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Abstract
We present a personalized approach for frequent fitness monitoring in road cycling
solely relying on sensor data collected during bike rides and without the need for
maximal effort tests.We use competition and training data of three world-class cyclists
of Team Jumbo–Visma to construct personalised heart rate models that relate the heart
rate during exercise to the pedal power signal. Our model captures the non-trivial
dependency between exertion and corresponding response of the heart rate, which we
show can be effectively estimated by an exponential kernel. To construct the daily
heart rate models that are required for day-to-day fitness estimation, we aggregate
all sessions in the previous week and apply sampling. On average, the explained
variance of our models is 0.86, which we demonstrate is more than twice as large as for
models that ignore the temporal integration involved in the heart’s response to exercise.
We show that the fitness of a cyclist can be monitored by tracking developments of
parameters of our heart rate models. In particular, we monitor the decay constant
of the kernel involved, and also analytically determine virtual aerobic and anaerobic
thresholds. We demonstrate that our findings for the virtual anaerobic threshold on
average agree with the results of exercise tests. We believe this work is an important
step forward in performance optimization by opening up avenues for switching to
adaptive training programs that take into account the current physiological state of an
athlete.
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1 Introduction

The season of professional athletes primarily consists of competing in races, training
and recovery periods. Throughout the year, there are usually a few specific moments at
which an athlete aims for an optimal performance. The main challenge of the training
staff is to construct a training program that allows for a peak performance of the athlete
at their moments of choice.

In the past years, more and more information has become available on the opti-
mization of training programs (Mujika et al. 2018). According to the Fitness-Fatigue
model (Bannister et al. 1975), the performance of an athlete is related to the sum of a
positive contribution that describes the increased fitness from training adaptations and
a negative part due to increased fatigue from exercising. Here, themost important chal-
lenge is to find the right balance between the physical stress and recovery (Kellmann
2010). As current models are unable to accurately describe this balance, coaches often
rely on previous experiences and intuition (Borresen and Lambert 2009). Therefore,
it is important to frequently monitor athletes to make sure that the adaptations to the
training program are as planned or to pick up early signs of decreased fitness of an
athlete (Bourdon et al. 2017).

Due to the recent technological developments, athlete monitoring has becomemore
and more common practice in professional sports (Taylor et al. 2012). The main focus
is onmeasuring changes in fitness or fatiguewith respect tomodification in the training
load. Here, it is important to consider both the internal and external training load. The
external training load is the work that is performed by the athlete, e.g., cycling for an
hour at 200W.While this external load is independent of the individual characteristics
of an athlete (Wallace et al. 2009), the internal training load quantifies how the external
training load is experienced by the athlete. Common measures for the internal training
load are the heart rate or the Session Rating of Perceived Exertion (Foster 1998).

Collecting data about the external and internal training loads alone is not sufficient
for proper athletemonitoring.Only after performing sport-specific analyses and adding
contextual information in close collaboration with coaches, the data can be properly
interpreted and be of added value for optimizing training programs (Thornton et al.
2019). Moreover, although the internal and external training loads are important sep-
arately, it is usually the relationship between both quantities that provides the crucial
information about the fitness of an athlete (Halson 2014).

There are several complications in finding accurate connections between the exter-
nal and internal training loads. Most importantly, each individual responds differently
to training activities and therefore a personalized approach is preferable (Wallace
et al. 2009). However, in most cases there is not enough data to apply an individual-
ized approach and groups of athletes need to be considered together to find significant
dependencies. Moreover, for a complete understanding of the relationship between
the external and internal training loads it is important to also consider heavy efforts.
However, this is very demanding for athletes and thus difficult to include in a well
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thought-out training program, especially around competition events (Meeusen et al.
2013).

Due to the aforementioned difficulties, detailed athlete monitoring is not possible
in many sports. However, professional road cycling is an exception where there are
many opportunities for frequent and accurate athlete monitoring. The first reason is
that both the rider and their bike are equipped with sensors. As most professional
cyclists ride their bike for hours a day and sensors usually detect many different
quantities every second, ranging from terrain information to effort-related variables
such as speed and produced power, an enormous amount of data is collected about
the external training load and the corresponding response of the body. Second, the
training program is dominated by cycling activities and therefore it is straightforward
to obtain a complete picture of all efforts. This combination makes professional road
cycling an ideal sport for investigating frequent athlete monitoring and even opens up
the possibility to perform individualized analyses.

Although the abundance of available data for every individual professional cyclist
stimulates the application of data science techniques, the scientific literature on data
science and athlete monitoring in professional road cycling is limited. Most stud-
ies that do consider data-driven approaches in professional road cycling use publicly
available data on for example competition results. There are studies that investigate
talent identification (Bulck et al. 2021; Janssens et al. 2022), forecast race results (de
Spiegeleer; Kholkine et al. 2021) or predict power output during races (Kataoka and
Gray 2019). In other works, collaborations with professional cycling teams are estab-
lished to predict the heart rate (Hilmkil et al. 2018), investigate the effect of different
training programs for groups of athletes (Karetnikov 2019), or study the dependence
between the performance of a specific rider and the altitude profile of the stage by
using an individualized approach (de Leeuw et al. 2020). Recently, sensor data is also
used for performancemonitoring in cycling. Severalmachine learning techniques have
been applied to construct a recommendation module for increasing the cycling perfor-
mance (Demosthenous et al. 2022) and automatic handslings performance monitoring
is studied during a madison in track cycling (Steyaert et al. 2022). Whereas these
studies focus on specific performance measures, e.g., an increased speed with barely
affecting the heart rate, we here consider fitness monitoring by extracting physiolog-
ical characteristics of riders from sensor data. Up to the best of our knowledge, this
has not been addressed in professional cycling using a personalized and data-driven
approach, which is the type of analysis we consider in this work.

In this paper, we describe the results of a joint project between professional cycling
team Team Jumbo-Visma and researchers from the University of Antwerp and Leiden
University. This project is initiated by the coaching staff of the professional road
cycling team and the ultimate goal is retrieving the fitness of an individual professional
cyclist on a daily basis without performing heavy and disrupting exercise tests. By
frequently monitoring the fitness of professional road cyclists, coaches can make a
transition from static predetermined training programs to more dynamic programs
that take into account the current physiological state of the athlete.

In addition to the clear practical relevance for sport practice, this work is also
relevant from a scientific perspective, as we will apply several data science techniques
to collections of time-series data that will give new insights that are also applicable in
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other domains. At the core of our approach, i.e., the construction of an accurate model
that describes the relationship between the heart rate and the external training load, we
encounter threemain data science challenges. First, we need some form of aggregation
to model the heart rate response to exercising as this depends on the recuperation of
previously delivered efforts. Here, we will consider the convolution of the pedal power
with a kernel and introduce a recuperation time parameter of the athlete. The exact
shape of this kernel is not immediately clear as the relationship between the external
training load and heart rate response is athlete-specific and non-trivial. The second
challenge is about the data. To retrieve the fitness of an athlete, it is important to
accurately model the response at small, moderate and high external training loads.
As professional cyclists do not touch upon each of these areas during a single ride,
we need to combine several training sessions. Therefore, we need to find an optimal
balance between a large enough range of the pedal power and a model that is still
able to describe daily variations. Moreover, we have imbalanced data as the moderate
exercise intensities are most common. As there is ample research about handling
imbalanced data sets in regression settings (Krawczyk 2016), this is an interesting test
case for obtaining more insights in this research area. The third and final challenge
is about extracting the fitness from our heart rate model that is based on data from
daily practice. Here, we will connect with exercise tests and demonstrate that with our
method aspects of fitness can be monitored.

In summary, our work has the following key contributions:

• The construction of a personalized heart rate model that describes the relationship
between heart rate and external training load during exercise.

• Methods for convolution of time series data to describe the athlete-specific
response of the heart rate to current and previous delivered efforts.

• A general approach for fitness monitoring in professional road cycling via the
recuperation time, heart rate performance curve, as well as virtual aerobic and
anaerobic thresholds without performing exercise tests or making adjustments to
the training program.

• The presentation of results for world-class professional cyclists.

In the remainder of this article, we start by discussing the state of the art of athlete
monitoring in professional road cycling in Sect. 2. Then, we describe the data and our
modeling approach in Sect. 3. In Sect. 4, we present results from the heart rate model
and the experiments for finding the optimal parameter settings. Moreover, we describe
several options for athlete-specific fitness monitoring and we validate our results for
the virtual thresholds. Finally, we discuss the results and conclude in Sect. 5.

2 Athlete monitoring in road cycling

Thefitness of professional athletes is usually determined by performing an exercise test
in a controlled environment. The aim of these tests is finding the key determinants that
influence their performance. For endurance athletes, important performance indicators
are the VO2-max, lactate threshold and efficiency (Joyner and Coyle 2008).
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In cycling, lactate testing is an important tool for assessing the body capacity for
performance in a rather straightforward and inexpensive way. Here, lactate values
at fixed exercise intensity (e.g. power) are measured. These values and the manner
in which lactate concentration is building up when increasing exercise intensity are
good indicators of the performance level of cyclists (SanMillán et al. 2009;Wasserman
et al. 1981;Karlsson and Jacobs 1982). Typically, at low exercise intensities, the lactate
concentration will slowly increase. If the increase of lactate concentration starts to be
significant, we are at the so-called first lactate threshold (LT1) or aerobic threshold.
Theoretically, this is defined as the maximum exercise intensity that can bemaintained
indefinitely. If the exercise intensity is further increased, the lactate concentration will
build up more rapidly. At the second lactate threshold (LT2) or anaerobic threshold,
there is a balance between the amount of lactate that is produced and can be cleared
(Binder et al. 2008). These are exercise intensities that can bemaintained by the athlete
for roughly an hour. Efforts with even higher exercise intensities can only be sustained
for short periods.

Although retrieving this information is insightful, these testing procedures are not
performed frequently. For athletes, these tests are demanding and this makes it cum-
bersome to include them into the training programs. Moreover, results found in a
laboratory usually differ from performances observed in the field. As a result, profes-
sional cyclist are usually monitored by directly using the data that is collected during
their rides. Here, the main focus is on the exercise intensity and in particular on the
produced power (Leo et al. 2021). A frequently used feature is the so-called power
duration curve (Hunter et al. 2019). This curve gives the maximum power that can
be maintained by the cyclist for any given time period. To quantify the effects of a
particular training period, this curve can be determined before and after a training
camp. For example, the coach could observe that the rider is able to produce more
power for short time periods, but a lower power for longer efforts.

In addition to the external training load, coaches also monitor the internal training
load. Here, the most common measure is the heart rate, since it is relatively cheap
to determine accurately. Although the heart rate can be affected by many factors, for
professional athletes global changes over a longer period are assumed to be caused
by adaptations to training programs (Lamberts et al. 2010; Buchheit 2014). However,
there is no unambiguous evidencewhether certain changes in heart rate are related to an
increased or decreased fitness (Bellenger et al. 2016) and therefore adding contextual
information is crucial (Kellmann et al. 2018).

Currently, the monitoring approaches are solely based on either the internal or
external training load. However, it is rather the coupling between both loads that
is relevant for determining the physical fitness, i.e., the duration of certain exercise
intensities are only relevant if information on how these are perceived by the cyclist
is included.

In this study, we present an approach for athlete monitoring that combines the
advantages of the aforementioned methods, without the presence of the disadvan-
tages, i.e., we will frequently determine the fitness without any additional burden for
the cyclist. Recent studies use a non-invasive methodology with a detrended fluctua-
tion analysis of the heart rate variability to determine estimates of the lactate thresholds
(Mateo-March et al. 2022). Here, the authors found an agreement with the first lactate
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threshold and also obtained large correlations with the second lactate threshold. Alter-
natively, we will present an approach based on daily heart rate models that couple the
external training load to the internal training load. Hereby, we cannot only determine
virtual aerobic and anaerobic thresholds and monitor their daily fluctuations, but also
monitor the fitness via the recuperation time, i.e., the length of the time window in
which efforts affect the heart rate.

3 Methods

3.1 Data

We consider three world-class general classification riders of Team Jumbo-Visma,
dubbed rider A, B and C. The data consists of a large variety of characteristics that
are collected through a cycling computer once a second during all of the rides in a
certain time period. For rider A, we consider a period of two and a half years during
which the sensor data of 791 sessions is gathered. The data set of rider B consists of
301 sessions collected throughout a single year. Finally, we consider 120 sessions of
rider C that were all completed in a time span of four months.

For every session, we have many distinct attributes. Most sessions are on different
dates, but there are a few cases where there are multiple sessions on a single day.
For example, if a cyclist is participating in a time trial, we can have a session with a
reconnaissance of the course, one with the warm-up before the race and a race file.
Since there is sufficient time between all sessions, each ride is considered separately.

The main attributes of the data are as follows:

• Power [Watt]
• Cadence [rpm]
• Heart rate [bpm]
• Covered distance [km]
• Duration [sec]
• Speed [km/h]
• Altitude [m]
• GPS coordinates [longitude, latitude].

The other attributes characterize more detailed information about the power that is
produced by the cyclist, e.g, the power produced by the left or right leg at different
angles of the pedal. These attributes are not considered in this study.

For some rides, the produced power or heart rate is not recorded. During many
competition events, there is no heart rate information, as wearing a heart rate chest
strap gives some discomfort. Moreover, there are some cases where during (parts
of) bike rides, the sensors were not functioning properly. Fortunately, this occurs
infrequently and the riders cycle for hours per session. In this abundance of data,
we removed the times without heart rate information and the instances where the
convolution of the pedal power could not be determined. An overview of the data,
including the percentage of missing values, can be found in Table 1.
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Table 1 Overview of most
important characteristics of the
used data

Rider Number of sessions Percentage missing values
Power (%) Heart rate (%)

A 791 6.4 9.9

B 301 1.1 1.3

C 120 1.1 0.7

3.2 Modeling approach

Wewant to determine the fitness of a cyclist by only using data that is collected during
competition and training rides. In our approach, we will not consider an entire time
period at once as thiswould incorrectly suggest that the fitness of the cyclist is constant.
Alternatively, we will construct our heart rate model iteratively for a shorter period.
For each day d, we consider all rides that were within N days prior to d. Typically,
N = 7 as for professional athletes weekly exercise programs contain the necessary
variation for constructing our models. On this subset of the data, we use the heart rate
models to determine the fitness of a cyclist on day d. We repeat this procedure for all
days to monitor how the fitness of our cyclist is changing throughout the entire period,
except for the first N days. Ultimately, we compare the findings of our approach to
results during exercise tests in the same time period, as validation of our model.

Our approach consists of two important parts. First, we construct a heart rate model
to couple the internal and external training loads. Here, we apply regression techniques
to find the relationships between heart rate and variables that characterize the external
training load. In the second part, we extract characteristics from our heart rate model to
determine information about the fitness of the cyclist. In the remainder of this chapter,
we will discuss the details of both steps.

3.3 Heart rate model

From experiments in controlled settings, we know that the heart rate is influenced
by many factors. For example, the phenomenon cardiovascular drift describes the
increase in heart rate for prolonged exercises at constant power (Hamilton et al. 1991),
and the heart rate is positively correlated with power output (Grazzi et al. 1999).
Therefore, most attributes in our data collection are predictor variables for a heart rate
model.

However, in our case the situation is different from these aforementioned exper-
imental studies. In these studies, the dependencies are obtained by only changing a
single variable and fixing the values of the others. On the other hand, we are using data
that are collected in uncontrolled settings. This implies that many of the attributes are
related to each other. For instance, if we straightforwardly consider all rides together
for rider A, the Pearson’s correlation between the cadence and power output is 0.63.
Thus, an approach where all attributes are considered as independent variables would
involve many collinearities.
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In principle, this is not an issue if the goal is to construct amodel with high accuracy.
However, to determine the physical fitness of a cyclist, it is crucial to accurately
describe the relationship between heart rate and produced power. Therefore, we would
obtain incorrect dependencies if we would use a model that includes many correlated
attributes and investigate the relationships between power output and heart rate while
fixing the value of the other attributes. Hence, we here take a different approach.

3.3.1 Convolved pedal power

As a first step in our methodology, we introduce the convolved pedal power. This
variable is a weighted average of the produced power in a specific time interval. More
specifically, the convolved pedal power at time t for a session s of length l is defined
as

Ps
conv(t) =

∑w
i=0 h(−i)ps(t − i)

∑w
i=0 h(−i)

:=
w∑

i=0

h̃(−i)ps(t − i), (1)

where w is the length of the convolution window, ps = {ps(0), ps(1), ..., ps(l)} is the
pedal power attribute and h(x) is the kernel. Note that we normalised the kernel such
that the values of the convolved pedal power can be interpreted as weighted averages
during the time window w with h̃(−i) the corresponding weights. Therefore, the
sum of the normalised kernel is equal to 1 and the convolution does not introduce an
arbitrary scaling of the pedal power values.

In principle, the kernel function can take any shape. To investigate which kernel
functions are relevant, we assume a linear relationship between the heart rate and the
convolved pedal power. As explained before, this linear dependency is accurate for
a large range of moderate exercise intensities (Grazzi et al. 1999). Although for the
construction of the final heart rate model more complex modeling is required, the
linear assumption suffices for this purpose.

In this study, we examine two different approaches. First, we consider an empirical
kernel where we do not make any assumptions and directly use Eq (1). In this case,
we thus find

HR(t) = HR0(t) + a · Pconv(t)

= HR0(t) + a ·
w∑

i=0

h̃(−i)p(t − i)

:= HR0(t) + a
[
h̃(0)p(t) + h̃(−1)p(t − 1) + ... + h̃(−w)p(t − w)

]
. (2)

From this equation, we observe that the specific values of the kernel can be determined
by using multiple linear regression with the pedal power at several times as predictor
variables. More specifically, we include the pedal power at time t and also at times
shifted backwards by an integer value i between 1 and w. Note that this approach
resumes many parameters to be optimized and therefore is computationally intensive.

123



Exploiting sensor data in professional cycling...

For our second approach, we use the response of the body to change in workloads in
controlled environments can be modeled by an exponential kernel (Bunc et al. 1988;
Ludwig et al. 2016). Therefore, we will consider the following exponential kernel

h(t) = et/τ , (3)

where τ is theweight of the exponential. Note that the value of τ specifies howprevious
produced power outputs contribute to the convolved pedal power. For large values of
τ , the exponential kernel decreases slowly and the relevant window w in Eq. (1) is
relatively large. On the other hand, the kernel decreases faster for small values of τ .
In this case, to determine the convolved pedal power at time t, only efforts relatively
close to this time are important. In contrast to the first approach, there is only a single
parameter that needs to be optimized. Moreover, as we will discuss in the next section,
this approach has the advantage that the single parameter τ is interpretable.

3.3.2 Recuperation time

In addition to the mathematical description, there is also a practical interpretation
of our exponential kernel approach. As τ is the center of mass of the kernel, we
roughly introduce a lag of τ seconds for the response of the heart rate to changing
exercise intensity. Moreover, the speed at which the heart rate decays after exercising
is related to the physical fitness (Buchheit et al. 2007). In our approach, a rapid heart
rate recovery implies that only efforts close to the time for which we model the heart
rate are relevant. In this case, only a relative small time window for the convolved
pedal power is important for modeling the heart rate. Conversely, large windows are
relevant for slow heart rate recovery. Hence, there is a connection between the value
of τ and the heart rate recovery. If τ is small, the heart rate recovery is fast and the
cyclist on average recuperates fast from previous efforts. This indicates good physical
fitness. The opposite holds for large values of τ . Hence, τ is a rough estimator of the
recuperation time and has a negative correlation with the physical fitness.

Note that via the parameter τ , we implicitly take into account the effect of all
factors different from the power, that influence the heart rate. Thus, the value of τ

depends on many factors, such as the altitude on which the rides are executed or
weather conditions. For example, distinct value of τ on two specific days can be a
consequence of the different altitude at which the bike rides in the previous days were
executed. Additionally, the recuperation time is also influenced by the wellness of
the cyclist, e.g., the amount of stress or hours slept. Although the effects of all these
factors are relevant and ideally we would explicitly model all of them properly, it is
rather the combination that is most important for determining the fitness. The strength
of our method is that we model the effect of all factors by a single parameter, where
taking into account each dependency separately would necessitate the application of
a more complicated modeling approach.
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3.3.3 Model

The basis of our heart rate model is the convolved pedal power. This variable uses
the power and takes into account the time lag between a change in produced power
and a corresponding response of the heart rate. Moreover, other influential factors are
implicitly taken into account via the shape of the kernel, e.g., the recuperation time of
the exponential decaying function. Therefore, it suffices to construct a model where
the convolved pedal power is the only independent predictor variable.

For a correct modeling of the relationship between the heart rate and the produced
power while cycling, we need to mention that this dependency is rather complex. In
accordance with previous work in running (Conconi et al. 1982; Brooke and Hamley
1972), the relationship between the heart rate and power is typically described by an
’S-shaped’ curve. At low power, the increase is usually rather small. This is followed
by a linear increase for moderate power values and finally the heart rate reaches a
plateau if the power is even further increased.1

To model this behaviour and especially the relationship at high exercise intensities,
we set

HR(t) = HR0(t) + a · Pconv(t) + b · [Pconv(t)]2 + c · [Pconv(t)]3 , (4)

where HR(t) is the heart rate at time t and HR0(t) denotes the intercept. Moreover, the
three parameters a, b and c are coefficients for the linear, quadratic and cubic depen-
dencies between the heart rate and convolved pedal power, respectively. In addition to
the shape of the kernel, we thus have four more parameters in our approach that need
to be optimized.

3.3.4 Sampling

The use of sensor data from daily practice leads to another complication. During most
rides, a cyclist is only covering a narrow range of exercise intensities. Moreover, most
of the time, a cyclist is performing his training sessions atmoderate exercise intensities.
Therefore, it is usually not possible to obtain reliable information about the heart rate
power model for low, moderate and high exercise intensities if only one session is
considered. However, later on we will demonstrate that for the determination of the
physical fitness of a cyclist, it is important to accurately describe the relationship at all
exercise intensities. In particular, we need sufficient data at high exercise intensities for
estimating the virtual anaerobic threshold. Therefore, we combine training sessions
on subsequent days and construct the heart rate model based on the sensor data of all
training sessions that were completed in a small time period. More specifically, for
every day d, we consider all training sessions that were completed N days prior to d.

Although this enlarges the range of values for the convolved pedal power, we
still encounter that the low and high exercise intensities are highly underrepresented.
This is also illustrated in Fig. 1, where we observe that especially the large values

1 Although this is the most common pattern for healthy persons, different relationship are also observed.
For example, there could be a linear relationship for the entire range of exercise intensities or even an
upward inflection at large power outputs (Hofmann et al. 1997).
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Fig. 1 Cumulative probability
density function for the
convolved pedal power if we
combine all training sessions of
the cyclists. As an example, we
considered a recuperation time
τ = 40 s and considered a
convolution window of 120 s.
We observe that high values for
the convolved pedal power are
scarce for all three cyclists

of the convolved pedal power are underrepresented in our entire data collection for
each cyclist. For example, we observe that for Rider A around 90% of all values of
the convolved pedal power are smaller than 300W, which is a relatively moderate
exercise intensity for this cyclist. The consequence of this skewness is that applying
regression to all data is not appropriate to construct a reliable model at large values
for the convolved pedal power. In this case, the few points in this area would barely
influence the sum of squared errors, which makes the model unreliable for these high
exercise intensities.

Here, we address this issue by applying sampling. Our strategy is based on the
values of the convolved pedal power. This approach is preferred over sampling on the
target variable as this might interfere with the randomness that is present in the target
variable. In total, our strategy consists of the three following steps

1. Round the values of the convolved pedal power to the nearest integer.
2. Determine the frequency f p of each value of the convolved pedal power.
3. Apply undersampling where the probability of a data point to be included in our

sampled data set is inversely proportional to f p.

After performing this procedure, we lower the relative presence of more common
values and increase the proportion of underrepresented values. Thereby, we improve
the balance in our data set.

3.3.5 Summary

Our approach consists of several parts. To construct a heart rate model for a day d
with sufficient data available and the exponential decaying kernel as defined in Eq.3,
we take the steps as described in Algorithm1.

As the differences in accuracy of our heart rate model are small for minor variations
in the shape of the kernel, a different under-sampling occasionally results into other
values for the recuperation time and model coefficients. For each day, we therefore
execute our algorithm for ten under-sampled strategies with each a different random
seed. The day-specific fitness parameters, i.e., the recuperation time and the virtual
thresholds that are discussed in the next section, are the averages over these ten results.
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Algorithm 1 Heart Rate model
1: Combine data from the rides within N days prior to d
2: for τ ∈ [0, 120] do
3: Apply convolution to time series to produce convolved pedal power
4: Apply proportional under-sampling strategy on data set
5: Split training data set into 10 folds
6: for i ∈ [1, 10] do
7: Select fold i as test set
8: Fit model on remaining 9 folds with optimal parameters HR0(t), a,
9: b and c of Eq. (4)
10: Determine explained variance of the model on the test set
11: end for
12: Determine explained variance for τ , averaged over 10 folds
13: end for
14: Select recuperation time τ that optimizes cross-validated model fit
15: Construct heart rate model on the entire sampled data set

3.4 Fitness monitoring

As a first step, the heart ratemodel can be used to obtain a global picture of the fitness of
the cyclist. By comparing the relationship between the heart rate and convolved pedal
power on different days, we can determine an overall picture of the physiological
changes. For example, we can monitor the changes in heart rate at low, moderate
and high exercise intensities throughout a training period to examine the physical
adaptations to the training programs. Additionally, the model can be compared to a
benchmark period in a previous season.

To obtain more concrete information about the physical fitness of the cyclist, we
consider specific characteristics of the heart rate convolved pedal power curve. As
mentioned before in Sect. 3.3.3, in most practical cases this curve is S-shaped. In this
case, there are two points where there is a deflection from the linear behavior. We
will determine the coordinates of these points. Then, we connect the deflection points
at low and high intensities with the aerobic and anaerobic threshold, respectively.
Note that this is analogous to previous works on heart rate performance curves that
consider the heart rate response at specific values of the produced power (Hofmann
and Pokan 2010), although we here consider the relationship to the convolved pedal
power instead.

We have the task of finding the deflection points of the heart rate model as given
by Eq. (4). Therefore, we introduce the three parameters Pmin, Plin and Pmax. Here,
Pmin and Pmax are the minimum and maximum values for the convolved pedal power
for which the heart rate model is reliable. In Sec. 4.5.1, we will elaborate on the
determination of these two parameters in more detail. Moreover, Plin is the average of
the minimal and maximal values of the convolved pedal power and therefore typically
a moderate aerobic exercise intensity. We define the deflection points to correspond
to the points on the S-curve where the perpendicular distance to the straight lines
between Pmin and Plin or Plin and Pmax has a maximal value (Cheng et al. 1992). This
procedure is sketched in Fig. 2.

There are severalmethods to determine the deflections points of these type of curves.
Since the analytical function describing the S-curve is known, we can determine the
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Fig. 2 Illustration of the
deflection points PLT1 and PLT2
in an S-curve for the relationship
between the heart rate and the
convolved pedal power. The
deflection points are defined as
the points on the S-curve that
have the largest perpendicular
distance to the straight lines
drawn between Pmin and Plin or
Plin and Pmax, respectively

coordinates of the deflection points analytically. For this, we observe that for all values
of the convolved pedal power between Pmin and Plin, the deflection point is the only
point at which the slope of the S-curve is equal to the slope of the straight line between
Pmin and Plin. As the relationship between the heart rate and convolved pedal power
is given by Eq. (4), the first deflection point can be found by solving for PLT1,

a + 2b · PLT1 + 3c · (PLT1)
2 = αLT1, (5)

where αLT1 is the slope of the straight line connecting Pmin and Plin. More specifically,

αLT1 = [HR (Plin) − HR (Pmin)] / [Plin − Pmin] , (6)

with HR (P∗) the heart rate at P∗. Hence,

PLT1 = −2b ± √
4b2 − 12c · (a − αLT1)

6c
. (7)

Note that there are two solutions. However, there is only one value inside the range
[Pmin, Plin] which corresponds to the value for the convolved pedal power at the first
deflection point. By following an analogous reasoning, the second deflection point is
the value for the convolved pedal power in the range [Plin, Pmax] that satisfies

PLT2 = −2b ± √
4b2 − 12c · (a − αLT2)

6c
, (8)

with

αLT2 = [HR (Pmax) − HR (Plin)] / [Pmax − Plin] . (9)

To obtain the values of the heart rate at the deflection points, the values for the
convolved pedal power given by Eqs. (7) and (8) can be substituted in Eq. (4).

123



A.-W. de Leeuw et al.

Fig. 3 The normalised empirical
kernel h̃ for all data of each of
the three riders, separately

4 Experimental results

In this section, we first discuss the experimental justification of specific choices in
our methodology and the parameter settings. Then, we deliberate on the results of our
heart rate model and describe the options for fitness monitoring.

4.1 Convolved pedal power

Here, we will compare the two approaches discussed in Sec. 3.3.1 and elaborate on
our choice for taking an exponential kernel with recuperation time τ .

To compare both approaches, we consider all data of each rider separately. Per rider,
we use 80% and 20% as training and test sets, respectively. The kernel parameters are
obtained by applying 10-fold cross validation on the training set. The accuracy of the
kernel is assessed by determining the explained variance of the found model on the
test set.

In our first approach, we consider the empirical kernel as described by Eq. (2) and
thus perform multiple linear regression with a window length w of 180 s. In Fig. 3, we
display the empirical kernels for our three riders. Apart from some subtle differences,
we find similar behavior for all riders.We observe that the normalised kernel increases
for the most recent past. Hereafter, it reaches a maximum value around 7 seconds and
then decreases for a long time. Finally, it marginally increases for large negative times.
Note that according to Eq.2, the value of h̃(−a) is equal to the coefficient for pedal
power at time t − a for all a ∈ [0, 180].

From this experiment, we observe that for all our cyclists the normalised kernel
has a maximum value at a time different from zero. This implies that for the riders
considered, on average the pedal power that is produced 7 s prior to t is most important
for predicting the heart rate at a specific time t . Interestingly, the pedal power at time t
is less important. This phenomenon can be explained from a physiological perspective
as it will take some time before the body responds to a change in exercise intensity.
This clearly shows that for modeling the heart rate at a specific time, it is important
to include the past exertions, which in our approach is done by using the convolved
pedal power.
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Fig. 4 The normalised kernel h̃
for all data of Rider A for our
two approaches. The solid line
corresponds to the empirical
kernel after performing multiple
linear regression for modeling
the heart rate at time t with the
pedal power at time t and
previous times as predictor
variables. The exponential
decaying function is displayed
by the dashed line

Table 2 Comparison of the results for our two approaches for the kernel as discussed in Sect. 3.3.1

Rider Accuracy (R2) Recuperation time (s)
Empirical kernel Exponential kernel

A 0.768 0.758 35

B 0.763 0.756 41

C 0.839 0.834 41

For each rider, we selected all data and determined the rider-specific characteristics of the kernels that
optimize the accuracy of the heart rate model. We display the accuracy as explained variance R2 and also
specify the recuperation time of our exponential kernel

For our second approach, we determine the convolved pedal power by using an
exponential decaying kernel with a recuperation time τ , as is described by Eq. (3). We
again find similar results for our riders. As an illustration, we display the result of both
approaches for rider A in Fig. 4 . Although the behavior of the normalised kernel is
different for the most recent history, we find that on the whole, an exponential function
is still a good approximation.

In Table 2, we show the detailed information of both approaches for our three rid-
ers. We find that the accuracy of both approaches is very similar. However, compared
to the first approach, the exponentially decaying kernel is analytical and has a single
interpretable parameter. Additionally, as explained in Sect. 3.3.3, with the exponen-
tially decaying kernel it is also straightforward to model the non-linear behaviour of
the relationship between heart rate and produced power. Therefore, we opt for this
approach from here on. Note that the exponential function decays quite fast, i.e., the
recuperation time is around 40 seconds. Therefore, we can restrict ourselves to a
relative small convolution window w of 120 s to save computation time.

4.2 Parameter settings

As explained before, the lack of variation during most training sessions forces us to
combine several training sessions to construct an accurate heart rate model for low,
moderate and high values of the convolved pedal power. Thus, for a given day d we
consider all training session completed in the N days before d. Hereby, we need to find
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Fig. 5 Median of the 99th
percentiles for the distributions
of the convolved pedal power
(CPP) for all days in our data
collection as a function of the
accumulation window. For each
rider, we normalised the values
with respect the value of the
median for an accumulation
window of 14 days. Here, we
consider a recuperation time
τ = 40 seconds and a
convolution window of 120 s

a proper value for this accumulation window. More specifically, we will discuss how
many days prior to d the training session should be included. As discussed previously,
we here specifically need to focus on the presence of data points at large values of the
convolved pedal power (in other words, large exertions).

To investigate the availability of data at large values of the convolved pedal power,
we performed the following experiment. First, we select a certain accumulation win-
dow. For a given day d, this accumulation window is defined as the number of the
days N prior to d for which the training session data is included in the data set for this
day. For example, we only include data of the day before d if we set N = 1. After
choosing this accumulation window, we select a day d and calculate the convolved
pedal power for each data point. Here, we considered τ = 40 s, which is a typical
value for the recuperation time that is defined in Eq. (3). Then, we determine the 99th
percentile of all values of the convolved pedal power. We repeat this procedure for all
days in our entire data collection.

In Fig. 5 , we display the median of the 99th percentiles of the convolved pedal
power as a function of the accumulation window for our riders. We find that this
measure is equal to small values of the convolved pedal power if we consider a small
accumulation window. This agrees with our claim that in most training session a
cyclist only rides at relatively small values of the convolved pedal power. However,
we observe that the value for the median increases if we increase the accumulation
window. This nicely demonstrates that the training sessions of cyclists are diverse and
larger values of the convolved pedal power are explored if we consider all training
sessions in a large enough time period.More specifically, we find that themedian of the
99th percentiles of the convolved pedal power rapidly increases up to an accumulation
window of 4 days, after which it rises more slowly. Based on the results of Fig. 5, there
is no clear-cut value for the accumulation window. However, a slightly different value
for the window will not have very large consequences for the results our approach.
Therefore, we set the value for the accumulationwindowbased on practical arguments.
We take N = 7 to allow for a straightforward connection with training programs that
are usually planned on a weekly basis and to obtain sufficient data at large values of
the convolved pedal power.

As the ultimate goal of this study is to determine the deflection points of the curve
that describes the relationship between heart rate and convolved pedal power, we need
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Fig. 6 The heart rate models (solid lines) for rider A as a function of the pedal power (left) or convolved
pedal power (right) for a day chosen at random. Each point corresponds to a combination of the heart
rate and (convolved) pedal power in the underlying data. The introduction of the convolved pedal power
decreases the variance in the data and thereby increases the explained variance R2 of the heart rate model
from 0.42 to 0.86

to increase the relative presence of large values of the convolved pedal power. For
N = 7, the average number of data points is roughly 60,000 for a day in our data
collection. Here, we apply under-sampling and take a sample number of 10,000. In
this case, themedian of the 95th percentile of the convolved pedal power of the sampled
data set is approximately equal to the median of the 99th percentile of the convolved
pedal power of the original data set that is displayed in Fig. 5. Hereby, we increase the
presence of relevant values for the virtual threshold determination to 5%, which we
believe is sufficient to obtain reliable results.

4.3 Heart rate model

The core of our approach is a model that describes the relationship between heart rate
and pedal power. We determine this model for each day with sufficient data, i.e., we
ignore days for which the total number of data points is less than our sample size of
10 000. Note that this also includes holiday breaks. In total, we construct our model
for 1229 days. We have 781, 329 and 119 days for riders A, B and C, respectively.

In Fig. 6, we illustrate the importance of considering the convolved pedal power by
considering the heart models for rider A, as a function of the (raw) pedal power (left)
or the convolved pedal power (right) for a randomly chosen day. In the left figure, we
still find a large variation in heart rate values for each value of the pedal power. On
the other hand, the spread in heart rate values is significantly decreased if we consider
the convolved pedal power.

This fact is also demonstrated if we consider the fit of themodels. In Fig. 7, we show
the distribution of the explained variance of the heart rate models for all days in our
data collection with sufficient data, as a function of the original and convolved pedal
power. Although we here only display the combined results for all riders, our findings
are consistent for all three riders. The R2-score of the models (mean ± SD) on the
test set of the sampled data set is 0.35 ± 0.12 or 0.86 ± 0.07, when we consider the
pedal power or convolved pedal power, respectively. By performing an independent
t-test, we find that the difference is statistically significant (p < 0.01). We calculate
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Fig. 7 Distribution of the
accuracy (explained variance on
the test set) of the heart rate
models for the pedal power and
convolved pedal power

Fig. 8 The recuperation time for rider A during two similar build-up periods for the same focus race in
subsequent seasons. We averaged the recuperation times by calculating a rolling mean of the previous week
to display the global trends in both phases. The dashed area with circles indicates an altitude camp and the
races are denoted by the shaded area with crosses

the effect size of this difference by using Cohen’s d (Cohen 1992), and find that the
effect size is large (d > 2). Hence, the introduction of the convolved pedal power
significantly increases our understanding of the variance in the heart rate.

4.4 Fitness monitoring

The goal of this study is developing a frequent fitness monitoring system. Within our
approach, the main components of this system are the recuperation time, the heart rate
performance curves, as well as the virtual aerobic and anaerobic thresholds. In the
remainder of this section, we will use the data of rider A to illustrate the usefulness of
our monitoring system.

4.4.1 Recuperation time

An example of the recuperation time monitoring is displayed in Fig. 8. To illustrate the
global trend, we show the rolling average of daily recuperation times in the previous
week. We consider two periods of the same length, that occurred in the same part of
the season in two subsequent years, and are the build-up phases for the most important

123



Exploiting sensor data in professional cycling...

Fig. 9 Heart rate performance
curves for rider A at the same
date in two subsequent seasons.
The solid (dashed) line
represents the heart rate
performance curve at roughly
the middle of the altitude camp
in the build-up phase for the
main goal of the season, i.e.,
period 1 (2) in Fig. 8

race of the season for our rider of interest. Moreover, the content of these periods is
almost identical with an altitude camp at the same timing, location and the same races
that are used as preparation.

Despite the similarity of both periods, we observe that the behavior of the recuper-
ation time is quite different. The main difference occurs during the altitude camp (the
largest blue area in each plot), which is the most important part in the build-up towards
the target race. At the start and end of the altitude camp, the recuperation times are
roughly the same in both periods. However, during the altitude camp, the evolution is
quite different. In the first period, a decline in the recuperation time at the beginning of
the altitude camp is followed by an increase. On the other hand, the recuperation time
increases during almost the entire altitude camp with only a short period of decline in
the final stage of the altitude camp. This could be indication that the training load was
too large during the altitude camp.

If we compare both seasons, we find a difference of roughly 15 seconds in the recu-
peration time at 16 days before the start of the target race. Note that these fluctuations
are not a consequence of the random noise in data. Namely, the spread in recuperation
time on a single day due to the noise, defined as the standard deviation for ten runs
with different under-sampling strategies, is typically around 4 s. Therefore, combined
with the fact that the rider performed worse in the target race during the second season,
this example might indicate that this recuperation time contains valuable information
in fitness monitoring.

4.4.2 Heart rate performance curve

With the construction of our heart rate model, we obtained the relationships between
heart rate and convolved pedal power for each day in our data collection. Therefore,
we can determine the heart rate performance curves and monitor the fitness of our
cyclist by studying the development of this curve through time.

In Fig. 9, we show two heart rate performance curves at the same date in two
subsequent seasons. Although the run-up to the altitude camp and the goal of both
training periods were similar, we find different results. Most importantly, we observe
that the heart rate at large values of the convolved pedal power is larger in the second
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Fig. 10 Heart rate for rider A at a fixed value for the convolved pedal power of 250W in the build-up phase
for the main goal of the season in two subsequent seasons, i.e., period 1 (2) in Fig. 8. The crossed-filled area
denotes days on which the rider participated in races and the area filled with circles indicates an altitude
camp

altitude camp (dashed line). Interestingly, we observe that one of the curves flattens
at high intensities, whereas the other is nearly straight.

Apart from the difference in shape of the heart rate performance curves, we can
also extract other useful information from these. In addition to the virtual thresholds,
whichwill be discussed in the next section, it is also insightful to consider intersections
at a fixed convolved pedal power. In Fig. 10, we display the course of the heart rate
corresponding to a fixed convolved pedal power of 250W. Although the heart rate
values are quite stable, small fluctuations could be examined to study exercising in the
aerobic zone. Moreover, we observe that there are differences between both seasons.
In particular, the day before the target race, the heart rate at 250W is almost 10 bpm
higher in period 1 than in period 2. This demonstrates that relevant information about
the fitness can be derived at moderate exercise intensities. For example, a higher heart
rate at the same convolved pedal power could indicate a decreased aerobic fitness
(Thorpe et al. 2017), if other possible explanations such as a reduction in training
volume can be excluded (Mujika and Padilla 2000a, b).

4.4.3 Virtual aerobic and anaerobic thresholds

As explained in Sect. 3.4, we can analytically obtain the deflection points of the curve
describing the relationship between heart rate and convolved pedal power. To deter-
mine the coordinates of these points, we need values for the minimal and maximal
convolved pedal power, i.e., we have to specify Pmin and Pmax, respectively.

For monitoring the fitness of a cyclist, the precise values of these parameters are
not very important. More specifically, a change of the parameter variables only results
in an offset of all values. Therefore, slightly different values do not affect the fluc-
tuations of the virtual aerobic and anaerobic thresholds throughout the season, i.e.,
relative changes. For the purpose discussed in this section, it suffices to choose typ-
ical values for these parameters, and we set Pmin = 25W and Pmax = 475W. In
the following section, we will elaborate on a more data-driven procedure to set these
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Fig. 11 Heart rate (dashed) and convolved pedal power (solid) at the virtual aerobic (left) and anaerobic
(right) thresholds for rider A during the build-up period for the target race in a season. We display the global
behavior of the heart rate and convolved pedal power by using a rolling mean with a back looking window
of a week. The area with circles indicates an altitude camp and the competition races is denoted by the
shaded area with crosses

values and demonstrate that the parameter values need to be altered if a different rider
is considered.

InFig. 11,we show the development of the virtual aerobic (left) and anaerobic (right)
thresholds in the build-up towards a target race of our rider. As with the recuperation
time, we display the rolling mean with a backward looking window of a week to
display the global trend during the preparation phase. Note that also in the case the
fluctuations are not due to the noise in the data. Here, the standard deviations for ten
different under-sampled data sets are approximately 3 W and 0.7 W for the virtual
aerobic and anaerobic thresholds, respectively. Moreover, the standard deviation in
the corresponding heart rate values is 0.7 bpm and 0.4 bpm. Therefore, the results
of these figures nicely illustrate that actual fluctuations of the thresholds would have
been missed if monitoring occurs on a less frequent basis.

4.5 Validation of results

Tovalidate our results for the recuperation time,wewould need to compare ourfindings
with additional information about the fatigue and recovery of a rider. Although our
findings coincide with the experiences of the coach, e.g., a worse recovery during
the altitude camp in period 2 compared to period 1 as is displayed in Fig. 8, more
validation would be in order. For example, this can be achieved by using a daily
wellness questionnaire (de Leeuw et al. 2021). Unfortunately, this data is not collected
and a more detailed validation needs to be addressed in future work.

4.5.1 Virtual anaerobic threshold

The virtual anaerobic threshold can be validated by using the results of physical tests.
The tests can be divided into two different categories. First, there are field tests inwhich
the rider completed six blocks of 6 min. In each block, the rider was instructed to ride
at different exercise intensities. In the first period of 6 min, the exercise intensity is
low. In subsequent blocks, the exercise intensity gradually increased until an all-out 6
min effort in the final block. After each block, the lactate concentration was measured.
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Table 3 Comparison of our approach with the results of exercise tests

Rider Number of physical tests Average power (virtual) anaerobic threshold
Exercise tests Our approach

A 5 373 ± 11W 379 ± 10W

B 3 388 ± 11W 391 ± 19W

C 1 423W 419 ± 12W

We consider the convolved pedal power at the virtual anaerobic threshold from our approach and the power
at the anaerobic threshold obtained in exercise tests. We display the average values and standard deviations

Second, we have the results of two exercise tests that were performed in a controlled
laboratory setting. In the tests, the rider starts cycling at a low pedal power. After
cycling at this intensity for a fixed time period, the exercise intensity is increased.
Typically, the increment of pedal power is 30 W and the rider needs to maintain this
intensity for a few minutes, e.g. 3 min. This procedure is repeated until complete
exhaustion.

As argued, these tests are invasive, and are only performed rarely. For rider A, we
have results of three field tests and two tests that were performed in a laboratory. Rider
B and C completed three and one tests, respectively. With this limited data, that is
also mostly obtained in the off-season, it is unfeasible to directly compare our results
for the virtual anaerobic thresholds with the outcomes of the tests. In this case, the
most appropriate validation is to compare average results for the produced power at
the virtual thresholds.

To compare the results of our approach with the outcomes of the exercise test, we
first need to specify the rider-specific parameters Pmin and Pmax. For every rider, we
determine the 99th percentile of the convolved pedal power for each day in their data
collection and set Pmax to the largest value. More specifically, Pmax is equal to 483W,
497W and 545W for rider A, B and C, respectively. Moreover, the presence of low
values of the convolved pedal power is similar for our cyclists, and we set Pmin = 0W
for all riders. In Table3, we compare our findings with the outcomes of the exercise
tests. These results demonstrate that the power at our virtual anaerobic threshold is
consistent with the results of the exercise tests.

In addition to the comparing the average values, it is also interesting to look at
the changes in the convolved pedal power at the anaerobic threshold throughout the
entire period. Therefore, we determine the middle 90% of all values for the convolved
power at the anaerobic threshold. By using the physiological characteristics of our
riders, we obtain that for rider A the spread is roughly 0.46W · kg−1. Moreover, for
riders B and C we obtain values of approximately 1.03W · kg−1 and 0.48W · kg−1,
respectively. Within a span of a few months during a season, the variations in the
Functional Threshold Power (FTP), i.e., the maximal power that a rider can sustain
for an hour, can already be 0.4W · kg−1 (Nimmerichter et al. 2010). As the FTP is
strongly correlated with the anaerobic threshold (Valenzuela et al. 2018), we find that
the fluctuations in our virtual anaerobic threshold are comparable to the results of this
study for riders A and B. For rider C, we obtain fluctuations that are larger. Note that
these larger values of the fluctuations can be obtained as we consider longer periods
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that includes race days as well as low-intensity periods within the season, i.e., days
after a holiday break.

4.5.2 Virtual aerobic threshold

Unfortunately, a similar validation of our virtual aerobic threshold is not possible.
Namely, the physical tests start at exercise intensities at which there is already an
elevation in heart rate compared to the heart rate in rest. Thus, the starting exercise
intensity of the test is larger than we used for our definition of the virtual aerobic
threshold, i.e., the intensity at which there is the first significant increase in heart
rate. So, these tests can not be used for validation of the virtual aerobic threshold.
However, we know that the values of our virtual aerobic threshold are quite different
from the aerobic threshold obtained from exercise tests. For example, we find a value
of 106 ± 18W for our virtual anaerobic threshold for rider A. This is quite different
from the 283W found for the aerobic threshold in the tests performed in the laboratory.
The disagreement can be explained by our definition of the virtual anaerobic threshold.
We defined this threshold as the exercise intensity at which there is the first significant
increase in heart rate and thus can be interpreted as aminimum for low-level exercising.
However, professional cyclists are able to maintain low lactate concentrations for low
to moderate exercise intensities with already a significant elevation in heart rate. As
recreational cyclists have less developed aerobic systems, our virtual aerobic threshold
might be a more relevant estimate of the aerobic threshold for these riders.

The advantage of considering elite cyclists is that the structured and frequently
collected data are ideal for developing a data-driven method as considered here. The
disadvantage is that their training program is very strict and they participate in many
races throughout the season. Therefore, it is infeasible that elite cyclists will perform
the frequent exercise tests that are necessary for validating the short-term variations
in the virtual thresholds. Hence, for further validation of our approach, we need to
consider a group of sub-elite cyclists that still collect sufficient data and have more
freedom to perform regular exercise test. However, this is beyond the scope of this
study and will be addressed in future work.

5 Conclusion

Wehave presented amethodology for frequentlymonitoring the fitness of professional
cyclists by solely relying on data that is collected in training sessions and competition.
Although certain steps still need to be taken before our approach can be used in daily
practice, we believe our work is an important step in obtaining frequent and objective
information about the fitness of a cyclist without performing additional exercise tests.

In our approach, we introduce the convolved pedal power by applying convolution
to the pedal power. Hereby, we take into account that the heart rate at a specific time
also depends on previously delivered efforts. By performing an experiment with a
kernel of arbitrary shape, we obtained that there is lag between a change in exercise
intensity and the response in the heart rate. In the literature, this phenomenon is known
as the cardiac lag (Grazzi et al. 1999; Jeukendrup and Diemen 1998). For frequent
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fitness monitoring, the kernel needs to be optimized for each day in our data collection.
Therefore, it is computationally expensive to consider an arbitrarily-shaped kernelwith
many independent parameters.As an alternative,wehereworkedwith an exponentially
decaying kernel that only has a single parameter, i.e., the decay constant, that needs
to be optimized. Although we have demonstrated that this is a good approximation,
we will investigate different alternatives for the kernel in future work.

Subsequently, we constructed a model that couples the external training load via
the convolved pedal power to the internal training load by means of the heart rate. To
model the complex behavior between these variables, we describe the heart rate as a
third-order polynomial in the convolved pedal power. For most of the time, our cyclist
rides at low or moderate exercise intensities. Therefore, we have used proportional
under-sampling to obtain a model that is also accurate at high exercise intensities. We
have performed several experiments to compare different parameter settings in our
modeling approach. For a given day, we consider all sessions in the previous 7 days
to construct a heart rate model that is valid for all relevant values of the convolved
pedal power. Here, we used sampling weights that are inversely proportional to the
frequency of occurrence in the original data collection.

The accuracy of our heart rate model expressed in explained variance R2 is 0.86±
0.07. This accuracy is more than two times larger than if we would have considered
the pedal power without applying convolution. This demonstrates the importance of
introducing the convolved pedal power. The accuracy of our model is comparable to
the results of previous studies (Mazzoleni et al. 2016; Lefever et al. 2014). In these
works, the constructedheart ratemodels rely on the pedal power ononeor a fewspecific
instances and their accuracy is verified in controlled settings. Here, wemodel the heart
rate at a specific time t by taking into account the pedal power that is produced at all
instances prior to t.Moreover, we solely rely on data that is collectedwithout following
any protocol. In future research, it is worthwhile to investigate possible extensions of
our model. For example, the heart rate might be modeled more accurately if the pedal
power and cadence are considered simultaneously (Mazzoleni et al. 2016). Moreover,
it would be interesting to explicitly consider altitude effects.

In total, we have presented several personalisedmethods that can be used tomonitor
the fitness of a cyclist. First, we considered the decay constant of the kernel that is used
for calculating the convolved pedal power. The decay constant specifies the length of
a time window in which efforts affect the heart rate and therefore can be interpreted as
a recuperation time of our cyclist. We have presented anecdotal results by comparing
the course of the recuperation time of two almost identical period in two subsequent
season for one of our cyclists. Our findings about the recuperation of the cyclist in
these periods are confirmed by the experience of the coaching staff, but amore detailed
validation will be addressed in future work.

Second,we considered the heart rate performance curves. The coaching staff can use
these curves for monitoring the fitness by for example looking at the development of
the heart rate of a fixed exercise intensity throughout a training period. Interestingly,we
have observed that there are both heart rate performance curveswith upward and down-
ward deflection at large values of the convolved pedal power. As the type of deflection
is related to specific functions of the heart (Hofmann et al. 2005; Chwalbinska-Moneta
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et al. 1996), our methodology opens up new avenues for studying the relationships
between training status and heart function in sports.

Finally, we determined virtual aerobic and anaerobic thresholds that are defined as
the deflection points of the curve describing the relationship between heart rate and
convolved pedal power. With our approach, we can determine exact expression for
these thresholds. As is also shown in the context of heart rate performance curves (Hof-
mann and Pokan 2010), this is a prerequisite for obtaining reliable results. Although
our formulas for the virtual thresholds were derived for the most-commonly observed
’S-shaped’ heart rate performance curve, we would like to mention that our formulas
are also valid for other shapes, such as an inverted curve that is also observed occa-
sionally here and among subjects in other studies (Hofmann et al. 1997; Lucía et al.
2000).

We validated our findings with the outcomes of exercise tests, although only spar-
ingly available. We have found that our virtual anaerobic threshold on average agrees
with the anaerobic threshold found in exercise tests. This agrees with previous studies
that found large correlations between the power at the anaerobic threshold and the
second deflection point of a heart rate performance curve (Ribeiro et al. 1985; Bunc
et al. 1995; Hofmann et al. 1994, 1997). Moreover, we found that our virtual aerobic
threshold disagrees with the true aerobic threshold and can rather be seen as minimum
intensity for easy exercising. Unfortunately, the relatively small number of exercise
tests prevented us from performing a detailed validation of for example the short-term
variations in the anaerobic threshold. Therefore, this will be addressed in follow-up
studies.

There are also some limitations of ourwork. Aswe consider a data-driven approach,
our method relies on the collection of sufficient and accurate data. As the precision
of power meters can vary considerably (Maier et al. 2017), it is crucial to use power
meters that are accurate and regularly calibrate these devices. Since cyclists in profes-
sional teams and their coaches are familiar with properly using power meters, this is
self-evident for world-class riders as considered in this study. However, this is impor-
tant for recreational cyclists that are less familiar with the limitations of power meters.
Moreover, there could be issues due to switching between different brands. Occasion-
ally, there might be a switching between brands, inspired by switching (power meter)
sponsors, but this is never done within a season. As a consequence this should only
have little effect. However, we cannot fully guarantee the correctness of our approach
when switching power meters. Hence, we would recommend to be consistent in power
meter brands. Finally, we need enough data at all relevant exercise intensities to obtain
accurate results from ourmodelling approach. Except from some edge cases, e.g., low-
intensity training weeks due to health issues, we found that the data of professional
cyclists contains the appropriate information if an aggregation window of a week
is considered. However, we expect this needs to be altered for semi-professional or
recreational cyclists that ride less often and usually follow less strict training programs.

In addition to the aforementioned directions for future research in the near future,
there are also interesting avenues in the long term. Although we only consider general
classification cyclists, our approach is generic and can therefore directly be applied
to other type of cyclists, or with some small adjustments, to athletes in other sports.
Therefore, with ourmethod the fitness of an entire cycling team can bemonitoredmore
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precisely. On a daily basis, the coach could obtain information about the recuperation
time as well as the virtual anaerobic and aerobic thresholds. Moreover, trends in these
quantities over a longer time period for example could be visualized in a dashboard.
As manual inspection for a large group of cyclist might be too time-consuming in busy
periods, specific alerts could be set as early warning signs. For example, the coach
might want to have a closer look at the data and have a conversation with a cyclist,
if the virtual anaerobic threshold is dropping or the recuperation time is constantly
increasing for weeks.

In conclusion, our work opens up new possibilities for addressing the optimization
of training programs in sports. By using the fitness monitoring, detailed information
about the physiological response of an individual athlete after executing a training
session can be obtained. This can be used to identify which kind of training is most
effective in each part of the season. Hereby, training programs can be optimized in an
athlete-specific manner and made dynamic by adjusting the program with respect to
the current fitness status.
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