cells

(ESCs) (Naito et al., 2012; Wakabayashi et al., 2013), and an acti-

vated pcv CEC phenotype (p11) (Figures 1I and S1E). We

observed two putative lymphatic EC phenotypes (LEC [P12] and

LEC-like [P13]) that differentially expressed Lyve-1 (Figure 1D; Ta-

ble S2). The existence of lymphatics in the choroid remains

debated (Heindl et al., 2015; Koina et al., 2015).

Angiogenic CNV-ECs were distinct from normal CECs and

included proliferating ECs (C1 in Figure 1D) and tip ECs (C2),

but also 3 previously unknown phenotypes that expressed sig-

natures associated with transitioning from pcv to angiogenic

EC phenotypes (transitioning CNV-ECs [C3]), and immature

(immature [C4]) and maturing (neophalanx [C5]) neovasculature

(Figure 1J). Tip cells upregulated transcripts of the disease-

restricted angiogenic factor Pgf (encoding placental growth fac-

tor, Plgf) (Figures 1J and S1F). Immature ECswere characterized

by the lack of specific marker gene expression, but expressed

activation markers and upregulated ribosomal gene expression

consistent with an activated intermediate phenotype. Neopha-

lanx ECs expressed markers of mature capillaries and arteries,

and were characterized by upregulation of a Notch signaling

gene signature (Figure S1G).

Interestingly, transcription factor activity analysis using single-

cell regulatory network inference and clustering (SCENIC) (Aibar

et al., 2017) indicated differential transcription factor activity in

EC subtypes (Figure 2A). Consistent with previous reports, Nr2f2

expression was induced in activated pcvs and transitioning ECs

(Jeong et al., 2017), while Sox17 expressionwas highest in arterial

ECs (Corada et al., 2013; You et al., 2005). SCENIC analysis of

CNV-ECs also identified transcription factors not previously impli-

cated in EC specification, such as in tip (Tgif1), immature (Smad1

and Sox4), and proliferating (Trp53) CNV-ECs (Figure 2A).

We validated the taxonomy using orthogonal in situ localization

techniques. Quantitative RNAscope to count transcript numbers,

combined with staining for the EC marker CD105, confirmed that

arterial (Gja4) and venous (Nr2f2) marker transcripts did not coloc-

alize in the same CNV-ECs (Figure S1H). We confirmed by immu-

nostaining of healthy choroids the expression of the following EC

markers: (1) artery ECs (ELN) and arteriole ECs (CXCL12) (Figures

S2A–S2C), (2) capillary ECs (VEGFR2) (Figure S2D), and (3)

venous ECs (VWF and SELP) (Figures S2E and S2F). Immuno-

staining of CNV lesions confirmed the expression of a marker of

immature ECs (APLNR), tip ECs (PlGF, LXN, and CXCR4), and

pcv ECs (SPARCL1) (Figures S2G–S2J).

Metabolic Transcriptome Reprogramming during
Pathological Vessel Sprouting
We explored if ECs underwent a differentiation trajectory during

vessel sprouting and if EC differentiation was associated with

metabolic transcriptome changes. Trajectory inference analysis

predicted that the hierarchy of angiogenic phenotypes resulted
(E and F) t-SNE plots, color-coded for the expression of the indicated marker gene

indicated marker gene. Scale: white/gray is low expression; black (gene) or red (

(G–J) Heatmap of gene expression levels of the top 50 marker genes for broad ca

CNV-EC subclusters (J). In this and all further heatmaps depicting marker genes, c

(Z scores).

c.c., choriocapillaris; r.p.e., retinal pigment epithelium. See also Figures S1 and
from differentiation of activated pcv CECs to transitioning CNV-

ECs, then to immature CNV-ECs, which thereafter differenti-

ated to tip cells and finally to more mature neophalanx CNV-

ECs (Figure 2B). This prediction extends previous morpholog-

ical evidence that neovessels may originate from pcvs (Folk-

man, 1982). Since pcv CECs expressed a previously validated

signature of resident ESCs, our analysis provides further sug-

gestion that ESCs might contribute to new vessel sprouting,

as previously established by lineage tracing (Corey et al.,

2016; Manavski et al., 2018; McDonald et al., 2018; Mondor

et al., 2016; Red-Horse et al., 2010; Wakabayashi et al.,

2013, 2018).

Interestingly, when focusing on metabolic genes and path-

ways, we noted that membrane transport, ATP synthase, and

glycolysis gene signatures were dynamically regulated during

differentiation fromquiescent vein to angiogenic ECs (Figure 2B).

Maximal differences inmetabolic gene expression of central car-

bon metabolism were observed in the most angiogenic EC phe-

notypes (immature and tip ECs), possibly suggesting that these

ECs had higher metabolic demands to execute their biological

functions (Figure 2B).

Congruency Analysis of Metabolic Transcriptome
Reprogramming
We explored whether metabolic transcriptome reprogramming

was specific to CNV-ECs or a more general hallmark of the

angiogenic switch in pathological angiogenesis (such as in tu-

mors), as this would address a fundamental question in vascular

biology of whether vessels in different tissues and diseases form

via similar or different mechanisms. We therefore explored to

which extent CNV and tumors contained similar EC phenotypes,

and whether they expressed congruent genes.

Similarity and Congruency Analysis

We analyzed a publicly available, previously in-house gener-

ated dataset of murine lung tumor ECs (TECs) (Goveia et al.,

2020), which comprised largely similar EC phenotypes as

CNV-ECs. However, in addition, murine lung TECs contained

breach and pre-breach ECs (that expressed both tip cell

and podosome rosette markers, presumably involved in

vessel sprouting initiation), and interferon ECs (displaying a

transcriptome response to interferon, possibly involved in im-

mune surveillance) (Goveia et al., 2020). Focusing on all de-

tected genes, we explored whether similar EC phenotypes

could be detected in these diseases, and whether they ex-

pressed congruent genes.

We performed differential gene expression and gene set

enrichment analysis to determine which processes were upregu-

lated in CNV-ECs and TECs versus CECs and NECs, respec-

tively (Figures 2C and 2D). Gene sets associated with prolifera-

tion, hypoxia signaling, and extracellular matrix formation were

commonly upregulated (Figure 2C). Consistently, many of the

175 commonly upregulated genes were involved in extracellular
s (E) or gene sets (F). Red arrowheads indicate cells with high expression of the

gene sets) is high gene expression.

tegories of EC phenotypes (G), artery subclusters (H), vein subclusters (I), and

olors represent row-wise scaled gene expression with a mean of 0 and SD of 1

S2 and Tables S1, S2, and S3.
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Figure 2. Gene Expression Signatures in CNV and TEC Subtypes

(A) Dot plot heatmap of the inferred activity of the indicated transcription factors. Scale: white/gray is low expression; black is high gene expression; dot size

corresponds to the fraction of cells in each cluster that have higher than average activity of the indicated transcription factor.

(B) Pseudotime trajectory of the indicated CNV-EC phenotypes (left) and Loess regression-smoothened gene expression of the indicated genes and metabolic

gene sets in pseudotime (right).

(C) Vascular gene sets upregulated in TECs (versus lungNECs) and in CNV-ECs (versus choroid CECs). Gene sets congruently upregulated in TECs andCNV-ECs

are summarized on the right.

(D) Genes upregulated in TECs versus NECs and choroid CECs versus CNV-ECs. A selection of genes upregulated in lung TECs versus NECs (left) and in CNV-

ECs versus choroid CECs (right) are listed. Genes congruently upregulated in TECs and CNV-ECs are listed on the right. Genes encoding ribosomal proteins, ATP

synthase subunits, and elongation factors are not listed individually; instead, their total number is displayed.

(legend continued on next page)
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matrix remodeling, cytoskeleton, glycolysis, EC activation, and

others. Interestingly, Aplnr, an angiogenic and vasculoprotective

gene that regulates EC metabolism (Apostolidis et al., 2018;

Hwangbo et al., 2017), was identified as a congruent marker of

CNV-ECs and TECs (Figure 2D).

Since differential analysis of pooled populations may not

adequately discover genes with restricted expression in small EC

subpopulations such as tip and proliferating cells, we determined

whether the same EC subpopulations were present in CNV-ECs

and TECs. We used the Jaccard similarity index to score the simi-

larity of marker gene sets of all EC subpopulations, and observed

that marker gene sets across CNV-ECs and TECs were relatively

similar for several EC subpopulations (Figures 2E and S3A).

Further, TECs and CNV-ECs of the same phenotype expressed

congruentmarkergenes (Figure2F).Similar toCNV-ECs, trajectory

inference analysis predicted that the hierarchy of TEC phenotypes

originated in veins that expressed resident ESC markers (Goveia

et al., 2020; Wakabayashi et al., 2018) differentiating to postcapil-

lary veins and further toan immatureTECphenotype, tip cells, neo-

phalanx TECs, and activated arteries (Figure S3B).

Metabolic Transcriptome Signatures

Focusing on metabolic genes, we observed that proliferating

ECs in both diseasemodels upregulated the expression of meta-

bolic genes involved in one-carbon metabolism, nucleotide syn-

thesis, tricarboxylic acid (TCA) cycle, and oxidative phosphoryla-

tion (OXPHOS) (Figure 3A). In contrast, glycolytic gene

expression was upregulated in proliferating, tip, and immature

ECs in tumors, and was elevated in CNV in proliferating ECs,

but less in tip and immature ECs (Figure 3B). These observations

might suggest that the metabolic demands of proliferating ECs

are disease- or tissue-type independent, while metabolic adap-

tations of other subtypes may be more plastic.

The metabolic gene expression signatures between the

different TEC phenotypes were more outspoken, possibly re-

flecting the harsh nutrient-deprived micro-environment in tu-

mors and the fact that TECs grow in an uncontrolled, non-

resolving manner. Indeed, heatmap analysis revealed that

most TECs exhibited a different metabolic transcriptome signa-

ture (Figure S3C). Subsequent analysis at the gene level showed

that capillary TECs upregulated the expression of genes control-

ling lipid uptake (Figures 3C and S3C), raising the question of

whether they need lipids for internal use when switching to

quiescence (Kalucka et al., 2018) and/or for trans-EC transport

to cancer cells for energy production or lipogenesis (Santos

and Schulze, 2012). Venous TECs upregulated transcripts of

genes involved in prostaglandin metabolism (Figures 3C and

S3C), suggesting a role in vasoregulation, sprouting, or vascular

inflammation (Félétou et al., 2011; Iñiguez et al., 2003). Interferon

(IFN)-activated TECs upregulated genes involved in nucleotide

catabolism to salvage/lower nucleotide content (Figure 3C) (Bar-

ankiewicz et al., 1986). In turn, breach TECs upregulated genes

involved in extracellular matrix production the most, in line with
(E) Three-dimensional principal component analysis (PCA) on the pairwise Jacca

and CNV-ECs. Squares denote CNV-EC phenotypes; circles denote TEC pheno

notypes were not present in CNV-ECs.

(F) Heatmap of expression levels of congruent genes in TEC and CNV-EC phenot

same set of congruent genes.

Comp, component; PC, principal component. See also Figure S3.
their presumed role in vessel sprouting initiation (Goveia et al.,

2020) (Figures 3C and S3C).

Correlation with Transcription Factor Expression

Consistent with literature reports (Kanda et al., 2009), correlating

the gene signatures with inferred transcription factor activity

scores revealed that Pparg correlated with the induction of a tri-

glyceridecatabolismsignature. Interestingly, hypoxia, as indicated

bythe inferredactivityofHIF-1a, correlatedwithglycolysisandOX-

PHOS gene expression in TECs (Figure S3D). While expected for

glycolysis (given that hypoxia upregulates glycolysis; Eales et al.,

2016), the upregulation of OXPHOS genes in hypoxic conditions

was surprising (given that hypoxia suppresses OXPHOS; Eales

et al., 2016; Semenza, 2011), but in line with findings that HIF-1a

activation can occur at oxygen levels that are not sufficiently low

to suppress mitochondrial respiration (Eales et al., 2016). Thus,

while proliferating CNV-ECs and TECs upregulate OXPHOS and

glycolysis gene signatures, the metabolic transcriptome profile of

other angiogenic ECs is rather diverse across diseases.

Analysis of Metabolic Transcriptome Reprogramming
during the Cell Cycle
Sinceour congruencyanalysis showed that proliferatingCNV-ECs

and TECs have similar gene expression profiles, we analyzed their

(metabolic) signature and transcription factor regulation in more

detail. We therefore developed a prediction model to reconstruct

continuous cell-cycle pseudotime in proliferating murine CNV-

ECs and TECs based on periodically expressed genes identified

in cultured TECs (Figures S3E–S3I; STARMethods). Comparative

analysis of the top 1% most periodic genes in proliferating TECs

andCNV-ECs revealed 97 genes thatwere periodically expressed

during the cell cycle in both models, 43 of which were not previ-

ously described in reference databases (Santos et al., 2015). Inter-

estingly, in bothmodels, severalmetabolic genes ranked in the top

1% most periodic genes (Rrm2, Tk1, Tyms, Dut, Rrm1, and

Dctpp1) (Figure 3D; Table S4). Further, gene set variation analysis

revealed that various metabolic pathways involved in nucleotide

biosynthesis (e.g., one-carbon metabolism and pyrimidine nucle-

oside biosynthesis) ranked among the top 5% most periodically

expressed gene sets (Figure 3E; Table S4). Overall, our scRNA-

seq offers newpossibilities to studymetabolic gene expression ki-

netics during the cell cycle.

Metabolic Angiogenic Target Identification
IdentificationofCommonlyUpregulatedMetabolicGenes

SinceOXPHOSand glycolysis are validatedmetabolic angiogenic

targets (Cantelmo et al., 2016; De Bock et al., 2013; Diebold et al.,

2019), we designed an integrated analysis to identify other previ-

ously unrecognized angiogenic candidates regulating EC meta-

bolism. We thus performed differential gene expression analysis

to determine which metabolic genes and gene sets were

commonly upregulated in TECs and CNV-ECs, versus normal

ECs. Pathway mapping of gene transcripts involved in central
rd similarity coefficients of marker gene sets between subpopulations in TECs

types. Note that equivalents of breach, pre-breach, and interferon TEC phe-

ypes (all genes analyzed). Note that the TEC and CNV-EC heatmaps show the
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Figure 3. Metabolic Heterogeneity in TECs and CNV-ECs

(A) Heatmap of the gene expression levels of the indicatedmetabolic pathways in TEC andCNV-EC subpopulations. Geneswere grouped according tometabolic

pathways and ordered so that the most discriminative genes for proliferating ECs are depicted first.

(B) Heatmap of gene expression levels of the indicated glycolytic genes in TEC and CNV-EC subpopulations.

(C) Heatmap of gene expression levels of the indicated genes in TECs.

(D and E) Circos plot representation of Loess regression-smoothened gene expression of the indicated genes (D) and gene sets (E) during the cell cycle in TECs

(top) and CNV-ECs (bottom). Cell-cycle phase assignment, indicated as color-coded sectors, was based on the known periodicity of cyclins. Cell-cycle

pseudotime is represented as a percentage and indicated outside of the circos plot, starting (t = 0%) from cytokinesis (start of G1). The thickness of the line

corresponds to the expression levels.

1C, one-carbon. See also Figure S3 and Table S4.
carbon metabolism confirmed that CNV-ECs upregulated tran-

scripts of metabolic pathways supporting biomass synthesis,

including glycolysis, nucleotide synthesis, TCA cycle, OXPHOS,

and others (Figures 4A and 4B). Several of these pathways are
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also involved inothermetabolic/biological activities, suchas redox

and energy homeostasis (Eelen et al., 2018). Compared to NECs,

TECs showed a qualitatively largely similar upregulation of

anabolic pathways (Figures 4A and S4A).
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Figure 4. Global Metabolic Reprogramming

in Pathological Angiogenesis

(A) Dot plot heatmap of the indicated glycolytic

genes. The dot size corresponds to the fraction of

cells that have higher than average activity of the

indicated genes. Scale: white/gray is low expres-

sion; black is high gene expression.

(B) Map of upregulated central carbon metabolic

pathways in CNV-ECs versus peripheral CECs.

Blue color indicates downregulated expression,

red upregulated expression, and gray unchanged

expression.

(C and D) Metabolic gene set enrichment analysis

in NEC versus TECs (C) and CEC versus CNV-ECs

(D) (q < 0.25 for all gene sets). Numbers between

parentheses indicate alternative gene sets per-

taining to the same biological function or signaling

pathway.

(E) Metabolic gene sets, upregulated in TECs

(versus lung NECs) and in CNV-ECs (versus

choroid CECs). Congruent upregulated metabolic

pathways are listed underneath.

See also Figure S4.
The upregulation of OXPHOS and TCA cycle gene expression

signatures in proliferating ECs was noteworthy, when consid-

ering that ECs are glycolysis-addicted (Cantelmo et al., 2016;

De Bock et al., 2013), but is in line with reports showing the

importance of OXPHOS for EC proliferation (Diebold et al.,

2019; Ying et al., 2017). The upregulation of a glycolysis tran-

scriptome signature in TECs has been validated by functional ev-

idence that genetic deletion in ECs or pharmacological blockade

of the glycolytic activator PFKFB3 reduces TEC proliferation and

induces tumor vessel normalization (Cantelmo et al., 2016), and

may also explain why treatment with a PFKFB3 blocker inhibited

CNV in the mouse (Schoors et al., 2014).

Anunbiasedmetabolic geneset enrichment analysis, combined

with a congruency analysis to identify commonly upregulated

metabolic pathways, revealed that genes involved in pathways in

central carbon metabolism were among the most upregulated in

TECs and CNV-ECs, including glycolysis, OXPHOS, nucleotide
Cell
biosynthesis, and TCA cycle, compared

to NECs and peripheral ECs (Figures 4C–

4E). Notably, transcripts of genes involved

in collagensynthesiswere alsohighly upre-

gulated in angiogenic ECs in both diseases

(Figure 4E). Thus, based on transcriptome

analysis, angiogenic ECs have at least

two prominent metabolic gene expression

signatures, i.e., that of biomass production

for proliferation and of collagen biosyn-

thesis for extracellular matrix remodeling.

Prediction of Candidates with

Functionally Relevant Role in

Metabolism by GEMs

Given that changes in transcript levels of

metabolic genes alone may not relate to

changes in metabolic fluxes, we used

genome-scale metabolic models (GEMs)

to in silico prioritize metabolic candidates.
GEMs are mathematical representations of a network of active

metabolic enzymes (pathways) (Kim and Lun, 2014; Ryu et al.,

2015) and represent computational tools to predict the impor-

tance of metabolic reactions for biological responses (Pagliarini

et al., 2016; Thiele and Palsson, 2010). We constructed a CEC-

tailored GEM based on the generic human metabolic recon-

struction RECON1 and scRNA-seq data from 1,670 freshly iso-

lated human CECs, which recapitulated murine CEC pheno-

types but with lower resolution (Figures 5A, S4B, and S4C),

and optimized it for biomass (as a proxy for proliferation) or

collagen production using two distinct EC-specific objective

functions.

Using the CEC-tailored GEM, we identified 288 essential

genes for biomass synthesis (Table S5), involved in glycolysis,

TCA cycle, pentose phosphate pathway, OXPHOS, fatty acid

oxidation, nucleotide synthesis and salvage, cholesterol biosyn-

thesis, sphingolipid metabolism, and amino acid metabolism
Metabolism 31, 862–877, April 7, 2020 869
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Figure 5. Metabolic Target Prediction

(A) Schematic representation of GEM reconstruction.

(B) Venn diagrams indicating metabolic genes that encode rate-limiting enzymes and are predicted to be essential for biomass production (top) and collagen

biosynthesis (bottom) by four different methods (see STAR Methods for details).

(C) Upset plot visualization of the results of a differential gene set variation enrichmentmeta-analysis of nine bulk transcriptomics datasets, showing the number of

genes that were more highly expressed in TECs than NECs isolated from the indicated tumor type. The bar graph represents the number of gene sets detected in

the tumor type(s) indicated by the dot plot panel below. Five gene sets (displayed on the figure; involved in the displayed processes) were consistently higher

expressed in TECs than NECs (red bar and intersection). HCC, hepatocellular carcinoma; CRCLM, colorectal cancer liver metastasis; CRC, colorectal cancer;

medullo Wnt, Wnt-driven medulloblastoma; medullo Shh, sonic hedgehog driven medulloblastoma; RCC, renal cell carcinoma.

(D) Gene expression meta-analysis of the nine NEC versus TEC datasets shown in (C). The S-curve has 10,850 dots, representing genes that were detected in all

nine datasets. x axis, rank numbers from 1 to 10,850 (consistently overexpressed genes in TECs have a low rank number; consistently downregulated genes have

a high rank number); y axis, the scaled meta-analysis score (consistently overexpressed genes in TECs have a low meta-analysis score; consistently down-

regulated genes have a high meta-analysis score). SQLE and ALDH18A1 are shown as red dots and listed on the left.

See also Figure S5 and Table S5.
(Table S5). The roles of glycolysis (De Bock et al., 2013),

OXPHOS (Diebold et al., 2019), fatty acid oxidation (Schoors

et al., 2015), serine metabolism (Vandekeere et al., 2018), and

glutamine metabolism (Huang et al., 2017) in biomass synthesis

and EC proliferation have been established, thus validating the

predictive potential of the CEC-tailored GEM. However, a

possible role of cholesterol synthesis in EC growth has only mini-

mally been studied, without conclusive results. Further, consis-

tent with previous reports (Phang, 2019), the CEC-tailored

GEM predicted the essentiality of proline biosynthesis for

collagen production. In addition, glutamine and glutamate trans-

porters, and enzymes involved in alanine, glycine, and serine

metabolism, were also predicted to be essential, reflecting that

the molecular composition of collagen consists of >70% of (hy-

droxy)proline, glycine, glutamate, and alanine (Eastoe, 1955).
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Integrated Analysis to Prioritize Metabolic Genes for

Functional Validation

To identify functionally relevant metabolic angiogenic targets in

CNV-ECs, we performed an integrated analysis (Figure S5A).

Specifically, we focused on the subset of rate-limiting single

gene encoded metabolic enzymes, predicted by GEM to be

essential for biomass production or collagen biosynthesis (Fig-

ure 5B; Table S5). We selected candidates that were more highly

expressed in CNV-ECs than CECs, yielding 30 genes for

biomass production and 4 for collagen synthesis (Table S5). Sec-

ond, we reasoned that genes that were conserved across

models, diseases, and species represent robust targets. We

thus filtered for genes consistently upregulated also in tumor

angiogenesis, resulting in a set of 17 candidate genes. Finally,

unbiased meta-analysis across 9 different murine and human
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Figure 6. Metabolic Target Validation

(A) 3H-thymidine incorporation in DNA assay upon SQLE (mean ± SEM, n = 16, *p < 0.05, unpaired two-tailed t test) or ALDH18A1 (mean ± SEM, n = 3, *p < 0.05,

unpaired two-tailed t test) silencing (KD denotes shRNA knockdown).

(B) Scratch wound migration assay with control and SQLE (mean ± SEM, n = 7, *p < 0.05, unpaired two-tailed t test) or ALDH18A1 (mean ± SEM, n = 3, *p < 0.05,

unpaired two-tailed t test) silenced ECs.

(legend continued on next page)
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datasets revealed that Aldh18a1 and Sqle were among the

most consistently induced genes in TECs (Figures 5C and 5D;

Table S5). Aldh18a1 encodes pyrroline-5-carboxylate-synthase

(P5CS), the rate-controlling enzyme of proline and collagen

biosynthesis, a pathway that was consistently upregulated in

angiogenic ECs in tumors and CNV (Figures S5B and S5C).

Sqle encodes squalene monooxygenase, a rate-limiting enzyme

in cholesterol biosynthesis (Cerqueira et al., 2016).

Functional Validation of Selected Targets

To functionally validate the role ofALDH18A1 andSQLE in vessel

sprouting, we silenced these genes (Figures S5D–S5G), which

impaired EC proliferation and migration, vessel sprouting (Fig-

ures 6A–6D), and EC tip cell competitivity (Figures 6E and 6F).

To explore global expression changes induced by SQLE and

ALDH18A1 silencing, we performed multi-omics analysis. Tran-

scriptomics analysis confirmed decreased expression of genes

involved in cell proliferation and DNA replication in silenced cells

(Figures S6A and S6B). These results were corroborated at the

protein level by proteomics analysis (Figure S6C). Targeted me-

tabolomics showed that SQLE and ALDH18A1 silencing did not

affect the energy charge (Figure S6D), but confirmed that

ALDH18A1 knockdown lowered the levels of proline and hy-

droxyproline, a surrogate for collagen content (Stoilov et al.,

2018) (Figures S6E and S6F). Finally, in vivo intraocular treatment

with siRNAs against Sqle and Aldh18a1 decreased the expres-

sion levels of these targets in CNV-ECs (Figure S6G) and in-

hibited neovascularization of laser-induced choroid (Figure 6G).

To explore potential therapeutic relevance, we used NB-598 to

pharmacologically inhibit SQLE in vivo and observed a reduction

in both corneal angiogenesis and CNV (Figure 6H).

DISCUSSION

Objectives of this study were (1) to construct a taxonomy of

CECs and CNV-ECs, (2) to characterize the heterogeneity of

metabolic gene expression signatures of different ECs at the sin-

gle-cell level, (3) to explore if and how angiogenic ECs reprogram

their metabolic transcriptome signature during pathological

angiogenesis, and (4) to design an integrated analytical

approach to identify angiogenic targets regulating EC meta-

bolism, not previously known to co-determine pathological

angiogenesis.

We constructed a CEC/CNV-EC taxonomy and identified 18

choroidal EC phenotypes, of which 8 were previously not recog-

nized, and characterized transcription factors, predicted to be

involved in the differentiation of different choroidal ECs. The

availability of this choroidal CEC/CNV-EC taxonomy, as well as

a previously in-house constructed lung NEC/TEC taxonomy
(C) Bright field photographs of control, ALDH18A1KD, and SQLEKD EC spheroids

(D) Morphometric quantification of the number of sprouts, average, and cumulative

MitoC treatment (mean ± SEM, n = 3 for all parameters; ns, p > 0.05; *p < 0.05,

(E and F) Mosaic EC spheroid competition of control (red), SQLEKD (E), or ALDH18

genotype. Data are mean ± SEM, n = 3, *p < 0.05 by unpaired two-tailed t test.

(G) Quantification of CNV blood vessel area in mice treated with control siRNA (

shown on the right. Scale bars, 75 mm. Data are mean ± SEM, n = 3 independent e

(H) Quantification of CNV (left) and corneal angiogenesis upon corneal cauterizatio

blocker). Representative micrographs are shown on the right. Scale bars, 75 mm

periments each using six mice per group, *p < 0.05, unpaired two-tailed t test.

See also Figures S5 and S6.
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(Goveia et al., 2020), which we now used to analyze metabolic

gene expression, enabled us to characterize metabolic gene

expression heterogeneity in sprouting ECs across two tissues

and diseases.

Themetabolic transcriptome diversity wasmost outspoken for

TECs and, remarkably, TEC phenotypes expressed distinct

metabolic transcriptome signatures. Presumably, this complex

metabolic transcriptome heterogeneity is required for EC pheno-

types to execute their specialized functions in different vascular

compartments. However, given that the micro-environment can

influence cellular metabolism (Muir et al., 2018), part of the het-

erogeneity can possibly also be attributed to different environ-

mental signals in distinct vascular compartments. This may

partly explain why tip and immature ECs had a stronger glyco-

lytic gene signature in tumors than in CNV, possibly evoked by

the harsher nutrient-deprived environment and larger abun-

dance of metabolism-altering signals in the tumor as compared

to the CNV lesions (Lyssiotis and Kimmelman, 2017).

The EC taxonomies in the eye and lung offer integrated com-

parison of EC phenotypes across tissues and diseases. Even

though tissue-type-specific EC phenotypes were recognized,

angiogenic ECs in CNV and tumors seemed to form andmaintain

neovessels by developing similar EC phenotypes, including

proliferating, tip, immature, and neophalanx ECs. Across dis-

eases and tissues, angiogenic ECs congruently upregulated

the expression of non-metabolic marker genes, as well as meta-

bolic genes involved in OXPHOS, glycolysis, TCA cycle, nucleo-

tide biosynthesis, and mRNAmetabolism. Hence, blood vessels

seem to sprout by inducing the differentiation of largely similar

EC phenotypes across diseases and tissues. Tumors have

been named ‘‘non-healing wounds’’ and angiogenesis of tumors

may thus build on similar principles as a CNV wound (Dvorak,

1986). Nonetheless, tissue- and disease-specific differences in

metabolic transcriptome profiles were observed, likely in part

due to differences in micro-environmental conditions.

Trajectory inference analysis predicted that the hierarchy of

angiogenic phenotypes is derived from pcv ECs and that pheno-

typic differentiation is associated with plastic metabolic gene

expression reprogramming, suggesting that metabolic plasticity

supports phenotypic plasticity. Early morphological studies sug-

gested that vessel sprouting originates from this venous vascular

bed (Folkman, 1982), but using in silico lineage tracing, we iden-

tified a differentiation trajectory of venous ECs over intermediate

transitioning immature ECs to tip ECs and later to more mature

neophalanx ECs.

Another objective of this study was to explore whether meta-

bolic signatures of individual ECs could be utilized for the discov-

ery of metabolic genes, previously not recognized to fuel vessel
. Scale bar, 100 mm.

sprout length for control, SQLEKD, and ALDH18A1KD spheroidswith or without

unpaired two-tailed t test).

A1KD (F) (green) ECs. Quantification of the fraction of tip cells with the indicated

CTRL) or siRNA against murine Sqle or Aldh18a1. Representative images are

xperiments each using six mice per group, *p < 0.05, unpaired two-tailed t test.

n-induced injury (right) in mice treated with vehicle (CTRL) or NB-598 (an SQLE

(CNV) and 500 mm (cornea). Data are mean ± SEM, n = 3 independent ex-



sprouting. Hypothesizing that genes that were conservedly upre-

gulated across diseases and species represent robust candi-

dates, we performed an integrated multi-layered approach

combining scRNA-seq of ECs from different tissues/diseases,

congruency transcriptome analysis, genome-scale metabolic

modeling, and cross-species meta-analysis to identify

conserved angiogenic metabolic targets, i.e., Sqle for biomass

synthesis and Aldh18a1 for collagen synthesis. Functional vali-

dation revealed that silencing of these targets impaired vessel

sprouting in vitro and inhibited pathological ocular angiogenesis

in vivo. While it was not the primary goal to develop new AAT

strategies, but rather to provide proof of principle of the inte-

grated approach, the identified metabolic targets might none-

theless deserve further attention for AAT development, though

an EC-selective drug delivery approach would then be desirable.

Limitations of Study
Weacknowledge limitations of our study. First, the inferredbiolog-

ical role and topographical localization in the vasculature of each

ECphenotype and the computational trajectory inference analysis

are putative/predicted and require additional marker gene identi-

fication and functional validation to probe their biological roles/

principles and anatomical topography. Second, the contribution

of the resident ESCs to angiogenesis and the precisemechanisms

of how ALDH18A1 and SQLE regulate EC migration/proliferation

and EC metabolism require further study. Third, transcript levels

and metabolic modeling by GEMs do not fully capture the

complexity of metabolism (metabolic fluxes, enzyme activity,

and metabolite levels). However, gene signatures and GEM

modeling have been proven to be predictive of the metabolic

flux changes in ECs (Bruning et al., 2018; Cantelmo et al., 2016;

Kalucka et al., 2018; McGarrity et al., 2018; Patella et al., 2015;

Vandekeere et al., 2018). Fourth, we expect that future exploration

of our dataset using newly developedpre-processing and analysis

algorithms might further fine-tune our analysis and interpretation.

Finally, the current data await future development of novel tech-

nology to quantify metabolism at the single-cell level in ECs, but

the potential of using an integrated analysis to overcome technical

limitations inmetabolic target prioritization is demonstrated by the

validation of the functional role of the selected candidates

(ALDH18A1 and SQLE) in vessel sprouting in vivo.

To maximize resource value, we provide accompanying data

exploration web tools—available at https://www.vibcancer.be/

software-tools/Murine_ECTax and https://www.vibcancer.be/

software-tools/scCycle, and via the publicly available added-

value database EndoDB (Khan et al., 2019).

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Patient Material and Choroid EC Isolation

B Mice

B Mouse Model of Choroidal Neovascularization

B Murine Choroid Endothelial Cell Isolation
B Mouse model of Lewis Lung Carcinoma

B Cell Lines and Primary Cell Culture

d METHOD DETAILS

B In Vitro Functional Assays

B Knockdown Strategy

B Treatment with Inhibitor in the Murine Ocular Models

B Murine Choroid Immunostaining

B RNA Isolation and Quantitative RT-PCR

B Single-cell Droplet-based RNA Sequencing

B Single-cell Transcriptomics Analysis

B Quality Control and Data Normalization

B In Silico EC Selection

B Batch Effect Correction

B Feature Selection and Dimensionality Reduction

B EC Cluster Identification

B Marker Gene Analysis

B Cluster Annotation

B Gene Set Variation Analysis

B Evaluation of Dissociation Artifacts

B Heatmap Analysis

B Trajectory Inference

B Jaccard Similarity Analysis

B Gene Set Enrichment Analysis

B Metabolic Gene Expression Analysis and Pathway

Mapping

B Cell Cycle Pseudotime Analysis

B Development of a Multivariate Model to Predict Cell

Cycle Pseudotime

B Pathway and Transcription Factor Activity Analysis

B Bulk RNA-sequencing Analysis

B Proteomics Sample Preparation

B Proteomics LC-MS/MS and Data Analysis

B Metabolomics and Data Analysis

B Meta-analysis of Transcriptomics Data

B RNAscope In Situ Hybridization and Quantification

B Cytometry by Time of Flight Mass Cytometry (CyTOF)

B CyTOF Data Analysis

B Curation of a GEM Model

B Development of an EC-tailored GEM

B Development of EC-Tailored Objective Functions

B Development of an Angiogenic CEC-GEM Model

B Prediction of Essential Genes in the Angiogenic

CEC Model

d QUANTIFICATION AND STATISTICAL ANALYSIS

d DATA AND CODE AVAILABILITY

B Data Resources

B Software
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cmet.2020.03.009.

ACKNOWLEDGMENTS
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S., et al. (2019). Role and therapeutic potential of dietary ketone bodies in

lymph vessel growth. Nature Metabolism 1, 666–675.

Goveia, J., Rohlenova, K., Taverna, F., Treps, L., Conradi, L.C., Pircher, A.,

Geldhof, V., de Rooij, L.P.M.H., Kalucka, J., Sokol, L., et al. (2020). An inte-

grated gene expression landscape profiling approach to identify lung tumor

endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37,

21–36.e13.

Haghverdi, L., Lun, A.T.L., Morgan, M.D., and Marioni, J.C. (2018). Batch ef-

fects in single-cell RNA-sequencing data are corrected by matching mutual

nearest neighbors. Nat. Biotechnol. 36, 421–427.

H€anzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation

analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7.
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ggplot2; version 3.0.0 CRAN (R 3.4.4) (ggplot2, RRID: SCR_014601)

GSVA; version 1.26.0 Bioconductor (H€anzelmann et al., 2013)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plotly; version 4.8.0.9000 https://github.com/plotly/plotly.py (Plotly, RRID: SCR_013991)

premessa R package https://github.com/ParkerICI/

premessa

N/A

Rtsne; version 0.13 CRAN (R 3.4.4) (Rtsne, RRID: SCR_016342)

SCENIC (Aibar et al., 2017) https://aertslab.

org/#scenic

N/A

scmap; version 1.1.5 Bioconductor (Scmap, RRID: SCR_017338)

Scran; version 1.6.9 Bioconductor (scran, RRID: SCR_016944)

Seurat; version 2.3.2 CRAN (R 3.4.4) (Seurat, RRID: SCR_016341)

VennDiagram; version 1.6.20 CRAN (R 3.4.4) (VennDiagram, RRID: SCR_002414)

GraphPad Prism8, version 8.1.1 N/A (GraphPad Prism, RRID: SCR_002798)

Fiji/ImageJ, 1.52n https://fiji.sc RRID: SCR_002285

FlowJo (version 8.8.6) FlowJo, https://www.flowjo.com (FlowJo, RRID: SCR_008520)

zFPKM Bioconductor https://bioconductor.org/packages/

release/bioc/html/zFPKM.html

COBRA toolbox (version 3.0) for MATLAB R2018a https://opencobra.github.io/

cobratoolbox/stable/

N/A

Leiden algorithm (clustering coefficient) Gephi 0.9.2 (Gephi, RRID: SCR_004293)

MaxQuant (version 1.6.0.16) N/A (MaxQuant, RRID: SCR_014485)

Xcalibur (version 4.0) N/A (Thermo Xcalibur, RRID: SCR_014593)

Other

Antibiotic-antimycotic Thermo Fisher Scientific 15240062

Bovine serum albumin Sigma-Aldrich A2058

Bovine serum albumin (UltraPure BSA) Thermo Fisher Scientific AM2616

Collagen type I Merck Millipore 08-115

Collagenase I Thermo Fisher Scientific GIBCO 17100017

Collagenase II Thermo Fisher Scientific GIBCO 17101015

Collagenase type 4 Worthington Biochemical LS004188

endoLysC Wako 121-05063

Dispase Thermo Fisher Scientific 171055-041

DMEM Thermo Fisher Scientific 11965-084

DNase I Sigma-Aldrich D4527

ECGS (endothelial cell medium growth supplement mix) Bio-Connect PromoCell C-39216

ECGS/H (endothelial cell growth supplement/heparin) Bio-Connect PromoCell C-30140

EGM2 (Endothelial growth medium) Bio-Connect PromoCell C-22011

Fc receptor block TruStain FcX BioLegend 422301

Fetal bovine serum (FBS) Merck - Biochrom S 0415

Fix/Perm buffer (eBiosciences intracellular

fixation & permeabilization buffer set)

Thermo Fisher Scientific 88-8824-00

Gelatin from bovine skin Sigma-Aldrich G9391

Heparin (bullet of ECGS/H) Bio-Connect PromoCell C-30140

Medium 199, HEPES Thermo Fisher Scientific 22340020

MEM NEAA Thermo Fisher Scientific 11140035

MEM vitamin solution Thermo Fisher Scientific 11120052

Penicillin/streptomycin Thermo Fisher Scientific 15140122

Penicillin/streptomycin with glutamine Thermo Fisher Scientific 10378016

Phosphate buffered saline (PBS) Thermo Fisher Scientific 14190094

Trypsin-EDTA (0.25%) Thermo Fisher Scientific 25200056

Tween 80 Sigma-Aldrich P1754
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LEAD CONTACT AND MATERIALS AVAILABILITY

Correspondence and requests for materials should be addressed to the Lead Contact, Peter Carmeliet (peter.carmeliet@kuleuven.

vib.be). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient Material and Choroid EC Isolation
Human eyes from a post-mortemmultiorgan donor were provided by the Biobank of UZ Leuven Hospital. Only leftover material after

use for cornea transplantation was used. The donor had no eye pathology, the age and sex are unknown. The choroidal membranes

were dissected and processed for scRNA-seq upon dissociating into single cell suspension in a digestion buffer (0.3% collagenase I,

DNase I (7.5 mM) and dispase (2.5 U/mL) in DMEM supplemented with 1x sodium pyruvate, 1x MEM NEAAs, ECGF/Heparin, anti-

biotic/antimycotic (2x) and 1% penicillin/streptomycin (Thermo Fisher Scientific)) for 40 min at 37�C with manual pipetting every

10 min. The single cell suspension was enriched for ECs by MACS depletion of CD45 positive cells and subsequent enrichment

of CD31 positive cells (Miltenyi Biotec).

Mice
Experiments were performed in 7 to 8 week-old male C57BL6/J mice (for the CNV model) or 8 week-old female mice (for the corneal

cauterization model) obtained from the KU Leuven animal facility or purchased from Charles River. Eight week-old male CD1 albino

mice (obtained from the KU Leuven animal facility) were used for immunohistochemistry staining of healthy choroid. They had not

been involved in other, previous procedures. Animals were maintained in individually ventilated cages in a room with controlled tem-

perature (22 ± 2�C) and humidity under a 12 h light/12 h dark cycle and with food (ssniff R/M-H diet, V153x) and drink ad libitum.

Animals were closely followed-up by the animal caretakers and the experimenters, with regular inspection by a veterinarian, as

per the standard health and animal welfare procedures of the local animal facility. No statistical method was used to predetermine

sample size. Animal housing and all experimental procedures were approved by the Institutional Animal Ethics Committee of the KU

Leuven (Belgium) under protocol number P012/2014, P156/2015 and P035/2019.

Mouse Model of Choroidal Neovascularization
Choroidal neovascularization (CNV) was induced by laser burns as previously described with adaptations (Schoors et al., 2014) using

a Purepoint Laser (Alcon, Fort Worth, USA). Ten or eight impacts (for choroidal endothelial cell isolation or immunostaining, respec-

tively) rupturing the Bruch’s membrane were made around the optical nerve using laser diameter 100 mm, power 0.320 W and expo-

sure time 0.05 s in both eyes. At day 7, at the height of the angiogenic response (Lambert et al., 2013), mice were euthanized by

cervical dislocation and the eyes were enucleated.

Murine Choroid Endothelial Cell Isolation
The RPE-choroid-sclera complex was dissected from enucleated eyes by peeling off the vitreous body and retina, pooled per group,

and processed for scRNA-seq upon dissociating into single cell suspension in a digestion buffer (0.3% collagenase I, DNase I

(7.5 mM) and dispase (2.5 U/mL) in DMEM supplemented with 1x sodium pyruvate, 1x MEM NEAAs, ECGF/Heparin, antibiotic/anti-

mycotic (2x) and 1% penicillin/streptomycin) for 40 min at 37�C with manual pipetting every 10 min. The reaction was stopped with

10mL of isolation buffer and the cell suspension was filtered through a 100 mmcell strainer. Single cell suspensions were enriched for

ECs by MACS depletion of CD45 positive cells and subsequent enrichment of CD31 positive cells (Miltenyi Biotec). This procedure

was repeated for 3 independent replicate experiments, and 3 additional experiments were performed to obtain reference samples of

ECs isolated from healthy choroid of control mice without laser injury (referred to as healthy CECs; n = 2 eyes/mouse and n = 6 mice

per experimental group).

Mouse model of Lewis Lung Carcinoma
Information about the animals and the orthotopic Lewis lung carcinoma (LLC) model are available elsewhere (Goveia et al., 2020).

Briefly, the syngeneic LLC cells (ATCC) were injected orthotopically into the parenchyma of the right lung through the rib cage using

a 30G needle (1 3 106 cells in 70 mL matrigel (BD Biosciences)). The animals were sacrificed on day 10 of the experiment and lungs

were immediately processed for TEC and NEC isolation. Since both lungs become colonized by cancer cells in this orthotopic LLC

model, even upon injection of cancer cells into a single lung, and since cancer cells in a tumor can affect peri-tumoral ECs, ECs from

healthy non-tumor-bearing mice were used as controls.

Cell Lines and Primary Cell Culture
Human Umbilical Vein Endothelial Cells

Human umbilical vein endothelial cells (HUVECs) were freshly isolated from umbilical cords obtained from multiple donors of un-

known sex (with approval from the Ethics Committee Research KU Leuven / UZ Leuven and informed consent obtained from all

subjects) as previously described (Schoors et al., 2015). Briefly, the interior of the umbilical vein was rinsed with PBS containing anti-

biotic-antimycotic solution (Thermo Fisher Scientific) and injected with pre-heated collagenase I solution (0.2% collagenase type I
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in 0.9% NaCl, 2 mM CaCl2, antibiotic-antimycotic). After no more than 13 min incubation, the collagenase suspension containing

endothelial cells (ECs) was collected, filtered through a 40 mm nylon cell strainer and spun down. The ECs were plated on 0.1%

gelatin-coated dishes in M199 medium (1 mg/mL D-glucose) (Thermo Fisher Scientific) supplemented with 20% fetal bovine serum

(FBS) (Merck-Biochrom), 2 mM L-glutamine (Thermo Fisher Scientific), Endothelial Cell Growth Supplement (ECGS)/ Heparin

(PromoCell), 100 IU/mL penicillin and 100 mg/mL streptomycin (Thermo Fisher Scientific), and cultured until confluent in a 5%

CO2, 37
�C incubator. The confluent cultures were split and replated in a 1:1 mixture of M199 and endothelial cell basal medium

(EGM2) (PromoCell) supplemented with endothelial cell growth medium supplement pack (PromoCell) and further cultured in

EGM2 medium. In all experiments, HUVECs were used as single-donor cultures and were used between passage (p) 2 and 4. Cul-

tures were regularly tested for mycoplasma.

293T Cells

293T cells were purchased from ATCC and cultured in DMEM supplemented with 10% fetal bovine serum (FBS) (Merck-Biochrom),

2 mM L-glutamine (Thermo Fisher Scientific) and 100 IU/mL penicillin and 100 mg/mL streptomycin (Thermo Fisher Scientific).

METHOD DETAILS

In Vitro Functional Assays
Proliferation

ECproliferation was quantified by incubating cells for 2 hwith 1 mCi/mL [3H]-thymidine (Perkin Elmer). Thereafter, cells were fixedwith

100% ethanol for 15 min at 4�C, precipitated with 10% TCA and lysed with 0.1 N NaOH. The amount of [3H]-thymidine incorporated

into DNA was measured by scintillation counting.

Scratch Wound Migration Assay

A scratch wound was applied on confluent EC monolayers (pre-treated overnight with 2 mg/mL Mitomycin C) using a 200 mL tip, 24 h

after seeding (100,000 cells per well in 24-well plates). After scratch wounding and photography at time point 0 (T0), the cultures

were further incubated in fully supplemented EGM2 medium for 18 h and photographed again (T18). Migration was measured

with the fiji/ImageJ software package and is expressed as % wound closure (gap area at T0 minus gap area at T18 in % of gap

area at T0).

Spheroid Capillary Sprouting Assay

ECs were incubated overnight in hanging drops in EGM2 medium containing methylcellulose (20 vol% of a 1.2% solution of meth-

ylcellulose 4000 cP) (Sigma-Aldrich) to form spheroids. When mitotic inactivation was required, Mitomycin C (1 mg/mL) was added to

this medium. Spheroids were then embedded in collagen gel and cultured for 20 h to induce sprouting as described previously

(De Bock et al., 2013). Cultures were fixed with 4% PFA at room temperature (RT) and imaged under bright field using a Motic AE

31 microscope (Motic Electric Group) or Leica DMI6000 microscope (Leica Microsystems). Analysis of the number of sprouts per

spheroid and the total sprout length (cumulative length of primary sprouts and branches per spheroid) was done on phase contrast

images using the fiji /ImageJ analysis software.

Mosaic Spheroid Capillary Sprouting Assay

Control and silenced ECs (lentiviral shRNA) were generated as described in the knockdown strategy section (see below), and fluo-

rescently labeled with intracellular dyes. Control ECs were stained with the CellTracker Deep Red (Thermo Fisher Scientific) and

SQLE or ALDH18A1 silenced ECswith the CellTrace CFSE dye (Thermo Fisher Scientific) according to themanufacturer’s guidelines.

Briefly, suspensions containing 125,000 control or silenced ECs were placed in a separate tube, spun down and the media were

changed to EGM2 without growth factors and supplement during the incubation time with the dye (10 mM for CellTracker Deep

Red, 50 mM of the CellTrace CFSE) for 30 min at RT in the dark. Excess full EGM2 was then added to the staining mix to remove

remaining free dye in the solution, the cells were centrifuged and the supernatant was removed. Finally, control (Deep Red) and

silenced (CFSE) cells were mixed at an equal ratio (1:1, 250,000 cells in total) and used for spheroid formation and sprouting as

described above. Using a Leica DMI6000 microscope (Leica Microsystems), at least 10 spheroids were imaged per replicate and

per condition. Using the fiji/ImageJ analysis software package, the contribution to the tip position of each sprout was quantified

and represented as the percentage of green (CFSE) or red (Deep Red) stained ECs occupying the tip position.

Knockdown Strategy
In Vitro

To silence the expression of Aldh18a1 or Sqle, gene-specific oligonucleotides (Key Resources Table) in the pLKO-shRNA2 vector

(Clontech) were used. All constructs were sequence verified. Lentiviral particles were produced in 293T cells as previously described

(Cantelmo et al., 2016). For lentiviral transduction, a MOI of 20-25 was used. Transductions were performed on day 0 in the evening,

cells were refed with fresh medium on day 1 in the morning and experiments were performed from day 3 or 4 onward. Knockdown

efficiency was monitored for each experiment either at the mRNA (qRT-PCR) or protein level or both and compared to expression in

cells transduced with a negative control shRNA (Key Resources Table).

In vivo

To silence the expression ofALDH18A1 orSQLE in the CNVmodel in vivo, siRNA duplexes directed against murineAldh18a1 orSqle,

or control siRNA (TriFECta Kit, IDT) were intravitreously injected (1 mg/eye) immediately after induction of the laser burns. At day 7

post-induction, the eyes were enucleated 10 min after retrobulbar injection with Fluorescein isothiocyanate (FITC)-conjugated
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dextran (Mr 2,000,000) (Sigma-Aldrich) and fixed in 2% paraformaldehyde. Choroids were dissected, flat-mounted (ProLong Gold

antifade reagent, Thermo Fisher Scientific) and imaged using a Leica TCS SPE confocal microscope (Leica Microsystems). Analysis

of the neovascular area was performed with the Leica MM AF morphometric analysis software (Leica Microsystems) and expressed

as the percentage of the FITC-dextran positive area in the total CNV lesion area. In order to check the genetic silencing in ECs upon

Aldh18a1 or Sqle siRNA treatment, choroidal ECs were isolated as specified above, and single cell suspensions were stained with

viability dye-APC-Cy7 (Fixable Viability Dye eFluor 780, eBioscience), CD45-PeCy7 (eBioscience), CD31-FITC (eBioscience) and

CD102-APC (Molecular Probes) antibodies at 4�C for 30 min, and viable, CD45–, CD31+, CD102+ choroidal ECs were FACS sorted

(BD FACSAria III). Cells were then processed for RNA extraction and qRT-PCR was performed.

Treatment with Inhibitor in the Murine Ocular Models
Choroidal Neovascularization Model

Male C57BL/6 mice with induced CNV were intravitreously injected with NB-598 (SQLE inhibitor, MedChemExpress) (250 mg/eye in

1 mL) or vehicle (0.05%DMSO, 1 mL) at day 1, 5, 8 and 11 post-laser induction. At 2 weeks after laser induction, mice were subjected

to retrobulbar FITC-conjugated dextran injections, after which the mice were euthanized and eyes were enucleated. Eyes were fixed

in 2%paraformaldehyde and choroids were dissected, flat-mounted and imaged using a Leica TCS SPE confocal microscope (Leica

Microsystems). Neovascular morphometric analysis was performed as described above.

Corneal Cauterization Model

Corneal angiogenesis was induced by thermal cauterization as previously described (Garcı́a-Caballero et al., 2019). After anesthetiz-

ing 8 week-old female mice with an intraperitoneal injection of ketamine (100 mg/kg body weight) and xylazine (10 mg/kg

body weight), the local anesthetic (Unicaine 0.4%; Théa Pharma) was applied to the eye and the central cornea was thermally cauter-

ized using an ophthalmic cautery device (Optemp II V; Alcon Surgical). Mice were daily treated with ophthalmic drops of NB-598

(250 mg/eye) or vehicle (0.05% DMSO) for 6 days, initiated the day after induction of the corneal injury. Mice were euthanized

7 days after cauterization, eyes were removed and corneas were dissected. Whole-mounted corneas were fixed in 70% ethanol

for 1 h at RT and blocked with 3%BSA-3%Gloria milk (Nestlé) for 1 h. Corneas were then incubated overnight with a rat anti-mouse

CD31 antibody (BD Biosciences), subsequently incubated with an AlexaFluor 546-conjugated goat anti-rat secondary antibody

(Thermo Fisher Scientific) for 2 h, and flat-mounted on a microscopy slide with ProLong Gold antifade reagent (Thermo Fisher Sci-

entific). Corneas were imaged using a Leica DMI6000 microscope (Leica Microsystems) and the blood vessel area was quantified

(CD31+ area as a percentage of the total corneal area).

Murine Choroid Immunostaining
Murine Eye Sections

Whole eyes were isolated and fixed in 2%paraformaldehyde for 2 h, embedded in paraffin blocks, sectioned and subjected to immu-

nohistochemistry. Briefly, after permeabilization (2% trypsin in 0.1% CaCl2 for 7 min at 37�C), the samples were incubated overnight

at 4�C with the specific primary antibody (anti-LXN, -APLNR, -PLGF, -CXCR4 and -SPARCL1) and an anti-CD31 antibody (BD

Biosciences) for blood vessel detection. After incubation with the primary antibodies, samples were incubated overnight at 4�C
with the appropriate secondary antibodies, stained with Hoechst and imaged with a Zeiss LSM 780 confocal microscope (Carl Zeiss)

at 20x magnification (Fluar 20x/0.75).

Whole Mount Choroid

Eyes from CD1 albino mice were enucleated, fixed in 2% paraformaldehyde for 2 h, prior to choroid dissection. Thereafter, whole

mount choroids were permeabilized and blocked (0.5% Triton, 0.01% sodium deoxycholate, 1% BSA, 2% serum in PBS) overnight

at 4�C and subsequently incubated overnight at 4�C with the specific primary antibodies (anti-aSMA, -ELN, -SDF1/CXCL12,

-VEGFR2, -SELP, -VWF) andwith IsolectinB4-Alexa 488.Wholemount choroids were then incubatedwith the appropriate secondary

antibodies and imaged with a Zeiss LSM 780 confocal microscope (Carl Zeiss) at 20x magnification (Fluar 20x/0.75).

RNA Isolation and Quantitative RT-PCR
RNA was collected and purified with the PureLink RNA Mini Kit (Thermo Fisher Scientific) or RNeasy Micro Kit (QIAGEN; for RNA

isolation from choroidal ECs) and converted to cDNA using the iScript cDNA synthesis kit (Bio-Rad) or the SuperScript III First Strand

cDNA synthesis kit (Thermo Fisher Scientific), respectively. RNA expression analysis was performed by Taqman quantitative RT-PCR

(Thermo Fisher Scientific) as described using premade primer sets (Key Resources Table). For comparison of gene expression

between conditions, mRNA levels (normalized to the housekeeping gene HPRT) were expressed relative to control conditions.

Single-cell Droplet-based RNA Sequencing
The single cell suspensions of freshly isolated choroidal ECs (MACS-bead enriched to 20%–30% as described above) were con-

verted to barcoded scRNA-seq libraries using the Chromium Single Cell 30 Library, Gel Bead & Multiplex Kit and Chip Kit (10x

Genomics), aiming for 10,000 cells per library. Samples were processed using kits pertaining to v2 barcoding chemistry of 10x

Genomics. Single samples were always processed in a single well of a PCR plate, allowing all cells from a sample to be treated

with the same master mix and in the same reaction vessel. For each experiment, all samples (CNV-EC and CEC) were processed

in parallel in the same thermal cycler. Libraries were sequenced on an Illumina HiSeq4000, and mapped to the human genome (build

GRCh38) or to the mouse genome (build mm10) using CellRanger software (10x Genomics, version 2.1.1).
e7 Cell Metabolism 31, 862–877.e1–e14, April 7, 2020



Single-cell Transcriptomics Analysis
Data from MACS-enriched samples were aggregated using Cell Ranger and data from the raw unfiltered matrix was further pro-

cessed using R (version 3.4.4 - Someone to Lean On).

Quality Control and Data Normalization
The following quality control steps were applied: (i) genes expressed by < 50 cells or with a row mean of < 0.01 were not considered;

(ii) cells that had either fewer than 201 (low quality cells) or over 6,000 expressed genes (possible doublets), or over 5% of unique

molecular identifiers (UMIs) derived from the mitochondrial genome were removed. The data of the remaining cells were natural-

log transformed using log1p and normalized using theSeurat package (Satija et al., 2015). Dataset-specific cut-off values and param-

eter settings are listed in Table S1.

In Silico EC Selection
After auto-scaling, the normalized data were first summarized by principal component analysis (PCA) using the flashPCA package,

and the first 15 PCAs were visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE, Rtsne package) with a perplexity

value of 200 and a learning rate of 100. Graph-based clustering was performed to group cells according to their gene expression

profiles as implemented in Seurat. Cell clusters were annotated based on canonical markers, including Pecam1 and Cdh5 (ECs),

Prox1 (lymphatic ECs), Col1a1 (fibroblasts), Ptprc (leukocytes), Pdgfrb (pericytes) and Acta2 (smooth muscle cells) to discriminate

ECs from contaminating cells. All downstream analyses were performed on ECs only.

Batch Effect Correction
ECs from freshly-isolated murine samples were prospectively collected, resulting in several batches of sequencing data. We first

analyzed each batch separately, and removed clusters expressing ambiguous marker genes (i.e., representing low quality cells,

red blood cells, possible doublets, etc.). We then used a recently developed algorithm,mnnCorrect available from the scran package

(Haghverdi et al., 2018), for batch effect correction. The optimal neighborhood size, k, was empirically defined as 50 after optimizing

over a range of 10-300 for both human and murine datasets. Because scRNA-seq data were batch corrected, gene expression

patterns are presented on semiquantitative scales.

Feature Selection and Dimensionality Reduction
After in silico EC selection and batch correction for joint analysis, we identified genes with high variability using the Seurat FindVar-

iableGenes function. This function calculates the mean expression and dispersion for each gene, then groups genes into bins (of size

20) by their mean expression and identifies any gene for which the z-score calculated from the dispersion exceeds a pre-defined cut-

off. For most experiments, we used a cut-off of z = 0.25 and mean expression in the range 0.00125 to 8, all other parameters were

default (see Table S1 for parameter settings for each analysis). The normalized data were auto-scaled and principal component anal-

ysis was performed on variable genes, followed by t-SNE to construct a two-dimensional representation of the data. This represen-

tation was only used to visualize the data.

EC Cluster Identification
To estimate the number of distinct phenotypes in batch corrected data, we color-coded t-SNE plots for each of the�14,000 detected

genes using an in-house developed R/Shiny-based web tool and identified clusters of cells with discriminating gene expression pat-

terns. To unbiasedly group ECs, we performed PCAon highly variable genes, and used graph-based clustering as implemented in the

FindClusters function of the Seurat package (Satija et al., 2015). Cluster results were visualized using t-SNE to verify that all visually

identified clusters were captured and not under-partitioned. Over-partitioned clusters that represent the same biological phenotype

were merged into a single cluster. Details of clustering parameters are listed in Table S1. Given the large number of sequenced

choroid ECs, subclustering was performed on arterial, venous and CNV clusters using the method described above (Table S1 for

parameter settings).

Marker Gene Analysis
We used a two-step approach to obtain rankedmarker gene lists for each cluster. As a first criterion, marker genes for a given cluster

should have the highest expression in that cluster compared to all other clusters and are therefore uniquely assigned to one cluster.

Second, we rankedmarker genes using a product-basedmeta-analysis (Hong et al., 2006). Briefly, we performed pairwise differential

analysis of all clusters against all other clusters separately and ranked the results of each pairwise comparison by log2 fold change.

The most upregulated genes received the lowest rank number (top ranking marker genes) and the most downregulated genes

received the highest rank number. For each cluster, we combined the rank numbers for all genes in all pairwise comparisons by

calculating their product to obtain a final list of ranked marker genes for each cluster.

Cluster Annotation
We annotated clusters based on literature-curated marker genes of canonical artery, capillary, vein, lymphatic, proliferating and tip

ECs. In case of an entirely unknown phenotype or unknown sublineages of a canonical phenotype, which could not be annotated

based on canonical marker genes or gene sets, we used a three-step approach to identify a putative biological function. First, we
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searched through the top 50 ranking list of markers for a coherent set of genes involved in similar biological processes. Second, if we

identified a putative signature (e.g., basement remodeling, etc.), we determined whether other genes associated with such a signa-

ture were also highest expressed in this phenotype. Cells that could not be unambiguously assigned to a biologically meaningful

phenotype might represent low quality cells or doublets and were excluded from the analysis.

Gene Set Variation Analysis
Gene set variation analysis (GSVA) as implemented in the GSVA R-package (version 1.26.0) was performed using default settings

(H€anzelmann et al., 2013).

Evaluation of Dissociation Artifacts
We performed gene set variation analysis to determine which individual cells strongly expressed a recently published dissociation

gene signature, consisting mainly of immediate-early and other stress response genes (van den Brink et al., 2017).

Heatmap Analysis
All heatmaps are based on cluster-averaged gene expression to account for cell-to-cell transcriptomic stochastics. Data was auto-

scaled for visualization. Heatmaps were produced using the heatmaply package (version 0.15.2). The datamatrix for each heatmap

can be downloaded from the accompanying web tool (see Data Resources below).

Trajectory Inference
We used the SCORPIUS package (version 1.0.2) to place cells onto pseudotime trajectories (Cannoodt et al., 2016). SCORPIUS as-

sumes that a given dataset contains the genome-wide expression profiles of hundreds to thousands of cells, which were uniformly

sampled from a linear dynamic process. Using this method, an initial trajectory is constructed by clustering the data with k-means

clustering and finding the shortest path through the cluster centers. This initial trajectory is subsequently refined in an iterative way

using the principal curves algorithm. The individual cells can then be ordered by projecting the n-dimensional points onto the

trajectory.

We performed feature selection by selecting the top 20marker genes for each cluster included in the pseudotime analysis. Dimen-

sionality reduction was performed using the reduce_dimensionality function (we used 10 dimensions, all other parameters were

default). Individual ECs from each CNV cluster were subsequently placed onto linear pseudotime using the infer_trajectory function

of the SCORPIUS package using default settings. Proliferating cells express a highly distinct signature consisting almost entirely of

cell cycle associated genes and could therefore not be placed on the differentiation trajectory. A similar analysis was performed

for TECs.

Jaccard Similarity Analysis
To assess conservation of cell phenotypes across models, we calculated similarity of marker gene sets using pairwise Jaccard sim-

ilarity coefficients for all clusters against all other clusters. The Jaccard similarity coefficient is defined as the size of the intersection

divided by the size of the union of sets:

JðA;BÞ= jAXBj
jAWBj=

jAXBj
jAj+ jBj � jAXBj

where J is the Jaccard index and A and B are two sets of marker genes (Levandowsky and Winter, 1971).

Gene Set Enrichment Analysis
Weused gene set enrichment analysis (GSEA) as implemented in the clusterProfiler package (version 3.6.0) to compare gene expres-

sion signatures of TEC versus NECandCNV-EC versus CEC samples (Yu et al., 2012). Gene set analysis was performed using a set of

vascular related and metabolic gene sets selected from the Molecular Signatures Database (MSigDB version 5.2 downloaded from

http://bioinf.wehi.edu.au/software/MSigDB/), a collection of expert annotated gene sets. GSEA scores were calculated for sets with

a minimum of 10 detected genes, all other parameters were default.

Metabolic Gene Expression Analysis and Pathway Mapping
For metabolic gene expression, all analyses were performed on a data matrix filtered for the subset of metabolic genes, as

described previously (Cantelmo et al., 2016). Consistent with previous bulk analyses in pathological ECs (Cantelmo et al.,

2016), we detected 1,255 and 1,187 metabolic genes in CNV-ECs and TECs, respectively. Semiquantitative pathway mapping

was performed using the pathview package (version 1.18.2) using a color-scale range of batch corrected gene expression

values of �0.01 to 0.01 and 5 bins (Luo and Brouwer, 2013). Genes with a batch corrected expression level below 0.005 in

the bulk population were considered too lowly expressed and were excluded from the pathway map. To clarify visualization,

the default KEGG pathways were redrawn as presented in Figures 4B and S4A. Pathway mapping using non-batch corrected

data showed similar results (data not shown).
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Cell Cycle Pseudotime Analysis
Wepreviously identified a distinctive cluster of proliferating ECs in cultured human TECs (Goveia et al., 2020). Reanalysis of this data-

set revealed that proliferating ECs organized in a circular geometry on t-SNE that upregulated known cell cycle restricted genes.

Color-coding t-SNE plots for cell cycle phase-specific gene sets showed that proliferating ECs in the circular pattern were sequen-

tially ordered based on their progression through the cell cycle.

To computationally reconstruct cell cycle pseudotime, we performed a spatial sign transformation on the first and second t-SNE

dimension coordinates to project all cycling cells in our cultured sample onto the unit circle, and defined cell cycle pseudotime for

each cell as the arc angle theta (q) from an arbitrary point (t = 0) on the cycle. Next, we used local polynomial regression to model

pseudo-temporal gene expression and confirmed the known cell cycle-related periodicity of cyclin gene expression (Santos

et al., 2015; Whitfield et al., 2002). We assigned cell cycle phases based on the periodic expression of cyclins and expressed cell

cycle pseudotime as percentage of the cell cycle (where 0% approximately coincides with cytokinesis). Finally, we used a previously

validated standard deviation based method to obtain a ranked list of periodically expressed genes (de Lichtenberg et al., 2005).

Development of a Multivariate Model to Predict Cell Cycle Pseudotime
As an extension of previous reports demonstrating the general applicability of in vitro trained machine models to assign cell cycle

phases to individual cells in a variety of cell types (Scialdone et al., 2015), we developed a predictionmodel to reconstruct continuous

cell cycle pseudotime in proliferating murine CNV-ECs and TECs based on periodically expressed genes identified in cultured cells.

We first used the human cultured TEC dataset to reconstruct ten cell cycle gene sets, each consisting of genes with peak expression

in distinct phases of the cell cycle (i.e., genes that peak between 0%–10%, 10%–20%, etc. pseudotime). Second, we trained amulti-

variate model to predict the x- and y-coordinates of individual cells on the unit circle, and calculated pseudotime using the inverse

tangent of spatial sign transformed predictions. Pseudo-temporal gene expression was modeled using local polynomial regression.

Pathway and Transcription Factor Activity Analysis
Gene set variation analysis (GSVA) (H€anzelmann et al., 2013) was used to convert the gene-by-cell matrix into a gene set-by-cell ma-

trix. GSVA scores were only calculated for gene sets with a minimum of five detected genes, all other parameters were default.

SCENIC transcription factor analysis (Aibar et al., 2017) was run as described previously, using the 20,000 motifs database for

RcisTarget and GRNboost (SCENIC version 0.1.5, which corresponds to RcisTarget 0.99.0 and AUCell 0.99.5; with

RcisTarget.hg19.motifDatabases.20k). The input matrix was the normalized expression matrix output, from which 14,917 genes

passed the filtering.

Bulk RNA-sequencing Analysis
RNA was extracted from control, SQLE and ALDH18A1 silenced cells and purified with the PureLink RNA Mini Kit (Thermo Fisher

Scientific). Starting from 1 mg total RNA, poly-adenylated fragments were isolated, reverse transcribed and converted into indexed

sequencing libraries using the KAPA stranded mRNA-seq kit (Sopachem). The first 50 bases of these libraries were sequenced on a

HiSeq 2500 system (Illumina). The raw sequenced reads were mapped to the human reference transcriptome and genome (build

GRCh38) using the Bowtie TopHat pipeline (Langmead and Salzberg, 2012). Mapped reads were assigned to Ensemble gene IDs

by HTSeq. Differentially expressed genes and their false discovery rate (FDR) corrected p values were identified by the Limma pack-

age (Ritchie et al., 2015).

Proteomics Sample Preparation
Control, SQLE and ALDH18A1 silenced cells were collected and frozen as a dry pellet before extraction in 300 mL of a 50:30:20 (meth-

anol: acetonitrile: 20 mM Tris, pH 9.3) extraction buffer. Samples were then centrifuged for 5 min at 15,000 rcf at 4�C and the super-

natant was discarded. The resulting protein pellet was re-dissolved in 50 mL 8 M urea, 20 mM HEPES pH 8.0 and proteins were

reduced by addition of 15 mM DTT and incubation for 30 min at 55�C. Proteins were then alkylated by incubation with 30 mM iodoa-

cetamide for 15min at RT in the dark. The samples were diluted by addition of 20 mMHEPES pH 8.0 to reach a urea concentration of

4 M; then, the proteins were digested with 0.125 mg endoLysC (Wako 1/250, w/w) for 4 h at RT. Next, all samples were further

diluted by addition of 20 mMHEPES pH 8.0 to a final urea concentration of 2 M and the proteins were digested with 0.125 mg trypsin

(Promega) (1/100, w/w) overnight at 37�C. The resulting peptides were then purified on OMIX C18 tips (Agilent), dried completely by

vacuum drying and stored at �20�C until LC-MS/MS analysis.

Proteomics LC-MS/MS and Data Analysis
Peptides from each sample were re-dissolved in 20 mL loading solvent A (0.1% TFA in water/acetonitrile (98 : 2, v/v)) of which 10 mL

was injected for LC-MS/MS analysis on an Ultimate 3000 RSLCnano system (Thermo Fisher Scientific) in-line connected to a

Q Exactive HF mass spectrometer (Thermo Fisher Scientific) equipped with a Nanospray Flex Ion source (Thermo Fisher Scientific).

Trappingwas performed at 10 mL/min for 4min in solvent A on a home-made 100 mm internal diameter (I.D.)3 20mm trapping column

(5 mm beads, C18 Reprosil-HD, Dr Maisch) and peptides were separated on a reverse-phase column (made in-house, 75 mm I.D. 3

400mm, 1.9 mmbeads C18 Reprosil-HD, Dr Maisch). The peptides were eluted by a non-linear increase from 2% to 56%MS solvent

B (0.1% FA in water/acetonitrile (2 : 8, v/v)) over 140 min at a constant flow rate of 250 nL/min. The column temperature was kept

constant at 50�C (CoControl 3.3.05, Sonation).
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The mass spectrometer was operated in data-dependent mode, automatically switching between MS and MS/MS acquisition for

the 16 most abundant ion peaks per MS spectrum. Full-scan MS spectra (375 to 1500 m/z) were acquired at a resolution of 60,000 in

the Orbitrap analyzer after accumulation to a target value of 3,000,000. The 16 most intense ions above a threshold value of 13,000

were isolated (window of 1.5 Th) for fragmentation at a normalized collision energy of 28% after filling the trap at a target value of

100,000 for maximum 80 ms. MS/MS spectra (200 to 2,000 m/z) were acquired at a resolution of 15,000 in the orbitrap analyzer.

The S-lens RF level was set at 55, and we excluded precursor ions with single and unassigned charge states from fragmentation

selection.

Data analysis was performed with MaxQuant (version 1.6.0.16) (Cox and Mann, 2008) using the Andromeda search engine with

default search settings, including a false discovery rate set at 1% on peptide spectrum match (PSM), peptide and protein level.

The spectra were searched against the human proteins in the UniProt/Swiss-Prot database (database release version of September

2017 containing 20,237 human protein entries, downloaded from https://www.uniprot.org/). The mass tolerances for precursor and

fragment ions were set to 4.5 and 20 ppm, respectively, during the main search. Enzyme specificity was set as carboxy-terminal to

arginine and lysine (trypsin), also allowing cleavage at arginine/lysine–proline bonds with a maximum of two missed cleavages.

Carbamidomethylation of cysteine residues was set as a fixedmodification and variable modifications were set to oxidation of methi-

onine (to sulfoxides) and acetylation of protein amino-termini. Proteins were quantified by the MaxLFQ algorithm integrated in the

MaxQuant software. Only proteins with at least one unique or razor peptide were retained for identification, while a minimum ratio

count of two was required for quantification. Matching between runs was enabled, with a matching time window of 2 min and an

alignment time window of 20 min.

Further data analysis was performed in R after loading the proteinGroups results files fromMaxQuant. Proteins with less than 20%

valid values were removed, and missing values were imputed using minimum values. Differentially expressed proteins and their false

discovery rate (FDR) corrected p values were identified by the Limma package (Ritchie et al., 2015), non-corrected p values are re-

ported for targeted analysis of collagen modification enzymes.

Metabolomics and Data Analysis
Liquid Chromatography Mass Spectrometry

Control, SQLEKD and ALDH18A1KD HUVECs grown in a 6-well plate were washed with ice cold 0.9% NaCl solution and scraped into

an extraction buffer (80% LC-MS grade methanol in water). Next, proteins were pelleted by centrifugation at 20,000 g for 15 min at

4�C. Part of the supernatant was transferred to LC-MS vials. The cell pellet was lysed in 200 mM NaOH for 20 min at 95�C. After
centrifugation at 1,000 g for 10 min, protein levels were measured by BCA for normalization purposes.

Untargeted Measurements

Untargetedmeasurements were performed using the Vanquish UHPL system (Thermo Fisher Scientific) in-line connected to an Orbi-

trap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific). Five mL of sample was injected and loaded onto a Hilicon

iHILIC-Fusion(P) stainless steel column (Achrom, 150 3 2.1 mm 1.8 mm 100 Å). A linear gradient was carried out starting with 90%

solvent A (LC-MS grade acetonitrile) and 10%solvent B (10mMammoniumacetate pH 9.3). From 2 to 20min the gradient changed to

80%B andwas kept at 80% until 23 min. Next a decrease to 40%Bwas carried out to 25min, further decreasing to 10%B at 27min.

Finally 10% B was maintained until 35 min. The solvent was used at a flow rate of 200 mL/min, the column temperature was kept

constant at 25�C. The mass spectrometer operated in negative ion mode, settings of the HESI probe were as follows: sheath gas

flow rate at 34, auxiliary gas flow rate at 5 (at a temperature of 275�C). Spray voltage was set at 2.5 kV, temperature of the ion transfer

tube at 300�C and S-lens RF level at 50. A full scan (resolution of 120,000 and scan range of m/z 50-750) was applied.

Targeted Measurements

Targeted measurements of proline and energy balance ([ATP + ½ ADP]/[ATP+ADP+AMP]) were performed using a Dionex UltiMate

3000 LC System (Thermo Fisher Scientific) in-line connected to a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific).

10 ml of the sample extracts (collected in 80% LC-MS grade methanol in water as described above) were separated on an Acquity

HSS T3 UPLC column (Waters Corp, 2.1 mm x 150 mm, 1.8 mm particle size) using an Ultimate 3000 HPLC (Dionex, Thermo Fisher

Scientific). Column temperature was held at 40�C throughout the analysis. Elution of metabolites was performed using a quaternary

solvent system consisting of solvent A (10 mM Tributylamine, 15 mM acetic acid 5% methanol in water) and solvent B (100% meth-

anol). The flow rate is kept constant at 250 mL/min and the following linear gradient is applied: at 0 min 0% B, from 2 to 7 min an in-

crease to 37% B is accomplished; from 7min to 14 min an increase to 41% B is carried out, from 14 to 26 min the gradient increases

to 100%Band ismaintained until 30min. At 31min the gradient progressively decreases to 0%B and lasts until 40min. The data was

then collected in ‘‘centroid data acquisition’’ mode, with negative electron spray ionisation over amass range of 70 – 1050m/z and an

extra filter of 300-850 m/z starting from the 8th min. Both were at a mass resolution of 70,000 (at m/z 200). The detector was an Orbi-

trapQexactive (Thermo Fisher Scientific). Source settingswere the following: sheath gas flow rate at 50, aux gas flow rate at 10, spray

voltage at 4 kV, capillary temperature at 350�C and the S-lens RF level was set at 60.

Data Processing

Mass spectrometry files were converted to the mzXML format using msConvert available from the proteowizard toolkit (Chambers

et al., 2012). All downstream analyses were performed in R. For targeted measurements, analysis was performed using the Quan

software (Thermo Fisher Scientific, Xcalibur version 4.0) and manually verified.
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Hydroxyproline Content

Hydroxyproline content was quantified according to Creemers et al. (1997). Briefly, cells were scraped and hydrolyzed for 3.5 h at

135�C in 6 N HCl. Samples were vacuum-evaporated and dissolved in demineralized water. Hydroxyproline residues were oxidized

by adding chloramine T reagent (chloramine T in 50% n-propanol; all Sigma-Aldrich), followed by the addition of Ehrlich’s aldehyde

reagent (mixture of p-dimethylaminobenzaldehyde, n-propanol and perchloric acid; all Sigma-Aldrich) and incubation of the samples

at 65�C for chromophore development. A hydroxyproline standard curve was used to calculate the absolute amount of hydroxypro-

line per sample, which was finally normalized to protein content after BCA measurement.

Meta-analysis of Transcriptomics Data
We performed a differential gene expression meta-analysis using previously published tumor ECs (TEC) versus normal ECs (NEC)

transcriptomics. Briefly, we screened the EndoDB database for relevant studies and identified three studies comprising nine distinct

TEC versus NEC datasets of eight tumor types (Khan et al., 2019). We performed pairwise, TEC versus NEC, differential expression

analysis for each dataset independently as described previously (Bruning et al., 2018; Cantelmo et al., 2016). Differentially expressed

genes and their false discovery rate (FDR) corrected p values were identified by the Limma package (Ritchie et al., 2015). We ranked

genes in each dataset by fold change; genes upregulated in TECs received the lowest rank, downregulated genes the highest rank.

We combined the rank numbers for all genes using a product-based meta-analysis (Hong et al., 2006). For visualization purposes

only, we plotted the scaled median ranks.

RNAscope In Situ Hybridization and Quantification
Formalin-fixed paraffin-embedded whole murine eyes were sectioned and subjected to RNAscope in situ hybridization using the

RNAscope Multiplex Fluorescent v2 assay (ACDBio) according to the manufacturer’s instructions (Pretreatment and RNAscope

Multiplex Fluorescent v2 Assay according to protocol 323100-USM). Briefly, after deparaffinization, the slides were incubated

with hydrogen peroxide for 10 min at RT. After several washing steps, manual target retrieval was performed followed by incubation

with Protease Plus before proceeding to the RNAscope Multiplex Fluorescent v2 protocol. Hybridization was performed with the

RNAscope probes Mm-Nr2f2-C3 (480301-C3), Mm-Gja4 (588591), and RNAscope Probe 3-plex Positive Control Probe_Mm

(320881) and RNAscope Probe 3-plex Negative Control Probe (320871). Slides were then processed according to the RNAscope

Multiplex Fluorescent v2 protocol (Hybridization, Amplification, and Signal Development), prior to immunohistochemical staining

for CD105 (Goat CD105, R&D Systems, AF1320, 1:200). Images were acquired using a Zeiss LSM 780 confocal microscope (Carl

Zeiss). For quantification, the in situ hybridization images were first converted to a thresholded image and number of particles per

CD105+ cell was counted using a circularity of 0.00 – 1.00, and a size pixel between 0 –N. Doublets and triplets were split by consid-

ering signal over the average size of a dot. Results are depicted as number of dots per cell as estimated by counting nuclei (stained

with Hoechst). Depicted data are representative eye sections of n = 3 CNV-induced mice.

Cytometry by Time of Flight Mass Cytometry (CyTOF)
Custom conjugated antibodies were generated using MaxPar X8 antibody labeling kits as per the manufacturer’s instructions (Fluid-

igm). Single cell suspensions of freshly isolated CECs and CNV-ECs were washed twice in PBS followed by incubation with 0.5 mM

Cell-ID Cisplatin (Fluidigm) for 3 min at RT. Reactions were quenched with 5 mL Cell Staining Buffer (Fluidigm), washed and fixed in

2% paraformaldehyde for 20 min at RT. Cells were then washed and permeabilized with freshly prepared 1X Barcode Perm Buffer in

PBS (Fluidigm), followed by incubation with Palladiumbarcodes (Fluidigm) for 20min at RT. Samples were subsequently washedwith

Cell Staining Buffer, re-suspended with Fc receptor block for 5 min (TruStain FcX, BioLegend) and stained with a cocktail of surface

staining antibodies for 1 h at RT under constant rotation. Following washes with Cell Staining Buffer and PBS, samples were fixed for

30min in Fix/Perm buffer (eBiosciences). After 2 washes with freshly prepared 1X PermBuffer (eBiosciences), cells were stained with

a cocktail of intracellular staining antibodies for 1 h at RT under constant rotation. Cells were thenwashed twice in 1X PermBuffer and

once in PBS, followed by incubation with 1.6% paraformaldehyde and 0.5 mM Intercalator-Ir (Fluidigm) for 1 h at RT. After multiple

washes with Cell Staining Buffer, PBS and finally ultrapure water, EQ Four Element Calibration beads (Fluidigm) were added 1:10 to

each sample followed by analysis on a Helios instrument (Fluidigm) at an event rate of 150–200 cells per second.

CyTOF Data Analysis
Bead-normalized samples were debarcoded using the premessa R package (minimum separation 0.3, maximum Mahalanobis dis-

tance 30). The viable fraction (DNA+, Cisplatin–) of debarcoded single cells was then selected using FlowJo, and viable cells were

sequentially gated on CD45–/PDGFRB–/COL1A1–/ACTA2– /PECAM1+/CDH5+ endothelial cells. Protein expression matrices were

generated using R, and arcsin transformation was applied to the marker intensities. Dimensionality reduction of the data was per-

formed based on the expression of the remaining markers using the t-SNE algorithm, with a perplexity value of 200 and a learning

rate of 100.

Curation of a GEM Model
The Recon 1 generic human reconstruction (Duarte et al., 2007) was verified for mass and stoichiometry imbalance, presence of

dead-end metabolites and blocked reactions using the verifyModel function implemented in COBRA toolbox v3.0 for MATLAB

R2018a (Heirendt et al., 2019). The model was subsequently manually curated by: (i) removing reactions and metabolites without
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metabolic fates (no upstream/downstream reactions); (ii) addition of transporters between intra- and extracellular compartments;

and (iii) adding reactions belonging to fatty acid oxidation, citric acid cycle, branched chain amino acid, cholesterol, glycine, serine

and threonine metabolism from Recon 2.2 (Swainston et al., 2016). The curated model contains 3,894 reactions (2,201 gene-asso-

ciated; 1,693 non-gene associated) and 2,691 metabolites belonging to 98 pathway categories across seven subcellular compart-

ments (cytoplasm, endoplasmic reticulum, mitochondria, lysosome, Golgi, nucleus, peroxisome).

Development of an EC-tailored GEM
We tailored the curated model to a generic EC-specific GEM using transcript abundance (in fragments per kilobase of transcript per

million mapped reads, FPKM) of genes expressed in human umbilical vein ECs (HUVECs) in two independent RNA-sequencing

studies (GEO: GSE76743, ArrayExpress: E-MTAB-4897). The FPKM abundance of each gene in each sample was z-score normal-

ized (zFPKM) using the zFPKM package (Hart et al., 2013) to make samples within the same study comparable. These genes along

with the zFPKM expression values (averaged between samples) were mapped onto the reactions present within the curated Recon

1.0 model. If a reaction was associated with multiple genes (enzymes), the average of the zFPKM of all the associated genes was

considered as the transcriptional expression weight for that reaction.

Using the GIMME algorithm (Becker and Palsson, 2008), reactions with an average expression (zFPKM) less than �3 were mini-

mized in the model (Hart et al., 2013), while keeping the biomass objective above 90% of its optimal value. To avoid inappropriate

exclusion of alternative pathways after integration of RNA-sequencing data, we defined a superset of reactions (optimal flux

solutions) that are active when optimizing the model for at least one of 988 flux profiles (derived from separately optimizing for the

production of 38 biomass precursors (Table S5), while providing each of 26 metabolites (20 amino acids, L-cystine, inositol, triacyl-

glycerol, glucose, thymidine, palmitate) as separate inputs). We then assessed for each reaction that was constrained to zero by

GIMME, whether it was an element of the optimal superset. Reactions that belonged to this optimal superset were re-assigned as

active (constrained to default bounds provided by the COBRA toolbox 3.0) and retained within the model.

Development of EC-Tailored Objective Functions
Two EC-specific objective functions for biomass production and collagen synthesis were defined using available biochemical com-

positions of biomass precursors in ECs reported in the literature or measured in-house (Table S5). As there is no dry weight (DW)

composition available for ECs, the overall weight percentage and percentage composition of proteins (78%), DNA (1%), RNA

(4%) and lipids (17%) of a generic human cell was considered for the formulation of the biomass function (Shlomi et al., 2011).

The fractional contribution of the nucleotide precursors for DNA and RNA were obtained from previously formulated biomass reac-

tions in other human metabolic reconstructions (Shlomi et al., 2011). The molar contribution of amino acids was calculated from the

total available amino acid pool measured in control bovine aortic ECs (Baydoun et al., 1990). Molar fractions of lipids and cholesterol

were obtained from 2 separate studies (Murphy et al., 1992; Rastogi and Nordøy, 1980). Molar fractions were used to calculate the

millimolar contributions of biomass precursor metabolites in mmol/gDW of a cell (Shlomi et al., 2011).

The flux associated with the biomass reaction represents the specific growth rate of ECs. Constraints on the biomass were set using

Metabotools (Aurich et al., 2016), as implemented in COBRA toolbox v3.0 incorporating the mean HUVEC doubling time of 36 h with a

20% tolerance in the rate. A collagen synthesis reaction was formulated by considering the biochemical compositions of the twenty

amino acids and the addition of fractional composition of 4-hydroxyproline as measured in our study. For this, the composition of 4-

hydroxyproline measured in-house (mg/mg protein in 250 mL for 250,000 cells as shown in Figure S6F) was converted to mmol/gDW

of a cell. The growth associated energy requirement was considered to be 24 mmol ATP/gDW (Shlomi et al., 2011).

Development of an Angiogenic CEC-GEM Model
The EC-GEM model was refined to model CNV-EC functions in three steps. First, microarray data of quiescent and proliferating

HUVECs (GEO: GSE89174) were used to derive an angiogenic EC-GEM. Specifically, genes that were downregulated (log fold

change < �1) in proliferating HUVECs, were mapped to the EC-GEM model and the associated reactions were constrained to

zero after checking for their essentiality to maximize the two objective functions using flux balance analysis (FBA) (O’Brien et al.,

2015). Reactions that were essential for the objective were retained. Second, the EC-GEMwas refined to impose CEC-specific con-

straints. Reactions corresponding to the differentially regulated genes in the CECs as compared to the HUVECs (bulk RNA-

sequencing study, GEO: GSE20986) were constrained to zero if the gene was downregulated in CECs (log fold change < �1.5) after

checking for their essentiality toward biomass or unconstrained if the gene was upregulated in CECs (log fold change > 1.5) in the

proliferating model. By doing so, 26 reactions were constrained to zero and 36 reactions were re-activated. Third, the CEC-GEM

was further refined by eliminating reactions corresponding to genes with undetectable transcripts (row means of all ECs < 0.01) in

scRNA-seq data of human CECs.

To obtain a functional model, we checked the absolute requirement of each reaction toward biomass production before elimination

and retained them if essential for maximizing biomass. Thereby, 1,593 reactions were assigned inactive to obtain a proliferating CEC-

GEM flux profile for biomass synthesis. The same procedure was repeated for the collagen synthesis function, resulting in the elim-

ination of 2,037 reactions.

The proliferating GEMwas further tailored based on available flux data in ECs. Constraints were refined to identify a flux space that

simultaneously utilizes fatty acid oxidation for dNTP synthesis, and maintains a higher requirement of aspartate in cytoplasm than

mitochondrion, lactate production and an active TCA cycle as previously reported (Fitzgerald et al., 2018; Schoors et al., 2015).
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To do this, the extracellular uptake rates of metabolites in the CEC-GEMwere constrained using the biochemical compositions of the

M199 medium within COBRA toolbox v3.0 (Aurich et al., 2016), and we performed flux variability analysis (FVA) (Mahadevan and

Schilling, 2003) and random sampling of flux distributions using the CHRR algorithm (Haraldsdóttir et al., 2017), to refine constraints.

To ensure compartmentalization of glucose for ATP production via glycolysis, while diverting fatty acids towardmitochondrial acetyl-

CoA production via fatty acid oxidation, an arbitrary reduction in pyruvate carboxylase flux and an imbalance in the malate-aspartate

shuttle was incorporated within the model.

Prediction of Essential Genes in the Angiogenic CEC Model
The refined proliferating CEC model was subsequently used for prediction of essential reactions. We identified model reactions as

essential if a given reaction is crucial for independently optimizing the twoobjective functions, the least variable across alternate optimal

flux solutions and coupled with large number of other reactions within the network. To identify reactions with these properties, we em-

ployed four separateflux-basedapproaches: (i) flux sampling (fs): Since therearemanyalternatebiochemical pathways that canprovide

the same optimal biomass, CEC-GEMswere sampled to obtain 100,000 flux profiles considering a uniform sampling distribution. Sam-

pling was performed using the CHRR algorithm (Haraldsdóttir et al., 2017). The relative flux variance of each reaction (variance of flux

associated with a reaction normalized to the most varying reaction) was calculated. By this method, a reaction was shortlisted to be

important if it was the least varying across the generated samples (relative variance < 0.1); (ii) flux variability analysis (FVA): Given the

CEC specific constraints, the minimum andmaximum fluxes through a reaction were estimated using FVA, while considering solutions

that produce at least 90%of the biomass reaction. The absolute difference between theminimal andmaximal flux for each reaction rep-

resents the range of the flux activity of that reaction. By this method, a reaction was shortlisted to be important if the absolute flux dif-

ferencewas<1%of themaximumfluxdifferenceassociatedwitha reaction in thenetwork; (iii) reactionessentiality (RE): The ‘‘wild-type’’

solution in theCEC-GEMs thatmaximizesbiomasswascalculatedusingacombinationof fluxbalanceanalysis (FBA) andcycleFreeFlux

(to removestoichiometricallybalancedcycles) algorithms (Desouki etal., 2015).A reactionknockoutanalysiswasperformed in theCEC-

GEMs to test the effect of perturbation on biomass synthesis. A reaction was deemed to be essential, when the in silico knockout of a

reaction (flux through that reaction constrained to zero) leads to a 90% reduction in the biomass flux as obtained in the ‘‘wild-type’’

optimal solution predicted by FBA and cycleFreeFlux; and (iv) correlated reaction subsets (CRS): The flux sampling results were further

used to calculate correlated reactions (r > 0.75) within the network. While calculating the correlations, we removed reactions with zero

fluxes across the 100,000 samples. Representing the correlationmatrix as an undirected graph (removing reactionswith no association

toother reactions)with reactionsasnodesand relationshipbetweenapair of reactionsasanedge, reaction subsets (clusters)were iden-

tified using the Leiden algorithm implemented inGephi v.0.9.2. The scaled clustering coefficient was calculated for every reaction in the

graph. A reaction with a high clustering capacity (clustering coefficient > 0.75) was considered to be essential.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNAscope data are from representative paraffin sections of n = 3 CNV-induced murine eyes. In vitro and in vivo functional tests were

performed using at least 3 independent biological repeats as specified in the respective legends, and were analyzed by researchers

blinded for the experimental condition. No statistical method was used to predetermine sample or group size. No strategy for random-

ization or stratification was needed, no method was used to determine whether the data met assumptions of the statistical approach.

Spearman correlation and two-sided statistical significance were calculated in GraphPad Prism8. A p value < 0.05 was considered sig-

nificant. A t test was used for all pairwise comparisons, ANOVA with the appropriate posthoc test for multiple group comparisons.

DATA AND CODE AVAILABILITY

Data Resources
The accession number for the raw sequencing data of choroidal ECs reported in this paper is ArrayExpress: E-MTAB-8119; for the

bulk RNA-seq data of ALDH18A1 and SQLE-silenced human endothelial cells ArrayExpress: E-MTAB-8604. The mass spectrometry

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repos-

itory with the accession number PRIDE: PXD016678. Publicly available single cell transcriptome data from murine lung TECs were

derived from ArrayExpress: E-MTAB-7458 and from human cultured TECs from ArrayExpress: E-MTAB-6308. Processed publicly

available endothelial transcriptomics data were derived from the EndoDB, raw data can be obtained from GEO (accession number

GEO: GSE77199) or ArrayExpress (accession numbers ArrayExpress: E-GEOD-41614, E-GEOD-51401, E-GEOD-73753, E-MTAB-

4842). To ensure data accessibility to non-bioinformaticians, reproducibility, and resource value, wemade our scRNA-seq data avail-

able for further exploration via an interactive web tool at https://www.vibcancer.be/software-tools/Murine_ECTax and the EndoDB

(https://www.vibcancer.be/software-tools/endodb). With this tool users can interactively visualize gene expression and clustering on

t-SNE, search marker genes for all subclusters, and export gene expression data. A database of cell cycle data is freely available at

https://www.vibcancer.be/software-tools/scCycle.

Software
All software is freely or commercially available and is listed in the STAR Methods description and Key Resources Table.
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