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Abstract
The asymptotic equivalence of canonical and microcanonical ensembles is a central concept in
statistical physics, with important consequences for both theoretical research and practical
applications. However, this property breaks down under certain circumstances. The most studied
violation of ensemble equivalence requires phase transitions, in which case it has a ‘restricted’ (i.e.
confined to a certain region in parameter space) but ‘strong’ (i.e. characterized by a difference
between the entropies of the two ensembles that is of the same order as the entropies themselves)
form. However, recent research on networks has shown that the presence of an extensive number
of local constraints can lead to ensemble nonequivalence (EN) even in the absence of phase
transitions. This occurs in a ‘weak’ (i.e. leading to a subleading entropy difference) but remarkably
‘unrestricted’ (i.e. valid in the entire parameter space) form. Here we look for more general
manifestations of EN in arbitrary ensembles of matrices with given margins. These models have
widespread applications in the study of spatially heterogeneous and/or temporally nonstationary
systems, with consequences for the analysis of multivariate financial and neural time-series,
multi-platform social activity, gene expression profiles and other big data. We confirm that EN
appears in ‘unrestricted’ form throughout the entire parameter space due to the extensivity of local
constraints. Surprisingly, at the same time it can also exhibit the ‘strong’ form. This novel,
simultaneously ‘strong and unrestricted’ form of nonequivalence is very robust and imposes a
principled choice of the ensemble. We calculate the proper mathematical quantities to be used in
real-world applications.

1. Introduction

In statistical physics, systems with different constraints can be described by different ensembles. For
example, systems with fixed energy can be described by the microcanonical ensemble, where all microscopic
configurations have precisely the same value of the energy and are equiprobable, thereby modelling large
isolated systems. In this case, the energy is treated as a ‘hard’ constraint enforced separately on each
configuration. By contrast, systems with fixed temperature (which is the ‘dual’ thermodynamic quantity
conjugated with the energy) can be described by the canonical ensemble, where individual microscopic
configurations can have different values of the energy and are assigned different probabilities, but in such a
way that the average value of the energy coincides with the one defining the corresponding microcanonical
ensemble [1]. This ensemble represents systems that can exchange energy with their environment, and the
energy is in fact treated as a ‘soft’ constraint which is enforced only as an ensemble average.

When the size of the system is finite, the two ensembles are necessarily different. However, in the
simplest and most traditional situation, the microcanonical description as a function of the energy becomes
equivalent with the canonical description as a function of the temperature in the thermodynamic limit (i.e.,
when the number of particles in the system tends to infinity). This phenomenon is called ensemble
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equivalence (EE) and is a basic concept in statistical mechanics as already established by Gibbs [2]. The
property of EE justifies the replacement of the (typically unfeasible) asymptotic calculations in the
microcanonical ensemble with the corresponding (much easier) calculations in the canonical ensemble, i.e.
to choose the ensemble based on mathematical convenience.

However, over the past decades, the breakdown of EE has been observed in various physical systems,
including models of gravitation, fluid turbulence, quantum phase separation, and networks [3–5]. When
the system is under ensemble nonequivalence (EN), the microcanonical description can no longer be
replaced by the canonical description in the thermodynamic limit. In this situation, many assumptions and
calculations that are based on EE in statistical mechanics do not hold anymore. Thus checking for the
breaking of EE is important for both practical applications and theoretical research. Quantitatively, EN can
be defined as a nonvanishing relative entropy density between the microcanonical and canonical probability
distributions of microscopic configurations [5, 6]. This is equivalent to a nonvanishing difference between
the canonical and microcanonical entropy densities [7]. Technically, this is the so-called measure-level EN,
which (under mild assumptions) has been shown to coincide with other (macrostate-level and
thermodynamic-level) definitions as well [6]. Importantly, the traditional criterion for EE based on the
vanishing of the relative canonical fluctuations of the constraints has been recently found to break down
when the latter are local in nature and extensive in number [8].

Indeed, for the most studied systems in statistical physics, the number of constraints defining the
ensembles of interest is finite. Traditional physical examples are global constraints such as the total energy
and the total number of particles. Non-physical examples of systems under global constraints have also been
considered, e.g. networks with given total numbers of edges and triangles and/or wedges [9]. In order to
observe the breakdown of EE in these systems, one typically needs to introduce long-range interactions
implying the non-additivity of the energy and possibly associated with the onset of phase transitions [10]
(in the example of networks, the underlying mechanism is a sort of ‘frustration’ in the simultaneous
realizability of the desired numbers of edges and triangles [9]). In this form of EN, the relative entropy
between canonical and microcanonical ensembles is of the same order as the canonical entropy itself [6, 9].
This is what we will refer to as a ‘strong’ form of EN. At the same time, this form of EN is also ‘restricted’,
because it is confined to a selected (e.g. critical) region of the space of parameters. Outside this region, EE is
restored.

Recently, a new manifestation of EN has been observed in a different class of network ensembles, where
a constraint is enforced on the degree (number of links) and/or the strength (total weight of all incident
links) of each node [5, 8, 11, 12]: unlike systems with global constraints, in these models the number of
constraints grows linearly in the number of nodes. This crucial difference implies that, at variance with the
more ‘traditional’ situation described above, the onset of EN in this class of models is completely unrelated
to phase transitions and is instead the result of the presence of an extensive number of local constraints
[7, 13, 14]. This situation is by far less studied, because systems with local constraints are not the traditional
focus of statistical physics and have attracted attention only recently as models of complex systems with
built-in spatial heterogeneity [15] and/or temporal non-stationarity [16]. In this different form of EN, the
relative entropy between microcanonical and canonical ensembles is, at least for the cases studied so far, of
lower order (i.e. subleading) with respect to the canonical entropy. For this reason, we may refer to this
situation as a ‘weak’ (i.e. weaker than the one found in the presence of phase transitions) form of EN.
However, this form of EN is ‘unrestricted’, precisely because it is not confined to specific values of the
control parameters and holds in the entire parameter space. Rather than a property of a phase (or a phase
boundary), in this case EN appears to be an intrinsic property of the system itself. In these models, no
parameter value can restore EE.

The above results indicate that, so far, EN has manifested itself either in a ‘strong but restricted’ form
(under a finite number of global constraints, but in presence of phase transitions), or in a ‘unrestricted but
weak’ form (under an extensive number of local constraints, but without phase transitions). Clearly, a
number of questions remain open. How general is the manifestation of EN under local constraints, both in
terms of the underlying mechanism and in terms of the strength of the resulting effect? Besides networks,
can the breaking of EE be observed in additional systems characterized by local constraints? If so, do these
systems necessarily exhibit only the weak form of EN, or can the strong form appear as well? Finally, is there
a (possibly modified) way to exploit the canonical ensemble in order to bypass the challenge of unfeasible
microcanonical calculations even when EE breaks down, i.e. even when the two ensembles can no longer be
treated interchangeably according to mathematical convenience?

In this paper, we will address these problems by exploring the effects of the presence of an extensive
number of local constraints on more general ensembles than the ones that have been considered so far to
model random networks with given node degrees [5, 11, 13, 14]. In particular, we consider the general
setting where each of the n units of the system has a number m of ‘state variables’ (or ‘degrees of freedom’),
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and where constraints are defined as sums over these state variables. Surprisingly, besides confirming the
onset of an unrestricted form of EN in the thermodynamic limit where n diverges, we also find its
simultaneous manifestation in strong form. This happens when each element of the system retains only a
finite number m of degrees of freedom in the thermodynamic limit. For brevity, we will denote this
situation as the ‘strong and unrestricted’ form of EN. To the best of our knowledge, this finding provides
the first evidence that EN, even in its strong form, does not need phase transitions and can appear in the
entire parameter space as an intrinsic property of the system, if the latter is subject to an extensive number
of local constraints. This simultaneously ‘strong and unrestricted’ form of EN is the most robust among the
ones studied so far. Spatial heterogeneity and temporal non-stationarity are simple candidate mechanisms
that can lead to this phenomenon.

To emphasize the general and important consequences of this form of EN for a diverse range of practical
applications, we consider generic ensembles of random matrices with fixed margins. These ensembles,
which include matrices with 0/1 (or equivalently ±1) and non-negative integer entries subject to global or
local constraints, arise for instance in studies of multi-cell gene expression profiles [17], multiplex (online)
social activity [18], multi-channel communication systems [19], complex networks [20], and multivariate
time series in finance [16], neuroscience [21] or other disciplines. Our results imply that, in many practical
situations, the assumption of EE is incorrect and leads to mathematically wrong conclusions. For the benefit
of the aforementioned applications, we compensate for the ‘disconnection’ between the two ensembles by
calculating explicitly the correct canonical and microcanonical quantities of interest via a generalized
relationship that is either analytically computable or asymptotically determined by the covariance matrix of
the constraints in the canonical ensemble. These calculations represent a practical tool for properly dealing
with the consequences of EN in all real-world situations.

2. General formalism

2.1. Matrix ensembles
A discrete n × m matrix ensemble is a set G of available configurations for an n × m integer-valued matrix
G, endowed with a suitably chosen probability distribution P(G) over such configurations, such that∑

G∈G P(G) = 1. An entry of the matrix is denoted by gij (with 1 � i � n, 1 � j � m). We distinguish two
main cases, the binary case where gij takes one of the two values {0, 1} and the weighted case where gij takes
a value in the set {0, 1, 2, . . .} of non-negative integer values. The number n of rows in each matrix
represents the number of elements (i.e. the size) of the system being modelled. The number m of columns
represents instead the number of state variables, or degrees of freedom, for each element.

In general, each matrix G can represent one of the possible states of a (large) real-world system. For
instance, G may represent the realization of a multivariate time series, where m is the number of time series
(e.g. brain regions, financial stocks, etc) and n is the number of time steps during which the signals are
recorded. G may also represent a multi-cell array of gene expression profiles, where m is the number of cells
and n the number of genes for which expression levels are being measured. Similarly, G may represent the
state of a multi-channel communication systems, where n is the length of the sequences being transmitted
from sender to receiver (in information theory, such length defines the ‘size’ of the communication process)
and m is the number of channels. Finally, G may represent the adjacency matrix of a bipartite graph, where
n is the number of nodes in the layer of interest (e.g. people in a co-affiliation network), while m is the
number of possible dimensions where nodes can co-occur (e.g. work, family, sport, friendship, etc). In the
special case m = n, the network can also be interpreted as a (binary or weighted) directed unipartite graph,
i.e. one where there is a single set of n nodes that can be linked to each other via directed edges (note that,
by contrast, undirected unipartite graphs are associated with a symmetric adjacency matrix, a property that
we do not enforce in this paper; the nonequivalence of ensembles of binary or weighted undirected graphs
with given constraints has been studied previously in [5, 8, 13, 14]).

2.2. Global and local constraints
In each of the examples mentioned above, the ‘true’ microscopic configuration (or microstate) of the system
can be uniquely represented by a specific ‘empirical’ matrix G∗ in the set G of all possible states. A
schematic illustration is shown in figure 1. As ordinary in statistical mechanics, when the size of the system
is large one no longer focuses on the specific microstate G∗ (which becomes not empirically accessible), but
rather on the macrostate defined by a collection of microscopic configurations compatible with the
empirical value �C∗ ≡ �C(G∗) of a certain observable quantify �C(G) playing the role of a constraint. The
choice of �C(G) determines the probability distribution P(G) over G conditional on our knowledge of �C∗. In
other words, it determines how our estimate of the microstate of the system concentrates around the
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Figure 1. Schematic illustration of how the state of different real-world systems with n elements and m degrees of freedom can
be represented in an n × m matrix G. The collection of all possible states of the system is the set of all such matrices. Typically,
real-world systems have a strong heterogeneity or nonstationarity. This empirical fact implies that their possible states are not
sufficiently characterized by the knowledge of a single global constraint (t: solid orange box). More informative ensembles can be
constructed by specifying one- (�r: solid blue boxes) or two-sided (�r,�c: solid blue and dashed red boxes) local constraints.

compatible configurations once we observe �C∗. Intuitively, before anything is observed, P(G) is uniform
on G.

In ordinary statistical physics, the quantity �C(G) is typically scalar (e.g. the total energy) or at most
low-dimensional (e.g. a vector containing the total energy and the total number of particles), reflecting a
few global conservation laws applying to a large homogeneous system at thermodynamic equilibrium.
However, in models of complex systems �C(G) can be high-dimensional, as it may encode a large number of
local constraints reflecting separate conservation laws imposed by spatial heterogeneity and/or temporal
non-stationarity. For instance, if G∗ is the observed configuration of a complex network with n nodes (i.e.
the empirical n × n adjacency matrix), it is well known that the knowledge of purely global properties such
as the overall number of links is insufficient in order to produce a statistical ensemble of networks with
properties similar to those found in G∗. Indeed, enforcing only the total number of links produces the
popular Erdős–Rényi random graph model, whose topological properties are way too homogenous as
compared with those of real-world networks. By contrast, if the number of links of each node is enforced
separately (as in the so-called configuration model), the resulting ensemble of graphs is found to successfully
replicate many higher-order empirical topological properties [20]. As another example, if G∗ represents a
set of synchronous time series or sequences produced by m sources of a non-stationary system observed
over n time steps, then the statistical properties of these time series will change over time. As a result, overall
time-independent constraints will not be enough in order to produce ensembles of multivariate time series
with properties close to those of G∗, and time-dependent (i.e. local in time) constraints will in general be
needed [16]. In this case, n is the number of local (in time) constraints to consider.

In our setting, we consider the general case where the distribution P(G) defining the (binary or
weighted) matrix ensemble is induced by a K-dimensional vector �C(G) of constraints imposed on the
matrices. We will assume that the K constraints are all non-redundant, e.g. they are not trivial copies or
linear combinations of each other [7]. We will consider both global and local constraints. As global
constraint we will consider the scalar quantity t(G) defined as the total sum of all the entries of the matrix
G, i.e. t(G) =

∑n
i=1

∑m
j=1 gij. The number of constraints in this case is K = 1 and the ‘empirical’ value of t

will be denoted as t∗ ≡ t(G∗). As local constraints, we will consider two possibilities: one-sided local
constraints and two-sided local constraints. A one-sided local constraint is the n-dimensional vector�r(G)
where the entry ri(G) =

∑m
j=1 gij (i = 1, n) represents the sum of the entries of the matrix G along its ith

row. The number of constraints is in this case K = n and the empirical value of�r will be denoted as
�r∗ ≡ �r(G∗). A two-sided local constraint is a pair of vectors (�r(G),�c(G)), where�r(G) is still the
n-dimensional vector representing the n row sums of G, while�c(G) is the m-dimensional vector
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representing the m column sums of G, i.e. where each entry cj(G) =
∑n

i=1 gij (j = 1, m) is the sum of the
entries of G along its jth column. The number of constraints is therefore K = n + m and the empirical value
of the pair (�r,�c) will be denoted as (�r∗,�c∗) ≡ (�r(G∗),�c(G∗)). A visual illustration of these constraints for
possible data structures of practical interest is shown in figure 1.

Purely global constraints lead to completely homogeneous expectations for the entries of the matrices in
the ensemble. This result follows intuitively from symmetry arguments, and will be confirmed explicitly in
the specific cases considered later. By contrast, local constraints lead to different expectations for entries in
different rows and/or columns. Since, as we mentioned above, real-world complex systems are generally
very heterogeneous in space and/or time, the only models that can capture the main features of such
systems are those constructed from (one- or two-sided) local constraints. This is very important because, as
we will show, it is precisely in presence of local constraints (of either type) that the property of EE breaks
down. This result implies that spatial heterogeneity and/or temporal non-stationarity might be natural
origins for the breaking of EE.

2.3. Soft constraints: canonical ensemble
Any constraint, whether global or local, can be enforced either as a soft constraint (canonical ensemble) or
as a hard constraint (microcanonical ensemble). We start with the case of soft constraints, i.e. when one
imposes that the ensemble average

〈�C〉 ≡
∑
G∈G

P(G)�C(G), (1)

is fixed to a specific value �C∗.
The functional form of the resulting canonical probability Pcan over G is found by maximizing Shannon’s

entropy functional

Sn[P] ≡ −
∑
G∈G

P(G) ln P(G), (2)

(where the subscript n indicates that the entropy is calculated for given n), subject to the condition
〈�C〉 = �C∗. The result [22] of this constrained maximization problem is the parametric solution

Pcan(G|�θ) =
e−H(G,�θ)

Z(�θ)
, (3)

where �θ is a vector of Lagrange multipliers coupled to the constraint �C, the Hamiltonian H(G, �θ) = �θ · �C(G)

is a linear combination of the constraints, and the partition function Z(�θ) =
∑

G∈Ge−H(G,�θ) is the
normalization constant.

The numerical values of the canonical probability are found by setting

P∗
can(G) ≡ Pcan(G|�θ∗), (4)

where �θ∗ is the unique parameter value that realizes the ‘soft’ constraint

〈�C〉�θ∗ = �C∗, (5)

where the symbol 〈·〉�θ denotes an ensemble average with respect to Pcan(G|�θ), i.e.

〈�C〉�θ =
∑
G∈G

Pcan(G|�θ) �C(G). (6)

Equivalently, the unique value �θ∗ is the one that maximizes the log-likelihood function

L∗(�θ) ≡ ln Pcan(G∗|�θ), (7)

where G∗ is the empirical configuration, or equivalently any configuration that realizes the empirical
constraint exactly, i.e. such that �C(G∗) = �C∗ [22]. The uniqueness of �θ∗ follows whenever L∗(�θ) can be
differentiated at least twice [7], as we confirm below for all the models considered in this paper.

Inserting equation (4) into equation (2), we obtain the value of the canonical entropy

S∗can ≡ Sn[P∗
can] = −L∗(�θ∗) = − ln P∗

can(G∗), (8)

where we have omitted the dependence on n to simplify the notation. The last equality is very useful, as it
show that S∗can can be calculated by simply evaluating P∗

can(G) on the single configuration G∗ [7].
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2.4. Hard constraints: microcanonical ensemble
In the case of hard constraints, one requires that each individual configuration realizes the value �C∗. This
means that the ‘soft’ constraint in equation (5) is replaced by the much stricter constraint

�C(G) = �C∗, (9)

for each allowed configuration G. The microcanonical probability Pmic is found by enforcing this stronger
requirement, while still maximizing the entropy Sn[P] defined in equation (2). The result is the uniform
distribution

P∗
mic(G) =

⎧⎨
⎩
Ω−1

�C∗
�C(G) = �C∗

0 �C(G) �= �C∗,
(10)

where Ω�C∗ is the number of configurations in G realizing the ‘hard’ constraint in equation (9). The
corresponding microcanonical entropy is obtained by inserting equation (10) into equation (2):

S∗mic ≡ Sn[P∗
mic] = ln Ω�C∗ , (11)

which is also known as Boltzmann entropy.
Crucially, in order to define the microcanonical ensemble it is necessary that Ω�C∗ > 0, i.e. that there is at

least one configuration realizing the constraint. In other words, the value of �C∗ should be realizable in (at
least) one single configuration, and not only as an ensemble value. This requirement is not strictly necessary
for the canonical ensemble (even though our interpretation of �C∗ as the ‘empirical’ value makes the
requirement always natural). In any case, since in this paper we are going to study the (non)equivalence
between the two ensembles, we need both of them to be well defined in order to be compared, for a given
value of �C∗. Therefore we are going to assume that the value of �C∗, irrespective of the ensemble considered, is
always realizable by at least one configuration, i.e. such that Ω�C∗ > 0.

Notably, calculating Ω�C∗ (especially in presence of many constraints and because of the discrete nature
of the problem of interest for us) can be a complicated enumeration problem. Therefore the microcanonical
ensemble is typically much more difficult to deal with mathematically than the canonical ensemble. For this
reason, if the property of EE holds, one prefers to operate in the canonical ensemble and work out its
asymptotics in the limit of large system size, trusting that the result would return the correct asymptotics
for the microcanonical ensemble as well. The above approach is at the core of many standard calculations in
statistical mechanics textbooks, where the property of EE is typically assumed to hold in general (at least in
absence of phase transitions and long-range interactions). However, when EE breaks down, this approach
will lead to mathematically incorrect results. We will study this problem in detail, for the ensembles
considered, in the rest of the paper. To do so, we first need to define what we mean by thermodynamic limit.

2.5. The thermodynamic limit
We will consider the thermodynamic limit defined as n →+∞, i.e. when the size of the system diverges.
However, the limit is not completely defined until we also specify how both m and �C∗ behave as n grows.

First of all, we consider two possibilities for the behaviour of m as n diverges:

• m remains finite as n →∞: in this case, we have m = O(1) where O(x) indicates a quantity that has a
finite limit if divided by x as n →+∞, i.e. O(x) is asymptotically of the same leading order4 as x;

• m diverges as n →∞: in this case, for simplicity and realism we assume that m can diverge at most as
fast as n, i.e. m is at most O(n); it is indeed difficult to imagine a physical situation where the number
m of state variables characterizing each of the n units grows faster than the number n of units
themselves.

In simple words, the above assumptions mean that the number of state variables should be either
(asymptotically) independent of the number n of units being added to the system (as in the case of time
series with n time points) or at most proportional to n (as in the case of ‘relational’ observations, e.g. for
networks). We will show that these two situations lead to very different asymptotic results in terms of the
strength of EN. Importantly, the requirement that m grows at most proportionally to n implies that the
number K of both one-sided (K = n) and two-sided (K = n + m) local constraints is always extensive, i.e.
K = O(n) which grows linearly in the size n of the system, irrespective of the behaviour of m.

4 Note that the ‘big-O’ notation we use here is not always used with the same meaning throughout the literature: some authors prefer
the ‘big-Θ’ notation Θ(x) to indicate a quantity that is of the same leading order as the argument x, and the ‘big-O’ notation to indicate
only an upper bound for it.
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A separate, equally important consideration concerns the scaling of the value of the constraint �C∗ in the
thermodynamic limit n →+∞. Also here, we distinguish between two situations that we denote as the
sparse and the dense regimes.

• We define sparse matrices those for which each of the m column sums (irrespective of whether such
sums are chosen as constraints) is finite in the thermodynamic limit, i.e. c∗j = O(1) (j = 1, . . . , m).
This implies that, in the canonical ensemble, the expected value of any entry gij of the matrix G is on
average O(1/n); correspondingly, in the microcanonical ensemble the allowed matrices are dominated
by zeroes (whence the name ‘sparse matrices’). Note that for the row sums one has r∗i = O(m/n) for
all i. If m grew slower than n, these row sums would vanish as n →+∞, which would imply that
asymptotically no microcanonical configuration would realize the local constraints. Since we require
Ω�C∗ > 0 (see above), this means that in the sparse case we necessarily need m = O(n). Consequently,
r∗i = O(1), r∗i /m = O(1/n) (i = 1, . . . , n), t∗ = O(n), and t∗/mn = O(1/n).

• By contrast, we define dense matrices those for which each of the m column sums (again, irrespective
of whether they are chosen as constraints) diverges proportionally to n in the thermodynamic limit,
i.e. c∗j = O(n) (j = 1, . . . , m). In the canonical ensemble, the expected value of gij is therefore O(1),
which makes the allowed matrices in the corresponding microcanonical ensemble ‘dense’. The row
sums are now r∗i = O(m) and we have r∗i /m = O(1) (for all i) and t∗/mn = O(1). In this case, we
consider m as either remaining finite, in which case we have m = O(1), r∗i = O(1) (i = 1, . . . , n) and
t∗ = O(n), or diverging proportionally to n (see above), in which case we have m = O(n), r∗i = O(n)
(i = 1, . . . , n), and t∗ = O(n2).

• Note that, in principle, in the weighted case we may even consider a sort of superdense regime where
some of the individual entries of the matrix diverge in the thermodynamic limit. This possibility is
related to a Bose–Einstein condensation concentrating a finite fraction of the total weight t∗ of the
matrix in a finite number of entries [8]. However, we will not consider this extreme case here for
simplicity, as it would not arise in most real-world applications.

Combined with the scaling of �C∗, the behaviour of m as a function of n in the thermodynamic limit can
determine different asymptotic regimes, and in particular lead to the weak or strong form of EN. The strong
form, for the cases considered below, turns out to be possible in the regime where the matrices are dense
and m is finite as n →+∞.

2.6. Ensemble (non)equivalence
There are various ways to mathematically define the property of ensemble (non)equivalence. These include
the notions of EE in the thermodynamic, macrostate and measure sense which, under mild assumptions, can
be proven to be equivalent [6]. We will adopt the definition in the measure sense, which states that the
ensembles are equivalent if the relative entropy

Sn[P∗
mic‖P∗

can] ≡
∑
G∈G

P∗
mic(G) ln

P∗
mic(G)

P∗
can(G)

, (12)

(which is the Kullback–Leibler divergence for given n between the microcanonical and canonical entropies
and is guaranteed to be non-negative [23]), when rescaled by n, vanishes in the thermodynamic limit [6],
i.e. if the specific relative entropy vanishes:

s[P∗
mic‖P∗

can] ≡ lim
n→+∞

Sn[P∗
mic‖P∗

can]

n
= 0, (13)

or equivalently
Sn[P∗

mic‖P∗
can] = o(n), (14)

where o(x) indicates a quantity that goes to zero when divided by x as n →+∞.
Importantly, it can be shown [5, 7] that

Sn[P∗
mic‖P∗

can] = ln
P∗

mic(G∗)

P∗
can(G∗)

= S∗can − S∗mic. (15)

The inequality Sn[P∗
mic‖P∗

can] � 0, which is a general property of the relative entropy, implies therefore
S∗can � S∗mic and indicates the presence of an ‘extra entropy’ in the canonical ensemble. This extra entropy is
due to the fact that, while in the microcanonical ensemble the constraint �C is a deterministic quantity fixed
to the value �C∗ through the hard constraint introduced in equation (9), in the canonical ensemble it is a
random variable fluctuating around the expected value �C∗ as dictated by the soft constraint defined in

7
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equation (5). With respect to the canonical ensemble, the hardness of the constraint in the microcanonical
ensemble implies additional dependencies (i.e. smaller entropy) among the entries of G.

The definition of EE in equation (13) states that, if the extra entropy Sn[P∗
mic‖P∗

can], once divided by n,
vanishes in the thermodynamic limit, then the ensembles are equivalent. We can reformulate this definition
of EE in terms of the large deviations of the canonical ensemble as follows. We may wonder what is the
probability Q∗

can(�C∗) to observe, in the canonical ensemble with soft constraints, the ‘microcanonical
macrostate’ characterized by the hard value �C∗ of the constraint. This macrostate is the set of all
microscopic configurations G with given value �C(G) = �C∗, i.e. all the Ω�C∗ allowed microstates in the
microcanonical ensemble. Since each such microstate occurs with the same probability P∗

can(G∗) in the
canonical ensemble, the canonical probability of the microcanonical macrostate is

Q∗
can(�C∗) = Ω�C∗P∗

can(G∗) =
P∗

can(G∗)

P∗
mic(G∗)

, (16)

where we have used P∗
mic(G∗) = Ω−1

�C∗ from equation (10). Taking logarithms and using equation (15), we
obtain

ln Q∗
can(�C∗) = − ln

P∗
mic(G∗)

P∗
can(G∗)

= −Sn[P∗
mic‖P∗

can], (17)

which generalizes a similar result for the case of binary graphs with given degree sequence [13]. Dividing
the above expression by n and taking the thermodynamic limit, we get

lim
n→∞

ln Q∗
can(�C∗)

n
= −sn[P∗

mic‖P∗
can]. (18)

In the language of large deviations theory, the above result states that the specific relative entropy
sn[P∗

mic‖P∗
can] between the microcanonical and canonical ensembles coincides with the rate function for the

probability of observing a certain macrostate �C in the canonical ensemble, evaluated at the specific value
�C = �C∗ corresponding to the microcanonical ensemble. Clearly, the criterion for EE in equation (13) means
that, when EE holds, the rate function vanishes when evaluated at �C∗, i.e. ln Q∗

can(�C∗) = o(n). This means
that the canonical ensemble concentrates on the microcanonically allowed microstates, as the probability of
the microcanonical macrostate approaches one and its logarithm approaches zero. When EE does not hold,
the rate function for the microcanonical macrostate does not vanish and the above concentration of the
canonical probability does not occur, which means that there are necessarily other macrostates over which
the canonical probability concentrates.

From equation (15) it is clear that equation (13) is equivalent to the condition

lim
n→+∞

Sn[P∗
can] − Sn[P∗

mic]

n
= 0 (19)

or in other words to the asymptotic (for n large) relation

S∗mic = S∗can − o(n). (20)

This implies
Ω�C∗ = eS∗can−o(n), (21)

i.e. Ω�C∗ is approximated by eS∗can up to a subexponential (in n) correction factor. The above asymptotics is
used in statistical mechanics textbooks whenever the property of EE is believed to hold, i.e. in absence of
phase transitions or long-range interactions. When EE does not hold, equation (21) breaks down. In this
case, the extra entropy in the canonical ensemble grows at least as fast as n. Recent research has shown that
this breakdown can happen even in complete absence of phase transitions, hence also in situations where
EE was typically believed to hold. Here we are going to show that, additionally, the breakdown can occur
with previously undocumented strength, i.e. the extra entropy can grow as fast as the entropy itself.

Combining equations (11) and (15), one obtains the following exact generalization of equation (21),
valid irrespective of whether EE holds:

Ω�C∗ = eS∗can−Sn[P∗mic‖P∗can]. (22)

Clearly, the above expression reduces to equation (21) in case of EE, i.e. when equation (14) holds.
Although exact, equation (22) is not very useful unless one can calculate Sn[P∗

mic‖P∗
can] explicitly. An

8
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equivalent exact expression, which only requires the knowledge of P∗
can and is again valid even when EE does

not hold, has been derived [7]:

Ω�C∗ =
∑
G∈G

∫ �π

−�π

d�ψ

(2π)K
ei�ψ[�C∗−�C(G)]

=

∫ +�π

−�π

d�ψ

(2π)K
P−1

can(G∗|�θ∗ + i�ψ), (23)

(where
∫ +�π

−�π d�ψ ≡
∏K

k=1

∫ +π

−π dψk). We will confirm that the above expression provides the exact result in
cases where the complex integral can be calculated explicitly and Ω�C∗ can be evaluated independently via
combinatorial enumeration. Indeed, equation (23) highlights a beautiful connection between canonical and
microcanonical probabilities through an extension to complex numbers.

When the integral in equation (23) cannot be calculated directly, it is still possible to use a saddle-point
technique leading to [7]

Ω�C∗ =
eS∗can

√
det(2πΣ∗)

K∏
k=1

[1 + O(1/λ∗
k)]

= eS∗can

K∏
k=1

1 + O(1/λ∗
k)√

2πλ∗
k

, (24)

where Σ∗ is the covariance matrix of the K constraints in the canonical ensemble, whose entries are
defined as

Σ∗
ij = Σij

∣∣
�θ=�θ∗ , (25)

with

Σij ≡ −∂2L∗(�θ)

∂θi∂θj

=
∂2 ln Z(�θ)

∂θi∂θj

= 〈CiCj〉�θ − 〈Ci〉�θ〈Cj〉�θ
= Cov�θ[Ci, Cj], (26)

and {λ∗
k}K

k=1 are the eigenvalues of Σ∗. We recall that covariance matrices are positive-semidefinite, so all
their eigenvalues are non-negative. If λ∗

k is finite, then the quantity O(1/λ∗
k) in equation (24) cannot in

general be calculated explicitly, although it generates a correction that does not change the leading order of
Ω�C∗ and S∗mic. If λ∗

k is infinite (i.e., if it diverges in the thermodynamic limit), then O(1/λ∗
k) will vanish

asymptotically and we have 1 + O(1/λ∗
k) = 1 + o(1). This implies that, if all the eigenvalues of Σ∗ diverge,

then equation (24), when inserted into certain expressions, can lead to an exact result. This includes the
case of local constraints, for which K diverges in the thermodynamic limit. We will therefore discuss the
asymptotic behaviour of the eigenvalues of Σ∗ in each of the examples considered later.

Equation (24) generalizes equation (21) to the case where EE does not necessarily hold. Note that our
initial assumption that the K constraints are non-redundant implies that λ∗

k > 0 for all k, i.e. Σ∗ is
positive-definite [7]. Keeping this assumption also in the thermodynamic limit (as ensured by our choice of
both global and local constraints defined above), we note two consequences. First, since equation (26)
shows that Σ∗ is the Hessian matrix of second derivatives of −L∗(�θ), the fact that Σ∗ is positive-definite
implies that �θ∗ is a unique global maximum for L∗(�θ) [7], confirming what we had anticipated previously.
Second, the product in equation (24) is at most of the same order as the denominator. Therefore, in full
generality, we can exploit equation (24) to rewrite equation (22) as

Ω�C∗ = eS∗can−O(αn), (27)

where we have defined [7]

αn ≡ ln
√

det(2πΣ∗) =
1

2

K∑
k=1

ln(2πλ∗
k). (28)

We can now make three important considerations. First, equation (27) means that

Sn[P∗
mic‖P∗

can] = O(αn), (29)

9



New J. Phys. 24 (2022) 043011 Q Zhang and D Garlaschelli

showing that the speed of growth of Sn[P∗
mic‖P∗

can] with n can be calculated explicitly through equation (28)
using the knowledge of Σ∗, which requires only the canonical ensemble. This is useful when microcanonical
calculations are unfeasible. Second, if K is finite, or if K diverges but all (except possibly a finite number of)
the eigenvalues of Σ∗ diverge, then the product inside equation (24) gives a subleading contribution to
Sn[P∗

mic‖P∗
can], which therefore has the same asymptotic behaviour as αn:

Sn[P∗
mic‖P∗

can] = αn[1 + o(1)]. (30)

This result, which is stronger than equation (29), means that in such a case one can obtain exact estimates
of quantities that depend on Sn[P∗

mic‖P∗
can], using only the knowledge of αn. Third, equation (29) shows that

the definition of EE given by equation (14) coincides with

αn = o(n), (31)

which, again, can be ascertained by evaluating only Σ∗ and avoiding any microcanonical calculation.
Indeed, equation (31) can be formulated as an equivalent definition of EE in the measure sense [7]. If αn

grows faster than o(n), then the system is under EN.

3. Weak and strong EN

In this section we illustrate the main results, i.e. we identify systems for which the breaking of EE occurs in a
form that is at the same time ‘strong’ and ‘unrestricted’ and we calculate the relative entropy in various such
systems. To this end, we first make some general considerations leading to a rigorous definition of ‘strong’
EN and subsequently study specific examples within our matrix ensembles.

3.1. Relative entropy ratio
Equation (24) reveals that the asymptotic behaviour of Ω�C∗ depends on that of K and of the eigenvalues of
the covariance matrix Σ∗. We can indeed convince ourselves of this fact by looking at results of previous
studies from a novel perspective.

Specifically, if K = o(n) and if we exclude phase transitions, then equation (24) leads to equation (21),
i.e. the ensembles are equivalent. This includes the traditional situation where one has a finite number of
constraints, as well as more complicated cases where the number of constraints is subextensive (e.g. random
graphs with constraints on a subextensive subset of node degrees [14]). In order to break EE in this case,
one needs phase transitions corresponding to singularities of the partition function [6]. For instance, in the
case of graphs with fixed numbers of edges and triangles (or wedges) [9], there is a region in parameter
space where one gets Sn[P∗

mic‖P∗
can] = O(n2) and therefore Ω�C∗ = eS∗can−O(n2). Since also S∗can and S∗mic are

O(n2) in this case, it follows that
Sn[P∗

mic‖P∗
can] = O(S∗can), (32)

(note that in general S∗can � S∗mic due to the non-negativity of the Kullback–Leibler divergence and to
equation (15), therefore O(S∗can) is necessarily the leading order). This is what we have previously referred to
as a form of EN that is ‘restricted’ (i.e. valid only in a certain region in parameter space arising from a phase
transition and outside which EE is restored) but ‘strong’ (i.e. where the relative entropy is of the same order
as the entropy itself).

If K = O(n), then equation (21) is in general no longer valid. For instance, in the case of sparse graphs
with fixed degrees (K = n), all the eigenvalues of Σ∗ are finite in the thermodynamic limit [5, 13]; one
indeed obtains Sn[P∗

mic‖P∗
can] = O(n) [5] and hence Ω�C∗ = eS∗can−O(n). Note that in this case the product in

equation (24) (which in general cannot be calculated exactly) is of the same order as the denominator and
should be taken into account. In the case of dense graphs with fixed degrees (again K = n), all the
eigenvalues of Σ∗ are instead O(n) [13]; one indeed obtains Sn[P∗

mic‖P∗
can] = O(n ln n) [13] and hence

Ω�C∗ = eS∗can−O(n ln n). The product in equation (24) is in this case negligible with respect to the denominator,
which can be calculated exactly. In any case, since S∗can and S∗mic are still O(n2) for both sparse and dense
networks with fixed degrees, these situations correspond to

Sn[P∗
mic‖P∗

can] = o(S∗can), (33)

i.e. to what we have defined ‘weak’ EN. On the other hand, this type of EN is not associated with phase
transitions (which are indeed absent in the mentioned examples of graphs with fixed degrees) and is
therefore ‘unrestricted’, i.e. valid in the entire parameter space.

10
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The above considerations suggest that, in order to rigorously define the strength of EN, we may define
the ratio

Rn ≡ Sn[P∗
mic‖P∗

can]

Sn[P∗
can]

= 1 − Sn[P∗
mic]

Sn[P∗
can]

, (34)

between the relative entropy and the canonical entropy, calculated for fixed n, and consider its limit as
n →+∞, i.e.

R∞ ≡ lim
n→∞

Rn

= lim
n→∞

Sn[P∗
mic‖P∗

can]

Sn[P∗
can]

= 1 − lim
n→∞

Sn[P∗
mic]

Sn[P∗
can]

. (35)

For brevity, we will call Rn the relative entropy ratio and R∞ the limiting relative entropy ratio. Note that the
inequality S∗can � S∗mic � 0 implies 0 � Rn � 1 for all n > 0. The condition characterizing our notion of
strong EN in equation (32) coincides with R∞ being strictly positive. The value of R∞ in that case quantifies
exactly the asymptotic proportionality between Sn[P∗

mic‖P∗
can] and Sn[P∗

can], which is otherwise left
unquantified by equation (32) alone. We will therefore adopt the strict inequality

R∞ > 0, (36)

(which in turns implies the breakdown of equation (31), the converse being in general not true) as our
definition of strong EN. By contrast, the condition characterizing our notion of weak EN in equation (33)
can be rephrased as the equality R∞ = 0. Note that one may have R∞ = 0 also in cases where the ensembles
are equivalent. We will therefore adopt the condition R∞ = 0, in conjunction with the violation of
equation (31), as our definition of weak EN. Note that our discussion following equation (24) implies that,
if all but at most a finite number of the eigenvalues of Σ∗ diverge, then the exact value of R∞ can be
retrieved by replacing Sn[P∗

mic‖P∗
can] with αn given by equation (28), i.e. using only the canonical

covariances between the constraints, without microcanonical calculations.
Note that equation (22) implies

Ω�C∗ = eS∗can(1−Rn) = O

((
eS∗can

)1−R∞
)
. (37)

So, in presence of strong nonequivalence (R∞ > 0), Ω�C∗ is of strictly smaller order compared with the
ordinary estimate in equation (21). This is actually due to the canonical ensemble having much bigger
entropy than the microcanonical one: indeed, equation (15) implies

S∗mic = S∗can(1 − Rn), (38)

and, inverting,

S∗can =
1

1 − Rn
S∗mic. (39)

Note that the factor 1/(1 − Rn) can be arbitrarily large since Rn can be arbitrarily close to 1.
Given the above definitions of ‘weak’ and ‘strong’ EN in terms of the limiting relative entropy ratio, in

what follows we will consider the specific ensembles of matrices introduced in the previous section, under
both global and local constraints, and calculate the value of αn and R∞ in each case.

3.2. Global constraints
As already discussed, ensembles of (binary or weighted) n × m matrices with a global constraint are defined
by requiring that the single quantity t(G) =

∑n
i=1

∑m
j=1gij takes, either ‘hardly’ or ‘softly’, a specific value

t∗ ≡ t(G∗). For this simple choice of the constraint, both S∗can and S∗mic can be calculated exactly. This allows
us to check that the complex integral in equation (23) indeed provides the exact value of Ωt∗ . Moreover, we
can confirm the correctness of the asymptotic formula in equation (24). All these approaches show that for
both binary and weighted matrices with a global constraint the canonical and microcanonical ensembles are
equivalent.

3.2.1. Binary matrices under a global constraint
Let us start with the case when the global constraint t∗ is imposed on binary matrix ensembles characterized
by gij ∈ {0, 1}. The calculation of the canonical entropy S∗can is straightforward (see appendix) by first
calculating the likelihood

11
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Pcan(G∗|θ) =
e−θ t∗

(1 + e−θ)mn
, (40)

and then looking for the value θ∗ that maximizes Pcan(G∗|θ) or, equivalently, realizes the soft constraint
〈t〉θ∗ = t∗. The result is

θ∗ = ln
mn − t∗

t∗
. (41)

Using equation (8), we can then easily evaluate S∗can from equations (40) and (41) as

S∗can = − ln Pcan(G∗|θ∗) = ln
(mn)mn

(t∗)t∗(mn − t∗)mn−t∗ . (42)

The calculation of the microcanonical entropy S∗mic is in this case even simpler than that of the canonical
one, since the number Ωt∗ of configurations realizing the hard constraint t(G) = t∗ is simply the number of
ways in which t∗ ‘ones’ can be placed in mn available positions, i.e. the binomial coefficient Ωt∗ =

(mn
t∗
)
.

This implies

S∗mic = ln Ωt∗ = ln
(mn

t∗

)
. (43)

Importantly, it is possible to confirm that, upon extending the argument of the likelihood to the complex
domain and calculating Pcan(G∗|θ∗ + iψ), the integral formula in equation (23) returns a value of Ωt∗ that
produces the exact value of the microcanonical entropy S∗mic given in equation (43):

S∗mic = ln

∫ +π

−π

dψ

2π
P−1

can(G∗|θ∗ + iψ)

= ln

∫ +π

−π

dψ

2π

(1 + e−θ∗−iψ)mn

e−(θ∗+iψ) t∗

= ln
(mn

t∗

)
, (44)

where the (instructive) calculation justifying the last equality is reported in the appendix.
Combining the expressions for S∗mic and S∗can into equation (15), we obtain the relative entropy between

the two ensembles:

Sn[P∗
mic‖P∗

can] = ln
(mn)mn(

mn
t∗
)

(t∗)t∗(mn − t∗)mn−t∗ . (45)

In this simple example, the inequality Sn[P∗
mic‖P∗

can] > 0 clearly arises from the presence of dependencies
among the entries of G in the microcanonical ensemble and the absence of such dependencies in the
canonical one. Indeed, while in the microcanonical ensemble the hard constraint t(G) = t∗ makes all the
entries of G mutually dependent, in the canonical ensemble the soft constraint 〈t〉θ∗ = t∗ leaves each entry
gij independent and identically (Bernoulli-)distributed with probability

p(gij|θ∗) =
e−θ∗gij

1 + e−θ∗ , gij ∈ {0, 1}, (46)

(see appendix). Consequently, while in the microcanonical ensemble the constraint t(G) is a deterministic
quantity fixed to the value t∗, in the canonical ensemble t(G) is a random variable with expected value t∗

and variance

Σ∗ = Varθ∗[t] = nm
e−θ∗

(1 + e−θ∗)2
= t∗

(
1 − t∗

mn

)
, (47)

(see appendix), where Σ∗ is the only (recall that here K = 1) of the covariance matrix Σ∗ introduced in
equation (26).

As discussed in subsection 2.6, Sn[P∗
mic‖P∗

can] and Σ∗ are asymptotically related through equation (29),
and the (non)equivalence of canonical and microcanonical ensembles is decided by the asymptotic
behaviour of these two quantities. We will confirm both results in the particular case under consideration
here. However, for compactness, we do this in conjunction with the weighted case, after introducing the
latter below.

3.2.2. Weighted matrices under a global constraint
We now consider the case when the global constraint t∗ is enforced on weighted matrices where gij is a
non-negative integer. As we show in the appendix, in the canonical ensemble the likelihood can be
calculated as

Pcan(G∗|θ) = e−θ t∗(1 − e−θ)mn, (48)

12
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and is maximised by the parameter value

θ∗ = ln
mn + t∗

t∗
, (49)

(note the change of sign with respect to the binary case) realizing the soft constraint 〈t〉θ∗ = t∗. The
canonical entropy is therefore

S∗can = − ln Pcan(G∗|θ∗) = ln
(mn + t∗)mn+t∗

(t∗)t∗(mn)mn
. (50)

In the microcanonical ensemble, the number Ωt∗ of configurations realizing the hard constraint t(G) = t∗

coincides with the number of so-called weak compositions of the positive integer t∗ into exactly mn parts, i.e.
the number of ways of writing the positive integer t∗ as the sum of an ordered sequence of mn non-negative
integers (note that two sequences that differ in the order of their terms represent different configurations).

This number is given by the negative binomial coefficient Ωt∗ =
(

mn+t∗−1
t∗

)
[24], whence

S∗mic = ln Ωt∗ = ln

(
mn + t∗ − 1

t∗

)
. (51)

In this case as well, one can confirm that the integration of the complex quantity P−1
can(G∗|θ∗ + iψ) as

specified in equation (23) produces precisely the same value of Ωt∗ used in equation (51) (see appendix),
thus retrieving the exact entropy

S∗mic = ln

∫ +π

−π

dψ

2π
P−1

can(G∗|θ∗ + iψ)

= ln

∫ π

−π

dψ

2π

(1 − e−θ∗−iψ)−mn

e−(θ∗+iψ)t∗

= ln

(
mn + t∗ − 1

t∗

)
. (52)

The relative entropy Sn[P∗
mic‖P∗

can], calculated using equation (15), equals

Sn[P∗
mic‖P∗

can] = ln
(mn + t∗)mn+t∗(mn+t∗−1
t∗

)
(t∗)t∗(mn)mn

. (53)

Again, the origin of a non-zero relative entropy lies in the presence of dependencies among all the entries of
G in the microcanonical ensemble, where they are coupled by the hard constraint t(G) = t∗, and in the
absence of such dependencies in the canonical ensemble, where each entry gij is independent and now
geometrically (see appendix) distributed with probability

p(gij|θ∗) = e−θ∗gij (1 − e−θ∗), gij ∈ {0, 1, 2, . . . }. (54)

As a consequence, while in the microcanonical ensemble the constraint t(G) is fixed to the constant value t∗,
in the canonical ensemble it is a random variable with expected value t∗ and variance

Σ∗ = Varθ∗[t] = nm
e−θ∗

(1 − e−θ∗)2
= t∗

(
1 +

t∗

mn

)
, (55)

(see appendix).

3.2.3. EE for matrices under a global constraint
We can now study, in a combined fashion, the (non)equivalence of the canonical and microcanonical
ensembles of both binary and weighted matrices with a global constraint t∗. To this end, we preliminarily

notice that the reason why the quantity
(

k+l−1
l

)
is called negative binomial is the fact that it can be formally

rewritten as the following binomial coefficient with negative signs:(
k + l − 1

l

)
= (−1)l

(
−k

l

)
. (56)

The above relation allows us to conveniently rewrite the relative entropy for the weighted case appearing in
equation (53) as

Sn[P∗
mic‖P∗

can] = ln
(−mn)−mn(−mn

t∗
)

(t∗)t∗(−mn − t∗)−mn−t∗ . (57)
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Upon comparison with the corresponding equation (45) valid in the binary case, we can express the relative
entropy in general as

S±n [P∗
mic‖P∗

can] = ln
(±mn)±mn(±mn

t∗
)

(t∗)t∗(±mn − t∗)±mn−t∗ , (58)

where the superscript ‘+’ applies to binary matrices (note that t∗ � mn in this case) and the superscript ‘−’
applies to weighted matrices. Note that the expression for the weighted case can be formally retrieved by
changing the sign of m in the expression valid for the binary case.

As we discussed in subsection 2.6, checking for (non)equivalence requires studying the asymptotic
behaviour of the relative entropy. In this case, we can calculate the asymptotic behaviour of S±n [P∗

mic‖P∗
can]

explicitly from the exact expression given by equation (58). Note that, in both the sparse and dense case (see
subsection 2.5), t∗ and mn diverge in the thermodynamic limit. We can therefore apply Stirling’s formula

k! =
√

2πk

(
k

e

)k

[1 + o(1)] , (59)

to equation (58), which yields

S±n [P∗
mic‖P∗

can] =
1

2
ln

[
2πt∗

(
1 − t∗

±mn

)]
[1 + o(1)] . (60)

For purely pedagogical reasons, we check that the asymptotic behaviour found above is consistent with the
one we would retrieve by using the expansion in equation (24), which leads to equation (29) and reduces
the problem of the calculation of S±n [P∗

mic‖P∗
can] to that of its leading order αn. To this end, we note that in

this case the matrix Σ∗, being a 1 × 1 matrix, coincides with its only eigenvalue

(λ∗)± = t∗
(

1 − t∗

±mn

)
, (61)

where we have used equation (47) for binary (+) and equation (55) for weighted (−) matrices. Therefore

α±
n = ln

√
2π(λ∗)±

=
1

2
ln

[
2πt∗

(
1 − t∗

±mn

)]
, (62)

which has indeed the same leading order as equation (60), thereby confirming the correctness of the
saddle-point calculation. As an even stronger result, we are under the conditions for which equation (30)
holds, a relationship that can be confirmed by comparing equations (60) and (62). It should also be noted
that, since t∗ diverges in the thermodynamic limit, so does (λ∗)± and equation (24) leads to

Ω±
t∗ =

eS±n [P∗can]√
2πt∗

(
1 − t∗

±mn

) [1 + o(1)], (63)

which is precisely what we get by applying equation (59) to the binomial and negative binomial coefficients
appearing in the exact expression for Ω±

t∗ in the binary and weighted case respectively.
As stated in equation (31), checking whether the ensembles are equivalent boils down to checking

whether αn = o(n). Note that the only effect of the asymptotic scaling of t∗ is that the quantity
1 − t∗/(±mn) in equation (62) converges to 1 in the sparse case t∗/mn = O(1/n) and to a different, but still
finite and positive constant in the dense case t∗/mn = O(1) (see subsection 2.5). Therefore in both cases we
have αn = O(ln t∗) = O(ln mn). This implies αn = o(n) independently of the asymptotic behaviour of m.
This result shows that, in presence of a global constraint, both binary and weighted matrices are under EE,
irrespective of the scaling of t∗ and m. This finding confirms, in a generalized setting, the result obtained for
networks with a given total number of links [5]. Since EE is preserved, we avoid the calculation of the
limiting relative entropy ratio R∞ defined in equation (35) in this case.

3.3. One-sided local constraints
We now consider ensembles of binary and weighted n × m matrices with one-sided local constraints, i.e.
under the requirement that the n-dimensional vector�r(G) with entries ri(G) =

∑m
j=1 gij (i = 1, n) takes a

specific value�r∗ ≡ �r(G∗). Note that, unlike the case of global constraints, here the number of constraints is
extensive. Nonetheless, it turns out that both S∗can and S∗mic can still be calculated exactly. Therefore we can
again confirm the correctness of both the exact integral formula in equation (23) and the asymptotic
expansion in equation (24). Despite these extensions are mathematically straightforward, we find a deep
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physical difference with respect to the case with global constraints: the presence of an extensive number of
local constraints implies the breaking of the equivalence of canonical and microcanonical ensembles for
both binary and weighted matrices. The calculation of the limiting relative entropy ratio R∞ allows us to
quantify the strength of nonequivalence and also to identify the conditions leading to the ‘strong and
unrestricted’ form.

3.3.1. Binary matrices under one-sided local constraints
Let us first examine the case when the one-sided local constraints�r∗ are imposed on ensembles of binary
matrices. As we show in the appendix, in the canonical ensemble the likelihood is

Pcan(G∗|�θ) =
e−

�θ·�r∗∏n
i=1(1 + e−θi )m

, (64)

and reaches its maximum when the parameter �θ takes the value �θ∗ with entries

θ∗i = ln
m − r∗i

r∗i
i = 1, n, (65)

corresponding to the soft constraint 〈�r〉 �θ∗ = �r∗. Substituting equation (65) into equation (64), we obtain the
canonical entropy as

S∗can = − ln Pcan(G∗|�θ∗)

=

n∑
i=1

ln
mm

(r∗i )r∗i (m − r∗i )m−r∗i
. (66)

Let us now turn to the microcanonical ensemble. Since the constraints are only one-sided, it is immediate to
realize that the number Ω�r∗ of configurations realizing the hard constraint�r(G) = �r∗ is a product of
row-specific binomial coefficients, so that the microcanonical entropy S∗mic can still be calculated exactly as
the following simple generalization of equation (43):

S∗mic = ln Ω�r∗ = ln
n∏

i=1

(
m

r∗i

)
=

n∑
i=1

ln

(
m

r∗i

)
. (67)

For the same reason, S∗mic can also be exactly retrieved by explicitly integrating the complex-valued quantity
Pcan(G∗|�θ∗ + i�ψ) as prescribed by equation (23) (see appendix):

S∗mic = ln

∫ +�π

−�π

d�ψ

(2π)n
P−1

can(G∗|�θ∗ + i�ψ)

= ln
n∏

i=1

∫ +π

−π

dψi

2π

(1 + e−θ∗i −iψi )m

e−(θ∗i +iψi)r∗i

=

n∑
i=1

ln

(
m

r∗i

)
. (68)

Combining the above results, we can calculate the relative entropy from equation (15) as

Sn[P∗
mic‖P∗

can] =
n∑

i=1

ln
mm(

m
r∗i

)
(r∗i )r∗i (m − r∗i )m−r∗i

. (69)

The above quantity encodes the following difference between the two ensembles: in the microcanonical
ensemble, the hard constraint�r(G) = �r∗ makes all the entries in each row of G mutually dependent, while
leaving different rows independent of each other; on the other hand, in the canonical ensemble the soft
constraint 〈�r〉�θ∗ = �r∗ leaves all entries of the matrix independent. As in the case with a global constraint,
each entry gij is still Bernoulli-distributed, but now with row-specific probability

p(gij|�θ∗) =
e−θ∗i gij

1 + e−θ∗i
, gij ∈ {0, 1}, (70)

as we show in the appendix. Correspondingly, in the microcanonical ensemble�r is a deterministic vector
fixed to the value�r∗, while in the canonical ensemble it is a random vector with expected value�r∗. The
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covariance matrix Σ∗ between the entries of�r (i.e. between the n constraints) in the canonical ensemble is a
diagonal matrix with entries

Σ∗
ij = δijr

∗
i

(
1 − r∗i

m

)
, (71)

where δij = 1 if i = j and δij = 0 if i �= j (see appendix). This implies that the eigenvalues {λ∗
i }n

i=1 of Σ∗ are

λ∗
i = r∗i

(
1 − r∗i

m

)
i = 1, n. (72)

Again, we are going to discuss the (non)equivalence of the two ensembles together with the corresponding
case of weighted matrices, after studying the latter below.

3.3.2. Weighted matrices under one-sided local constraints
We now move to the case when the one-sided local constraints�r∗ are imposed on ensembles of weighted
matrices. The canonical ensemble under such constraints is characterized by the likelihood

Pcan(G∗|�θ) =
e−

�θ·�r∗∏n
i=1(1 − e−θi )−m

, (73)

which is maximized by the parameter value �θ∗ with entries

θ∗i = ln
m + r∗i

r∗i
i = 1, n, (74)

realizing the soft constraint 〈�r〉 �θ∗ = �r∗ (see appendix). If we insert equation (74) into equation (73), we get

S∗can = − ln Pcan(G∗|�θ∗)

=

n∑
i=1

ln
(m + r∗i )m+r∗i

(r∗i )r∗i mm
. (75)

The microcanonical entropy S∗mic is instead given by the following generalization of equation (51):

S∗mic = ln Ω�r∗ =

n∑
i=1

ln

(
m + r∗i − 1

r∗i

)
, (76)

where we have expressed the number Ω�r∗ of configurations realizing the hard constraint�r(G) = �r∗ as a
product of row-specific negative binomial coefficients. Again, the microcanonical entropy can be obtained
equivalently from equation (23) as follows (see appendix):

S∗mic = ln

∫ +�π

−�π

d�ψ

(2π)n
P−1

can(G∗|�θ∗ + i�ψ)

= ln
n∏

i=1

∫ +π

−π

dψi

2π

(1 − e−θ∗i −iψi )−m

e−(θ∗i +iψi)r∗i

=

n∑
i=1

ln

(
m + r∗i − 1

r∗i

)
. (77)

The relative entropy, which can be obtained from equation (15) as usual, equals

Sn[P∗
mic‖P∗

can] =
n∑

i=1

ln
(m + r∗i )m+r∗i(

m+r∗i −1
r∗i

)
(r∗i )r∗i mm

, (78)

and encodes the difference between the microcanonical ensemble, where the entries of each row of G are
mutually coupled by the hard constraint�r(G) = �r∗ (while different rows are independent), and the
canonical ensemble, where all entries of G are independent and geometrically (see appendix) distributed
with row-dependent probability

p(gij|�θ∗) = e−θ∗i gij (1 − e−θ∗i ), gij ∈ {0, 1, 2, . . . }. (79)
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As a consequence, while in the microcanonical ensemble the constraint�r is fixed to the value�r∗, in the
canonical ensemble it is a random vector fluctuating around�r∗ according to the diagonal covariance matrix
Σ∗ with entries

Σ∗
ij = δijr

∗
i

(
1 +

r∗i
m

)
, (80)

(see appendix) and eigenvalues

λ∗
i = r∗i

(
1 +

r∗i
m

)
i = 1, n. (81)

3.3.3. EN for matrices under one-sided local constraints
We can now compactly discuss the (non)equivalence of canonical and microcanonical ensembles of both
binary and weighted matrices under one-sided local constraints. As for the case of global constraints
discussed in subsection 3.2.3, we still have an exact knowledge of the canonical entropy, the microcanonical
entropy, and the relative entropy. Moreover, these quantities can all be written, using equation (56), in
compact expressions formally valid for both binary (+) and weighted (−) matrices. Indeed, the canonical
entropy can be expressed by combining the expressions for Sn[P∗

can] = S∗can in equations (66) and (75) into
the unified formula

S±n [P∗
can] =

n∑
i=1

ln
m±m

(r∗i )r∗i (m ∓ r∗i )±m−r∗i
, (82)

and, similarly, the microcanonical entropy can be obtained by formally combining equations (67) and
(76) into

S±n [P∗
mic] =

n∑
i=1

ln

[
(±1)r∗i

(
±m

r∗i

)]
. (83)

The above expressions can be used to calculate the relative entropy as

S±n [P∗
mic‖P∗

can] =
n∑

i=1

ln
(±m)±m(

±m
r∗i

)
(r∗i )r∗i (±m − r∗i )±m−r∗i

, (84)

which indeed combines the expressions given in equation (69) for binary (+) matrices and equation (78)
for weighted (−) matrices. Equation (84) extends equation (58) to the case of one-sided local constraints.
We now consider different regimes.

• In the sparse case where r∗i = O(1) (for all i) and m = O(n) (see subsection 2.5), we can use Stirling’s
formula, given by equation (59), to expand m! (but not r∗i !) appearing in the (negative) binomial
coefficient to get (

±m

r∗i

)
≈ (±m)r∗i

r∗i !
, (85)

and consequently

S±n [P∗
mic‖P∗

can] ≈
n∑

i=1

ln
er∗i r∗i !

(r∗i )r∗i
= O(n). (86)

• In the dense case where both r∗i (for all i) and m are O(n), as discussed in subsection 2.5 (so that r∗i /m
converges to a finite constant), we can use Stirling’s formula to expand both m! and r∗i ! into
equation (84) to obtain

S±n [P∗
mic‖P∗

can] =
1

2

n∑
i=1

ln

[
2πr∗i

(
1 − r∗i

±m

)]
[1 + o(1)]

= O(n ln n), (87)

for binary (+) (in which case r∗i � m) and weighted (−) matrices.

• In the dense case where both m and r∗i are finite, there is no asymptotic expansion that allows to
simplify equation (84) in general, so S±n [P∗

mic‖P∗
can] has to be evaluated explicitly (simple examples are

provided below). The important general consideration is that, irrespective of the specific values of m
and r∗i ,

S±n [P∗
mic‖P∗

can] = O(n). (88)

Again, we can confirm that the above asymptotic expressions are consistent with what we would obtain
from equation (29), which follows from the saddle-point approximation given by equation (24). To see this,
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noting that here K = n and that equations (71) and (80) indicate that (Σ∗)± is a diagonal matrix with
entries

(Σ∗
ij)

± = δijr
∗
i

(
1 − r∗i

±m

)
, (89)

for binary (+) and weighted (−) one-sided constraints respectively, we can compactly express equation
(28) as

α±
n = ln

√
det

[
2π(Σ∗)±

]

=
1

2

n∑
i=1

ln
[
2π(Σ∗

ii)
±]

=
1

2

n∑
i=1

ln

[
2πr∗i

(
1 − r∗i

±m

)]
. (90)

In the dense regime with diverging m, the conditions guaranteeing the strong result in equation (30) (all
but a finite number of diverging eigenvalues of Σ∗) hold, as can be confirmed by comparing equations (87)
and (90). Moreover, noticing from equation (59) that ekk!/kk =

√
2πk[1 + o(1)], we see that equation (90)

confirms the asymptotic behaviour of the relative entropy obtained also in equations (86) and (88) for the
other two regimes, under the respective assumptions on the scaling of m and k. Coincidentally, we also see
that the stronger result in equation (30) turns out to be a very good approximation for the relative entropy
even in these two regimes where, technically, the required conditions are not met. This means that, for the
one-sided dense case with finite m, we can rewrite equation (29) asymptotically (i.e. for large n) as

S±n [P∗
mic‖P∗

can] = C1(m)α±
n

= C1(m) ln
√

det[2π(Σ∗)±], (91)

where C1(m) is a finite and positive constant. Moreover, from the known inequality ekk!/kk �
√

2πk for the
factorial, we see that C1(m) � 1 as implied by comparing equations (84) and (90). Finally, we also know
from Stirling’s approximation that C1(m) is not much bigger than 1, i.e. C1(m) � 1, and that it rapidly
approaches 1: indeed when m diverges equation (30) holds exactly, which implies

lim
m→∞

C1(m) = 1. (92)

The fact that, in all regimes, S±n [P∗
mic‖P∗

can] (or equivalently αn) is at least of order O(n) shows that
equation (31) is violated and that EE breaks down for both binary and weighted matrices under one-sided local
constraints, irrespective of the density and of the behaviour of m. This important finding generalizes the
result, documented so far only for ensembles of binary graphs with given degree sequence [5, 13, 14] (and
possibly modular structure [11]) and weighted graphs with given strength sequence [8], that EE breaks
down in the presence of an extensive (i.e. growing like n) number of local constraints. Here, this result is
extended to more general ensembles of matrices, i.e. asymmetric, rectangular matrices describing e.g.
bipartite graphs, multivariate time series, multiplex social activity, multi-cast communication systems and
multi-cell gene expression profiles with variable m. More importantly, this generalized setting allows for a
qualitatively new phenomenon to emerge, namely the onset of ‘strong’ EN, as we now show.

Indeed, we can investigate the ‘strength’ of nonequivalence by comparing the asymptotic behaviour of
the relative entropy with that of the canonical entropy given by equation (82). This expression can be
evaluated in the usual three regimes as follows.

In the sparse case with r∗i = O(1) and m = O(n), noticing that asymptotically (for large n) we have
(m ∓ r∗i )±m−r∗i ≈ m±m−r∗i e∓r∗i , equation (82) reduces to

S±n [P∗
can] ≈

n∑
i=1

r∗i ln
e±1m

r∗i
= O(n ln n), (93)

which dominates over the order O(n) of the corresponding relative entropy S±n [P∗
mic‖P∗

can] calculated
previously in equation (86) for the sparse case. This implies that the limiting relative entropy ratio defined
in equation (35) is R±

∞ = 0 for both binary (+) and weighted (−) constraints, meaning that in this case the
breaking of EE is still ‘weak’ as in the case of graphs with local constraints.
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In the dense case with r∗i = O(n) and m = O(n), equation (82) can be evaluated as

S±n [P∗
can] =

n∑
i=1

[
±m ln

m

m ∓ r∗i
+ r∗i ln

m ∓ r∗i
r∗i

]

= O(n2), (94)

which, again, dominates over the order O(n ln n) of the corresponding relative entropy calculated in
equation (87). Therefore we still have R±

∞ = 0 (weak nonequivalence).
Finally, the dense case where both m and r∗i remain finite as n →∞ is the subject of the rest of this

section. Equation (82) implies that
S±n [P∗

can] = O(n), (95)

which, upon comparison with equation (88), shows that now the relative entropy grows as fast as the
canonical entropy, signalling the ‘strong’ form of EN. Using the combined expressions given in
equations (82) and (83), we can explicitly calculate the relative entropy ratio introduced in equation (34) as
follows:

R±
n = 1 −

∑n
i=1 ln

[
(±1)r∗i

(
±m
r∗i

)]
∑n

i=1 ln m±m

(r∗i )
r∗i (m∓r∗i )

±m−r∗i

> 0. (96)

Using equations (90) and (91), we obtain the alternative asymptotic (for large n) expression

R±
n =

S±n [P∗
mic‖P∗

can]

S±n [P∗
can]

= C1(m)
α±

n∑n
i=1 ln m±m

(r∗i )
r∗i (m∓r∗i )

±m−r∗i

=
C1(m)

2

∑n
i=1 ln

[
2πr∗i

(
1 − r∗i

±m

)]
∑n

i=1 ln m±m

(r∗i )
r∗i (m∓r∗i )

±m−r∗i

. (97)

Comparing equations (96) and (97) confirms that, as noticed above, C1(m) ≈ 1 also for finite m.
In general, taking the thermodynamic limit n →∞ in equations (96) or (97) requires the specification

of the value of r∗i for all i. For the sake of illustration, we can consider the simplest case where each
constraint has the same value r∗i = r∗ (i = 1, n). Note that the resulting canonical entropy of matrices with
constant one-sided constraint r∗, given by equation (82), coincides with the canonical entropy of matrices
with the implied global constraint t∗ = nr∗, given by equations (42) and (50) in the binary and weighted
case respectively. However, the microcanonical entropy in the one-sided case, given by equation (83), is
strictly smaller than the corresponding one for matrices with the implied global constraint t∗ = nr∗, given
by equations (43) and (51) in the binary and weighted case respectively. From equation (96) we
immediately find

R±
∞ = lim

n→∞
R±

n = 1 − ln
[
(±1)r∗

(±m
r∗
)]

ln m±m

(r∗)r∗ (m∓r∗)±m−r∗
> 0, (98)

confirming strong nonequivalence as defined in equation (36). To gain numerical and visual insight about
the behaviour of R±

∞ in equation (98), let us consider the binary and weighted cases separately.
In the binary case, equation (65) implies that, if r∗i = r∗ for all i, then the Lagrange multipliers θ∗i are all

equal to

θ∗+ ≡ ln
m − r∗

r∗
. (99)

Then, writing p∗ ≡ r∗/m = e−θ∗+/(1 + e−θ∗+) ∈ (0, 1), from equation (98) we obtain

R+
∞ = 1 − ln

(m
r∗
)

ln mm

(r∗)r∗ (m−r∗)m−r∗

= 1 −
ln
(

m
p∗m

)
ln mm

(p∗m)p∗m(m−p∗m)m−p∗m

> 0. (100)

Using the above expression, in figure 2 we plot R+
∞ as a function of either p∗ (for fixed m) or m (for fixed

p∗). We see that, for a wide range of values of p∗, R+
∞ remains appreciably large for values of m up to one
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Figure 2. Strong EN, signalled by a positive limiting entropy ratio R+
∞ > 0, for binary matrices under homogeneous one-sided

local constraints (r∗i = r∗ ∀i) in the dense case with finite m and r∗. (a) R+
∞ as a function of p∗ = r∗/m for various values of m.

Note that R+
∞ is larger for smaller m and for values of p∗ more distant from the uniform case (p∗ = 1/2). (b) R+

∞ as a function of
m for various values of p∗. Note that, as m grows, R+

∞ decays like ln(2πm)/m.

Figure 3. Strong EN, signalled by a positive limiting entropy ratio R−
∞ > 0, for weighted matrices under homogeneous one-sided

local constraints (r∗i = r∗ ∀i) in the dense case with finite m and r∗. (a) R−
∞ as a function of q∗ = r∗

m+r∗ for various values of m.
Note that R−

∞ is larger for smaller m and q∗. (b) R−
∞ as a function of m for various values of q∗. As in the binary case, R−

∞ decays
like ln(2πm)/m as m grows.

hundred. Moreover, values of p∗ closer to 0 or 1 than to 1/2 make R+
∞ larger. So, for empirical applications

where the level of ‘multiplexity’ is moderate (i.e. small m), and especially away from the uniform case
(p∗ = 1/2), there is a significant entropy reduction from the canonical to the microcanonical ensemble. By
contrast, as m increases while p∗ remains fixed, R+

∞ decreases like ln 2πm
m , as can be easily realized by applying

Stirling’s formula to equation (100). This coincides with the system progressively moving to the different
regime where both m and r∗i grow as n grows, which results in weak EN and R+

∞ = 0 as previously noticed.
Similarly, if r∗i remains finite while m grows, we enter the sparse regime for which R+

∞ = 0 as previously
noticed.

In the weighted case, equation (74) implies that if r∗i = r∗ for all i, then θ∗i = θ∗− for all i with

θ∗− ≡ ln
m + r∗

r∗
. (101)

Then, writing q∗ ≡ e−θ∗− = r∗
m+r∗ ∈ (0, 1), from equation (98) we obtain

R−
∞ = 1 −

ln
(

m+r∗−1
r∗

)

ln (m+r∗)m+r∗

mm(r∗)r∗

= 1 −
ln
(

(m−1+q∗)/(1−q∗)
mq∗/(1−q∗)

)
m

1−q∗ ln m
1−q∗ − m ln m − mq∗

1−q∗ ln mq∗
1−q∗

> 0. (102)

Figure 3 shows the behaviour of R−
∞ either as a function of q∗ (with m fixed) or as a function of m (with q∗

fixed). Considerations similar to the binary case apply. The main difference is that, while R+
∞ has a

symmetric behaviour around the value p∗ = 1/2 (arising from the fundamental symmetry of exchanging p∗

with 1 − p∗ and gij = 1 with gij = 0 in the binary case), R−
∞ decreases monotonically as a function of q∗

(due to the lack of any symmetry of that sort in the weighted case). So now R−
∞ is larger for smaller m

and q∗.
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The above results illustrate what we had anticipated previously, i.e. that if m is finite (and the matrices
are necessarily dense) then the ensembles feature a strong form of EN. Here, this form of EN is also
‘unrestricted’, as it holds irrespective of the value of �C∗ or �θ∗, i.e. throughout the parameter space. To the
best of our knowledge, this is the first evidence of a situation for which EN occurs in a simultaneously
‘strong and unrestricted’ form, i.e. the most robust manifestation of the breaking of EE documented so far.
Its ultimate origin is the presence of an extensive number of local constraints, and not of phase transitions.

Note that the case with one-sided constraints corresponds, purely formally, to a collection of n
independent subsystems, each with m degrees of freedom. In this situation, as clear from equations (82) and
(83), both the canonical and microcanonical entropies are obtained as sums over the entropies of the n
independent systems. Therefore the overall entropies are on average n times bigger than the average
entropies of each independent subsystem. The same applies to the relative entropy, as clear from
equation (84). When dividing the overall relative entropy by n, we then obtain the average relative entropy
for a single subsystem. This relative entropy does not vanish, unless it is further divided by m and,
additionally, m is taken to diverge in the thermodynamic limit (weak EN). But this further division is
legitimate only when the fundamental physical units of the system are identified with the individual entries
of the matrix G. By contrast, in our situation the m entries of each of the n rows of the matrix represent the
possible states of each of the n units (as anticipated, these units are defined either in space or in time). So
the physical size of the system is always taken to be n in our setting. Also note that, in the regime when m
remains finite as n diverges (strong EN), the relative entropy would not vanish even after a further division
by m.

3.4. Two-sided local constraints
We now discuss binary and weighted matrices under two-sided local constraints (�r(G),�c(G)), where�r(G) is
still the n-dimensional vector of row sums while�c(G) is the m-dimensional vector of column sums, with
entries cj(G) =

∑n
i=1 gij (j = 1, . . . , m). We constrain both vectors to a given value (�r∗,�c∗) ≡ (�r(G∗),�c(G∗)).

Note that the number of constraints is still extensive. Unlike the case of one-sided constraints, for two-sided
constraints it is not possible to calculate the exact number Ω�r∗ ,�c∗ of configurations in the microcanonical
ensemble. By contrast, all canonical calculations can still be carried out analytically (although the value of
the Lagrange multipliers can be determined only via implicit expressions). Therefore, as we show below, the
matrix Σ∗ of canonical covariances between the constraints becomes a crucial tool to calculate the
asymptotic behaviour of the relevant microcanonical quantities.

3.4.1. Binary matrices under two-sided local constraints
As usual, we start from the binary case. As shown in the appendix, in the canonical ensemble the
likelihood is

Pcan(G∗|�α, �β) =
e−�α·�r∗−�β·�c∗∏n

i=1

∏m
j=1[1 + e−(αi+βj)]

, (103)

and is maximized by the parameter values (�α∗, �β∗) defined implicitly by the following set of n + m coupled
nonlinear equations:

r∗i =

m∑
j=1

e−(α∗
i +β∗j )

1 + e−(α∗
i +β∗j ) , i = 1, n, (104)

c∗j =

n∑
i=1

e−(α∗
i +β∗j )

1 + e−(α∗
i +β∗j ) , j = 1, m. (105)

Unfortunately, in general these equations cannot be solved analytically to express (�α∗, �β∗) as an explicit
function of (�r∗,�c∗). This is due to the fact that the presence of both row and column constraints couples all
parameters. However, the equations can be solved numerically and the unique solution (�α∗, �β∗) can then be
inserted into Pcan(G|�α, �β). This gives complete analytical control over the canonical ensemble. In particular,
the canonical entropy is

S∗can = − ln Pcan(G∗|�α∗, �β∗)

= �α∗ ·�r∗ + �β∗ ·�c∗ +
n∑

i=1

m∑
j=1

ln[1 + e−(α∗
i +β∗j )]. (106)

Note that, since this model has additional constraints with respect to the one-sided case with the same row
sums�r∗, the canonical entropy above cannot be larger than the corresponding one-sided canonical entropy
given by equation (66), i.e. we have the following upper bound:

21



New J. Phys. 24 (2022) 043011 Q Zhang and D Garlaschelli

S∗can �
n∑

i=1

ln
mm

(r∗i )r∗i (m − r∗i )m−r∗i
. (107)

On the other hand, the microcanonical entropy S∗mic cannot be computed analytically, although the
asymptotic formulas based on equations (27) and (28) can be used to estimate it from the canonical
covariance matrix Σ∗. As we show later, this leads to an asymptotic estimate of the relative entropy based on
equation (29). As for the canonical entropy, the microcanonical one cannot be larger than the
corresponding one given by equation (67) in the one-sided case with the same row sums, with the only
difference that now the resulting upper bound is tight:

S∗mic <

n∑
i=1

ln

(
m

r∗i

)
. (108)

Indeed, the configurations matching both the row and the column constraints in the two-sided case form a
proper subset of the configurations matching only the row constraints in the one-sided case.

It should be noted that in the microcanonical ensemble both�r and�c are deterministic vectors fixed to
the values�r∗ and�c∗ respectively, while in the canonical ensemble they are random vectors with expected
values�r∗ and�c∗. In the microcanonical ensemble, the hard constraints (�r(G),�c(G)) = (�r∗,�c∗) create mutual
dependencies among all the entries of G. In the canonical ensemble, the soft constraint
(〈�r〉�α∗ , 〈�c〉�β∗) = (�r∗,�c∗) leaves all entries of G independent. As in all other canonical binary ensembles
considered above, each entry gij is Bernoulli-distributed, but now with its specific parameters:

p(gij|�α∗, �β∗) =
e−(α∗

i +β∗i )gij

1 + e−(α∗
i ,β∗i ) , gij ∈ {0, 1}, (109)

as shown in the appendix.
For illustration, we consider the special case where the column sums are all equal to each other, i.e.

c∗j = c∗ for all j. In this case, since the corresponding Lagrange multipliers must also be all equal to each
other (β∗

j = β∗ for all j), it is indeed possible to solve for the parameters explicitly. Indeed, equations (104)
and (105) reduce to the n + 1 independent equations

r∗i = m
e−(α∗

i +β∗)

1 + e−(α∗
i +β∗) , i = 1, n, (110)

c∗ =
n∑

i=1

e−(α∗
i +β∗)

1 + e−(α∗
i +β∗) , (111)

where the second equation is simply the consistency condition c∗ =
∑n

i=1r∗i /m implied by the first one.
This means that the parameter β∗ is actually redundant, as it could in principle be reabsorbed into a shift of
all the α∗

i ’s. In any case, the combination α∗
i + β∗ is found explicitly by inverting equation (110):

α∗
i + β∗ = ln

m − r∗i
r∗i

. (112)

Note that, inserting this value into the expression for S∗can in equation (106), we obtain exactly the canonical
entropy found previously in equation (66) for the binary ensemble with one-sided (row) constraints
specified by the same vector�r∗, i.e. the bound in equation (107) is fully saturated:

S∗can = �α∗ ·�r∗ + mβ∗c∗ + m
n∑

i=1

ln[1 + e−(α∗
i +β∗)]

=

n∑
i=1

ln
mm

(r∗i )r∗i (m − r∗i )m−r∗i
. (113)

Indeed, the two canonical ensembles are indistinguishable and all their properties are the same. However,
the corresponding microcanonical ensembles remain very different, because in the two-sided case each of
the m column sums has to match the exact value c∗ separately, while in the one-sided case only the total
sum mc∗ of all the m column sums (which is necessarily implied by the row constraints) has to be matched
exactly. Indeed equation (108) is a tight bound that cannot be saturated. Similarly, the covariance matrix
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Σ∗ is now a (n + m) × (n + m) matrix (calculated later) and its determinant is different from the one
obtained in the one-sided case, where the matrix is n × n.

Again, we are going to discuss the (non)equivalence of the two ensembles together with the
corresponding case of weighted matrices, after studying the latter below.

3.4.2. Weighted matrices under two-sided local constraints
We now discuss EN in weighted matrices with two-sided local constraints. The likelihood (see appendix)
is now

Pcan(G∗|�α, �β) =
e−�α·�r∗−�β·�c∗∏n

i=1

∏m
j=1[1 − e−(αi+βj)]−1

, (114)

and is maximized by the unique parameter values (�α∗, �β∗) defined implicitly through the n + m coupled
nonlinear equations

r∗i =
m∑

j=1

e−(α∗
i +β∗j )

1 − e−(α∗
i +β∗j ) , i = 1, n, (115)

c∗j =

n∑
i=1

e−(α∗
i +β∗j )

1 − e−(α∗
i +β∗j ) , j = 1, m, (116)

that can be solved numerically. The solution (�α∗, �β∗), when inserted into Pcan(G|�α, �β), completely
characterizes the canonical ensemble. The resulting canonical entropy is

S∗can = − ln Pcan(G∗|�α∗, �β∗)

= �α∗ ·�r∗ + �β∗ ·�c∗ −
n∑

i=1

m∑
j=1

ln[1 − e−(α∗
i +β∗j )], (117)

and an upper bound is provided by the canonical entropy given in equation (75) for the one-sided case with
the same row constraints�r∗:

S∗can �
n∑

i=1

ln
(m + r∗i )m+r∗i

(r∗i )r∗i mm
. (118)

As in the binary two-sided case, the microcanonical entropy S∗mic cannot be computed explicitly, but it can
still be evaluated asymptotically from the determinant of the canonical covariance matrix Σ∗ using
equations (27) and (28). Correspondingly, the relative entropy can be computed using equation (29). The
microcanonical entropy given by equation (76) for the corresponding one-sided case is still a strict upper
bound for the two-sided entropy:

S∗mic <

n∑
i=1

ln

(
m + r∗i − 1

r∗i

)
. (119)

As in the corresponding binary case, in the microcanonical ensemble both�r and�c are deterministic and
fixed to the values�r∗ and�c∗, while in the canonical ensemble they are random with expected values�r∗ and
�c∗. The coupled hard constraints (�r(G),�c(G)) = (�r∗,�c∗) create mutual dependencies among all the entries of
G in the microcanonical ensemble. By contrast, the soft constraint (〈�r〉�α∗ , 〈�c〉�β∗) = (�r∗,�c∗) leaves all entries
of G independent in the canonical ensemble. In the latter, as for all weighted matrices discussed so far, each
entry gij is geometrically distributed, but now with its specific parameters:

p(gij|�α∗, �β∗) = e−(α∗
i +β∗i )gij

[
1 − e−(α∗

i +β∗i )
]

, (120)

for gij ∈ {0, 1, 2, . . .}, as we show in the appendix.
Here as well, the special case where the column sums are all equal to each other (c∗j = c∗ for all j)

provides a nice example. The corresponding Lagrange multipliers are in this case all equal to each other
(β∗

j = β∗ for all j) and this allows us to solve for all parameters explicitly. In particular, equations (115) and
(116) reduce to the n + 1 independent equations

r∗i = m
e−(α∗

i +β∗)

1 − e−(α∗
i +β∗) , i = 1, n, (121)

c∗ =
n∑

i=1

e−(α∗
i +β∗)

1 − e−(α∗
i +β∗) , (122)
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where, again, the second equation is equivalent to the consistency condition c∗ =
∑n

i=1r∗i /m. Inverting
equation (121), we obtain explicitly

α∗
i + β∗ = ln

m + r∗i
r∗i

, (123)

which, if inserted into the expression for S∗can in equation (117), produces exactly the canonical entropy
found previously in equation (75) for the weighted ensemble with one-sided (row) constraints specified by
the same vector�r∗:

S∗can = �α∗ ·�r∗ + mβ∗c∗ − m
n∑

i=1

ln[1 − e−(α∗
i +β∗)]

=

n∑
i=1

ln
(m + r∗i )m+r∗i

(r∗i )r∗i mm
. (124)

The upper bound in equation (118) is therefore fully saturated. Again, while the canonical ensembles are
identical for the two cases, the microcanonical ensembles remain very different and the microcanonical
entropy under two-sided constraints is strictly smaller than the one under one-sided constraints: the upper
bound in equation (119) cannot be saturated. Similarly, the determinant of the covariance matrix Σ∗,
which here is a (n + m) × (n + m) matrix (that we calculate later on), is different from the one obtained in
the one-sided case.

The (non)equivalence of the two ensembles is discussed below, in conjunction with the case of
two-sided binary matrices.

3.4.3. EN for matrices under two-sided local constraints
To investigate EN in the two-sided case, it is convenient to preliminary combine the results obtained so far
in the binary (+) and weighted (−) cases as follows.

The canonical entropy S±n [P∗
can] can be evaluated by combining equations (106) and (117), as well as the

corresponding upper bounds given by equations (107) and (118), into

S±n [P∗
can] = �α∗ ·�r∗ + �β∗ ·�c∗ ±

n∑
i=1

m∑
j=1

ln[1 ± e−(α∗
i +β∗j )]

�
n∑

i=1

ln
m±m

(r∗i )r∗i (m ∓ r∗i )±m−r∗i
, (125)

(see equation (82) for a comparison). It is easy to check that, in all the three regimes considered (sparse,
dense with diverging m, dense with finite m), the above canonical entropy has the same qualitative
behaviour as the corresponding quantity obtained previously in equation (82) for the one-sided case.

Unlike the one-sided case, the microcanonical entropy cannot be evaluated exactly, neither through a
direct combinatorial formula nor via the complex integral approach, and we only have strict upper bounds
given by equations (108) and (119) in the binary and weighted case respectively, which we can combine as
follows:

S±n [P∗
mic] <

n∑
i=1

ln

[
(±1)r∗i

(
±m

r∗i

)]
, (126)

(see equation (83) for a comparison).
We can now discuss EN in a combined fashion for binary and weighted matrices. While we cannot

calculate the relative entropy exactly, we can correctly evaluate its asymptotic scaling via equation (29),
because the canonical covariance matrix (Σ∗)± between the constraints can still be calculated analytically as
a function of the parameters (�α∗, �β∗), in both the binary and weighted cases. In particular, it is easy to see
that the entries (Σ∗

ij)
± are arranged into a block structure, with a square n × n diagonal block (i, j ∈ [1, n])

representing the covariance matrix between pairs of row sums, a square m × m diagonal block
(i, j ∈ [n + 1, n + m]) representing the covariance matrix between pairs of column sums, and two
rectangular (n × m and m × n) off-diagonal blocks representing the covariances between row and column
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sums (i ∈ [1, n], j ∈ [n + 1, n + m] and i ∈ [n + 1, n + m], j ∈ [1, n]). As we show in the appendix, these
entries are

(Σ∗
ij)

± =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δij

m∑
k=1

e−(α∗
i +β∗k )[

1 ± e−(α∗
i +β∗k )

]2 i, j ∈ [1, n],

e−(α∗
i +β∗j−n)

[
1 ± e−(α∗

i +β∗j−n)
]2 i ∈ [1, n], j ∈ [n + 1, n + m]

e−(α∗
j +β∗i−n)

[
1 ± e−(α∗

j +β∗i−n)
]2 i ∈ [n + 1, n + m], j ∈ [1, n]

δij

n∑
k=1

e−(α∗
k+β∗j−n)

[
1 ± e−(α∗

k+β∗j−n)
]2 i, j ∈ [n + 1, n + m].

(127)

The above expression is the generalization of equation (89) to the case of two-sided constraints. Once
the values of�r∗ and�c∗ are specified, one can calculate the determinant of the above matrix and, through
equation (29), the leading order of the relative entropy S±n [P∗

mic‖P∗
can]. As we show in the appendix, the

order of α±
n confirms the same scalings for the relative entropy found previously in equations (86), (87) and

(88) for the one-sided case: namely, α±
n = O(n) in the sparse regime, α±

n = O(n ln n) in the dense regime
with m = O(n), and α±

n = O(n) in the dense regime with finite m.
In practice, unlike the one-sided case, calculating the values of S±n [P∗

mic‖P∗
can] and R±

∞ (or bounds for
them) as explicit functions of the constraints is not easy in general. It is however possible, and instructive, to
consider a special case where S±n [P∗

mic‖P∗
can] and R±

∞ in this two-sided case (given the vectors�r∗ and�c∗) can
be related to the corresponding values obtained in the one-sided case with the same vector�r∗ (but without a
constraint on�c∗). Indeed, if we consider again the special case with constant column constraints (c∗j = c∗,
j = 1, m) then from our previous results in equations (113) and (124) we recall that, for any given value of
n, the two-sided canonical entropy S±n [P∗

can] is exactly equal to the one-sided canonical entropy given in
equation (82) corresponding to the same vector�r∗, while of course the two-sided microcanonical entropy
S±n [P∗

mic] is strictly smaller than the one-sided one given in equation (83). This automatically implies that
S±n [P∗

mic‖P∗
can] in the two-sided case is strictly larger than the corresponding one-sided relative entropy given

in equation (84). This proves that the scaling of the relative entropy is always at least O(n), irrespective of
the density and of the value of m: in all regimes, EE breaks down for binary and weighted matrices under
two-sided local constraints, as found in the one-sided case. The presence of the extra column constraints is
not changing the qualitative behaviour of the relative entropy, but only its numerical value. Since the
assumption of constant column sums only changes the values, but not the order, of the relative entropy, we
expect that the scalings remain unchanged in the general case as well.

Moreover, EN has again the strong form (R±
∞ > 0) in the sparse regime with finite m, because the value

of R±
n = 1 − S±n [P∗

mic]/S±n [P∗
can] in the two-sided case is strictly larger than the corresponding one calculated

previously for the one-sided case. In particular, we can use equation (96) to establish the following lower
bound in the two-sided case with constant column constraints and finite m:

R±
n > 1 −

∑n
i=1 ln

[
(±1)r∗i

(
±m
r∗i

)]
∑n

i=1 ln m±m

(r∗i )
r∗i (m∓r∗i )

±m−r∗i

> 0. (128)

The above inequality proves strong EN in this case as well. Again, we expect that relaxing the assumption of
constant column sums will change only the value of R±

n , but not its strict positivity.
Finally, we can also establish an upper bound for R±

n by rewriting equation (29) asymptotically for large
n, in analogy with equation (91), as

S±n [P∗
mic‖P∗

can] = C2(m)α±
n , (129)

where C2(m) is a finite positive constant and noticing that, since the covariance matrix (Σ∗)± is
positive-definite, we can use Hadamard’s inequality stating that the determinant of a positive-definite
matrix is less than or equal to the product of the diagonal entries of the matrix. This means

α±
n = ln

√
det

[
2π(Σ∗)±

]
� α̃±

n , (130)

where, using equation (127), we have introduced

α̃±
n =

1

2

n∑
i=1

ln
[
2π(Σ∗

ii)
±]+ 1

2

m∑
j=1

ln
[
2π(Σ∗

jj)
±] . (131)
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Now, using equations (112) and (123) in the binary and weighted case respectively, it is easy to show that, in
the two-sided case with constant column sums, the first n diagonal entries of (Σ∗)± are identical to the n
diagonal entries of the covariance matrix in the corresponding one-sided case given by equation (89), i.e.

(Σ∗
ii)

± = r∗i

(
1 − r∗i

±m

)
, i = 1, n. (132)

Inserting the above expression into equation (131), and noticing that the last sum in the latter is strictly
positive, we can write

α̃±
n <

1

2

n∑
i=1

ln

[
2πr∗i

(
1 − r∗i

±m

)]
. (133)

Combining equations (129), (130) and (133) we obtain the upper bound (for large n)

R±
n = C2(m)

α±
n

S±n [P∗
can]

� C2(m)
α̃±

n

S±n [P∗
can]

<
C2(m)

2

∑n
i=1 ln

[
2πr∗i

(
1 − r∗i

±m

)]
∑n

i=1 ln m±m

(r∗i )
r∗i (m∓r∗i )

±m−r∗i

=
C2(m)

C1(m)

⎡
⎣1 −

∑n
i=1 ln

[
(±1)r∗i

(
±m
r∗i

)]
∑n

i=1 ln m±m

(r∗i )
r∗i (m∓r∗i )

±m−r∗i

⎤
⎦ , (134)

where we have used equations (96) and (97) established in the one-sided case. Comparing equation (134)
with equation (128) we see that we must have C2(m)/C1(m) > 1. We conjecture that, in analogy with
C1(m) in the one-sided case, C2(m)�1. Moreover, here as well we know that limm→∞ C2(m) = 1 as in
equation (92). This means that we expect that, for n large, C2(m)/C1(m) ≈ 1 so that the upper bound in
equation (134) approaches the lower bound in equation (128), which is therefore a very good estimate of
the actual value of R±

n in the two-sided case with constant column constraints:

R±
n ≈ 1 −

∑n
i=1 ln

[
(±1)r∗i

(
±m
r∗i

)]
∑n

i=1 ln m±m

(r∗i )
r∗i (m∓r∗i )

±m−r∗i

. (135)

Upon comparison with equation (96), we see that R±
n remains practically unchanged with respect to the

one-sided case with the same value of�r∗.
Note that the above result means that the decrease Δmic in microcanonical entropy introduced by the

extra column constraints is subleading with respect to the canonical entropy. Indeed, denoting with {·}h a
quantity evaluated in the h-sided case (where h = 1, 2), and exploiting again the identity of the canonical
entropies {S±n [P∗

can]}1 = {S±n [P∗
can]}2 and our conjecture C2(m)/C1(m) ≈ 1, we can use equation (15) and

the results obtained so far to express the decrease in microcanonical entropy as

Δmic = {S±n [P∗
mic]}1 − {S±n [P∗

mic]}2

= {S±n [P∗
mic‖P∗

can]}2 − {S±n [P∗
mic‖P∗

can]}1

= C2(m){α±
n }2 − C1(m){α±

n }1

< C2(m){α̃±
n }2 − C1(m){α±

n }1

≈ C1(m)

2

m∑
j=1

ln
[
2π(Σ∗

jj)
±]

= C1(m)
m

2
ln

n∑
k=1

2π e−(α∗
k+β∗)[

1 ± e−(α∗
k+β∗)

]2

= C1(m)
m

2
ln

n∑
k=1

[
2π

r∗i
m

(
1 − r∗i

±m

)]
, (136)
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which is of order O(ln n), while the canonical entropy is of order O(n) in the dense case with finite m
considered here.

Clearly, if we additionally consider constant row constraints, i.e. r∗i = r∗ for i = 1, n (where necessarily
r∗ = c∗m/n), then in analogy with equation (98) we can establish the following explicit lower bound for the
value of R±

∞ in the two-sided case with constant row and column constraints:

R±
∞ > 1 − ln

[
(±1)r∗

(±m
r∗
)]

ln m±m

(r∗)r∗ (m∓r∗)±m−r∗
> 0. (137)

Our expectation in equation (135) suggests that the above lower bound is a very good approximation for
the actual value of R±

∞:

R±
∞ ≈ 1 − ln

[
(±1)r∗

(±m
r∗
)]

ln m±m

(r∗)r∗ (m∓r∗)±m−r∗
, (138)

leading to the same result as in equation (98) for the one-sided case.
The above results generalize the finding of strong EN to the two-sided case, again in the dense regime

with finite m. The results do not change qualitatively, and apparently only slightly quantitatively, with
respect to the one-sided case. This result points again at the fact that it is the extensivity of the constraints
that plays the key role for EN: adding a finite number m of (column) constraints does not relevantly change
the picture already obtained in the one-sided case.

4. Discussion and conclusions

We have studied the problem of EN in the general context of n × m matrices with given constraints. Such
matrices can represent high-dimensional data such as multivariate time series, expression profiles, multiplex
social activity, and other relational or structured data encountered in many settings. Their entries can either
be binary (Boolean) or weighted (non-negative integers). The constraints imposed on these matrices
represent sums over either all the entries of the matrix (single global constraint) or over individual rows
(local one-sided constraints) and possibly also columns (local two-sided constraints). These constraints take
the form of linear terms into the Hamiltonian at the exponent of the maximum-entropy probability
distribution characterizing the matrix ensemble.

Global constraints do not account for the heterogeneity (either spatial or temporal, i.e. nonstationarity)
in the physical data-generating process, as they lead to probability distributions with identical parameters
for all the entries of the matrix. By contrast, local constraints produce probability distributions with
different local (row- and possibly column-specific) parameters. Most modern data structures are
heterogeneous and/or nonstationary, and are therefore characterized by (at least) the type of local
constraints considered here. Indeed, maximum-entropy ensembles with local constraints are being
increasingly used, either as null models for pattern detection or as imputation methods whenever there is
only partial, local information available about the system [15, 20].

We have shown that local constraints break the asymptotic (i.e. for large n) equivalence of canonical and
microcanonical ensembles, where the constraints are enforced in a soft and hard manner respectively. By
contrast, global constraints preserve EE. Mathematically, EE is encountered when the relative entropy
between the canonical and microcanonical probability distributions is o(n). Importantly, the breakdown of
EE observed here under local constraints occurs without phase transitions, which would require nonlinear
constraints in the Hamiltonian and are therefore deliberately excluded from the cases we considered. The
form of EN we observe under local constraints is also ‘unrestricted’, i.e. it holds for any value of the model
parameters (here, for any graphical value of the constraints), while the mechanism for EN based on phase
transitions requires specific parameters or phases. Our results hold in all regimes of density and for all
values of m, and therefore generalize a recently discovered, alternative mechanism for the breakdown of EE
observed so far in ensembles of binary graphs with given degree sequence [5, 11, 13, 14] and weighted
graphs with given strength sequence [8].

At the same time, our results highlight a qualitatively new finding. While the systems with local
constraints studied in the past exhibited a ‘weak’ degree of EN (where the relative entropy is of smaller
order compared with the canonical entropy, while still growing at least linearly in n), here we identified a
regime for which EN is as ‘strong’ as in presence of phase transitions (i.e. with the relative entropy being of
the same order as the canonical entropy). This regime is obtained when both m and the expected value of
each entry of the matrix are finite, i.e. O(1). In practice, this means that the data structure is one where n
grows as the size of the system grows, while m remains finite. This circumstance is naturally encountered
e.g. when n represents a large number of timesteps during which a small number m of synchronous time
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series are observed (e.g. for EEG signals), or when n represents a large number of genes for which
expression levels are observed in a small number m of cells at the same time, or when n represents a large
number of users whose activities or preferences are recorded for a small number m of platforms, items, or
other dimensions. The simultaneously ‘strong’ and ‘unrestricted’ form of EN discussed here has never been
documented so far, to the best of our knowledge. Indeed, in all the settings that had been studied
previously, m was necessarily equal to n since the matrices represented the special case of square adjacency
matrices of graphs, therefore the regime leading to strong EN could not be observed.

EN has important practical consequences, for both physics and data science. A traditional expectation in
statistical physics is that, in absence of phase transitions or long-range interactions, ensembles are
equivalent and it is therefore legitimate to freely choose the ensemble to work with, e.g. based purely on
mathematical or computational convenience. So, even if in principle one knows that for an isolated system
the appropriate ensemble is the microcanonical one with a hard constraint on the total energy, while for a
system that exchanges heat with the environment the appropriate ensemble is the canonical one with a soft
constraint on the total energy, for practical purposes the choice of the ensemble is irrelevant, if the
ensembles are equivalent. Similarly in data science, where statistical ensembles are often used as null models
for real systems, EE would guarantee an analogous freedom of choice: for instance, one may either want to
randomize the data numerically by keeping certain quantities fixed (in which case the microcanonical
ensemble is generally the computationally cheapest choice) or prefer an exact mathematical characterization
of the probability of each configuration in the ensemble (in which case the canonical ensemble is typically
the easiest to work with). However, the discovery of EN under local constraints challenges this view and
imposes a principled choice of the ensemble, that cannot be based on practical convenience.

Therefore, if one has reasons to believe that the hypothesis underlying the null model, or the partial
information available about the system, should be translated into hard local constraints, then one should
necessarily choose the microcanonical ensemble. By contrast, if one believes the local constraints should be
treated as soft (for instance to account for possible measurement errors leading to noisy values of the
constraints in the data), then one should take the canonical route. In analogy with statistical physics, the
expectation that the measured constraints are error-free can be regarded as the assumption that each
constraint does not interact with any external source of noise that can produce either spurious or missing
entries (isolated system), while the expectation of noisy constraints corresponds to the assumption of the
existence of a ‘noise bath’ that, in the case of local constraints, produces fluctuations around the expected
value of each constraint separately, along with the corresponding covariances between constraints (system at
thermal equilibrium). In presence of EN, a principled choice of the ensemble realising the null model
becomes crucial.

Indeed, recent studies have illustrated different (sometimes even opposite) statistical conclusions that
can derive from the use of microcanonical and canonical ensembles. For instance, analyses of bipartite
networks in ecology [25, 26] have calculated z-scores for various empirical structural properties, according
to both the canonical and microcanonical versions of the null model with local constraints. The findings
show that certain structural properties (such as the so-called nestedness and niche overlap) are statistically
significant with respect to the canonical ensemble but not with respect to the microcanonical one, while for
other properties (such as the so-called functional complementarity and certain small motifs) the opposite is
true [25, 26]. In certain cases, the nestedness even has z-scores of opposite signs in the two null models and
alternative definitions of nestedness turn out to be negatively correlated in the microcanonical one and
positively correlated in the canonical one [25]. These results provide an extreme example of different
statistical conclusions that can derive from the choice of the null model: with respect to the ensemble with
hard constraints, a structural property is interpreted as underrepresented in the data, while with respect to
the ensemble with soft constraints, the opposite is true (or vice versa). In a different context, EN has been
shown to determine a different expected value for the leading eigenvalue of the adjacency matrix of a graph
in the canonical and microcanonical ensembles [27]. Since eigenvalues of adjacency matrices are used for
many purposes, from the detection of communities to the study of dynamical processes taking place on a
network, the documented difference in the expected eigenvalue can imply different conclusions for many
network properties. In general, EN in the measure sense (which is the notion we adopt here) is one-to-one
connected to EN in the macrostate sense, which states that there must be certain macroscopic quantities that
have different expectation values in the two ensembles [6]. The leading eigenvalue, the nestedness and all
the other quantities mentioned above turn out to be examples of such properties. So, loosely speaking, the
existence of different statistical conclusions implied by the use of canonical and microcanonical null models
with local constraints is virtually guaranteed mathematically.

The finding of strong EN shows that the quantitative differences between the canonical and
microcanonical descriptions of the same system under local constraints are even bigger than previously
encountered in the case of weak EN. These differences are exemplified by equations (37), (38) and (39). A
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‘wrong’ choice of the ensemble can therefore lead to substantial errors in the estimation of the probability
distribution characterizing the ensemble, of the resulting entropy, of the expected values of higher-order
properties that are nonlinear functions of the constraints, etc. Conclusions of statistical analyses can be
highly biased if not formulated through the appropriate null model. At the same time, besides providing
such a clear warning, the findings presented here are also intended to offer a constructive solution. The fact
that it is possible to rigorously quantify the differences between the two ensembles via the explicit
calculation of the relative entropy ratio Rn and its limiting value R∞ implies that one can still make a
convenient choice of the ensemble, while at the same time being able to retrieve the desired results for the
other ensemble via the calculated value of R∞. In other words, besides being a warning signal for strong EN,
R∞ is also a concrete tool allowing researchers to switch more easily between alternative descriptions of the
same system, by compensating for their irreducible differences. The calculations carried out here can
hopefully serve as useful references for future quantitative research in a variety of domains.
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Appendix A. Global constraints

Here we derive the main mathematical expressions for the case of global constraints on our ensembles of
binary and weighted matrices. This corresponds to the case where the constraint �C(G) is a simple scalar
quantity C(G) defined as the total value C(G) ≡ t(G) ≡

∑n
i=1

∑m
j=1 gij. There is only one scalar Lagrange

multiplier θ entering the definition of the Hamiltonian

H(G, θ) = θ t(G) = θ

n∑
i=1

m∑
j=1

gij. (A1)

The above Hamiltonian is the same for both binary and weighted matrices under a global constraint.
However, the calculation of the partition function (hence of all the other properties) is different in the two
cases.

A.1. Binary matrices under a global constraint
Let us consider binary matrices first (gij = 0, 1). The partition function can be calculated as follows:

Z(θ) =
∑
G∈G

e−H(G,θ)

=
∑
G∈G

e−θ
∑n

i=1
∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θgij

=

n∏
i=1

m∏
j=1

∑
gij=0,1

e−θgij

=

n∏
i=1

m∏
j=1

(1 + e−θ)

= (1 + e−θ)mn. (A2)
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This leads to

Pcan(G|θ) =
e−H(G,θ)

Z(θ)

=
e−θ t(G)

(1 + e−θ)mn

=

n∏
i=1

m∏
j=1

e−θgij

1 + e−θ
, (A3)

and to equation (40) in the main text. Notice that equation (A3) reveals that each entry gij of the matrix G is

a Bernoulli-distributed random variable taking the value gij = 1 with probability p(1|θ) = e−θ/(1 + e−θ)

and the value gij = 0 with probability p(0|θ) = 1/(1 + e−θ), i.e.

p(gij|θ) =
e−θgij

1 + e−θ
. (A4)

(the entries of G are therefore i.i.d.). The expected value of gij is

〈gij〉θ ≡
∑

gij=0,1

gijp(gij|θ) =
e−θ

1 + e−θ
, (A5)

while its variance is

Varθ[gij] ≡ 〈g2
ij〉θ − 〈gij〉2

θ =
e−θ

(1 + e−θ)2
. (A6)

The resulting expected value and variance of the constraint t(G) are

〈t〉θ =
n∑

i=1

m∑
j=1

〈gij〉θ = nm
e−θ

1 + e−θ
, (A7)

Varθ[t] =
n∑

i=1

m∑
j=1

Varθ[gij] = nm
e−θ

(1 + e−θ)2
, (A8)

the latter identity following from the fact that, since all the entries of G are mutually independent, the
variance of the constraint t(G) is the sum of all variances.

Now, we have to find the parameter value θ∗ that solves equation (5) or equivalently maximizes the
log-likelihood ln Pcan(G∗|θ). This can be done by setting the expected value 〈t〉θ∗ equal to the desired value
t∗, which leads to

e−θ∗ =
t∗

mn − t∗
, (A9)

and to equation (41) in the main text. Inserting equation (A9) into the expressions for Pcan(G∗|θ) and
Varθ[t] leads to the values of S∗can and Varθ∗[t] given in equations (42) and (47) in the main text. One can
easily confirm that Varθ∗[t] coincides with the only (K = 1) entry of the 1 × 1 covariance matrix Σ∗

obtained through equation (26), i.e.

Σ∗ =
∂2 ln Z(θ)

∂θ2

∣∣∣∣
θ=θ∗

= t∗
(

1 − t∗

mn

)

= Varθ∗[t], (A10)

and, trivially,

det(Σ∗) = t∗
(

1 − t∗

mn

)
. (A11)

The calculation of the microcanonical entropy S∗mic is in this case trivial and given by equation (43) in the
main text. Given the simplicity of this example, it is instructive to show explicitly that the integral formula
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in equation (23), which can be calculated exactly in this case, gives the correct value of Ωt∗ . To do this, we
use equation (A3) to obtain the complex-valued quantity

Pcan(G∗|θ∗ + iψ) =
e−(θ∗+iψ)t∗

[1 + e−(θ∗+iψ)]mn
, (A12)

and use equation (23) to calculate Ωt∗ as

Ωt∗ =
1

2π

∫ π

−π

[1 + e−(θ∗+iψ)]mne(θ∗+iψ)t∗ dψ. (A13)

To calculate the above integral, we change variable from ψ to z ≡ e−(θ∗+iψ), so that
dz = de−(θ∗+iψ) = −izdψ and dψ = idz/z. Then the integral becomes

Ωt∗ =
i

2π

∫ e−(θ∗+iπ)

e−(θ∗−iπ)
(1 + z)mnz−(t∗+1)dz, (A14)

and, using the binomial formula

(1 + x)l =

l∑
k=0

(
l

k

)
xl−k, (A15)

we obtain

Ωt∗ =
i

2π

mn∑
k=1

(mn

k

)∫ e−(θ∗+iπ)

e−(θ∗−iπ)
zmn−k−t∗−1dz. (A16)

Now, each integral in the above sum can be calculated using Cauchy’s residue theorem, from which we
know that the integral is non-zero only when the exponent of z is −1, in which case it equals −2πi. This
selects the only value k = mn − t∗ in the sum, so that

Ωt∗ =
i

2π

(
mn

mn − t∗

)
(−2πi) =

(mn

t∗

)
, (A17)

which coincides with the binomial coefficient used in equation (43).

A.2. Weighted matrices under a global constraint
We now consider the case of weighted matrices (gij = 0, 1, 2, . . . ,+∞) with a global constraint t∗. The
Hamiltonian is still given by equation (A1), while the partition function is now calculated differently as
follows:

Z(θ) =
∑
G∈G

e−H(G,θ)

=
∑
G∈G

e−θ
∑n

i=1
∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θgij

=

n∏
i=1

m∏
j=1

+∞∑
gij=0

e−θgij

=

n∏
i=1

m∏
j=1

1

1 − e−θ

=
1

(1 − e−θ)mn
. (A18)
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The canonical probability is therefore

Pcan(G|θ) =
e−H(G,θ)

Z(θ)

= e−θ t(G)(1 − e−θ)mn

=

n∏
i=1

m∏
j=1

e−θgij(1 − e−θ), (A19)

which leads to equation (48) in the main text. Equation (A19) shows that all the entries of G are i.i.d.
random variables, in this case distributed according to a geometric distribution with success probability e−θ:

p(gij|θ) = e−θgij (1 − e−θ). (A20)

The expected value of gij is now

〈gij〉θ =
+∞∑
gij=0

gijp(gij|θ) =
e−θ

1 − e−θ
, (A21)

and its variance is

Varθ[gij] ≡ 〈g2
ij〉θ − 〈gij〉2

θ =
e−θ

(1 − e−θ)2
, (A22)

(note the change of sign at the denominator with respect to equation (A6)), from which we calculate the
expected value and variance of the constraint t(G) as

〈t〉θ =
n∑

i=1

m∑
j=1

〈gij〉θ = nm
e−θ

1 − e−θ
, (A23)

Varθ[t] =
n∑

i=1

m∑
j=1

Varθ[gij] = nm
e−θ

(1 − e−θ)2
. (A24)

The maximum-likelihood parameter value θ∗ is found by setting the expected value 〈t〉θ∗ equal to t∗,
resulting in

e−θ∗ =
t∗

mn + t∗
, (A25)

(notice again the change of sign with respect to the binary case) and to equation (49) in the main text.
Substituting equation (A25) into equations (A19) and (A24) produces the expressions for S∗can and Varθ∗[t]
shown in equations (50) and (55) in the main text. As for the binary case, one can easily confirm that
Varθ∗[t] coincides with

Σ∗ =
∂2 ln Z(θ)

∂θ2

∣∣∣∣
θ=θ∗

= t∗
(

1 +
t∗

mn

)

= Varθ∗[t], (A26)

so that

det(Σ∗) = t∗
(

1 +
t∗

mn

)
. (A27)

Again, it is instructive to show that the complex integral in equation (23) gives the exact result
corresponding to the microcanonical entropy reported in equation (51). Calculating the quantity

Pcan(G∗|θ∗ + iψ) =
e−(θ∗+iψ)t∗

[1 − e−(θ∗+iψ)]−mn
, (A28)

and inserting it into equation (23) yields

Ωt∗ =
1

2π

∫ π

−π

e(θ∗+iψ)t∗

[1 − e−(θ∗+iψ)]mn
dψ. (A29)
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We first perform the change of variable y ≡ e−(θ∗+iψ), dψ = idy/y and rearrange the integral as

Ωt∗ =
i

2π

∫ e−(θ∗+iπ)

e−(θ∗−iπ)
y−(t∗+1)

(
1

1 − y

)mn

dy

=
i

2π

∫ e−(θ∗+iπ)

e−(θ∗−iπ)
y−(t∗+1)

(
1 +

y

1 − y

)mn

dy. (A30)

Then we perform a second change of variable z ≡ y/(1 − y), dy = dz/(z + 1)2 and apply the binomial
formula in equation (A15) twice to obtain

Ωt∗ =
i

2π

mn∑
k=0

(mn

k

)∫ z+

z−

(
z

z + 1

)−(t∗+1) zk

(z + 1)2
dz

=
i

2π

mn∑
k=0

(mn

k

)∫ z+

z−
zk−t∗−1(z + 1)t∗−1 dz

=
i

2π

mn∑
k=0

(mn

k

) t∗−1∑
h=0

(
t∗ − 1

h

)∫ z+

z−
zk+h−t∗−1 dz,

where we have defined

z± ≡ e−(θ∗±iπ)

1 − e−(θ∗±iπ)
. (A31)

Using again the residue theorem, the only non-zero integral is obtained for h = t∗ − k, which selects the
value

Ωt∗ =
1

2πi

mn∑
k=0

(mn

k

)(
t∗ − 1

k − 1

)
(−2πi)

=

mn∑
k=0

(mn

k

)(
t∗ − 1

k − 1

)

=
mn∑

k=0

(mn

k

)(
t∗ − 1

t∗ − k

)

=

(
t∗ + mn − 1

t∗

)
, (A32)

(where we have used the generalized Vandermonde’s identity). The above calculation retrieves exactly the
negative binomial coefficient used in equation (51).

Appendix B. One-sided local constraints

We now consider the case of one-sided local constraints on ensembles of binary and weighted n × m
matrices. The constraint �C(G) is now an n-dimensional (K = n) vector�r(G) where the entry
ri(G) =

∑m
j=1gij is the ith row sum of the matrix G. Correspondingly, there is an n-dimensional vector �θ of

Lagrange multipliers and the Hamiltonian is

H(G, �θ) = �θ ·�r(G) =
n∑

i=1

θiri(G) =
n∑

i=1

θi

m∑
j=1

gij, (B1)

for both binary and weighted matrices. The calculation of the resulting properties of binary and weighted
ensembles is discussed separately below.

B.1. Binary matrices under one-sided local constraints
In the binary case, the partition function Z(�θ) can be calculated from equation (B1) according to the
following generalization of equation (A2):
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Z(�θ) =
∑
G∈G

e−H(G,�θ)

=
∑
G∈G

e−
∑n

i=1 θi
∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θigij

=
n∏

i=1

m∏
j=1

∑
gij=0,1

e−θigij

=

n∏
i=1

m∏
j=1

(1 + e−θi )

=
n∏

i=1

(1 + e−θi )m. (B2)

The resulting canonical probability is

Pcan(G|�θ) =
e−H(G,�θ)

Z(�θ)

=
e−

�θ·�r(G)∏n
i=1(1 + e−θi )m

=

n∏
i=1

m∏
j=1

e−θigij

1 + e−θi
, (B3)

which leads to equation (64) in the main text. As in the case of binary matrices under a global constraint,
each entry gij of the matrix G is a Bernoulli-distributed random variable. However, while all these entries
are still independent, the parameter of the distribution depends on the row being considered:

p(gij|�θ) =
e−θigij

1 + e−θi
. (B4)

Consequently, equations (A5) and (A6) generalize to

〈gij〉�θ ≡
∑

gij=0,1

gijp(gij|�θ) =
e−θi

1 + e−θi
, (B5)

Var�θ[gij] ≡ 〈g2
ij〉�θ − 〈gij〉2

�θ
=

e−θi

(1 + e−θi )2
. (B6)

We can therefore calculate the expected value of each constraint ri(G) as

〈ri〉�θ =
m∑

j=1

〈gij〉�θ = m
e−θi

1 + e−θi
, i = 1, n. (B7)

Similarly, the variance of ri is

Var�θ[ri] =
m∑

j=1

Var�θ[gij] = m
e−θi

(1 + e−θi )2
, i = 1, n, (B8)

while all covariances between different constraints are zero, because of the independence of distinct entries
of G:

Cov�θ[ri, rj] =
m∑

k=1

m∑
l=1

Cov�θ[gik, gjl] = 0, i �= j. (B9)

We can combine equations (B8) and (B9) as follows:

Cov�θ[ri, rj] = δijm
e−θi

(1 + e−θi )2
, (B10)
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where δij = 1 if i = j and δij = 0 if i �= j.

Now, the parameter value �θ∗ that maximizes the log-likelihood is found by equating the expected value
〈�r〉�θ∗ with the desired value�r∗. Inverting equation (B7), this leads to

e−θ∗i =
r∗i

m − r∗i
i = 1, n, (B11)

or equivalently to equation (65) in the main text. The expression for the canonical entropy S∗can given in
equation (66) in the main text follows from substituting equation (B11) into equation (B3). Similarly, the
expression for the entries of the n × n covariance matrix Σ∗ given in equation (71) in the main text follows
from combining equations (B10) and (B11). Note that equation (71) can also be obtained by differentiating
the logarithm of equation (B2) as prescribed by equation (26):

Σ∗
ij =

∂2 ln Z(�θ)

∂θi∂θj

∣∣∣∣∣
�θ=�θ∗

= δijr
∗
i

(
1 − r∗i

m

)

= Cov�θ∗[ri, rj]. (B12)

These results imply

det(Σ∗) =
n∏

i=1

r∗i

(
1 − r∗i

m

)
. (B13)

The microcanonical entropy S∗mic can be directly calculated as equation (67) in the main text. We can still
confirm that its value is exactly retrieved by using the integral formula in equation (23). From
equation (B3) we obtain

Pcan(G∗|�θ∗ + i�ψ) =
n∏

i=1

e−(θ∗i +iψi)r∗i

[1 + e−(θ∗i +iψi)]m
. (B14)

Using equation (23), we can calculate Ω�r∗ by exploiting again the binomial theorem, a change of variables
(zi ≡ e−(θ∗i +iψi), dzi = −izidψi) and the residue theorem as in equations (A14), (A16) and (A17):

Ω�r∗ =

∫ +�π

−�π

d�ψ

(2π)n

n∏
i=1

[1 + e−(θ∗i +iψi)]m

e−(θ∗i +iψi)r∗i

=
n∏

i=1

∫ +π

−π

dψi

2π

[1 + e−(θ∗i +iψi)]m

e−(θ∗i +iψi)r∗i

=

n∏
i=1

∫ +π

−π

dψi

2π

m∑
k=0

(m

k

)
e−(θ∗i +iψi)(k−r∗i )

=

n∏
i=1

∫ θ∗i +iπ

θ∗i −iπ

dzi

(−2πi)

m∑
k=0

(m

k

)
zi

k−r∗i −1

=

n∏
i=1

(−2πi)

(−2πi)

(
m

r∗i

)

=

n∏
i=1

(
m

r∗i

)
, (B15)

which coincides with equation (67).

B.2. Weighted matrices under one-sided local constraints
In the weighted case, the partition function is given by the following generalization of equation (A18):
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Z(�θ) =
∑
G∈G

e−H(G,�θ)

=
∑
G∈G

e−
∑n

i=1 θi
∑m

j=1 gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−θigij

=

n∏
i=1

m∏
j=1

+∞∑
gij=0

e−θigij

=

n∏
i=1

1

(1 − e−θi )m
. (B16)

The resulting canonical probability is

Pcan(G|�θ) =
e−H(G,�θ)

Z(�θ)

=
e−

�θ·�r(G)∏n
i=1(1 − e−θi )−m

=

n∏
i=1

m∏
j=1

e−θigij

(1 − e−θi )−1
, (B17)

leading to equation (73) in the main text. As in the case of weighted matrices under a global constraint,
each entry gij of the matrix G is an independent and geometrically distributed random variable. On the
other hand, as in the case of binary matrices under local constraints, the parameter of the distribution
depends on the row being considered:

p(gij|�θ) = e−θigij (1 − e−θi ). (B18)

The resulting expected value and variance of gij are given by the following generalizations of
equations (A21) and (A22):

〈gij〉�θ ≡
∑

gij=0,1

gijp(gij|�θ) =
e−θi

1 − e−θi
, (B19)

Var�θ[gij] ≡ 〈g2
ij〉�θ − 〈gij〉2

�θ
=

e−θi

(1 − e−θi )2
. (B20)

The expected value of each constraint ri(G) is therefore

〈ri〉�θ =
m∑

j=1

〈gij〉�θ = m
e−θi

1 − e−θi
, i = 1, n, (B21)

while the covariances between different constraints are

Cov�θ[ri, rj] = δijm
e−θi

(1 − e−θi )2
. (B22)

As usual, note the change of sign at the denominator of equations (B21) and (B22) with respect to the
corresponding equations (B7) and (B10) valid in the binary case.

Using equation (B21), we set 〈�r〉�θ∗ = �r∗ and solve for �θ∗, finding

e−θ∗i =
r∗i

m + r∗i
i = 1, n, (B23)

as the parameter value that maximizes the log-likelihood. From the above expression, we get equation (74)
and, using equation (B17), equation (75) in the main text.
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Similarly, the expression for the entries of the n × n covariance matrix Σ∗ given in equation (71) in the
main text follows from combining equations (B8), (B9) and (B11). Note that equation (71) can also be
obtained by differentiating the logarithm of equation (B2) as prescribed by equation (26):

Σ∗
ij =

∂2 ln Z(�θ)

∂θi∂θj

∣∣∣∣∣
�θ=�θ∗

= δijr
∗
i

(
1 +

r∗i
m

)

= Cov�θ∗[ri, rj]. (B24)

So, in analogy with the binary case,

det(Σ∗) =
n∏

i=1

r∗i

(
1 +

r∗i
m

)
. (B25)

The microcanonical entropy S∗mic can be directly calculated as equation (76) in the main text. We can still
confirm that its value is correctly retrieved by using the integral formula in equation (23). From
equation (B17) we obtain

Pcan(G∗|�θ∗ + i�ψ) =
n∏

i=1

e−(θ∗i +iψi)r∗i

[1 − e−(θ∗i +iψi)]−m
. (B26)

Using equation (23), we can calculate Ω�r∗ by exploiting again the binomial theorem as

Ω�r∗ =

∫ �π

−�π

d�ψ

(2π)n

n∏
i=1

e(β∗i +iψi)(r∗i )

[1 − e−(β∗i +iψi)]m
. (B27)

We can use the change of variables yi ≡ e−(β∗i +iψi), dψi = −idyi/yi and the relation
(1 − yi)−m = (1 + yi

1−yi
)m to calculate Ω�r∗ as

Ω�r∗ =
n∏

i=1

∫ β∗i +iπ

β∗i −iπ

dyi

2πi

(
1 +

yi

1 − yi

)m

y
−r∗i −1
i

=

n∏
i=1

∫ β∗i +iπ

β∗i −iπ

dyi

2πi

m∑
k=0

(m

k

)
y
−r∗i −1
i

(
yi

1 − yi

)k

. (B28)

Using another change of variables zi = yi/(1 − yi), yi = zi/(zi + 1), dyi = dzi/(zi + 1)2, and denoting

u∗
i =

e−(β∗i +iπ)

1−e
−(β∗i +iπ) , we find

Ω�r∗ =

n∏
i=1

∫ u∗i

−u∗i

dzi

2πi

m∑
k=0

(m

k

)(
zi

zi + 1

)−r∗i −1 (zi)k

(zi + 1)2

=

n∏
i=1

∫ u∗i

−u∗i

dzi

2πi

m∑
k=0

(m

k

)
(zi + 1)r∗i −1(zi)

k−r∗i −1

=

n∏
i=1

∫ u∗i

−u∗i

dzi

2πi

m∑
k=0

(m

k

) r∗i −1∑
l=0

(
r∗i − 1

l

)
z

l+k−r∗i −1
i .

Now, according to Cauchy’s residue theorem, only when l + k = r∗i we get a non-zero value. This allows us
to further write

Ω�r∗ =
n∏

i=1

m∑
k=1

(m

k

)(
r∗i − 1

k − 1

)
=

n∏
i=1

(
m + r∗i − 1

r∗i

)
,

which coincides with equation (77) in the main text.

Appendix C. Two-sided local constraints

We now discuss ensembles of binary and weighted n × m matrices with two-sided local constraints. In this
case �C(G) is (n + m)-dimensional (K = n + m) and specified by the two vectors (�r(G),�c(G)), where�r(G) is
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still the n-dimensional vector of row sums of the matrix G (as in the one-sided case) and, additionally,�c(G)
is the m-dimensional vector of column sums of G, with entries cj(G) =

∑n
i=1gij (j = 1, m). The

corresponding Lagrange multipliers take the form (�α, �β) where �α is n-dimensional and coupled to�r(G),
while �β is m-dimensional and coupled to�c(G). The corresponding Hamiltonian is

H(G, �α, �β) =
n∑

i=1

αiri(G) +
m∑

j=1

βjcj(G)

=

n∑
i=1

m∑
j=1

(αi + βj)gij. (C1)

As usual, the binary and weighted cases are discussed separately below.

C.1. Binary matrices under two-sided local constraints
Starting from the Hamiltonian in equation (C1), the partition function of the canonical binary matrix
ensemble can be still calculated exactly as a simple generalization of equation (B2):

Z(�α, �β) =
∑
G∈G

e−H(G,�α,�β)

=
∑
G∈G

e−
∑n

i=1
∑m

j=1 (αi+βj)gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−(αi+βj)gij

=

n∏
i=1

m∏
j=1

∑
gij=0,1

e−(αi+βj)gij

=

n∏
i=1

m∏
j=1

[1 + e−(αi+βj)]. (C2)

The resulting probability is

Pcan(G|�α, �β) =
e−H(G,�α,�β)

Z(�α, �β)

=
e−�α·�r(G)−�β·�c(G)∏n

i=1

∏m
j=1[1 + e−(αi+βj)]

=

n∏
i=1

m∏
j=1

e−(αi+βj)gij

1 + e−(αi+βj)
. (C3)

As in the case of binary matrices under global and one-sided local constraints, each entry gij of the matrix G
is still an independent and Bernoulli-distributed random variable, now controlled by the two parameters αi

and βj. We can write the probability of gij as

p(gij|�α, �β) =
e−(αi+βj)gij

1 + e−(αi+βj)
. (C4)

The expected value of gij is now

〈gij〉�α,�β ≡
∑

gij=0,1

gij p(gij|�α, �β) =
e−(αi+βj)

1 + e−(αi+βj)
, (C5)

and the variance is

Var�α,�β[gij] ≡ 〈g2
ij〉�α,�β − 〈gij〉2

�α,�β

=
e−(αi+βj)

[1 + e−(αi+βj)]2
. (C6)
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The resulting expected values of the constraints are

〈ri〉�α,�β =

m∑
j=1

e−(αi+βj)

1 + e−(αi+βj)
, i = 1, n, (C7)

〈cj〉�α,�β =

n∑
i=1

e−(αi+βj)

1 + e−(αi+βj)
, j = 1, m. (C8)

The unique parameter values (�α∗, �β∗) that maximize the likelihood are found as usual by imposing that the
expected values (〈�r〉�α∗ ,�β∗ , 〈�c〉�α∗ ,�β∗) match the desired values (�r∗,�c∗). Unfortunately, in this case the values

(�α∗, �β∗) cannot be determined analytically as a function of (�r∗,�c∗), but they are defined implicitly by
imposing

(�r∗,�c∗) = (〈�r〉�α∗ ,�β∗ , 〈�c〉�α∗ ,�β∗), (C9)

which leads to equations (104) and (105) in the main text.

C.2. Weighted matrices under two-sided local constraints
In the canonical ensemble of weighted matrices under two-sided local constraints, the partition function is
the following generalization of equation (B16):

Z(�α, �β) =
∑
G∈G

e−H(G,�α,�β)

=
∑
G∈G

e−
∑n

i=1
∑m

j=1 (αi+βj)gij

=
∑
G∈G

n∏
i=1

m∏
j=1

e−
∑n

i=1
∑m

j=1 (αi+βj)gij

=

n∏
i=1

m∏
j=1

+∞∑
gij=0

e−(αi+βj)gij

=
n∏

i=1

m∏
j=1

1

1 − e−(αi+βj)
. (C10)

The resulting canonical probability is

Pcan(G|�α, �β) =
e−H(G,�α,�β)

Z(�α, �β)

=
e−�α·�r(G)−�β·�c(G)∏n

i=1

∏m
j=1[1 − e−(αi+βj)]−1

=

n∏
i=1

m∏
j=1

e−(αi+βj)gij

[1 − e−(αi+βj)]−1
. (C11)

As in the case of weighted matrices under global and one-sided local constraints, each entry gij of the matrix
G is an independent geometrically distributed random variable defined by the probability

p(gij|�α, �β) = e−(αi+βj)gij [1 − e−(αi+βj)], (C12)

which is now controlled by the entry-specific pair of parameters αi,βj. The expected value of gij is

〈gij〉�α,�β ≡
+∞∑
gij=0

gijp(gij|�α, �β) =
e−(αi+βj)

1 − e−(αi+βj)
, (C13)

and the variance is

Var�α,�β[gij] ≡ 〈g2
ij〉�α,�β − 〈gij〉2

�α,�β

=
e−(αi+βj)

[1 − e−(αi+βj)]2
. (C14)
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The expected values of the constraints are

〈ri〉�α,�β =

m∑
j=1

e−(αi+βj)

1 − e−(αi+βj)
, i = 1, n, (C15)

〈cj〉�α,�β =
n∑

i=1

e−(αi+βj)

1 − e−(αi+βj)
, j = 1, m. (C16)

As in the two-sided binary case, the values (�α∗, �β∗) maximizing the likelihood cannot be determined
analytically as a function of the empirical values (�r∗,�c∗), but they are defined implicitly by imposing the
equality

(�r∗,�c∗) = (〈�r〉�α∗ ,�β∗ , 〈�c〉�α∗ ,�β∗), (C17)

between the empirical and the expected values of the constraints. This equality leads to equations (115) and
(116) in the main text.

C.3. Determinant of the covariance matrix for two-sided local constraints
The covariance matrix (Σ∗)± in binary (+) and weighted (−) ensembles of matrices under two-sided local
constraints is an (n + m) × (n + m) matrix. It contains all covariances among the n row sums, all
covariances among the m column sums, and all the covariances between row and column sums. If we order
the constraints by considering first the n row sums�r∗ and then the m column sums�c∗ into the
(n + m)-dimensional vector �C∗ = (�r∗,�c∗), and combine equations (C2) and (C10) into the general partition
function

Z±(�α, �β) =
n∏

i=1

m∏
j=1

[1 ± e−(αi+βj)]±1, (C18)

valid for binary (+) and weighted (−) matrices, we can determine the entries of Σ± by applying the
definition in equation (26). This yields

Σ±
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2 ln Z±(�α, �β)

∂αi∂αj
i, j ∈ [1, n],

∂2 ln Z±(�α, �β)

∂αi∂βj−n
i ∈ [1, n], j ∈ [n + 1, n + m]

∂2 ln Z±(�α, �β)

∂αi−n∂βj
i ∈ [n + 1, n + m], j ∈ [1, n]

∂2 ln Z±(�α, �β)

∂βi−n∂βj−n
i, j ∈ [n + 1, n + m]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cov±
�α,�β

[ri, rj] i, j ∈ [1, n],

Cov±
�α,�β

[ri, cj−n] i ∈ [1, n], j ∈ [n + 1, n + m]

Cov±
�α,�β

[ci−n, rj] i ∈ [n + 1, n + m], j ∈ [1, n]

Cov±
�α,�β

[ci−n, cj−n] i, j ∈ [n + 1, n + m],

and, following equation (25),
(Σ∗

ij)
± = (Σij)

±∣∣
(�α,�β)=(�α∗ ,�β∗)

. (C19)

It is easy to see that (Σ∗)± is a combination of four blocks

(Σ∗)± =

[
(A∗)± (B∗)±

(C∗)± (D∗)±

]
, (C20)

where each block has entries as described below. What determines these entries is the elements gij of the
(binary or weighted) adjacency matrix G that different constraints have in common. The covariance
between constraints that have no gij in common is zero (as such constraints are independent), while the
covariance between constraints that share a term gij receives from that term a contribution equal to

Var±
�α∗ ,�β∗

[gij] =
e−(α∗

i +β∗j )

[1 ± e−(α∗
i +β∗j )]2

, (C21)
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obtained combining equations (C6) and (C14).

• Block (A∗)± is the n × n covariance matrix between the row sums, with entries

(A∗
ij)

± = Cov±
�α∗ ,�β∗

[ri, rj]

=
∂2 ln Z±(�α, �β)

∂αi∂αj

∣∣∣∣∣
(�α,�β)=(�α∗ ,�β∗)

= δij

m∑
k=1

e−(α∗
i +β∗k )[

1 ± e−(α∗
i +β∗k )

]2 . (C22)

Note that (A∗)± is a diagonal matrix, since different row sums are all independent.

• Block (B∗)± is the n × m matrix of covariances between row sums and column sums, with entries

(B∗
ij)

± = Cov±
�α∗ ,�β∗

[ri, cj]

=
∂2 ln Z±(�α, �β)

∂αi∂βj

∣∣∣∣∣
(�α,�β)=(�α∗ ,�β∗)

=
e−(α∗

i +β∗j )

[
1 ± e−(α∗

i +β∗j )
]2 , (C23)

where we now see that the matrix is not diagonal, as reach row sum ri shares the entry gij with the
column sum cj.

• Similarly, block (C∗)± is the m × n matrix of covariances between column sums and row sums, and is
therefore the transpose of (B∗)±, as follows also from the fact that (Σ∗)± must be symmetric. Indeed
its entries are

(C∗
ij)

± = Cov±
�α∗ ,�β∗

[ci, rj]

=
∂2 ln Z±(�α, �β)

∂αj∂βi

∣∣∣∣∣
(�α,�β)=(�α∗ ,�β∗)

=
e−(α∗

j +β∗i )

[
1 ± e−(α∗

j +β∗i )
]2 . (C24)

• Finally, block (D∗)± is the m × m matrix of covariances among the column sums, with entries

(D∗
ij)

± = Cov±
�α∗ ,�β∗

[ci, cj]

=
∂2 ln Z±(�α, �β)

∂βi∂βj

∣∣∣∣∣
(�α,�β)=(�α∗ ,�β∗)

= δij

n∑
k=1

e−(α∗
k+β∗j )

[
1 ± e−(α∗

k+β∗j )
]2 . (C25)

Like (A∗)±, (D∗)± is a diagonal matrix, since different column sums are all independent.

Combining equations (C20), (C22), (C23), (C24) and (C25) proves equation (127) in the main text.
Now, in order to calculate the scaling of the determinant of (Σ∗)±, we follow the definition by Leibniz as

det[(Σ∗)±] =
∑

σ∈Zn+m

sgn(σ)
n+m∏
l=1

(Σ∗
l,σl

)±, (C26)

where σ is a permutation of the first n + m integers that exchanges (without replacement) each of these
integers i with another such integer j = σi, Zn+m is the set of all such (n + m)! permutations, and the
symbol sgn(σ) represents the parity of σ: sgn(σ) = +1 when σ is an even permutation (i.e. obtained by
combining an even number of pairwise exchanges of the type j = σi and i = σj) and sgn(σ) = −1 when σ
is an odd permutation (i.e. obtained by combining an odd number of pairwise exchanges). Let us call σ0 the
identity permutation, i.e. the one such that σ0

i = i for all i, and Z0
n+m ≡ Zn+m\σ0 the set of all other
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Figure 4. Illustration of the permutations producing the non-zero contributions to the determinant of the covariance matrix, as
described in the text.

permutations. Clearly, sgn(σ0) = +1 because σ0 involves an even number (zero) of exchanges. We can
therefore rewrite equation (C26) as

det[(Σ∗)±] = Δ0 +Δ′, (C27)

where

Δ0 =
n+m∏
l=1

(Σ∗
l,σ0

l
)± =

n∏
i=1

(A∗
ii)

±
m∏

j=1

(D∗
jj)

±, (C28)

is the product of the diagonal entries of (Σ∗)± and

Δ′ =
∑

σ∈Z0
n+m

sgn(σ)
n+m∏
l=1

(Σ∗
l,σl

)±. (C29)

We are going to show that Δ′ is at most of the same order of Δ0. Setting cn = 1/n in the sparse regime (for
which we recall that m = O(n) necessarily) and cn = 1 in the dense regime (for which m can be either finite
or O(n)), we note that each entry of the blocks (B∗)± and (C∗)± is of order O(cn), while each of the
diagonal entries of block (A∗)± is of order O(cnm) and each of the diagonal entries of block (D∗)± is of
order O(cnn). In general, the order of Δ0 is therefore

Δ0 = O ((cnn)m(cnm)n) , (C30)

as clear from equation (C28).
To this end, we note that each permutation σ appearing in equation (C29) can be expressed as a

combination of a certain number (say a > 0) of exchanges of pairs of the first n + m integers. It is easy to
see that all the

( n
2

)
exchanges of pairs of the first n integers give a zero contribution to Δ

′
, because they lead

to terms of the type (Σ∗
i,j)

± = 0 where i, j ∈ [0, n] with i �= j (combination of exchanges that lead again to
i = j are such that j = σi = i and therefore do not lead to new permutations: they are already accounted for
in permutations with lower a). Similarly, all the

(m
2

)
exchanges of pairs of the next m integers give a zero

contribution to Δ′, because they lead to terms of the type (Σ∗
i,j)

± = 0 where i, j ∈ [n + 1, n + m] with i �= j.
Therefore the only exchanges leading to nonzero contributions to Δ′ are the nm exchanges across the first n
integers and the next m integers, i.e. those that lead to terms (Σ∗

i,j)
± > 0 where i ∈ [0, n] and

j ∈ [n + 1, n + m] or j ∈ [0, n] and i ∈ [n + 1, n + m] in equation (C29). Each of these nontrivial
contributing permutations involves a (unrepeated) exchanges of integers, where a ∈ [1, nm]. Compared
with the identity σ0, each of these permutations replaces a of the first n diagonal entries and a of the next m
diagonal entries of (Σ∗)± appearing in equation (C28) with a number 2a of non-zero off-diagonal entries
in blocks (B∗)± and (C∗)± (see figure 4).

Each such permutation therefore gives a contribution of order (cnn)m−a(cnm)n−a to the summation in
equation (C29). Individually, each such contribution is subleading with respect to the term Δ0. However,
collectively all the contributions involving the same number a of exchanges contribute a term of order
Ea(cnn)m−a(cnm)n−a where Ea is the number of unrepeated exchanges of a pairs. The order of Ea is given by
the number of distinct choices of a exchanges out of the nm possible ones, which is

( nm
a

)
. This estimate

does not control for the fact that, for each a, some of the exchanges reduce to simpler permutations already
accounted for by smaller values of a, however the leading order is correct. Since nm is large, we can apply
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Stirling’s approximation to (nm)! and estimate the order of Ea as

Ea = O
((nm

a

))
= O

(
(nm)a

a!

)
, (C31)

as in equation (85). Therefore all the permutations realized by a exchanges collectively give a contribution
of order

Ea(cnn)m−a(cnm)n−a = O

(
(cnn)m(cnm)n

a!

)
, (C32)

and sign (−1)a to the sum in equation (C29), so Δ
′

can be rewritten as a sum over a (with a = 1, nm) of
terms of alternating sign. Qualitatively, and with an abuse of notation, the order of the entire sum defining
det[(Σ∗)±] in equation (C26) is (except for accidental cancellations due to particular combinations of
values of the entries of (Σ∗)±)

O(det[(Σ∗)±]) =
nm∑

a=1

O

(
(−1)a(cnn)m(cnm)n

a!

)

= O
(
(cnn)m(cnm)ne−1

)
= O ((cnn)m(cnm)n) . (C33)

We therefore see that the order of Δ′ does not exceed that of Δ0, so the leading order of det[(Σ∗)±] is

det[(Σ∗)±] = O(Δ0) = O ((cnn)m(cnm)n) . (C34)

In other words, the off-diagonal terms of (Σ∗)± do not alter the order obtained by multiplying the diagonal
terms. For finite m, we therefore have

α±
n = ln

√
det

[
2π(Σ∗)±

]
= O (m ln(cnn) + n ln(cnm)) . (C35)

In the sparse case where cn = 1/n and m = O(n), we have

α±
n = O (n) , (C36)

while in the dense case with cn = 1 and m = O(n) we have

α±
n = O (n ln n) , (C37)

and finally in the dense case with cn = 1 and finite m we have

α±
n = O (n) , (C38)

confirming the same scalings for the relative entropy obtained in equations (86), (87) and (88) for the
one-sided case.
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