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ABSTRACT

Developing novel targeted anticancer therapies is a major goal of current research. The 
use of poly (ADP-ribose) polymerase (PARP) inhibitors in patients with homologous 
recombination-deficient tumours provides one of the best examples of a targeted therapy 
that has been successfully translated into the clinic. The success of this approach has so 
far led to the approval of four different PARP inhibitors for the treatment of several types of 
cancers, and a total of seven different compounds are currently under clinical investigation 
for various indications. Clinical trials have demonstrated promising response rates among 
patients receiving PARP inhibitors, although the majority will inevitably develop resistance. 
Preclinical and clinical data have revealed multiple mechanisms of resistance and current 
efforts are focused on developing strategies to address this challenge. In this Review, we 
summarize the diverse processes underlying resistance to PARP inhibitors and discuss 
potential strategies that might overcome these mechanisms, such as combinations with 
chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP 
inhibitors or suppressing genomic instability. 
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INTRODUCTION

Targeted killing of cancer cells while sparing surrounding nonmalignant tissues is a major goal 
of current treatment strategies. In 2005, two landmark studies demonstrated that inhibition 
of poly (ADP-ribose) polymerase 1 (PARP1) activity is specifically cytotoxic to cells lacking 
functional forms of the tumour suppressors BRCA1 or BRCA21,2. This finding demonstrates 
that both PARP1 and BRCA1/2 are crucial for the efficient repair of DNA damage.

PARP1 is a nuclear enzyme that regulates multiple cellular processes through PARylation, 
including DNA damage signalling, chromatin remodelling, transcription, stabilization of 
replication forks, sensing of unligated Okazaki fragments during replication, inflammation and 
metabolism3–5. PARP1 has a crucial role in the timely and accurate repair of DNA damage. 
Upon DNA damage, PARP1 is rapidly recruited to single-strand breaks (SSBs) and double-
strand breaks (DSBs), where, upon binding single-stranded DNA, it PARylates itself and other 
proteins resulting in the recruitment of downstream DNA repair factors5 (Box 1). BRCA1 and 
BRCA2 are then recruited further downstream to regulate one of the two major pathways for 
DSB repair during the S and G2 phases of the cell cycle, homologous recombination (HR). 
Unlike the other DSB repair pathways, HR repair is largely error free. BRCA1 is required for 
initiation of HR by promoting end-resection of the DSB and then acts further downstream 
together with BRCA2 and PALB2 to stimulate the recruitment of RAD51 to the resected single 
DNA strand6. HR then enables accurate repair of the DNA lesion using the newly replicated 
sister chromatid as a template7. 

In addition to their role in HR, BRCA1 and BRCA2 are also crucial during S phase of 
the cell cycle, in which they protect stalled replication forks from degradation by nucleases, 
such as MRE118,9 (Box 2). As a consequence of the above-mentioned roles of BRCA1 
and BRCA2, heterozygous germline mutations in either of these genes confer a strong 
predisposition to breast10, ovarian11, prostate12–14 and pancreatic cancers15, which arise 
through loss of the remaining wild-type allele and are associated display with high levels 
of genomic instability owing to loss of HR. These HR-deficient BRCA1/2-mutant tumours 
are also dependent on compensatory DNA repair pathways. Pharmacological inhibition of 
key components of these pathways, such as PARP1, leads to DNA damage that, in the 
absence of BRCA1/2, triggers critical levels of genomic instability, mitotic catastrophe and 
cell death, ultimately resulting in a strong synthetic lethal relationship between BRCA1/2 
and PARP16. BRCA1/2-deficient tumours often also have a pronounced level of sensitivity 
to other DNA-damaging agents, including platinum-based chemotherapies, topoisomerase 
(TOP) inhibitors and bifunctional alkylators, which likely generate classes of DNA lesions that 
are lethal to cells with deficient BRCA1/2 function17–19.

The interaction between BRCA1/2 and PARP1 is the best studied synthetic lethal 
relationship to date and has been rapidly translated to the clinic through the development 
of small-molecule inhibitors of PARP enzymes. To date, several PARP inhibitors targeting 
the catalytic centre of the enzyme have been developed and approved for various clinical 
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indications31, while numerous clinical trials that could further expand their use are currently 
ongoing. However, as also experienced with many other anticancer therapeutics, despite 
initial and often dramatic responses, patients receiving PARP inhibitors often ultimately 
develop treatment resistance. Therefore, the field is currently striving towards a better 
understanding of resistance to these agents and possible methods of overcoming this effect. 
In this Review, we summarize the various mechanisms of resistance to PARP inhibitors that 
have been reported and discuss several approaches that could be used to overcome or 
delay acquired resistance to these agents.

PARP

XRCC1

XRCC1

PARP

XRCC1

XRCC1

SSB

PARP

NAD+

NAM

PAR

Box 1 | PARP enzymes and PARylation. Poly (ADP-ribose) polymerase (PARP) 1 is the most abundant 
of a 17-member family of enzymes that share a common ADP-ribosyltransferase motif. By hydrolysing 
nicotinamide adenine dinucleotide (NAD+), PARP1 post-translationally modifies itself and/or other proteins 
with negatively charged poly (ADP-ribose) (PAR) moieties, a process known as PARylation20. Following DNA 
damage, PARP1 is rapidly recruited to DNA single-stranded DNA breaks, where it initiates a series of PARylation 
events, serving as a cellular sensor of DNA breaks and as a platform for the recruitment of downstream repair 
factors. In this process, PARP1 also autoPARylates, promoting its release from DNA21. In addition to PARP1, 
PARP2 and PARP3 are also activated by binding to DNA breaks22–26. PARP1 is responsible for more than 80% 
of PAR synthesis, while PARP2 accounts for the remainder22,23. Unlike PARP1 and PARP2, PARP3 modifies 
proteins primarily with mono (ADP-ribose)24,25. PARylation is a highly dynamic and reversible modification as 
its rapid turnover is mediated by PAR glycohydrolase (PARG), which degrades PAR20,21. ADP-ribosylhydrolase 
3 (ARH3) is another PAR-degrading enzyme27,28. PARG has both endoglycosidase and exoglycosidase 
activities, while ARH3 seems to exert only exoglycosidase activity27,29. The eviction of PARP1 from sites of DNA 
damage is additionally regulated by the E3 ubiquitin ligase CHFR, which has been proposed to ubiquitinate 
the PARylated form of PARP1, resulting in PARP1 targeting for proteasomal degradation30. The removal of 
PARP1 from DNA is crucial for successful DNA repair and to prevent the collapse of replication forks owing to 
PARP1 trapping. Further studies attempting to understand which factors mediate the removal of PARylated 
PARP1 from DNA will be vital for optimizing the efficacy of PARP inhibitors and to uncover additional genetic 
vulnerabilities that could be exploited therapeutically. NAM, nicotinamide; SSB, single-strand break; XRCC1, 
X-Ray repair cross complementing 1.
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Box 2 | BRCA1/2 – similar names, different functions. BRCA1 and BRCA2 do not share homology and, 
although acting via a common pathway, also have several differing additional functions. Both factors are 
involved in homologous recombination (HR) and prevent replication-associated DNA damage, although BRCA1 
is also known to regulate cell-cycle checkpoint activation as well as transcription32. BRCA1 and BRCA2 act 
at different levels during HR, resulting in functionally distinct mechanisms of resistance to PARP inhibitors. 
Resistance to PARP inhibitors via restoration of replication fork protection is observed in both BRCA1-deficient 
and BRCA2-deficient tumours, whereas reactivation of HR owing to loss of 53BP1 and its downstream factors 
is only reported in BRCA1-deficient tumours. The mutational signatures of BRCA1-deficient tumours and 
BRCA2-deficient tumours feature notable differences10. Small tandem duplications (<10 kb) are exclusively 
found in BRCA1-mutated tumours, although large deletions (beyond 100kb) are shared between tumours 
harbouring mutations in BRCA1 or BRCA2, thus further emphasizing the different implications of loss of 
BRCA1 versus BRCA2 function for DNA repair. BRCA1-deficient tumours and BRCA2-deficient tumours also 
differ on a pathological level. BRCA1-deficient tumours are usually of a basal-like or triple-negative subtype, 
while BRCA2-mutated cancers are not biased towards a specific subtype33. PALB2 has been reported to 
interact with BRCA2 and is required for its recruitment and DNA strand invasion during HR34. In line with 
its biological function, PALB2 mutations have been shown to confer an increased risk of developing breast 
cancer35. DSB, double-strand break; MRE11, meiotic recombination 11; MRN, MRE11–RAD50–NBS1 
complex; PALB2, partner and localizer of BRCA2; RAD51, RAD51 recombinase; RPA1, replication protein A1.

TARGETING PARP IN CANCER

Mechanism of action 
Four small-molecule PARP inhibitors are currently approved for clinical use (olaparib, 
rucaparib, niraparib and talazoparib) and a further three are being tested in phase III trials 
(veliparib, pamiparib and fluzoparib). In-depth discussions of these trials are provided 
elsewhere36–38. PARP inhibitors were thought to act by preventing the repair of SSBs, 
which accumulate during S phase of the cell cycle and pose a threat to replication fork 
progression1,2. However, genetic depletion or inhibition of PARP1 was soon discovered to 
not affect the number of SSBs occurring within a cell39,40. Additionally, depletion of XRCC1, 
a factor interacting with PARP1 during base-excision repair, failed to reveal any synthetic 
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lethal relationship with BRCA2 deficiency41. This led to the hypothesis that the antitumour 
activity of PARP inhibitors can be explained by trapping of PARP1 at DNA lesions and the 
formation of so-called DNA–protein crosslinks. These crosslinks then trigger the collapse 
of replication forks that encounter trapped PARP1, resulting in the accumulation of DSBs 
during S phase of the cell cycle. HR-deficient tumour cells are dependent on BRCA1/2-
mediated repair to resolve DSBs in an error-free way; therefore, PARP inhibitors can induce 
DNA lesions that are lethal to such cells1,2 (Fig. 1).

Replication fork 
about to encounter 
a SSB

SSB repair

Unrepaired SSB

Fork collapse

Chromosomal
rearrangements

Trapped PARP1

+ PARP
inhibitor

Cell survival

Cell survivalHR-mediated repair

EJ-mediated repair Cell death

BRCA1

PARP
BRCA2

BRCA1 BRCA2PARP

PARP

Figure 1 | PARP inhibitors and their mechanism of action. Poly (ADP-ribose) polymerase (PARP) 
inhibitors were initially thought to inhibit PARylation and thereby cause cytotoxicity; however, the 
main cause of tumour cell death was subsequently found to be trapping of PARP1 enzyme at DNA 
lesions. Single-strand breaks caused by DNA damage are faithfully repaired in the presence of PARP1; 
however, when trapped, PARP1 enzymes can cause a threat to replication forks during S-phase of 
the cell cycle, ultimately leading to collapse of the replication fork, resulting in double-strand breaks. In 
BRCA-proficient cells, homologous recombination (HR) enables the error-free repair of such breaks. By 
contrast, BRCA1/2-deficient cells are HR-deficient and are therefore reliant upon error-prone DNA end 
joining pathways such as classical nonhomologous end joining or alternative end joining to resolve the 
double strand breaks caused by replication fork collapse, triggering the accumulation of chromosomal 
aberrations and cell death by mitotic catastrophe.

The PARP1 trapping theory is currently supported by data from numerous studies. First, 
functional PARylation has been shown to be required for the release of PARP1 from DNA, 
indicating that trapped DNA–PARP complexes are indeed formed42. Second, the various 
PARP inhibitors have different levels of cytotoxicity, despite a generally similar capacity to 
inhibit the catalytic activity of PARP143 (Table 1). As reported by Murai et al.44, an apparent 
correlation exists between the relative ability of these compounds to trap PARP1 onto DNA 
and their cytotoxicity. The PARP inhibitor with the greatest PARP-trapping ability, talazoparib, 
is approximately 100 times more potent in trapping PARP1 than niraparib, which in turn is 
able to trap PARP1 more potently than olaparib and rucaparib43,45. Conversely, veliparib 
appears to have a limited ability to trap PARP1, despite its ability to inhibit PARylation, 
and fails to elicit the same level of synthetic lethality in preclinical models, compared with 
more effective PARP1 trappers43,45,46. PARP inhibitors not only differ in their ability to trap 
PARP1; they have also been shown to have differing allosteric effects. Release of PARP1 
from the DNA is prevented by talazoparib and olaparib, but promoted by rucaparib, 
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niraparib and veliparib, which might further explain their differing in vitro potency47. As a 
result, the maximum-tolerated dose of PARP inhibitors decreases with increasing levels 
of PARP-trapping activity, and more potent PARP trappers often have to be administered 
at lower doses in the clinic48–50. Conversely, the main adverse effects observed in patients 
receiving these various agents (nausea, vomiting, fatigue, as well as anaemia) seem to 
largely overlap51.

Data from the past few years suggest that PARP inhibitors might have a broader effect on 
cellular processes than previously anticipated. For example, PARP inhibitor-induced DNA–
protein crosslinks have been found to occur not only in DNA lesions, but also at ssDNA 
during DNA replication and at genome-embedded ribonucleotides4,52. Additionally, cells that 
enter mitosis after sustained PARP inhibitor-induced damage during S phase often contain 
mitotic defects such as chromatin bridges and lagging chromosomes, which ultimately lead 
to cell death53. Data published in 2018 suggest that treatment with high doses of PARP 
inhibitors triggers an acceleration of replication fork elongation, which reduces the fidelity of 
DNA polymerases as well as promoting activation of the DNA damage response54. However, 
more research is needed to better understand how these novel mechanisms add to the 
cytotoxicity of PARP inhibitors, and whether their contribution is dependent on BRCA1/2-
deficiencies. The broad range of DNA substrates and the various processes that PARP 
inhibitors are thought to target imply that PARP inhibitors might also reduce the survival 
of BRCA1/2-wild-type cells as well as other DNA repair-deficient cell lines, which is the 
rationale of current clinical trials testing PARP inhibitors in patients with cancers other than 
HR-deficient breast and ovarian cancers.

Clinically approved PARP inhibitors
In 2014, the first PARP inhibitor, olaparib, was approved for the treatment of women with 
BRCA1/2-mutated metastatic ovarian cancer who have received three or more prior lines of 
chemotherapy (Supplementary table 1)68,69; and for the maintenance treatment of women 
with BRCA1/2-mutated ovarian cancers who are in complete or partial remission after 
platinum-based chemotherapy70. In 2016, a second PARP inhibitor, rucaparib, was authorized 
for the treatment of women with advanced-stage ovarian cancers harbouring deleterious 
BRCA1/2 mutations who have received two or more prior lines of chemotherapy71–73. In 
2019, niraparib was approved for the treatment of patients with HR-deficient advanced-
stage ovarian cancer who have received three or more prior chemotherapy regimens74,75.

A retrospective analysis of the data from the clinical trials leading to the approval of 
olaparib in 2014 demonstrated a progression-free survival (PFS) benefit even for patients 
with BRCA1/2-wild-type ovarian cancer, suggesting that some patients with BRCA1/2-
wild-type ovarian cancer might benefit from PARPi maintenance therapy76. Within three 
years, phase III trials testing either olaparib76,77, niraparib78 or rucaparib79,80 demonstrated 
statistically significant improvements in the PFS of women with ovarian cancer harbouring 
either mutated or wild-type BRCA1/2. These observations led to the approval of these 
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three PARP inhibitors as maintenance therapies for patients with recurrent ovarian cancer, 
regardless of BRCA1/2-mutation status. This experience suggests that a subset of 
BRCA1/2-proficient cancers might nonetheless also harbour clinically relevant HR defects, 
either owing to mutations in other HR-related genes (such as RAD51 paralogues) or other 
mechanisms. 

PARP inhibitors have also been approved as first-line systemic therapies for women 
with ovarian cancer. In 2018, results from phase III trials demonstrated that maintenance 
therapy with olaparib provided a substantial PFS benefit for women with newly diagnosed 
BRCA1/2-mutant advanced-stage ovarian cancer, reducing the risk of disease progression 
or death by 70% compared with placebo81. This extension of PFS led to the approval of 
olaparib as a first-line maintenance therapy for women with BRCA1/2-mutated advanced-
stage ovarian cancer81. In 2020, niraparib was approved for first-line maintenance therapy 
in patients with advanced-stage, platinum-sensitive ovarian cancer, regardless of BRCA1/2 
status82.

Data from the OlympiAD trial led to the 2018 approval of olaparib as the first PARP 
inhibitor indicated for the treatment of patients with metastatic HER2-negative, BRCA1/2-
mutant breast cancer who had previously received chemotherapy83. This decision was 
soon followed by the approval of talazoparib for similar indications84. In 2019, olaparib also 
became the first PARP inhibitor to be approved for the maintenance treatment of patients 
with BRCA1/2-mutated metastatic pancreatic adenocarcinoma85. In 2020, the use of PARP 
inhibitors was further expanded to include men with prostate cancer, with the approval 
of olaparib for patients with metastatic, castration-resistant prostate cancers (CRPC) 
harbouring mutations in HR-related genes after disease progression on enzalutamide, or 
abiraterone86. This approval is the first to permit the use of olaparib in patients with tumours 
harbouring mutations in genes other than BRCA1/2. Whether olaparib has any substantial 
efficacy in such tumours remains unclear due to the fact that PFS analysis in this study was 
performed in subgroups containing mutations in 15 DNA repair genes including BRCA1 and 
BRCA2. This makes it difficult to determine the contribution of mutations in individual genes 
to the observed PFS benefit. Compared to patients with BRCA1/2 mutations, patients 
with mutations in ATM and other DDR genes showed little PFS benefit from olaparib86,87. 
Following the 2020 approval of olaparib, rucaparib received accelerated approval for the 
treatment of men with BRCA1/2-mutant metastatic CRPC who have previously received 
androgen receptor-directed therapy and taxane-based chemotherapy88. 

Veliparib does not yet have an approved label and its use is being investigated mostly in 
combination with chemotherapy or targeted therapies in a range of solid tumours (such as 
NCT02032277, NCT02152982, NCT02163694, NCT02264990 and NCT02470585), likely 
owing to its reduced ability to trap PARP1 and, consequently, limited synthetic lethality 
and limited single-agent activity. The PARP inhibitors pamiparib and fluzoparib have been 
developed over the past few years and it remains to be determined whether they have 
advantages over currently approved agents. Pamiparib has shown a favourable safety profile 
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and preliminary antitumour activity in phase I testing89,90, resulting in the initiation of a phase 
III trial with pamiparib versus placebo as maintenance therapy for women with platinum-
sensitive advanced-stage ovarian cancer (NCT03519230). A phase III trial exploring the 
use of pamiparib in patients with inoperable locally advanced or metastatic gastric cancer 
with a previous response to platinum-based first-line chemotherapy has also been initiated 
(NCT03427814).

Data on the efficacy of fluzoparib remain limited, although preclinical data indicate 
a favourable safety profile and robust in vivo antitumour activity, with similar potency to 
that of olaparib67. Phase III studies investigating the use of fluzoparib as maintenance 
therapy in patients with platinum-sensitive recurrent ovarian cancer (NCT03863860) and 
as maintenance therapy in patients with BRCA1/2 or PALB2-mutated pancreatic cancer 
that has not progressed on first-line platinum-based chemotherapy (NCT04300114) are 
currently ongoing.

PFS is currently the most widely used primary outcome in clinical trials testing PARP 
inhibitors. Since most studies have been initiated within the past few years, overall survival 
(OS) data remains limited. OS data have been published for olaparib in HER2-negative breast 
cancer and pancreatic cancer patients, but the results are mixed and the OS data from both 
studies might be underpowered since OS was not the primary end point84,86. In an analysis 
of OS data from a phase II trial, patients with recurrent platinum-sensitive advanced-stage 
BRCA-mutated ovarian cancer receiving olaparib maintenance monotherapy after platinum-
based chemotherapy have both improved PFS and OS outcomes, although the OS benefit 
(29.8 months versus 27.8 months with placebo) did not reach statistical significance91. In 
November 2020, new data from the SOLO1 trial showed that maintenance treatment with 
olaparib in women with newly diagnosed advanced platinum-sensitive BRCA1/2-mutant 
ovarian cancer extended the median PFS by 42 months in comparison to placebo92. 
Strikingly, in patients with complete response at baseline, the risk of disease recurrence 
or death was reduced by 63%. Although OS data are not yet available in this setting, the 
significant increase in PFS may translate in an OS benefit. In March 2021, a preplanned 
OS analysis on the phase III SOLO2 trial demonstrated that maintenance treatment with 
olaparib extends the median OS of patients with relapsed platinum-sensitive advanced-
stage BRCA1/2-mutant ovarian cancer by 12.9 months in comparison to placebo93. 
Importantly, this is the first report of improved OS with PARP inhibitors used as maintenance 
therapy. Nonetheless, OS benefit remains to be determined for other PARP inhibitors and 
for indications other than platinum-sensitive BRCA1/2-mutant ovarian cancer. Moreover, 
while emerging data show that PARP inhibitors delay disease recurrence and prolong 
patient survival, most patients receiving PARP inhibitors ultimately will eventually experience 
disease progression, thus indicating a need to better understand mechanisms of resistance 
and how to delay or overcome resistance. 
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Beyond BRCA1/2 mutations 
The benefits of PARP inhibitors seem to be greatest in patients with germline and/or somatic 
BRCA1/2 mutations, although data from several clinical studies suggest that PARP inhibitors 
might also provide benefit for patients lacking these mutations, albeit to a lesser extent78,80. 
For example, a phase III trial of maintenance rucaparib in women with recurrent ovarian 
cancer with a response to platinum-based chemotherapy found an increase in median 
PFS from 5.4 months to 16.6 months in patients with BRCA1/2-deficient disease, while 
less pronounced but statistically significant effects were observed for those with BRCA1/2-
wild-type but HR-deficient tumours (13.6 months) and the entire cohort (10.8 months)80. 
In line with these observations, several other trials have reported a statistically significant 
improvement in PFS in patients with BRCA1/2-wild-type ovarian cancers82,94,95, and as a 
consequence, niraparib maintenance therapy was approved by the FDA for women with 
advanced-stage ovarian cancer regardless of HR status in April 2020.

These observations suggest that BRCA1/2 mutations do not entirely account for the 
benefits derived from PARP inhibitors. Indeed, preclinical data have long suggested that 
deficiencies in other HR genes might also confer sensitivity to PARP inhibitors96. Several 
studies involving patients with ovarian72,97 and prostate98,99 cancers have demonstrated 
that those with BRCA1/2-wild-type tumours harbouring deleterious variants in other DNA 
repair genes, such as PALB2, various RAD51 homologues, ATM, CHEK2, CDK12, FANCA, 
RAD54L and BRIP1 might benefit from PARP inhibitors. Notably, data from an increasing 
number of studies indicate that mutations in PALB2, a factor acting together with BRCA1 
and BRCA2 during HR (Box 2), are a strong indicator of sensitivity to PARP inhibitors35,100,101 
and several others are currently ongoing (NCT02401347 and NCT03330847). Mutations in 
other core HR-related genes, such as RAD51 paralogues, also likely confer sensitivity to 
PARP inhibitors102. It remains unclear whether mutations in other DNA damage response 
(DDR) related genes, such as ATM and CHEK2, impart a clinically relevant sensitivity to 
PARP inhibitors, and this possibility is currently being investigated in several ongoing clinical 
trials100,103.

Apart from key DNA repair factors, mutations in chromatin regulators, such as ARID1A104 and 
BAP1105,106, have also been suggested to result in increased sensitivity to PARP inhibitors 
in vitro. Furthermore, indirect downregulation of HR-related proteins owing to mutations 
in genes involved in the Krebs cycle, such as IDH1/2, FH and succinate dehydrogenases, 
are reported to result in downregulation of HR-related proteins and increased sensitivity to 
PARP inhibitors in preclinical models107,108. Notably, certain cancers that lack mutations in 
HR-related genes (such as small-cell lung cancers) have demonstrated some sensitivity to 
PARP inhibitors109,110, possibly owing to increased levels of replication stress arising from 
RB1 mutations. Moving beyond a focus on mutations in BRCA1/2 and on deficient HR 
repair and establishing a rationale for broadened use of PARP inhibitors for a wider range 
of cancers will therefore be important. Several diagnostic tools have been developed to 
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identify HR-deficient tumours irrespective of BRCA1/2 mutation status, such as assays 
designed to determine RAD51 status or assessments of mutational signatures and genomic 
instability associated with HR-deficiency, which might aid in identifying novel groups that 
derive benefit from PARP inhibitors111. However, differentiating between the general effects of 
PARP trapping — which might not provide a greater therapeutic window than conventional 
chemotherapies — from cancer-specific vulnerabilities to PARP inhibitors will be crucial.

RESISTANCE TO PARP INHIBITION

PARP inhibitors frequently elicit a good initial response, although most patients develop 
resistance to these agents, resulting in disease relapse. Acquired resistance to PARP 
inhibitors can develop via three general mechanisms: drug target-related effects, such as 
upregulation of drug efflux pumps or mutations in PARP or functionally related proteins; 
restoration of HR, owing to restoration of BRCA1/2 function; or loss of DNA end protection 
and/or restoration of replication fork stability (Fig. 2). 

Upregulation of drug efflux pumps
Upregulation of the drug efflux transporter ABCB1, also known as P-glycoprotein, was one 
of the first mechanisms proposed to trigger resistance to PARP inhibitors. ABCB1 belongs 
to a family of ATP-binding cassette (ABC) transporters, which are an established source 
of resistance to multiple chemotherapies and other agents by preventing their intracellular 
accumulation. ABCB1-induced resistance to PARP inhibitors was initially observed in 
BRCA1/2-deficient mouse models developing spontaneous mammary tumours. Long-
term exposure of these models to olaparib resulted in the outgrowth of resistant, ABCB1-
overexpressing tumours112,113. Importantly, resistance could be reversed by a combination 
of olaparib and the ABCB1 inhibitor tariquidar, proving that increased drug efflux is indeed 
the cause of resistance. Although, the clinical relevance of this mechanism is still unclear, 
upregulation of ABCB1 has been reported in chemotherapy-resistant ovarian cancers11. 
Even though all PARP inhibitors were designed to inhibit the same target domain, some 
inhibitors, such as veliparib and niraparib, are poor substrates for ABCB1, suggesting that 
these agents should circumvent ABCB1-induced resistance. Furthermore, it should be noted 
that ABCB1 overexpression frequently induces cross-resistance to chemotherapies, such 
as taxanes and doxorubicin; therefore, PARP inhibitors that are not transported by ABCB1 
might be more effective in patients that have previously received chemotherapy113,114.
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Figure 2 | Mechanisms of resistance to PARP inhibitors. Long- term follow- up data from clinical trials 
exploring the efficacy of various different poly(ADPribose) polymerase (PARP) inhibitors have demonstrated 
durable responses, although the majority of patients inevitably develop resistance. Clinical and preclinical 
studies indicate that such resistance occurs via one of three general mechanisms. Alterations related to 
the drug (or target) as observed with chemotherapies, such as upregulation of the efflux transporter P- 
glycoprotein (a), downregulation of or mutations in PARP1, which is restricted to cells expressing residual 
levels of BRCA1/2 (b) or loss of poly(ADP- ribose) glycohydrolase (PARG) (c). Restoration of homologous 
recombination (HR), which can occur either through reactivation of BRCA1/2 function (d) or loss of DNA 
end- protection (e), which is restricted to loss of BRCA1 and may occur via loss of the non- homologous 
end- joining (NHEJ) factor 53BP1. Restoration of replication fork stability via increased protection from fork 
degradation (f), for example, by loss of PTIP expression or loss of cell- cycle checkpoint arrest owing to 
loss of Schlafen 11 (SLFN11) (g). PAR, poly (ADP- ribose); DSB, double- strand break; MLL3, histonelysine 
N- methyltransferase 2C; MLL4, histone- lysine N- methyltransferase 2B; MRE11, Meiotic recombination 11; 
PTIP, Pax2 transactivation domain- interacting protein.

Target-related mechanisms of resistance
All current PARP inhibitors target the catalytic domain of PARP enzymes by competing with 
the cofactor NAD+. Resistance might therefore arise from mutations in PARP1 that either 
reduce its affinity to PARP inhibitors or preserve endogenous functions of the enzyme when 
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bound to PARP inhibitor115. Data from in vitro studies demonstrate that point mutations 
associated with resistance to PARP inhibitors are not exclusively found in the catalytic 
site of the enzyme, but also in domains necessary for trapping PARP1 onto DNA115,116. 
Corroborating these results, a mutation in PARP1 that did not affect the recruitment of PARP1 
to sites of DNA damage but nonetheless prevented efficient PARP1 trapping was identified 
in a PARP-inhibitor-resistant ovarian tumour115. Importantly, mutations in PARP1 can only 
confer resistance in HR-proficient cells or in cells with hypomorphic BRCA1 mutations and 
residual levels of BRCA1 activity, owing to the synthetic lethal effect of combined loss of 
PARP1 and BRCA1 function.

The enzyme that removes PAR chains from target proteins, poly (ADP-ribose) 
glycohydrolase (PARG), is another crucial factor in the development of resistance to PARP 
inhibitors both in vitro as well as in vivo. For example, loss of PARG confers resistance to 
PARP inhibitors in genetically engineered mouse models that develop BRCA1/2-deficient 
mammary tumours117. Interestingly, PARG depletion was able to partially rescue PARylation 
levels in cells exposed to PARP inhibitors in these models, suggesting that inhibition of 
PARP1 only reduces but does not fully inhibit PARylation. PARG-deficient cells exposed 
to PARP inhibitors are thought to retain sufficient PARylation of target proteins to induce 
the DNA damage signalling cascade and reduce the trapping of PARP1 onto DNA, owing 
to residual PARP activity 117. Although clinical evidence remains limited, PARG-negative 
areas have been detected in tumours from a fraction of patients with triple-negative breast 
cancers (TNBCs) (76.8%) or ovarian carcinomas (78.4%), both of which are eligible for 
treatment with PARP inhibitors. 

Restoration of BRCA1/2 function 
The best clinically documented mechanism of resistance to PARP inhibitors occurs through 
reversion mutations or epigenetic alterations that induce the re-expression of a BRCA1 or 
BRCA2 wild-type protein or result in hypomorphic variants. Reversion of protein-truncating 
BRCA1/2 mutations was originally described in vitro using BRCA2-mutated ovarian and 
pancreatic cancer cell lines following prolonged exposure to PARP inhibitors or cisplatin118,119. 
BRCA1/2-deficient cells have high levels of genomic instability, which are exacerbated by 
cisplatin and PARP inhibitors; therefore, the authors suggested that these cells accumulate 
further genetic alterations, resulting in the subsequent re-expression of novel BRCA2 
isoforms. In line with the expected resistance to PARP inhibitors and cisplatin, cells of this 
revertant phenotype were again capable of recruiting RAD51 to sites of DNA damage and had 
reduced levels of genomic instability. Studies involving patient-derived xenograft (PDX) models 
of BRCA1-mutated and BRCA1-methylated TNBC revealed acquired resistance to PARP 
inhibitors driven by intragenic deletions that restored the reading frame of mutant BRCA1, as 
well as a loss of BRCA1 promoter hypermethylation and de novo gene fusions causing re-
expression of epigenetically silenced BRCA1120. Similarly, methylation of all BRCA1 copies in 
PDX models of BRCA1-methylated ovarian cancer was associated with a response to PARP 
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inhibitors, whereas heterozygous methylation was associated with resistance121. In line with 
these preclinical findings, complete BRCA1 methylation might predict clinical response to 
PARP inhibitors, and methylation loss can occur as a result of prior chemotherapy121. 

Over the past years, several other studies have reported genetic reversions of 
BRCA1/2 as a mechanism of resistance to PARP inhibitors in patients with breast122–124, 
ovarian102,118,123–127, pancreatic128 or prostate129,130 cancers. An analysis of all reversion events 
in HR-related genes that have been previously associated with resistance to PARP inhibitors 
or platinum-containing chemotherapy was published in July 2020. Most reversions were 
found to be unique, although several positional hotspots could be identified across the 
coding sequence of BRCA2, suggesting that mutations in these positions might be more 
likely to lead to reversion, and thereby the development of resistance to PARP inhibitors, 
than others131. Importantly, reversions associated with resistance to PARP inhibitors are 
not exclusively found in BRCA1/2 but have also been identified in other HR-related genes, 
such as RAD51C, RAD51D and PALB2102,130. The selection for reversion mutations during 
treatment with platinum-containing chemotherapies or PARP inhibitors also demonstrates 
that genomic instability induced by loss of BRCA1/2 function or that of other HR-related 
proteins is only required for initiation of tumorigenesis and dispensable for tumour 
maintenance. As such, therapy resistance induced by reversion mutations is an example of 
what can be called ‘tumour suppressor tolerance’, in which restoration of tumour suppressor 
gene function in an initially mutant cancer might actually increase fitness. 

Owing to PARP inhibitors only being used clinically over the past few years and the 
complexities associated with the detection of reversion mutations, large-scale studies to 
estimate the frequency of BRCA1/2 reactivation in patients with PARP-inhibitor-resistant 
tumours are still unavailable. The fact that these agents were initially approved for second-
line maintenance therapy, following first-line treatment with platinum-based chemotherapies, 
might bias the results of such investigations because reactivation of BRCA1/2 has been 
shown to be the main mechanism of platinum resistance in BRCA1/2-mutated tumours123–126. 
Future studies involving patients receiving PARP inhibitors as first-line therapies will enable 
a better understanding of shared mechanisms of resistance to platinum-based agents and 
PARP inhibitors, which might result in cross resistance to both classes of therapies, and to 
identify mechanisms of resistance specific to PARP inhibitors.

BRCA1-independent restoration of HR 
BRCA1 and BRCA2 reversion events are found in a substantial proportion of patients with 
PARP inhibitor-refractory tumours, although they do not account for all cases of resistance132, 
implying the existence of additional mechanisms. Indeed, data from preclinical studies indicate 
that restoration of HR can also be achieved by compensatory mutations that result in rewiring 
of the DDR (Fig. 3). The first example of such a mechanism came from three landmark studies 
demonstrating that loss of the nonhomologous end joining (NHEJ) factor 53BP1 partially 
counteracts the effects of BRCA1 loss on HR and genomic instability133–135. Knockout of 53bp1 
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in mice rescues embryonic lethality and attenuates tumorigenesis and chromosomal instability 
caused by BRCA1 deficiency95. In addition, data from in vitro studies demonstrate that loss 
of 53BP1 restores DNA end-resection in BRCA1-deficient cells and, as a result, rescues the 
HR defect and renders cells resistant to PARP inhibitors133,134. Importantly, 53BP1 loss does 
not restore HR in BRCA2-deficient cells, consistent with the different roles of BRCA1 and 
BRCA2 in HR (BOX 2). Follow-up studies identified several proteins downstream of 53BP1, 
such as RIF1136–140, REV7141,142 and the shieldin complex143–149, which are also thought to act 
as antagonists of end-resection and that confer resistance to PARP inhibitors in BRCA1-
deficient cells and mouse mammary tumours upon inactivation. Additional evidence that loss 
of the 53BP1–RIF1–REV7–shieldin anti-resection signalling pathway mediates resistance 
to PARP inhibitors comes from in vivo studies in mouse models of BRCA1-deficient breast 
cancer. Prolonged exposure of these mice to PARP inhibitors resulted in acquired resistance, 
which was frequently associated with de novo mutations, DNA copy number aberrations and 
loss of Trp53bp1, Rev7, Rif1 and Shld2 expression150 (and our own unpublished data). Loss 
of 53BP1 and shieldin components has also been observed in PDX models with acquired 
resistance to PARP inhibitors144,151. Furthermore, several cases of resistance associated 
with BRCA-independent restoration of HR (owing to MRE11 amplification or mutations in 
TP53BP1) have been reported in patients with BRCA1-associated breast cancer receiving 
platinum chemotherapy or a PARP inhibitor152,153.

Apart from 53BP1–RIF1–REV7–shieldin signalling, several other factors have been 
reported to modulate end-resection, although clinical data on these factors are limited. 
The CTC1–STN1–TEN1 (CST) complex, located downstream of 53BP1–RIF1–REV7–
shieldin, has been reported to prevent end-resection at DSBs, and loss of components of 
this complex leads to restoration of end-resection in the absence of BRCA1, resulting in 
resistance to PARP inhibitors154,155. Interestingly, loss of the CST complex seems to have a 
milder effect on resistance to PARP inhibitors than disruption of 53BP1–RIF1–REV7–shieldin 
signalling, indicating that additional mechanisms might protect DSBs from end-resection. 
HELB and DYNLL1 act downstream of 53BP1 to antagonize multiple components of the 
DNA end-resection machinery, and loss of these factors results in hyper-resected DNA ends 
and renders BRCA1-deficient tumour cells resistant to PARP inhibitors156–158. In addition to 
inhibition of end-resection factors, DYNLL1 might also promote NHEJ by stimulating 53BP1 
oligomerization, thereby promoting recruitment and binding to DSBs158. Further upstream, 
loss of ERCC6L2, an accessory NHEJ factor, has also been shown to restore DNA end-
resection, resulting in partial restoration of HR and resistance to PARP inhibitors in BRCA1-
deficient cells159,160. Similarly, overexpression of factors promoting HR and suppression of 
NHEJ, such as TIRR161, TRIP13162 and miRNA-622163 have also been shown to rescue 
HR and reduce the sensitivity of BRCA1-deficient cells to PARP inhibitors. Taken together, 
these data reinforce the notion that resistance to PARP inhibitors emerges via loss of DNA 
end-protection in cells lacking functional BRCA1. Moreover, the studies mentioned above 
demonstrate that, although BRCA1 is partially dispensable for the distal steps of RAD51-
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mediated HR, BRCA2 is crucial for this pathway.
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Figure 3| Mechanisms of BRCA1-independent restoration of HR. Various different mechanisms have been 
reported to enable the partial restoration of homologous recombination (HR) in BRCA1-deficient cells. a | 
Upstream of 53BP1, the DNA excision repair protein ERCC6L2 promotes nonhomologous end-joining (NHEJ), 
possibly by interacting with the Ku complex, and its loss leads to the restoration of DNA end-resection. Also 
upstream of 53BP1, overexpression of the microRNA miR-622 downregulates expression of the Ku complex, 
which in turn promotes HR. b | DYNLL1 stimulates 53BP1 oligomerization and promotes its recruitment and 
binding to DSBs. Consequently, loss of DYNLL1 or its transcriptional activator ATMIN results in restoration 
of HR. In addition, loss of any of the components of the 53BP1–RIF1–REV7–Shieldin pathway or of the 
CTC1–STN1–TEN1 (CST) complex results in loss of end-protection and, consequently, in restoration of 
end-resection. Accordingly, HR in BRCA1-deficient cells might be restored by overexpression of factors that 
suppress NHEJ, such as TIRR, which antagonizes 53BP1 localization to DSBs, or the E3 ubiquitin ligase 
TRIP13, which catalyses the dissociation of the REV7–Shieldin complex. c | HELB acts downstream of 53BP1 
through interaction with the major single-stranded DNA binding protein RPA to prevent long-range end-
resection during the G1 phase of the cell cycle. Consequently, loss of HELB results in hyper-resected DNA 
and restoration of HR. DYNLL1 also prevents multiple components of the DNA end-resection machinery, such 
as MRE11, from localizing to sites of DNA damage. Therefore, loss of DYNLL1 or of its transcriptional activator 
ATMIN promotes end-resection and enables HR to proceed in the absence of BRCA1.

Restoration of fork stability
Restoration of HR by perturbation of 53BP1 and downstream factors involved in end-
resection and/or protection is restricted to BRCA1-deficient cells, whereas acquired 
resistance to PARP inhibitors arising from restoration of fork stability is a mechanism 
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common to cells deficient in either BRCA1 or BRCA2. As mentioned previously, BRCA1 and 
BRCA2 are not only required for HR; these proteins also govern the stability and protection 
of replication forks under replicative stress (Box 2). 

MRE11 and MUS81 are nucleases whose activity is required for the processing of stalled 
replication forks. In the absence of BRCA1/2, uncontrolled resection of unprotected, stalled 
forks by MRE11 leads to fork collapse and contributes to increased genomic instability164–167. 
In line with this observation, depletion of the MLL3/4 complex protein PTIP or the 
nucleosome remodeling factor CHD4 prevents MRE11 recruitment to stalled forks, resulting 
in fork protection and resistance to PARP inhibitors in BRCA1/2-deficient cells164,168. The 
chromatin-remodelling complex SMARCAL1 has also been shown to promote the MRE11-
dependent degradation of nascent DNA in BRCA1/2-deficient cells169,170. In a manner similar 
to loss of PTIP, SMARCAL1 depletion decreases the sensitivity of BRCA1-deficient tumour 
cells to PARP inhibitors, although this effect seems to be cell type-specific169. 

RADX is another factor involved in replication fork protection; depletion of this 
factor in BRCA2-deficient cells also restores fork protection and alleviates the cytotoxic 
effects of PARP inhibitors171. Limiting the recruitment of MUS81 through inhibition of 
the methyltransferase EZH2 has also been shown to result in fork protection and partial 
resistance to PARP inhibitors, specifically in BRCA2-deficient cells172; however, conflicting 
data exist on the role of MUS81, including reports suggesting that this nuclease either 
protects173,174 or disrupts171,172 unprotected forks; thus how MUS81 affects the cytotoxicity 
of PARP inhibitors in BRCA1/2-deficient cells remains controversial174. 

Notably, depletion of either PTIP, EZH2 or RADX does not ameliorate HR function in 
BRCA1/2-deficient cells, suggesting that restoration of replication fork protection is a 
crucial component of resistance to PARP inhibitors164,171,172. Data from previous studies 
suggest that restoration of fork protection depends on the source of replication stress, the 
genetic context and the specific fork structures formed, which should all be considered in 
an attempt to better understand replication fork instability and how it can be exploited in 
cancer treatment. 

Finally, and importantly, PARP1 is known to mediate the recruitment of MRE11 to stalled 
replication forks. PARP1 depletion results in synthetic lethality in BRCA1/2-deficient cells, 
whereas downregulation of PARP1 before BRCA1/2 loss restores the stability of stalled 
forks and promotes cell survival, likely by limiting the accumulation of MRE11 at replication 
forks164,175. Given the multifunctional role of PARP1 at replication forks, further studies are 
required to understand how it can potentially affect the results of combination therapies 
involving PARP inhibitors.

Schlafen 11 (SLFN11) is another factor implicated in replication stress. SLFN11 
was originally identified by pharmacogenomic analyses of cancer cell databases as a 
strong determinant of response to multiple replication stress-inducing agents, including 
TOP I inhibitors, TOP II inhibitors, alkylating agents, DNA synthesis inhibitors and PARP 
inhibitors176–180. Studies conducted over the past few years suggest that, upon replicative 
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damage, cells undergo irreversible cell-cycle arrest at G1/S phase, mediated by the 
engagement of SLFN11 with the replication helicase complexes180. Binding of SLFN11 to 
stressed forks promotes chromatin relaxation and blocks cellular replication, which ultimately 
results in cell death181. Consequently, loss of SLFN11 impairs prolonged G1/S-phase 
arrest, thereby enabling cells to progress through S phase in the presence of replicative 
stress181. In line with this, loss of SLFN11 decreases the cytotoxicity of PARP inhibitors in 
both BRCA1/2-proficient and BRCA2-deficient cells180. Importantly, HR is functional in both 
SLFN11-proficient and SLFN11-deficient cells, indicating that this protein acts in parallel 
with HR180.

STRATEGIES TO OVERCOME RESISTANCE

Further studies are required to develop therapeutic strategies that combat or delay the 
emergence of acquired resistance and to determine the extent of cross resistance between 
the various therapeutic options. Surgical debulking, a strategy pursued mostly in women with 
ovarian cancer, might reduce or even eliminate resistant clones and thus, theoretically, delay 
the onset of resistance. Other potential strategies to tackle resistance to PARP inhibitors 
include: combination therapies aimed at further amplifying the antitumour effects of PARP 
inhibitors; targeting the acquired vulnerabilities of PARP inhibitor-resistant cancers; and/or 
delaying the emergence of resistance through suppression of the mutator phenotype, which 
arises in BRCA1/2-mutated tumours. In this section, we will describe current developments 
and findings exploiting these three approaches (Fig. 4 and 5).

Combination strategies 
Suppression of alternative HR pathways
BRCA1-deficient cells are HR-deficient, nonetheless, DNA end-resection still takes place 
in these cells, albeit with delayed kinetics182–185. This observation suggests that BRCA1 
has other roles in HR beyond promoting end-resection. Indeed, BRCA1 has been shown 
to recruit the PALB2–BRCA2 complex to ssDNA, thus promoting the BRCA2-mediated 
assembly of RAD51 nucleoprotein filaments (BOX 2). Data from the past few years indicate 
that PALB2 is recruited to ssDNA in an RNF168-dependent manner in BRCA1-deficient 
cells186–189. This finding implies that HR reactivation in BRCA1/53BP1-double-deficient 
cells is enabled by both RNF168-dependent recruitment of PALB2 and increased end-
resection owing to loss of the 53BP1–RIF1–REV7–Shieldin axis187,189–191. The extent of HR 
restoration enabled by 53BP1 loss depends on the type of BRCA1 mutation because the 
overall efficiency of RAD51 loading (and, consequently, the extent of resistance to PARP 
inhibitors) is enhanced by the presence of hypomorphic BRCA1 alleles that retain the 
ability to associate with PALB2186,189. In line with its role in mediating PALB2 recruitment, 
loss of RNF168 compromises HR in BRCA1 heterozygous cells and in BRCA1/53BP1-
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double-deficient cells, thus rendering these cells sensitive to PARP inhibitors189. Therapeutic 
targeting of RNF168 might therefore be a useful method of inhibiting BRCA1-independent 
PALB2/BRCA2 recruitment and thus improving the efficacy of PARP inhibitors against 
BRCA1-mutant cancers with acquired resistance to PARP inhibitors via loss of the 53BP1–
RIF1–Shieldin end-protection pathway.
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Figure 4 | Overcoming resistance to PARP inhibitors. Various combination strategies have been suggested 
to enhance the efficacy of poly(ADP- ribose) polymerase (PARP) inhibitors in treatment- resistant tumors. 
Immune- checkpoint inhibitors, such as anti- PD-1 or anti-CTLA4 antibodies, might be an alternative approach 
that is currently being assessed in the clinic given that homologous recombination (HR)- deficient tumours 
usually have high levels genomic instability and are thought to present an increased number of neoantigens 
on their surfaces (part a). Furthermore, PARP inhibitors have been shown to induce both PD- L1 expression 
as well as upregulation of cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) signaling, 
which might further boost the recruitment and/or activation of CD8+ T cells (part b). Reactivation of the HR 
pathway in tumors with acquired resistance to PARP inhibitors might be counteracted by treating patients with 
various tyrosine kinase inhibitors (such as VEGF- targeted therapies) or agents targeting epigenetic regulators 
of HR-related genes (such as bromodomain and extra- terminal domain (BET) inhibitors), or by targeting direct 
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mediators of HR, such as ATM or RNF168, which have been shown to promote HR in the absence of BRCA1 
(parts c, g). NAD+ is the major substrate of PARP enzymes; therefore, inhibition of NAD+ synthesis might 
further enhance the cytotoxicity of PARP inhibitors through indirect inhibition of PARylation (part d). Multiple 
methods of suppressing restored replication fork protection in PARP inhibitor- resistant cells are currently being 
explored, such as inhibition of ATR or RAD52, which is thought to serve as a substitute for RAD51, as well 
as several cell cycle- related factors, such as CHEK1 (part e). Apart from combination therapy approaches, 
inhibition of microhomology-mediated end- joining (MMEJ) might be an alternative strategy because HR- 
deficient tumors are thought to depend on this pathway for DNA damage repair (part f); for example, inhibitors 
of the error- prone polymerase θ (POLQ) are currently being developed and are under consideration for use 
as single agents as well as in combination with PARP inhibitors. Inhibition of this mutagenic repair pathway 
might suppress or delay the onset of acquired resistance and reduce the extent of genomic instability of HR- 
deficient tumors.
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Figure 5 | Targeting acquired vulnerabilities of PARP inhibitor-resistant tumors. Acquired resistance to 
poly(ADPribose) polymerase (PARP) inhibitors often occurs through loss of additional DNA damage proteins, 
often resulting in the emergence of novel vulnerabilities that can be exploited therapeutically. For example, 
DNA- damaging agents such as radiotherapy or topoisomerase I inhibitors might be viable post- progression 
therapeutic strategies. Furthermore, inhibition of the error- prone DNA polymerase θ (POLQ) has been shown 
to be synthetic lethal with homologous recombination (HR) deficiency and might also delay the emergence of 
other resistance mechanisms. Depending on the type of resistance, tumors might also acquire and present 
tumour- specific neoantigens, which could potentially then be targeted using chimeric antigen receptor T cell 
therapies or immune-checkpoint inhibitors. CST, CTC1–STN1–TEN1; NHEJ, non- homologous end- joining.

Another factor that has become of increasing interest in the past years is the role of the DNA 
repair protein RAD52. Initial studies revealed only mild effects of RAD52 loss on viability in vitro 
as well as in vivo192,193; however, co-depletion of RAD52 and BRCA1/2 was later reported to 
confer synthetic lethality, suggesting that RAD52 might serve as a backup pathway enabling 
RAD51 to gain access to resected DNA ends in the absence of BRCA1/2194,195. Furthermore, 
evidence published over the past few years indicates that RAD52 might have a role in the repair 
of ssDNA at stalled replication forks as well as mediating fork reversal196,197. The observed 
synthetic lethality might, therefore, be a combined effect of both functions of RAD52 rather 
than a consequence of one function. RAD52 inhibitors have been developed in the past years 
(reviewed elsewhere198), and might provide an alternative method of targeting BRCA-deficient 
tumours. More research is needed to determine the in vivo efficacy of RAD52 inhibitors in both 
preclinical models and in patients, although results obtained thus far demonstrate a synergistic 
interaction between inhibitors of PARP and RAD52, leading to more potent cytotoxic effects 
on BRCA-deficient cells in vitro as well as in vivo199.
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Indirect inhibition of HR
To date, no direct inhibitors of proteins catalysing HR are available. An alternative strategy to 
inhibit HR restoration in patients receiving PARP inhibitors might be the use of drugs targeting 
actionable oncoproteins which, although not developed as HR inhibitors, interfere with gene 
expression, nuclear localization and/or the recruitment of HR factors, ultimately resulting in 
the indirect inhibition of HR (reviewed elsewhere36). For example, therapies targeting VEGF 
or the PI3K–AKT pathway, have been reported to impair HR36. In support of this notion, 
combining the VEGF antagonist bevacizumab with olaparib or niraparib improved the 
median PFS duration in two cohorts of women with ovarian cancer, even in those with HR-
proficient tumours, relative to placebo or niraparib monotherapy200,201. Furthermore, a phase 
I trial combining the AKT inhibitor capivasertib with olaparib revealed durable responses in 
patients with advanced-stage solid tumours, irrespective of BRCA1/2 status202, and another 
phase I trial combining the MEK inhibitor selumetinib with olaparib is currently ongoing 
(NCT03162627)203. However, the activity of these inhibitors might reflect impaired cell-cycle 
progression rather than direct inhibition of HR, suggesting that the effects observed for 
combination treatment may be additive rather than synergistic. 

Indirect inhibition of HR might also be induced via pharmacological targeting of epigenetic 
regulators. For example, the bromodomain and extra-terminal domain (BET) protein BRD4 
promotes global transcription by RNA polymerase II, and BET and/or BRD4 inhibitors have 
been shown to suppress the transcription of key DDR genes, including CTIP, BRCA1, 
RAD51, TOPBP1 and WEE1, resulting in abrogation of HR and synergy with PARP inhibitors 
in preclinical investigations204–206. Similarly, inhibition of histone deacetylases (HDACs) results 
in downregulation of HR and can be used to induce sensitivity to PARP inhibitors207–210. 
Efficient suppression of HR and sensitization to PARP inhibitors has also been observed 
upon inhibition of cyclin-dependent kinases (CDKs), such as CDK1, which phosphorylates 
BRCA1 and thus promotes HR repair211, and CDK12, which is a transcriptional regulator 
of several HR genes, including BRCA1212–214. Furthermore, heat shock protein 90 (HSP90) 
promotes the stabilization of a subset of HR proteins, including RAD51, BRCA1 and BRCA2, 
and targeted inhibition of this protein induces HR deficiency and promotes sensitivity to 
PARP inhibitors153,215,216. The stability of these HR proteins can also be reduced by mild 
hyperthermia, which might be easily applicable in the clinic217,218. Lastly, hypoxia has been 
reported to induce long-term epigenetic silencing of BRCA1, thereby also bestowing 
a vulnerability to PARP inhibitors that could potentially be exploited therapeutically219. 
Importantly, all of these approaches can be used to enhance sensitivity to PARP inhibitors 
not only in tumours with restored HR, but also in those with hypomorphic or fully functional 
BRCA activity153,212,216. However, for these reasons, combination strategies might also lead to 
substantial toxicities in nonmalignant proliferating cells, such as haematopoietic progenitors 
in the bone marrow.
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Abrogation of cell-cycle checkpoint signalling
Data from several studies suggest that abrogation of cell-cycle checkpoint signalling might 
alleviate resistance to PARP inhibitors. ATM and ATR are the two major kinases controlling 
cell-cycle checkpoint activation and the ensuing arrest of cells in response to DNA damage. 
Several processes that cause resistance to PARP inhibitors in BRCA1-mutant cells, such as 
BRCA1-independent HR and fork protection, are dependent on ATR, which controls both 
processes by promoting RAD51 loading onto DSBs and stalled forks220. Thus, combinations 
comprising PARP inhibitors and ATR inhibitors are currently being investigated as potential 
methods of overcoming resistance to PARP inhibitors in BRCA1-deficient tumours with 
restored HR function or restored fork protection180,220–222.

The chromatin remodelling enzyme ARID1A has been shown to regulate the DNA 
damage checkpoint via interactions with ATR, and loss of ARID1A leads to impaired cell-
cycle checkpoint activation and sensitization of cells to PARP inhibitors104. Similar to ATR, 
ATM kinase activity is required for the early stages of HR, and inhibition of ATM has been 
shown to resensitize cells with BRCA1 and 53BP1 or BRCA1 and REV7 deficiencies to 
PARP inhbitors134,142.

PARP inhibitors have also been combined with WEE1 kinase inhibitors in preclinical 
models223–225. WEE1 kinase regulates G2/M progression by inhibiting CDK1 and CDK2, 
thereby activating the G2/M cell-cycle checkpoint, resulting in cell-cycle arrest and providing 
time for DNA damage repair. The combination of PARP and WEE1 inhibitors aims to abrogate 
G2 arrest and induce mitotic catastrophe. A study using ovarian cancer xenograft models 
demonstrated that sequential rather than concurrent inhibition of PARP and WEE1 improves 
the tolerability of these drug combinations while still preserving antitumour activity225. 

Multiple inhibitors of cell-cycle checkpoint kinases (such as ATR, ATM, CHK1 and 
WEE1) are being developed by pharmaceutical companies and are being tested in clinical 
trials designed to assess anticancer efficacy in combination with PARP inhibitors36,226. The 
clinical applicability of these combinations will greatly depend on whether they are effective 
in patients with acquired resistance to PARP inhibitors without excessive toxic effects on 
nonmalignant tissues.

Targeting NAD+ metabolism
PARP1 uses oxidized NAD (NAD+) as a substrate for PARylation (BOX 1), which constitutes 
a major source of cellular NAD+ catabolic activity, resulting in NAD+ depletion to as low as 
10–20% of its unstressed levels within minutes of induction of DNA damage227. Excessive 
PARP activation (for example, via oxidative stress or excessive DNA damage) effectively 
depletes the cellular pool of NAD+, leading to a progressive decline in ATP levels, energy 
loss and cell death228–230. Thus, in order to maintain NAD+ levels, cells are reliant on 
salvage pathways. Functional genetic screens have shown that depletion of nicotinamide 
phosphoribosyltransferase (NAMPT), a rate-liming enzyme in the NAD+ salvage pathway, 
enhances the cytotoxicity of PARP inhibitors in TNBC cells. Moreover, combining the NAMPT 
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inhibitor FK866 with olaparib resulted in more potent inhibition of the growth of TNBC xenografts 
in vivo than either agent alone231. Neomorphic mutations in isocitrate dehydrogenase (IDH), 
which are common in gliomas and lead to decreased NAD+ levels through downregulation of 
the NAD+ salvage pathway enzyme nicotinate phosphoribosyltransferase (NAPRT1), render 
these tumours hypersensitive to NAD+ depletion232. Importantly, mutant IDH also produces 
the oncometabolite D-2-hydroxyglutarate (D-2HG), which has been shown to inhibit HR 
and induce sensitivity to PARP inhibitors233108,234. Thus, neomorphic IDH1/2 mutations might 
confer hypersensitivity to PARP inhibitors via two distinct mechanisms. Finally, the NAD+ 
derivative NADP+ can act as an endogenous PARP inhibitor that suppresses PARylation 
by competing for the NAD+ binding site of PARP. Consequently, cancer cells with high 
NADP+:NAD+ ratios have increased sensitivity to chemical PARP inhibition, irrespective of 
their BRCA mutation status235, which might reflect reduced PARylation rather than PARP 
trapping onto DNA.

Collectively, these studies suggest that the cytotoxicity of PARP inhibitors might be 
further enhanced by indirect inhibition of PARylation through targeted inhibition of NAD+ 
metabolism. More research is required in order to provide a deeper understanding of 
the interplay between cancer metabolism and (deficiencies in) HR repair, and how these 
interactions affect the efficacy of PARP inhibitors in patients with cancer. Ultimately, this 
knowledge might uncover new metabolic vulnerabilities of cancer cells exposed to PARP 
inhibitors that can be targeted to improve the efficacy of these agents. 

Immunotherapy in BRCA-deficient cancers
The combination of PARP inhibitors with immune-checkpoint inhibitors, such as anti-PD-1 
antibodies, is another potential approach to the treatment of patients with BRCA1/2-mutant 
cancers. Several observations have sparked a rapidly growing interest in such combinations. 
First, HR-deficient cancers are reported to have an increased mutational burden, possibly 
resulting in increased availability of tumour-specific neoantigens, including antigens originating 
from large genomic rearrangements236. Second, HR deficiencies might lead to the cytosolic 
accumulation of unrepaired DNA fragments, which can activate cyclic GMP–AMP synthase 
(cGAS)–stimulator of interferon genes (STING) signalling237. The recognition of extranuclear 
double-stranded DNA by cGAS triggers activation of the IRF3–type I interferon signalling 
pathway, which is an important mediator of systemic immune responses that induces the 
activation of several immune cell types238. Genomic rearrangements in BRCA1/2-deficient 
tumours might also disrupt chromatin boundaries and lead to the expression of repetitive 
RNAs which can activate innate immune signalling238,239. Third, PARP inhibition induces 
both PD-L1 expression (via inactivation of GSK3β) and cGAS–STING signalling, leading to 
increased CD8+ T cell infiltration and activation240,241,242,243. However, whether PARP inhibitor-
mediated activation of cGAS–STING signalling is dependent on the BRCA mutation status 
of the tumour is still a matter of debate. Data from one study suggest that cGAS-STING 
signalling is activated regardless of BRCA mutation status, while others found that activation 
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of this pathway occurs either solely or more potently in BRCA-deficient tumours240,241,191.
In line with these findings, data from multiple studies indicate that PARP inhibition 

enhances the antitumour effects of anti-PD-1 antibodies in mouse models of breast and 
ovarian cancer240,241,242,243. Several clinical trials are currently evaluating the effects of this 
combination in patients with these malignancies (reviewed elsewhere244). Initial clinical 
studies with PARP inhibitor–anti-PD-1 antibody combination have involved only small cohorts 
of patients and robust general conclusions therefore cannot be drawn, although certain 
interesting observations have already been reported. The combination of a PARP inhibitor 
with an anti-PD-1 antibody is generally well tolerated and seems to result in increased 
objective response rates when compared to monotherapies both in patients with ovarian 
cancer or breast cancer245–247. However, the results of a phase I/II clinical trial involving 
women with platinum-resistant ovarian cancer found no significant differences in the 
objective response rate when comparing subgroups of patients with BRCA1/2 mutations to 
those with wild-type BRCA1/2247. Of note, not all patients enrolled in this trial were tested for 
the presence of BRCA1/2 mutations. Moreover, the mutation status of other HR genes was 
also not assessed. As mentioned above, the combination of immune-checkpoint inhibitors 
with PARP inhibitors remains an area of active investigation; therefore, whether patients with 
acquired resistance to PARP inhibitors might benefit from treatment with this combination 
has yet to be determined.

Targeting acquired vulnerabilities 
Drug resistance often comes with a fitness cost that leads to acquired vulnerabilities, which 
can theoretically be targeted to improve the efficacy of subsequent therapies248 (Fig. 5). 
Several loss-of-function mutations that cause resistance to PARP inhibitors have been 
found to result in increased sensitivity to ionizing irradiation. For example, PARG inactivation, 
although detrimental to the efficacy of PARP inhibitors, results in increased sensitivity to 
ionizing radiation117,249. In a similar fashion, loss of components of the 53BP1–RIF1–REV7–
Shieldin or CST end-protection complexes, as well as PARP1 loss, have been demonstrated 
to result in hypersensitivity to ionizing radiation139,144,250–254. As a consequence, radiotherapy 
might be a viable option for patients with BRCA-deficient tumours with acquired resistance 
to PARP inhibitors owing to loss of PARG, PARP1 or DSB end-protection.

Beyond sensitization to ionizing radiation, cells lacking in PARP1 activity also have 
increased susceptibility to the TOP I inhibitor camptothecin, owing to the role of PARP1 
in the repair of TOP I cleavage sites255. Furthermore, PARG downregulation has also been 
shown to result in metabolic depletion of NAD+ and increased PARP1 trapping on chromatin, 
rendering such cells sensitive to the alkylating agent temozolomide256,257 .

Apart from the increased sensitivity of tumours with acquired resistance to PARP inhibitors 
to ionizing radiation, camptothecin or temozolomide, an alternative approach suggested 
in 2020 involves targeting tumours with acquired resistance to PARP inhibitors owing to 
genetic reversion131. Genetic reversion often does not restore the complete original amino 
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acid sequence of the protein and, therefore, most revertant proteins contain stretches of 
amino acids, often at the reversion junction, that are not encoded in the wild-type gene and 
might thus be presented on the cell surface as neoantigens and subsequently recognized 
by the immune system. Tumours harbouring such alterations could then be targeted using 
anticancer vaccines, chimeric antigen receptor T cell therapies and/or immune-checkpoint 
inhibitors131.

Despite the evidence described here, studies attempting to identify such acquired 
dependencies remain limited. A key approach to identify acquired vulnerabilities would be 
to perform pharmacological or genetic screens in different models of acquired resistance 
to PARP inhibitors. The identification of such dependencies might then enable specific 
targeting of PARP inhibitor-resistant tumours using therapies selected according to the 
underlying mechanism of resistance.

Preventing the emergence of resistance
Targeting drug-tolerant persisters
PARP inhibitors cause DNA damage specifically during the S and G2 phases of the cell 
cycle258 and thereby specifically target proliferating cells. Consequently, cell populations 
in G0 or early G1 phase might be unaffected by PARP inhibitors because neither HR nor 
replication forks are active during these phases. Indeed, continuous exposure to PARP 
inhibitors has been shown to induce senescence in ovarian cancer cell lines, which is 
reversed upon PARP inhibitor withdrawal, suggesting that senescent persister cells might 
be capable of contributing to further tumour growth259. Moreover, several processes, such 
as epigenetic reprogramming, transcriptional regulation as well as interactions with the 
tumour microenvironment might all delay cell growth and thereby make cells less responsive 
to therapy (reviewed elsewhere260). The persistence of drug-tolerant tumour cells provides a 
rationale for the use of long-term maintenance therapy, which might be able to kill residual 
dormant cellular populations once they enter the cell cycle.

Suppression of the mutator phenotype
In order to repair DNA DSBs in the absence of HR, BRCA1/2-deficient cells are able to 
upregulate microhomology-mediated end joining (MMEJ) as a compensatory mechanism, 
which is thought to have only a minor role in HR-proficient cells261. MMEJ is an error-
prone repair pathway, driven by the low-fidelity DNA polymerase θ (POLQ). POLQ joins 
two broken DNA strands based on short regions of sequence homology (>2 bp), which 
can be detected as an MMEJ-characteristic pattern of mutations in BRCA1/2-deficient 
tumours using whole-genome sequencing262. Given that DSB repair in HR-deficient cancers 
is dependent on POLQ-mediated MMEJ, suppressing this error-prone DNA repair pathway 
might be another way to target these tumours. In line with this hypothesis, two groups 
have reported a synthetic lethal interaction between POLQ depletion and proteins involved 
in HR263,264. Notably, POLQ inhibition suppresses the genomic instability arising from error-
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prone MMEJ; therefore, this approach might be superior to PARP inhibition, which is 
thought to enhance genomic instability and thereby promote the emergence of HR-deficient 
cancers of a ‘mutator phenotype’. Inhibition of POLQ might therefore be effective not only 
in tumours with acquired resistance to PARP inhibitors, but also in preventing or attenuating 
the emergence of treatment resistance in PARP-inhibitor-naive HR-deficient tumours.

The development of POLQ inhibitors is generating considerable research interest. The 
antibiotic novobiocin (NVB) is reported to inhibit the ATPase activity of POLQ265. In line 
with initial reports, inhibition of POLQ by NVB selectively kills HR-deficient tumours both 
in vitro as well as in vivo. Furthermore, NVB reduces tumour growth in a PDX model with 
combined loss of BRCA1 and 53BP1 function, suggesting that POLQ inhibition might also 
be a viable option for tumours with acquired resistance to PARP inhibitors owing to loss 
of DNA end-protection265. This study suggests that POLQ inhibition might be a promising 
strategy, either in combination with or as an alternative to PARP inhibitors. However, further 
research is needed to answer critical questions regarding the clinical use of POLQ inhibitors. 
For example, it remains to be determined (i) whether POLQ inhibition will be effective as 
monotherapy or only in combination with PARP inhibitors; (ii) whether all tumours that are 
resistant to PARP inhibitors will respond to POLQ inhibitors or whether sensitivity will be 
restricted to tumours that become resistant via certain mechanisms, such as the loss of 
DNA end-protection; (iii) whether tumours with genomic instability or mutations in HR-
related genes other than BRCA1 and BRCA2 might be susceptible to inhibition of POLQ.

FUTURE DIRECTIONS 

Over the past years, preclinical and clinical studies have substantially increased our knowledge 
of both the mechanism of action and possible sources of resistance to PARP inhibitors. 
PARP inhibitors are increasingly used clinically and their application is being expanded to 
indications beyond breast and ovarian cancer. Many mechanisms of resistance have been 
reported in cancer cell lines and mouse models, although the clinical relevance of most of 
these mechanisms remains unclear owing to the majority of the regulatory approvals of 
PARP inhibitors taking place in the past few years. Moreover, the mechanisms of resistance 
identified in preclinical studies might differ from those observed in patients given that 
most mature clinical data are from trials testing PARP inhibitors as second-line therapies. 
Tumour subclones in many of these patients might already have developed certain forms 
of resistance to previous treatments (such as taxanes or platinum-based chemotherapies) 
that confer cross-resistance to PARP inhibitors. Thus, determining whether improvements 
in PFS and, ultimately, in OS can be achieved by giving PARP inhibitors earlier in the course 
of treatment will be an important step. In comparison with second-line treatment regimens, 
first-line treatment with PARP inhibitors might not only further delay disease progression 
but could also postpone the onset of resistance and alter the underlying mechanisms of 
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resistance to these agents. For instance, PARP inhibitor resistance caused by genetic 
reversion mutations may result in cross resistance to second-line chemotherapy. In contrast, 
BRCA1-deficient tumours that have acquired resistance through loss of DNA end-protection 
may still respond to radiation therapy or POLQ inhibitors. It will therefore be important to 
determine how patients developed resistance to PARP inhibitors, so that cross resistance 
can be avoided in the second-line treatment.

Olaparib and niraparib have both been approved as first-line maintenance therapies 
and, with more patients likely to receive PARP inhibitors earlier in the course of disease, 
clinical trials of novel post-progression approaches are either planned or currently ongoing 
(for example NCT03106987). Molecular analysis of tumour biopsy samples and/or cell-
free DNA samples (Box 3) obtained from these patients might provide more insight into 
the underlying mechanisms of resistance to PARP inhibitors as well as the mechanisms 
conferring cross-resistance between PARP inhibitors and other anticancer agents. Another 
key question is whether distinct or similar mechanisms drive disease recurrence after 
planned treatment cessation versus recurrence during maintenance therapy. Future studies 
will help to determine whether the recurring tumours might respond to re-challenge with 
PARP inhibitors. 

Clinical attempts to determine which patients are most likely to benefit from PARP 
inhibitors and to identify the optimal treatment regimens are currently ongoing. Nonetheless 
resistance to PARP inhibitors might be an inevitable consequence of the genomic instability 
of these HR-deficient tumours. As mentioned above, targeted approaches designed to 
overcome resistance to PARP inhibitors remain limited. The systematic identification of 
the vulnerabilities of PARP inhibitor-resistant tumours will therefore be an important step. 
Data from in vitro as well as in vivo genetic screens will advance our understanding of the 
rewiring of treatment-resistant tumours, and pharmacological screens might also be used 
to identify compounds that specifically target these cancers. In order to study resistance to 
PARP inhibitors in settings more closely related to the clinic, genetically engineered mouse 
models that develop PARP inhibitor-resistant tumours might be of great value, as well as 
PDX models generated using samples from patients with acquired resistance. Conversely, 
in-depth analysis of tumours from patients with remarkably good responses to PARP 
inhibitors — so-called ‘exceptional responders’ — might be an alternative strategy to better 
identify novel molecular determinants of (hyper)sensitivity to these agents266. Finally, the 
establishment of single-cell omics technologies might facilitate more detailed investigations 
of patient-derived material, which is usually of limited availability.

42

CHAPTER 2

2 2



Box 3| Detecting resistance in patients with cancer. Close monitoring of treatment response and the early 
detection of subclones that are likely to confer resistance to poly (ADP-ribose) polymerase (PARP) inhibitors 
are key to the success of a treatment regimen. However, standard tumor biopsy sampling is mostly invasive 
and thus often cannot be conducted on a regular basis. As a consequence, noninvasive methods of assessing 
tumor genomics using blood or plasma samples (liquid biopsies) are being intensively investigated as these 
can be performed serially and might provide a better indication of tumor heterogeneity. Several biomarkers 
can be detected within these biopsy samples, although circulating tumor DNA (ctDNA) is currently believed to 
be the most promising marker for the assessment of treatment response and the extent of residual disease. 
ctDNA is thought to be released from cells undergoing apoptosis or necrosis and has been suggested to 
provide a ‘real-time’ picture of disease status, owing to its short half-life, ranging from 16–150 minutes263. 
Initial evidence suggests that analysis of ctDNA might be a suitable method of detecting resistance to PARP 
inhibitors in patients. A subset of genetic reversion events leading to resistance to PARP inhibitors in patients 
with BRCA-mutated cancers can be readily detected in ctDNA123,129,130,268. Interestingly, the presence of 
polyclonal PARP inhibitor-resistant populations has also been described, some of which were already present 
before treatment initiation123,268. These studies suggest that ctDNA provides a simple method that not only 
enables the monitoring of treatment response but also might enable earlier switching of treatments as resistant 
clones begin to emerge. Certain genetic reversion events might well be detectable in ctDNA106, although other 
mechanisms of resistance to PARP inhibitors, such as restoration of HR or replication fork protection might be 
more challenging because these processes are often caused by genomic alterations, such as large deletions 
or breakpoints in introns, that are less likely to be detected using current sequencing approaches. Although 
further research is required, ctDNA assays might provide a fast and cost-effective way of screening patients 
for common and/or patient-specific alterations associated with PARP inhibitor resistance. Currently ongoing 
clinical trials aimed at assessing the predictive value of ctDNA screening (e.g., NCT03182634) might shed 
more light on the potential use of this approach.

CONCLUSIONS

In conclusion, PARP inhibitors provide a promising treatment strategy that is potentially 
applicable to several stages of cancer progression. Multiple mechanisms of resistance to 
these agents have been identified and characterized over the past years and confirmation 
of the clinical relevance of these various mechanisms is urgently needed. Additionally, 
strategies designed to specifically target tumour cells with resistance to PARP inhibitors 
are still lacking. An improved understanding of the biology of HR-deficient cancers will 
facilitate the development of rational treatment strategies to prevent and/or delay the onset 
of resistance and will ultimately lead to improved long-term outcomes for patients.
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