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With mounting concern over climate change1,2 and a 
sharp decrease in the price of intermittent renewable elec-
tricity over the past few decades3, electrochemistry is a 
promising solution in the challenging transition towards 
a renewable circular economy. This transition is poised to 
bring forth a more just and equitable society, albeit with 
important ethical, social and environmental complexi-
ties4–7. Hydrogen is ubiquitous in everyday life as it is used 
to refine petroleum, produce fertilizer, process foods and 
plastics and has a role in emerging markets in the trans-
portation and utilities sectors. Administrations around 
the world have started pushing the research, development 
and commercialization of alternative hydrogen produc-
tion pathways that emit little or no CO2 (refs.8,9) as more 
than 90% of hydrogen is currently produced from fossil 
fuels, contributing significantly to CO2 emissions10,11. 
One promising pathway is electrochemical water split-
ting using renewable electricity (Eq. 1). In the absence of 
an electrochemical driving force, water exhibits an equi-
librium between H2O, hydrogen and oxygen, although 
this equilibrium highly favours water12. When an electro-
chemical driving force is applied, a thermodynamic min-
imum potential difference of 1.23 V at room temperature 
(298.15 K) is required to shift the equilibrium from H2O 
towards hydrogen and oxygen13.

In electrochemical water splitting, hydrogen 
is formed at the cathode via a reaction called the 

hydrogen evolution reaction (HER) (Eqs. 2 and 4) and 
oxygen is formed at the anode via a reaction called the 
oxygen evolution reaction (OER) (Eqs. 3 and 5) (Fig. 1). 
Commercially, there are three low-temperature processes 
for the HER: alkaline electrolysis, proton exchange membrane 
(PEM) electrolysis and anion exchange membrane electrol-
ysis. The best catalysts for the HER are noble metals, in 
particular platinum, whereas for the OER iridium and 
ruthenium oxides are the best candidate materials. There 
has been a large push towards developing catalysts using 
earth-abundant materials14 because platinum, iridium 
and ruthenium are scarce, expensive and often mined via 
practices that exploit the environment and local popu
lations10,11,15. Commercial alkaline water electrolysers 
employ nickel as a catalyst, at the expense of a lower 
efficiency compared with PEM devices for acidic water 
electrolysis.

Water splitting : H O H + 1
2

O (1)2 2 2→

→HER in acid : 2H + 2e 2H (2)+ −
2

OER in acid : 2H O O + 4H + 4e (3)2 2
+ −→

→HER in base : 2H O + 2e H + 2OH (4)2
−

2
−

Hydrogen evolution reaction
(HER). The reaction at the 
cathode where hydrogen is 
produced.

Oxygen evolution reaction
(OER). The reaction at the 
anode where oxygen is 
produced.

Alkaline electrolysis
Water splitting under high-pH 
alkaline conditions. Although 
water splitting rates are lower 
under alkaline conditions, cell 
components exhibit higher 
resistance against corrosion 
and catalysts can be prepared 
from more earth-abundant 
materials.
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Abstract | Electrochemistry has the potential to sustainably transform molecules with electrons 
supplied by renewable electricity. It is one of many solutions towards a more circular, sustainable 
and equitable society. To achieve this, collaboration between industry and research laboratories 
is a must. Atomistic understanding from fundamental experiments and modelling can be used to 
engineer optimized systems whereas limitations set by the scaled-up technology can direct the 
systems studied in the research laboratory. In this Primer, best practices to run clean laboratory- 
scale electrochemical systems and tips for the analysis of electrochemical data to improve accuracy 
and reproducibility are introduced. How characterization and modelling are indispensable in 
providing routes to garner further insights into atomistic and mechanistic details is discussed. 
Finally, important considerations regarding material and cell design for scaling up water electrolysis 
are highlighted and the role of hydrogen in our society’s energy transition is discussed. The future 
of electrochemistry is bright and major breakthroughs will come with rigour and improvements  
in the collection, analysis, benchmarking and reporting of electrochemical water splitting data.
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OER in base : 4OH O + 2H O + 4e (5)−
2 2

−→

Low-temperature alkaline electrolysers have been on 
the market for more than 100 years, but are only respon-
sible for around 4% of the total hydrogen production. 
PEM electrolysers have been commercialized for around 
20 years, whereas anion exchange membrane electrolys-
ers have only recently been deployed to industry. Still, 
the fundamental material and electrolyte properties that 
determine catalytic activity for the HER and OER are not 
yet well understood. In water electrolysis, the OER limits 
the overall water splitting rate16. Fundamental research in 
water electrolysis should focus on understanding stability, 
the fundamental mechanism and the impact of electrolyte 
species such as impurities. This focus would increase the 
efficiency of the electrolyser system as a whole, its oper-
ating life, power density and stack size, with the aim of 
reducing costs to make this technology more competitive.

This Primer overviews techniques and methods for 
water electrolysis and the intricacies of electrochemistry 
in aqueous media. It is assumed that the reader is adept in 
the fundamental concepts and theories of electrochemis-
try17,18 and catalysis19. This Primer highlights best prac-
tices in five important areas of water electrolysis: catalyst 
preparation, characterization, kinetics, modelling and 
application. How these are key to disentangling problems 
in electrocatalysis research is emphasized, followed by 
the ever-growing importance of reproducibility and data 
deposition. Limitations and future opportunities of the 
field are also discussed.

Experimentation
Important considerations when preparing electrochemi-
cal cells and electrodes for water electrolysis are discussed 
in this section. Additional challenges that arise when 
coupling electrochemical measurements with numerous 
characterization techniques are reviewed. To close off, 
advances that theory has provided to electrochemistry 
and catalysis are examined.

Electrochemical cell considerations
Cell design. Various electrochemical cells can be used 
to perform water electrolysis studies. The choice of cell 
should depend on factors including the type of electrode, 

product detection, electrolyte and whether it is coupled 
with a characterization technique. Batch cells (Fig. 2a) are 
mainly used in fundamental studies, where the focus lies 
in the voltammetric behaviour of electrode materials, as 
here the products of the working and counter electrodes 
are in the same compartment. It is easier to ensure clean-
liness in these simple cells. H-cells (Fig. 2b) (H refers to 
the dual-chamber shape of the cell) have the counter and 
working electrode compartments separated by a mem-
brane, which allows for product separation and more 
control over the catholyte/anolyte composition. The 
H-cell can be used with or without a pump to recirculate 
or refresh the electrolyte. Membrane electrode assembly 
cells (MEAs) (Fig. 2c) consist of a membrane, a catalyst 
and a flat plate electrode assembled together, and can be 
stacked to enable high productivity. MEAs can be found 
at different scales, from the laboratory bench (1 cm2 elec-
trodes) to industrial units (stacks of multiple 100 cm2 
electrodes), and are largely used in applied research. 
In the case of H-cells and MEAs, either PEMs or anion 
exchange membranes are used for acidic and alkaline 
electrolysers, respectively20. Both the cathode and the 
anode operate at the same pH, which may impose chal-
lenges in terms of electrode/catalyst stability. To operate 
using optimized pH conditions for the two different 
half-cell reactions (HER and OER), bipolar membranes 
(BPMs) can be used21. To date, commercial BPMs show 
considerable overpotentials for water dissociation within 
the BPM junction. Still, employing a catalyst in the BPM 
junction can significantly decrease overpotentials and 
enable the advance of BPM electrolysers22.

When coupled with characterization or product 
detection techniques, electrochemical cells often need 
to be adapted. For example, special electrochemical cell 
configurations are used for in situ infrared spectroscopy 
(Fig. 2d), surface X-ray diffraction (Fig. 2e) and scanning 
tunnelling microscopy (STM) (Fig. 2f). Electrochemical 
cells are typically made of glass (batch, H-cell) or highly 
resistant polymers (MEAs). Considering that alkaline 
electrolytes can dissolve glass, polymer-based cells (typ-
ically polytetrafluoroethylene (Teflon), polyoxymethyl-
ene (Delrin), polypropylene or polyether ether ketone) 
should be employed when performing experiments in 
basic media23–25. Regardless of the type of cell employed, 
electrochemical cells and all parts that contact the 
electrolyte should be thoroughly cleaned prior to use, 
to remove contaminants that may affect the electro-
chemical signal26–28 (Box 1). Supplementary information 
Section 1.1 details a rigorous cleaning procedure that 
has provided reliable and reproducible results, with the 
impurities in chemicals used to clean cells summarized 
in Supplementary Table 1.

Working electrode. Before contacting the electrolyte, 
electrodes must be systematically prepared to ensure 
cleanliness and reproducibility29. Most electrodes can 
be reused repeatedly, with their lifetime depending pri-
marily on the reaction environment, the material and the 
geometry. Visual/microscopy inspection, reproducible 
cyclic voltammograms and reproducible catalytic cur-
rents are often used to ensure electrodes are cleaned and 
prepared sufficiently.

Author addresses

1Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.
2Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science 
and Technology (BIST), Tarragona, Spain.
3Department of Chemical, Biological and Materials Engineering, University of Oklahoma, 
Norman,  OK, USA.
4Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
5Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, 
NY, USA.
6Present address:  Department of Materials Science and Engineering, Northwestern 
University, Evanston, IL, USA.
7Present address:  Department of Interface Science, Fritz Haber Institute of the Max 
Planck Society, Berlin, Germany.
8Present address: Department of Applied Science and Technology (DISAT), Politecnico di 
Torino, Turin, Italy.
9Present address: Department of Chemistry and Biochemistry, University of Oregon, 
Eugene, OR, USA.
10These authors contributed equally: Arthur J. Shih, Mariana C. O. Monteiro. 

Proton exchange membrane
(PEM). A membrane selective 
towards protons (H+), but not 
selective towards electrons 
(insulator) and gases 
(hydrogen, oxygen).

Anion exchange membrane
A membrane selective towards 
anions, but not selective 
towards electrons (insulator), 
gases (hydrogen, oxygen) and 
large cations.
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Electrodes are most commonly prepared by pol-
ishing to remove surface roughness, oxidized surfaces 
and inhomogeneities. The polishing media selected 
may strongly influence the outcome of measurements. 
The most common polishing paste and suspensions 
available are composed of alumina, diamond or silica. 
Alumina and diamond multifaceted particles remove 
material through a mechanical abrasive process. Silica, 
due to its spherical shape and high pH of the suspension, 
removes material through a chemo-mechanical process. 
The quality of polishing directly influences annealing 
effectiveness. Impurities may also be removed via elec-
trochemical oxidation in concentrated acid at around 
1–3 V, at the expense of introducing pits on the surface30. 
It has recently been shown that trace alumina left over 
from polishing can significantly impact the HER31.

Polishing is not recommended for porous foam elec-
trodes. Instead, sonication in organic solvents can remove 
organic contaminants, and sonication in acid and base 
can remove oxide and metallic impurities29. Care must 
be taken to ensure compatibility between the liquids and 
electrode as some materials can react or dissolve.

For metallic substrates, annealing is the most reliable 
way to obtain a clean and (re)ordered surface. Annealing 
can be performed using a butane torch open flame, or in a 
more controlled atmosphere using induction, especially for 
samples that are sensitive to air or require fine temperature 
control, such as copper and palladium, respectively28,32. In 
general, induction annealing leads to a more reproduci-
ble and cleaner surface. The annealing temperature will 
vary depending on the metal, and a comprehensive guide 
on the preparation and characterization of (single crystal  
surface) electrodes is available in the literature33.

Once polished and cleaned, electrodes can be tested 
as is or active material can be deposited prior to fur-
ther treatment and electrochemical testing. Drop cast-
ing and electrodeposition are two common methods to 
add active material such as porphyrins, nanoparticles or 
adatoms — sometimes in a layered structure to increase 
the active area34,35. The composition of the ink used for 

drop casting is important; Nafion is often used, but in 
some cases affects the performance36–38. Another crit-
ical factor in electrode preparation is control over the 
sample morphology. For example, even if the amount of 
material deposited on electrodes during drop casting is 
controlled, vastly different electrochemical results can 
be obtained depending on whether the material lumps 
together or is evenly spread out over the electrode39.

Counter electrode. Attention should be also given to the 
material and cleanliness of the counter electrode40–43. 
These can be homemade or commercial, and in the 
shape of coils, meshes or gauzes to ensure a large enough 
surface area (typically >10× the area of the working elec-
trode). Counter electrodes can be cleaned in a similar 
way to the working electrode; for platinum, annealing in 
ambient air with a butane torch and etching in acid (such 
as nitric acid) is sufficient. In the case of experiments  
drawing high current densities, or using transition metals,  
alloys and other catalysts, either an inert counter elec-
trode such as graphite should be used or the counter 
electrode compartment must be separated using a mem-
brane to minimize cross-contamination that can come 
from its dissolution41,43. It was recently demonstrated that 
Nafion membranes are unable to completely prevent the 
transport of metal ions to a carbon working electrode43. 
Thus, convincing evidence that non-precious HER cat-
alysts do not contain contamination from leached pre-
cious metals from the counter electrode must be shown. 
Care must also be taken as carbon counter electrodes 
can potentially oxidize to CO and CO2 at high enough 
potentials; CO can poison both the counter and working 
electrodes44. Dimensionally stable anodes are considered 
the best counter electrode candidates for the OER, espe-
cially to ensure stability in acidic media42. In the case  
of the HER, high surface area platinum is still considered 
the best candidate.

Reference electrode. The choice of a reference elec-
trode should depend on the electrolyte composition 
and pH45. Reference electrodes sheathed in glass, for 
instance, should not be employed for experiments in 
alkaline media, as dissolution may introduce undesired 
cationic species into the electrolyte23–25. Reference elec-
trodes should be validated and refilled often, as shifts 
in the standard equilibrium potential can happen after 
storage46. Malfunction of an Ag/AgCl electrode can 
lead to Ag+ and Cl– leakage into the electrolyte47,48. 
During water electrolysis, Ag+ ions can electrodeposit 
onto the cathode, and Cl− ions can strongly bind to 
the anode and compete with water oxidation forming 
Cl2. The most reliable reference electrode is hydro-
gen bubbled through a platinum wire or mesh in a 
hydrogen-saturated electrolyte separated from the main 
electrolyte via a Luggin capillary49,50, also known as the 
reversible hydrogen electrode (RHE). It is highly recom-
mend either to use the pH-dependent RHE directly as a 
reference electrode or to calibrate other pH-independent 
electrodes46,50. A comprehensive technical note is availa-
ble from ASL Co. and can be used not only for choosing 
an appropriate reference electrode but also for learning 
its limitations (reference electrode technical note).

HER 
catalyst

OER
catalyst

+ –

Acidic:
2H+ + 2e–        2H

2

Alkaline/neutral:
4H

2
O + 4e–        2H

2
 + 4OH–

Membrane

Acidic:
2H

2
O         O

2
 +4H+ + 4e–

Alkaline/neutral:
4OH–         O

2
 + 2H

2
O + 4e–

Water splitting: H2O       H2 + ½O2

O2 H2

Fig. 1 |Schematic of a typical water electrolyser. Oxygen is produced at the anode  
(+) and hydrogen at the cathode (–). HER, hydrogen evolution reaction; OER, oxygen 
evolution reaction.

Dimensionally stable 
anodes
Conductive and stable 
electrodes made of mixed 
metal oxides (typically of 
titanium, ruthenium and 
iridium).

Reversible hydrogen 
electrode
(RHE). A reference electrode 
defined as the equilibrium 
potential of platinum when 
exposed to 1 atm hydrogen 
and the pH of the working 
electrolyte.
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Electrolyte. The purity of the electrolyte precursors must 
always be considered, especially in fundamental studies 
(see Supplementary Table 2). Contamination, particu-
larly anions such as SO4

2−, Cl− and NO3
−, can bind to 

the surface of the electrocatalysts and block active sites, 
leading to lower selectivity, lower faradaic efficiencies and 
impurities in the product. For example, nitrate/nitrite 
binding on the cathode can lead to nitrate/nitrite reduc-
tion51 and compete with the HER. Contamination by 
metal ions generally leads to deposition on the surface as 
metals and metal hydroxides, which can block active sites 
or promote activity52,53; for example, Fe3+ impurities in the 
electrolyte enhance the OER over metal hydroxides and 
oxyhydroxides54,55. Discrepancies in reported oxygen evo-
lution rates over nickel oxyhydroxides were unresolved 
until iron impurities present in the KOH electrolyte were 
found to significantly impact the oxygen evolution rate54.

It is crucial to use sufficiently pure salts and elec-
trolytes, as electrolytes with impurities can signifi-
cantly impact low current density experiments. For 
instance, the highest purity caesium perchlorate salts 

available (99.995%, Sigma Aldrich) were not pure 
enough for reproducible cyclic voltammograms; mul-
tiple recrystallizations of CsClO4 in ultra-high-purity 
water were required for an electrolyte with reproduci-
ble cyclic voltammograms56. Similarly, organic ammo-
nium cation-based salts (such as tetrabutylammonium 
tetrafluoroborate) containing high amounts of impurities 
can be recrystallized in methanol or ethanol57. Cleaning 
the electrolyte with Chelex (a solid-supported iminodiac-
etate resin) to remove metal ions has also been reported58. 
Fe3+ impurities in KOH have been removed via electro-
chemical deposition onto Ni–MoS2 electrodes59 and also 
captured in precipitated Ni(OH)2 and Co(OH)2 (ref.54) 
followed by filtration of residual metal hydroxide solids60. 
When deuterated water is utilized61, it should be puri-
fied as it often contains metal ion and anion impurities62  
(see Supplementary information Section 1.3).

Accurate quantification of the pH and proton concen-
tration is also of upmost importance. Commercial pH 
probes have different calibration ranges and at extreme 
pH can give faulty readings (see Supplementary Fig. 1).  
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cell configuration for in situ infrared spectroscopy. e | Special electrochemical cell configuration for surface X-ray diffraction.  
f | Special electrochemical cell configuration for scanning tunnelling microscopy. Individual components are not necessarily 
to scale.
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A pH meter that directly measures the hydrogen ion 
activity is highly recommended (for example, pHydrunio  
by Gaskatel).

Contact interface between the working electrode and 
electrolyte. There are two main ways an electrode can 
contact the electrolyte: embedded within a protective 
matrix or in a hanging meniscus configuration (Fig. 2a). 
Enveloping an electrode in an inert polymeric cylinder 
protects the working electrode’s walls from contact with 
the electrolyte and allows facile collection of currents 
under hydrodynamic conditions63,64. This inert cylinder 
can be made of polytetrafluoroethylene (Teflon) or other 
materials such as polyether ether ketone, which is more 
expensive but exhibits higher rigidity and strength. A 
second working electrode in the shape of a ring can be 
added into the cylinder to deconvolute contributions 
from two parallel reactions, a set-up called the rotating 
ring disc electrode. The hanging meniscus configura-
tion is ideal for electrodes with varying shapes or sizes, 
single-crystalline electrodes and when embedding in an 
inert matrix is not convenient or possible. Here, it has to 
be assured that only the flat surface and not the edges 
are in contact with the electrolyte to ensure only the flat 
surface contributes to the current, not a convolution of 
both the flat surface and edges65. To ensure this, convec-
tive dry gas can be flowed over the meniscus to ensure 
the edges are dry. Electrodes in this configuration can 
also be used under rotation65.

Bubble fouling. During water electrolysis at practical 
reaction rates, gas bubble formation is often unavoida-
ble due to the accumulation of hydrogen and oxygen gas 
products near the cathode and anode and their limited 
solubilities in aqueous electrolytes. The life cycle of gas 
bubbles under this resultant supersaturated condition 
includes nucleation at the nanoscale, growth, coales-
cence and detachment from the electrode surface66,67, as 
shown schematically in Fig. 3a. The overall gas bubble 
evolution process influences electrochemical processes 
and the energy efficiency of water electrolysis in var-
ious aspects. For example, blocked active surface area 
and increased ohmic resistance by insulating gas bub-
bles result in energy loss. To mitigate this, lower con-
centrations of dissolved gases (below supersaturation) 

and induced mass transport — such as through the use 
of capillary-induced transport68 — can improve energy 
efficiency. Details on advancements and understand-
ing on this topic can be found in recent papers69,70. 
Removing macro-sized gas bubbles is challenging, 
and a few non-exhaustive strategies are presented. 
Inverted upward-facing working electrodes can facilitate 
macro-sized gas bubble detachment without accumula-
tion at higher current densities71,72. Further, physically 
dislodging bubbles, for instance with a rod, can improve 
energy efficiency73. Reducing the hydrophobicity of 
ring disc electrode/rotating ring disc electrode tips by 
dip-coating in a hydrophilic polymer has also been 
shown to suppress bubble accumulation73.

Gas delivery. The gas delivery system in flow cells 
includes the gas source (such as gas tanks or purification 
systems for house air), the flow controller (for exam-
ple, precise mass flow controllers or other less precise 
flow controllers), any intermediate units (for example, 
desiccants to capture undesired impurities, bubblers to 
introduce desired vapours) and the tubing for delivery. 
As shown in Fig. 2a,b,d, the gas can be bubbled directly 
through the electrolyte for faster initial saturation and 
then switched to flow above the liquid to maintain a 
blanket of gas above the electrolyte. For hanging menis-
cus set-ups65, bubbling through the electrolyte often 
perturbs and breaks the contact between the working 
electrode and the electrolyte. For sheathed electrodes, 
gas may be bubbled into the electrolyte during electro-
chemical measurements to flush away gaseous prod-
ucts. In the case of MEAs, the electrolytes are often 
pre-saturated prior to flow into the electrolyser.

Gases and gas delivery lines should be contaminant 
free. Argon and hydrogen with purities of 99.9999% 
and 99.999%, respectively, result in identical Pt(111) 
cyclic voltammograms (CVs) in 0.1 M H2SO4 (ref.74) (see 
Supplementary Table 3). The interior of stainless-steel 
tubing typically contains organics and particulates and 
should be cleaned out with alternating washes of acetone 
and water prior to installation, and in-line particulate 
filters should be used75.

Electrode–electrolyte interface. Different factors impact-
ing the electrode–electrolyte interface of a working 
catalyst are illustrated in Fig. 3. Resistances in the electro-
chemical system are due to bubbles, charge transfer and 
solution resistance. Inhomogeneities on the electrode 
surface can serve as bubble nucleation points. Figure 3b 
highlights how concentration gradients of products, 
reactants and electrolyte species will always be present 
to different degrees depending on the conditions of 
mass transport. These gradients may be minimized by 
working under severe forced convection or co-feeding 
products, or maximized by working with porous elec-
trodes76–78. Finally, different ionic species will have a 
different impact on the resistance of the electrolyte solu-
tion, on the solution pH and on the electric field near the 
surface in comparison with the bulk (Fig. 3c).

The factors outlined in Fig. 3 can also influence reaction 
kinetics. For instance, it has been hypothesized that addi-
tion of an anion as a proton acceptor significantly increases 

Box 1 | Contaminants

Definition of contaminants
Contaminants are defined as undesired or unintended species present in an experiment. 
Almost nothing is ever 100% contaminant free; however, at low enough concentrations, 
inaccuracies caused by contaminants on macroscopic properties will be much lower than 
the natural variation from replicates of these macroscopic properties. In electrochemical 
experiments, these macroscopic properties are typically the cyclic voltammogram, 
impedance spectra and reaction currents/rates.

Examples of contamination
Anything that comes into contact with the electrodes and electrolyte prior to or during 
electrochemical experiments may introduce potential contamination. The working 
electrode may be contaminated from precursors or preparation, the counter and 
reference electrodes or from the electrolyte. The electrolyte may be contaminated from 
equipment used to prepare and transfer it, ambient air, precursors and stock solutions, 
cell components, saturation gas or gas lines.
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the water oxidation reaction rate79–82. Additionally, con-
fined oxygen bubbles have been shown to shift the OER 
selectivity towards H2O2 (ref.83).

These remarks are also valid for contaminants, which 
is why cleanliness is crucial for studying electrocatalytic 
systems. Finally, to tackle the complexity of the electro-
chemical environment, systematic characterization and 
possible corrections are necessary, ideally combining 
different electrochemical techniques.

Characterization methods
In many cases, measurements of the electrochemical 
current alone do not suffice to obtain a complete under-
standing of an electrocatalytic system. Therefore, comple-
mentary characterization techniques are used, providing 
insight into the structure of the electrode84–95, the nature 
of the electrode–electrolyte interface96–116 and the product 
distribution117–126 (Fig. 4). Such information indicates what 
water electrocatalysis looks like on the molecular level, 
facilitating the interpretation of activity, stability and 
selectivity trends observed in electrochemical measure-
ments. For example, vibrational spectroscopy has been 
widely used to identify the coverage and concentration of 
intermediates. During the HER, for instance, the hydro-
gen coverage on a platinum electrode could be tracked 
by infrared spectroscopy127. Along the same line, X-ray 
absorption spectroscopy (XAS)90,91 is often used to iden-
tify the oxidation state and coordination environment 
of the metal ions in OER catalysts. To understand the 
selectivity of electrocatalytic systems, product analysis 
is an essential complement to electrochemical measure-
ments. Using tools such as differential electrochemical 
mass spectrometry120–123,128 or a rotating ring disc elec-
trode73,129,130, one can disentangle water electrocatalysis 
from competing reactions such as chlorine evolution.

An overview of characterization techniques and gen-
eral considerations for selecting a suitable technique to 
study the reactions involved in water electrocatalysis can 
be found in Supplementary Table 4 and is summarized 
in Fig. 4. When deciding which characterization tech-
nique is best suited for their work, researchers should 
consider whether the technique can provide the infor-
mation needed to understand the electrocatalytic system 
under study and whether the technique is compatible 
with the electrocatalytic system. Different characteri-
zation techniques provide vastly different information, 
making them suitable for different systems. For exam-
ple, complex multi-element systems such as alloys, 
single atom catalysts or (immobilized) metal–organic 
complexes can benefit from the element-specific nature 
of X-ray absorption spectroscopy90,104,108 and X-ray 
photoelectron spectroscopy (XPS)90,106,108. This allows 
the (chemical) structure of the elements of interest to be 
probed one at a time, even though they are inside a com-
plex mixture. Other techniques, such as scanning probe 
microscopy98,99,115,116 (for example, STM, atomic force 
microscopy (AFM)) and plasmonically enhanced Raman 
spectroscopy96,97,100 (surface-enhanced Raman spectros-
copy (SERS) and shell-isolated nanoparticle-enhanced 
Raman spectroscopy) allow the electrode–electrolyte 
interface to be probed specifically. This enables the 
identification of adsorbates and surface structures, even 
though the electrode–electrolyte interface consists of just 
a few atomic layers buried between macroscopic amounts 
of bulk electrode and electrolyte material. Parameters 
such as sensitivity and time resolution also play an 
important role. For product analysis, for example, differ-
ential electrochemical mass spectrometry121,122,124,131 is a 
fast detection method, but it does not have the sensitivity  
and resolving power of gas chromatography117,118.

a b c
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Fig. 3 | Factors impacting the electrode–electrolyte interface of a working catalyst.  Variables that can affect 
reproducibility of measured currents are bubble formation, concentration gradients generated by mass transport 
limitations, system resistances (charge transfer, electrolyte solution), electrolyte ions, migration and convection, among 
others. a | Bubble formation and fouling on the electrode surface. b | Concentration gradients generated by mass transport 
limitations. c | Electric field, pH and resistance of the electrolyte solution are impacted by diffusion and migration of ionic 
species. Schematic depicts the cathode but it should be noted that these factors occur at both the anode and the cathode. 
A−, anions; M+, cations; P, products; R, reactants.
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A second aspect that distinguishes the various tech-
niques is the set of restrictions that they impose on the 
cell, the electrode and the applied conditions. In order 
to perform in situ characterization inside the fully 
assembled cell, a specialized geometry is nearly always 
necessary. For techniques involving light (Fig. 2d), a thin 
film electrode or a thin electrolyte film between the elec-
trode and a window is used to minimize scattering and 
absorption90,91,101. In the first case, only thin film sam-
ples can be used. In the second case, the mass transport 
around the working electrode may be impeded, making 
measurements at high current density challenging. Many 
characterization techniques are not compatible with the 
bubbles that the HER and the OER generate, making it 
challenging to study these reactions under true oper-
ando conditions (or under kinetic operating conditions 
in the absence of mass transport effects). Continuous 
development of improved cell geometries and detection 
schemes are pushing these boundaries, enabling more 
true operando measurements and boosting the sensi-
tivity towards the active sites at the electrode–electrolyte 
interface. Unless the reaction rates and kinetics collected 
in operando cells match the kinetically controlled rates 
free of mass transfer, one cannot label their spectroscopic  
experiments as operando.

Electrochemical characterization in the cell used 
for operando experiments is also important. Owing to 
time constraints (at synchrotrons) or the complex cell 
designs, the standard for clean and reproducible work-
ing conditions is not always achieved. It is therefore vital 

to reproduce the electrochemical data obtained earlier 
from clean electrochemical cells in the cell used in the 
synchrotron. Using the OER over NiOOH as an example, 
if the OER activity increases (up to a factor of 50) with 
increasing scans, iron impurities are likely to be pres-
ent in the cell54. Damage caused by the beam to the cell 
parts may also introduce adsorbed contaminants to the 
surface.

Results
In this section, important considerations and corrections 
necessary for analysing and reporting data regarding 
water electrolysis are discussed. Several earlier indispen-
sable contributions also cover the reproducible analysis 
and reporting of electrochemical results14,132–137.

Intrinsic currents
To ensure reported currents are reproducible and not 
convoluted, several corrections and tests must be per-
formed. Internal resistance through the electrolyte 
between the working and counter electrodes must be 
measured (often with impedance spectroscopy) and cor-
rected by 100%. Real-time correction by 100% can lead 
to unstable feedback loops138. To ensure stability, 85% 
of the internal resistance can be corrected during data 
collection and then the additional 15% corrected during 
post-analysis, or data can be collected with no internal 
resistance correction and then corrected 100% dur-
ing post-analysis. External transport limitations in the 
bulk electrolyte from the reaction-consuming reactant 

+

+

+

–

Morphology
SEM/TEM

Raman
EQCM

Composition
X-ray absorption
XPS
EDX
X-ray fluorescence

Element-resolved
interface composition 
X-ray absorption
XPS

Interface structure
STM
AFM
SXRD/GISAXS
X-ray diffraction

BET/porosimetry

Probe

e–
e–

X-rays

Local pH
SECM/SICM
CLSFM
RRDE

Adsorbates
Raman (SERS)
Infrared

Product analysis
RRDE
Gas/liquid 
chromatography
DEMS
ICP-MS

Electrode–electrolyte interface

Products 

Bulk

Voltammetry

hv hv

–

–

+
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should also be corrected for. This involves, for example, 
measuring the current at different rotation rates and 
extrapolating to an infinite rotation rate using the Levich 
equation133,139. For porous electrodes, the Thiele modulus 
and effectiveness factor can also be calculated to deter-
mine whether transport within channels and pores 
(which are not influenced by bulk external convection 
induced by rotation) may be rate limiting76,140. At large 
overpotentials, reactions are no longer kinetically lim-
ited but, rather, limited by bubbles and/or mass transport 
towards and away from the electrocatalytic interface. 
Under these sluggish mass transport conditions, the  
pH near the surface can differ significantly from the bulk pH  
of the electrolyte even if a buffer solution is employed141. 
Determining the value of the local pH can help separate 
its effect from other variables that may influence the 
reaction130,142–144, and nowadays several techniques are 
available for performing such measurements142.

Turnover rates and rate normalization
The most rigorous way to report reaction rates is to nor-
malize intrinsic currents to the number of active sites, a 
quantity called the turnover rate (TOR) or turnover fre-
quency135,145–147 (Eq. 6). If active sites are single-site and 
properly quantified, then the TOR should be constant at 
a given potential (for example, metal loading):

TOR = Reaction rate
Number of active sites

[ = ]

mol s

mol

(6)
product

−1

active sites

Identifying and quantifying the number of active sites 
can be challenging. Each catalytic system is unique and 
requires creativity and rationality in both the identifi-
cation and quantification of active centres148. Because it 
is challenging to identify and count active sites, other 
properties are often used to normalize reaction rates, as 
summarized in Table 1.

Normalizing to the geometric area is a useful quantity 
for industry as space is an important criterion in scaling 
up. Unless the electode is truly flat, such as single crys-
tal surfaces149, normalizing to the geometric area often 

leads to inflated rates. Reaction rates per catalyst mass 
are also important due to cost implications. Unless the 
catalyst contains single-site active centres, normalizing 
to the catalyst mass often deflates the rates because of 
dispersion: only the portion of the catalyst surface in 
contact with the reactants can directly contribute to the 
reaction150.

The surface area can be quantified using various 
techniques, often by counting the number of probe mol-
ecules that can blanket the electrode (such as Brunauer–
Emmett–Teller (BET) N2 adsorption or chemisorption) 
or using microscopy. When the adsorption, desorption or  
reaction of probe molecules is controlled electro-
chemically, this surface area quantity is often referred  
to as the electrochemical surface area151. These electro
chemical methods may undercount the true elec-
trochemical surface area, leading to inflations in the 
normalized rates152.

Experiments should be designed to rigorously quan-
tify active sites, resulting in a constant TOR independent 
of the active site density153. Convincing evidence often 
involves a linear correlation between intrinsic currents 
and the number of active sites or area. For example, a 
linear relation was observed between the HER rate and 
the length of MoS2 edge sites154. Another study observed 
a correlation between OER rates and the number of 
nickel atoms able to oxidize to NiOOH at approximately 
1.35 VRHE and demonstrated that the TOR is independ-
ent between nickel loadings of 0.2 and 0.4 mg cmgeometric

−2 
(ref.155). At nickel loadings above 0.4 mg cmgeometric

−2, OER 
rates were lower than predicted from a linear extrapola-
tion — a strong indication of mass transfer limitations155. 
Similarly, it was observed that OER rates correlated with 
the number of unsaturated sites on IrO2 and RuO2 cat-
alysts156. It has also been claimed that OER active sites 
exhibit different properties from the inactive material, as  
measured using electrochemical impedance spectroscopy  
and electrochemical STM157–160.

Utilizing the TOR is easiest when there is only one 
dominant active site. However, in the case where a distri-
bution of active sites each with different reactivity exists, 
a linear combination of all significant entities would be 
an appropriate approach. For example, scanning electro-
chemical cell microscopy can quantify OER activities on 

Table 1 | Properties that can be used for rate normalization, increasing complexity

Property for 
normalization

Advantages Disadvantages Determination

Geometric area 
(mA cmgeometric

−2)
Useful quantity for industry, 
reproducible quantity for single 
crystal surfaces

Overestimates rates on 
materials with high density of 
active sites or high surface area

Geometric area of the electrode

Mass (mA g−1) Useful quantity for industry (cost 
analysis), reproducible quantity for 
single crystal particles with same 
particle size distribution

Often underestimates rates on 
materials where the bulk does 
not contribute to the catalysis

Mass deposited

Elemental analysis techniques such as inductively 
coupled plasma, XPS and so on

Surface area (mA cmSA
−2) Good for comparing electrodes 

with drastically different surface 
areas

Can overestimate rates by 
over-counting active surface 
area/sites152

Via selective interaction with probe molecules, 
for example integral of regions in CVs such as HUPD 
and CO stripping; BET surface area; surface redox 
reactions, pseudo-capacitive region280, microscopy

Active sites 
(molproduct molactive sites

–1 s–1)
Gives most insight into the nature 
and identity of the active site(s)

Challenging and requires 
kinetic verification via TORs 
and correlations

Same as above

BET, Brunauer–Emmett–Teller; CV, cyclic voltammogram; HUPD, hydrogen underpotential deposition; TOR, turnover rate; XPS, X-ray photoelectron spectroscopy.

Thiele modulus
The ratio of the reaction rate to 
the diffusion rate.

Effectiveness factor
The ratio of the experimentally 
measured reaction rate to the 
kinetic reaction rate in the 
absence of diffusion limitations.
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different CoOx facets, enabling the deconvolution of the 
overall reaction rate into individual TORs161.

Reaction kinetics
Reaction kinetics (Tafel slopes, reaction orders and acti-
vation energies) can aid in understanding how param-
eters affect the reaction rate and in identifying reaction 
mechanisms. These parameters can be calculated by the 
slope of linearized rate expressions (Eqs. 7–9):

E
j

Tafel slope = d( )
d(log( ))

(7)

j
[Species]order =

d(log( ))
d(log[Species])

(8)

( )
E R

j
= −

d(ln( ))

d
(9)

T

app 1

where E is the potential (V), j is the current density 
(A cm–2), [Species] is the concentration of a species in the 
electrochemical environment, Eapp is the apparent activa-
tion energy (kJ mol−1), T is the temperature (K) and R is 
the gas constant.

Proposed catalytic reaction mechanisms can be bro-
ken up into a series of elementary steps where the rate of 
the slowest step (rate-limiting step) is equal to the overall 
reaction rate17,140. Reaction orders indicate how species 
inhibit or promote the overall reaction rate. Kinetic 
parameters can be predicted by solving for rate laws, 
or more rigorously analysed with microkinetic mod-
elling to include fractional surface coverages162–164. For 
the HER, although one can determine the rate-limiting 
step if the Tafel slope is 30 mV dec−1 (Tafel rate-limiting 
step) or 40 mV dec−1 (Heyrovský rate-limiting step) a 
Tafel slope of 120 mV dec−1 alone is unable to distin-
guish between the Volmer or high overpotential (high 
coverages) Heyrovský step as rate limiting. In the OER, 
however, different combinations of rate-limiting steps 
and surface coverages can exhibit the same Tafel slope, 
meaning the rate-limiting step cannot be determined 
solely from Tafel slopes162. Additional characterization 
is required to further determine plausible rate-limiting 
step(s). Tafel slopes and reaction orders often change 
dynamically with potential and so the Tafel slope should 
be reported as a function of potential for ease of com-
parison and benchmarking between studies, such as to  
make Tafel slope plots165. When linking Tafel slopes  
to a fundamental rate-limiting step, it is essential that the  
system operates in the kinetic regime, free of mass trans
port effects76,77,166. At higher current densities, mass 
transport and bubble formation issues can drastically 
impact kinetic parameters, and will lead to an apparently 
increasing Tafel slope if mass transport is not corrected 
for. Kinetics also must be analysed in a potential regime 
where the backward reaction is negligible — away from 
equilibrium. For the HER, one must report kinetics 
sufficiently away from equilibrium (0 V versus RHE at 
298 K) (see Supplementary information Section 1.7). 
This is not an issue for the OER because measurable 

currents often occur at large overpotentials sufficiently 
far from equilibrium (1.23 V versus RHE at 298 K).

As an example, Fig. 5 presents fundamental work in 
which the HER is investigated on a stationary polycrys-
talline platinum electrode in LiOH and KOH electro-
lytes167. A blank cyclic voltammogram of the platinum 
electrode is recorded in argon-saturated 0.1 M H2SO4 at 
50 mV s–1 prior to every set of measurements (Fig. 5a). The 
electrochemically active surface area of the platinum is 
calculated by integrating the hydrogen desorption region 
between 0.06 and 0.60 V versus RHE (after subtraction 
of the double-layer charge), considering a surface charge 
density of 230 μC cm−2 reported for a polycrystalline plat-
inum surface in sulfuric acid168. Prior to measurements, 
for each different electrolyte or concentration, imped-
ance spectroscopy is performed to determine electrolyte 
resistance and the potential is thus corrected. A cyclic 
voltammogram of different electrolytes (0.1 M LiOH or 
KOH) is recorded (Fig. 5b) and the corresponding Tafel 
plot displayed (Fig. 5c) for the relevant potential range. It is 
important to calculate the Tafel slope in the kinetic regime 
to avoid the convolution of hindered mass transport, and 
also in the regime where the backward hydrogen oxidation 
reaction is negligible. Here, for example, in LiOH a Tafel 
slope of 50 mV dec–1 is found, indicating the Heyrovský 
step as rate limiting. In KOH a much larger Tafel slope is 
observed, suggesting a change in the reaction mechanism 
in which the Volmer step becomes rate limiting. The Tafel 
slope plot (Fig. 5d) exhibits slopes of approximately 50 and 
100 mV dec−1 for LiOH and KOH, respectively; the sud-
den increase in Tafel slopes at more negative potentials 
is due to the onset of mass transport limitations and is 
proportional to the increase in current density. Next, the 
effect of the concentration of K+ on the HER in alkaline 
media is studied by recording cyclic voltammograms in 
0.01 M KOH (pH 12) with different concentrations of 
KClO4 added to the electrolyte (Fig. 5e). This was done 
using a platinum rotating disc electrode to minimize the 
effect of hindered mass transport. Figure 5f plots the cor-
respondent reaction orders on the K+ concentration at 
different potentials. Based on the negative slope, it can be 
concluded that under these reaction conditions, increasing 
the K+ concentration is detrimental to HER activity.

The effect of temperature can also be used to gain 
both kinetic169–173 and thermodynamic174–176 insights into 
the electrochemical reaction studied. From the tempera-
ture dependence of the reaction rate, both the apparent 
activation energy and the pre-exponential factor177 can 
be determined according to the Arrhenius equation. To 
compare apparent activation energies between different 
experimental conditions and with density functional 
theory (DFT) simulations, it is recommended to use 
the exchange current density as this gives an activation 
energy independent of potential178. Extrapolating to the 
equilibrium potential to obtain the exchange current 
density is often inaccurate because one extrapolates (far) 
outside the range of measurements. Therefore, it is more 
desirable to measure at fixed overpotential, but for this 
knowledge of how the (standard) equilibrium potential 
changes with temperature is required.

At any other potential, there is a potential-dependent 
component in the activation energy according to Eq. 10, 

Tafel slopes
The required increase in 
potential to increase the 
reaction rate by ten times.
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where ΔHc
‡ is the activation enthalpy, αH is the enthalpic 

transfer coefficient, F is Faraday’s constant and η is the 
overpotential:

ΔH ΔH α Fη= + (10)c c0 H
‡ ‡

Another kinetic parameter that can be determined with 
temperature experiments is the transfer coefficient, which 
consists of an enthalpic and an entropic component179,180:

α α Tα= + (11)H s

The enthalpic component can be determined using  
Eq. 10 whereas the entropic component can be determined by  
plotting the natural logarithm (ln) of the pre-exponential 
factor versus temperature. A second way to determine both 
parameters is by using the Tafel slope at different tempera-
tures170 (Eq. 12), where b is the Tafel slope and αS and αH is 
the entropic and enthalpic transfer coefficient, respectively:

. .b
α F

R
α F

R T
1 = −

2 303
−

2 303
1 (12)s H

For accurate determination of these kinetic param-
eters, it is important to consider some aspects that are 
unique to electrochemical experiments at temperatures 
other than room temperature. These experiments can be 

carried out in two ways181,182: either in an isothermal cell 
with the reference electrode at the same temperature 
as the working electrode, or in a non-isothermal cell 
where the working electrode compartment changes 
temperature while the reference electrode compart-
ment is maintained at 25 °C. In the isothermal cell, the 
temperature-induced change of the equilibrium poten-
tial of the reference electrode is considered both explic-
itly in the Nernst equation and through the temperature 
dependency of the standard equilibrium potential and the 
activity of the ions183. For HER studies, the RHE is recom-
mended for isothermal cells as there is no need to consider 
shifts in the equilibrium potential. For the OER, knowl-
edge of how the OER equilibrium potential changes on 
the temperature-dependent RHE scale is required, which 
is not so trivial. In the non-isothermal cell, the potential of 
the reference electrode is stable, but there exists a thermal 
junction potential difference between the reference elec-
trode and the working electrode, which is unknown if not 
measured for the specific electrolyte used182.

Other factors should be considered and potentially 
corrected for when experimentally measuring apparent 
reaction orders, Tafel slopes and apparent activation 
energies. The solubility of gases changes with pressure 
and temperature; in aqueous solutions, the solubility 
of gases can be calculated using Henry’s law correct-
ing for the equilibrium constants using the van’t Hoff 
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Fig. 5 | Example of data work-up for the study of hydrogen evolution on 
a polycrystalline platinum electrode. a | Blank voltammetry of the 
platinum electrode recorded in 0.1 M H2SO4 at 50 mV s–1 used for calculating 
the surface area. b | Voltammetry of the hydrogen evolution reaction in 0.1 M 
LiOH and 0.1 M CsOH recorded at 50 mV s–1. c | Correspondent Tafel plot.  
d | Tafel slope plot. The increasing Tafel slope at more negative potentials is 
due to mass transfer limitations. Cation concentration-dependence study 

recorded on a platinum rotating disc electrode at 2,500 rpm. e | Voltammetry 
in 0.01 M KOH (pH 12) with different concentrations of KClO4 added to the 
electrolyte. f | Correspondent reaction orders on the K+ concentration at 
different potentials. The potentials in panels b–f have been corrected for the 
solution resistance, which was measured via impedance spectroscopy. RHE, 
reversible hydrogen electrode. Adapted with permission from ref.167, ACS. 
HUPD, hydrogen underpotential deposition.
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equation or with empirical data184. This is much more 
of a challenge for Tafel slopes as electrochemical bias 
induces local gradients between the bulk and the surface. 
Correcting for solubility effects enables a comparison 
of currents under the same local conditions. Second, 
the standard equilibrium potential also changes with 
temperature, meaning that the same applied potential 
does not result in the same overpotential; this change 
can be calculated using thermodynamics. It has been 
demonstrated that failing to correct for thermodynamic 
changes in the solubility can lead to incorrect reaction 
orders and, thus, interpretations of the HER mecha-
nism185. Comparing currents and kinetic parameters 
between the RHE (where the reference electrode shifts 
with the pH) and the normal hydrogen electrode scale 
(pH-independent) can be used to determine whether 
the HER rate-limiting step involves protons or hydrox-
ides143. Additionally, kinetic isotope effects can comple-
ment Tafel slopes and reaction orders to give insight into 
mechanistic details of rate-limiting steps186–188.

Theory considerations
Complementary to experimental analysis of reaction 
thermodynamics and kinetics, and the identification of 
reaction intermediates and products via characteriza-
tion, is the use of DFT computational modelling. Under 
specific assumptions, DFT offers atomic-scale insights 
into the thermodynamics and kinetics of reactions189–191, 
vibrational frequencies of different adsorbates96,192, the 
effect of a homogeneous electric field within the electri-
cal double layer193, the role of applied electric potential 
and bulk pH194, adsorbate coverages190, catalyst oxidation 
states195–197 and the role of electrolyte species198,199 (see 
Fig. 6). On the other hand, systematic assessment of mass 
transfer phenomena, including surface pH effects, and 
potential-driven surface reconstruction requires multi
scale approaches, which are at the boundaries of the  
current capability of DFT simulations200–202.

The typical protocol for modelling the HER and OER 
consists of two steps. First, it implies the definition of 
simplified models with reaction intermediates adsorbed 
on a few atomic layers representative of surfaces. Later, 
formation energies for these adsorbates are estimated 
from their binding energy. Formation energies of inter-
mediates characterized by analogous bond order with 
the catalytic surface correlate among themselves, giving 
rise to thermodynamic linear scaling relationships203 
that, as in the case of the OER, may intrinsically limit the 
reaction activity204,205. The effect of the applied electric 
potential and bulk pH in the reaction thermodynam-
ics is included in DFT via the computational hydrogen 
electrode scheme194, which implies a shift of the Gibbs 
free energy of a reaction step by a term dependent on 
the potential (versus RHE) and the number of concerted 
proton-coupled electron steps until that reaction stage 
(see Supplementary Eq. 8). As activation energies corre-
late with formation energies of intermediates according 
to the Brönsted–Evans–Polanyi relation206–208, thermody-
namic properties can provide insights into the reaction 
kinetics as well. Thus, this framework enables the defi-
nition of thermodynamic or kinetic descriptors for the 
activity of the HER and OER.

Correlation between descriptors and reaction activity 
is typically represented through a volcano relationship 
between the experimental current density observed exper-
imentally and intermediates binding energies computed 
through DFT189,190,209. Although this modelling protocol 
has proved effective in determining the most active HER 
and OER catalysts, further parameters must be assessed 
to model the overall system. For example, considering 
the HER in neutral to alkaline bulk pH, the OH binding 
energy and the activation energy for water dissociation are 
relevant thermodynamic and kinetic descriptors190,199,210 
(see Supplementary Eq. 8). Still, electrolyte species, as 
cations, may facilitate or hinder the HER depending on 
the pH regime, catalyst and orientation of solvation mol-
ecules96,167,190,199, and thus they should also be included 
within the simulation cell (see Supplementary information 
Section 3). In the case of the OER, computationally derived 
Pourbaix diagrams allow one to identify materials which 
are thermodynamically stable within a specific bulk pH 
and electric potential regime, thus extending modelling  
predictions beyond just the catalyst activity211–214.

Recently, additional methods to assess the effect of 
electric potential in reaction kinetics have been devel-
oped, such as grand-canonical DFT215. Differently from 
the computational hydrogen electrode scheme, in a 
grand-canonical DFT simulation the number of elec-
trons in the system varies to keep their electrochemical 
potential constant216. By changing the number of elec-
trons, it is possible to tune the electrode potential217. As 
DFT simulation cells must be neutral, such additional 
electrons should be compensated for — for example, by 
a uniform positive background across the system, as in  
the solvated jellium method215. Additional insights into the  
methodology and application of grand-canonical DFT 
can be found elsewhere217–219.

Applications
In this section, practices relevant to applied research 
in electrochemistry are described, focusing on water 
electrolysis. Specifically, we discuss considerations that 
need to be taken into account in environments such 
as a company’s research and development department 
seeking to move a process from the laboratory into the  
commercial world220.

Laboratory-scale applied research
In applied water splitting studies, research should focus 
on minimizing costs and, in the case of a large-scale elec-
trochemical process, maximizing production (within the 
market limits). This roughly translates to maximizing 
the current density and the current efficiency while min-
imizing the cell voltage and operating the cell for as long 
as possible without interruptions. It is also imperative 
to consider the process as a whole, including the sepa-
ration of the final products and waste handling, which 
may cause the cell to run in suboptimal conditions if an 
advantage is created downstream in the process.

Catalyst considerations
The core of the electrochemical cell is the catalyst. 
First, whether the catalyst is active and selective under 
industrial conditions should be considered; a promising 
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catalyst in optimal conditions may not perform well in 
real conditions. Another consideration is whether the 
catalyst can be synthesized to achieve a high surface 
area and be incorporated as an electrode; it might not be 
straightforward to retain the features that make a certain 
bulk electrocatalyst active when produced in the form 
of nanoparticles. Whether the electrode is physically 
stable, corrosion-resistant and active for long periods of 
time also need to be considered because catalyst stabil-
ity is very often a significant challenge. Although HER 
currents in acidic environments are two to three orders 
of magnitude higher than in a basic environment221, the 
most well-established water electrolysis process is alkaline 
water electrolysis. This is primarily because of severe cor-
rosion issues in using acidic electrolytes. Metals in alkaline 
environments tend to passivate and be somewhat pro-
tected from corrosion. In addition, nickel-based catalysts 
are suitable as electrode materials for alkaline electrolysis, 
greatly decreasing the capital costs deriving from the use 
of platinum group metals in acidic electrolyte. Typical 
concentrations of the NaOH or KOH solutions used in 
these cells range from 25–30 wt% up to 40 wt%, and the 
cell is operated at temperatures up to 120 °C (ref.222). These 
are harsh conditions, and the materials employed in the 
electrochemical cells need to withstand them.

Commercial electrochemical cell design
Commercial cells for testing are seldom found at scales 
larger than 10 cm2. Therefore, customizing a cell for the 
desired testing size may be necessary. The materials  
of the cell and testing apparatus need to be compatible with  
the electrolytes used and at the operating temperatures. The  
gap between the electrodes, the flow distribution inside 
the cell and the seal between the compartments and the  
membrane should be considered when designing a 
cell. The gap between electrodes directly affects the cell 

voltage. Additionally, with an increase in cell size, high 
cell voltages lead to larger heat generation resulting in 
higher temperature electrolytes. This can appear to be 
beneficial as the cell potential decreases with higher 
operating temperatures, and the heat generation could 
be used to maintain the high operating temperature of 
the cell. However, minimizing the energy consump-
tion of the cell (through reducing the cell potential and 
maximizing the current efficiency) is a greater priority223.

The flow distribution in the cell needs to ensure a 
uniform velocity of electrolyte through the cell so that 
there are no dead zones that can affect the mass trans-
fer and the current distribution across the electrode. 
Additionally, for alkaline water electrolysers, the flow 
distribution on the cell outlet needs to allow any gas 
bubbles to escape and not accumulate inside the cell’s 
active area. Gas accumulation inside the cell leads to a 
reduction in the cell active area and an increase in cell 
voltage224,225. The understanding of gas bubble evolution 
inside the cell is beneficial to cell and electrode design 
to further optimize the energy efficiency of the system. 
The flow distribution especially becomes necessary to 
consider when experimenting with cell stacks (multiple 
cells combined into one unit). Ensuring uniform flow 
and current distribution to all cells in a stack is impor-
tant. COMSOL is a computational fluid dynamic simu-
lator and multiphysics solver that can be used to examine 
the flow, gas generation and current distributions in cell 
designs before fabrication and physical testing226.

Operating conditions
The whole electrochemical cell should be considered 
when investigating a specific process, and the decrease 
in cell voltage needs to be achieved by optimizing both 
the cathodic and anodic compartments. It is possible 
that in an electrochemical cell, two different electrolytes 
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are used for the anodic and cathodic compartments and 
that an appropriate membrane or separator needs to be 
chosen. For example, using a dilute base as an anolyte  
for oxygen evolution and separating the cell with a cat-
ion exchange membrane can lead to the depletion of the  
anolyte and a progressive increase in cell voltage in  
the case of a batch system. Moreover, a poorly designed 
electrochemical cell or the use of dilute electrolytes can 
impact the cell voltage, much more than the overpo-
tentials of the electrochemical reactions. For this rea-
son, the use of concentrated, conductive electrolytes is 
warranted. These aggressive electrolytes can speed up 
catalyst degradation or change its reactivity, leading to 
discrepancies between the laboratory bench and real 
devices227. Therefore, it is important to test the materials 
in realistic environments (for example, with MEAs) from 
the very beginning of the catalyst-discovery process228,229.

An important difference between fundamental and 
applied research is the focus on potentiostatic versus 
galvanostatic methods. The control of the potential of 
an electrode is a complex endeavour in electrochemi-
cal cells at high currents. Even with highly conductive 
electrolytes, the high currents cause substantial ohmic 
drops. Additionally, the evolution of gases, the changes 
in temperature from heat generation and the formation 
of concentration gradients in the cell complicate the 
situation. Moreover, the large electrodes employed will 
not have a homogeneous potential distribution on their 
surfaces. For these reasons, the experiments are usually 
performed with a power supply, and constant currents 
are applied to the cells.

Hydrogen purity considerations
The requirements for the purity of hydrogen produced 
from electrolysis will vary based on the end use of the 
hydrogen. Hydrogenation processes can utilize a hydro-
gen gas feed with a purity of 98% whereas fuel cells 
require hydrogen purity to be more than 98.98%230,231. 
Standards for hydrogen purity requirements are set in 
ISO Standard No. 14687:2019. Oxygen from cross-over 
through the membrane and water are two of the main 
impurities in hydrogen produced from electrolysis232. 
The reduction in the concentration of these impurities 
in the product stream and the downstream separations 
of these impurities should also be considered in future 
research. Specifically, membranes can be developed, 
modified and tested to reduce the amount of oxygen 
cross-over in the electrolysers231.

Reproducibility and data deposition
Factors affecting reproducibility
The ability to reproduce results and fairly compare 
performances is of critical importance to advance in 
the field. A large number of papers have advocated for 
standards and protocols to improve electrochemical 
comparisons between the countless formulations synthe-
sized and tested16,123,134,135,152,233–240. Minimum reporting 
standards include the elemental composition, the cyclic 
voltammogram, the kinetic catalytic activity (collected 
under both linear sweep voltammetry and steady-state 
conditions241) normalized to the geometric surface area, 
the electrochemically active surface area and the mass of  

the catalyst. Confirmation of the lack of mass transport 
limitations (rotating for external mass transport, and var-
ying the catalyst loading to probe internal mass transport) 
is also recommended in addition to a measure of stabil-
ity such as cycling between relevant potentials and/or  
holding at industrially relevant currents (typically at 
10 mA cm−2 for the OER236) or potential for an extended 
time. Reference catalysts such as commercial platinum/
carbon134,242 for the HER and RuO2 and/or IrO2 (ref.243) 
for the OER can be purchased or synthesized. Results 
should be collected and reported in triplicate (or more) 
with explicitly defined error bars. If repeats are challeng-
ing or time consuming, utilizing error propagation244 to 
estimate errors is an alternative. Error bars can be used 
to determine whether changes in a particular variable 
of interest (for example, impurity concentration,) 
significantly impact performance metrics245.

Owing to the ease of collecting and plotting polariza-
tion curves (current versus potential graphs), a plethora 
of papers exist in the literature where these polarization 
curves are presented but report kinetic parameters at 
conditions that are not directly comparable. This pre-
sents opportunities to extract246–248 rate information 
and compare results on a fair basis; it was recently 
demonstrated that, for the last two decades, only min-
imal improvements in the intrinsic activity of catalysts 
have occurred249. Data extraction tools used to mine old 
literature, data sharing using databases (for example, 
Catalysis-Hub250, ioChem-BD251 and CatApp252) and data 
repositories for both experimental and computational 
data are strategies and pathways to accelerate impact and 
progress in catalysis science. In fact, adequate protocols 
for data collection, cleaning and curation will be crucial 
to enable quick high-throughput screening of stored data 
sets through machine learning253, as already demon-
strated for optimization of membranes and material  
discovery254,255.

Limitations and optimizations
The impact of incidental contamination can influence 
electrochemistry; the benchmarking and comparison of 
CVs, reaction rates and kinetic parameters in the litera-
ture, if available, is encouraged. The process to properly 
clean, set up and validate an electrochemical cell can be 
lengthy, but has major future benefits for technological 
progress. Naturally, optimization of the experimental 
workflow comes with experience. For instance, once 
cells are initially cleaned and used, they can often be 
re-cleaned by boiling several times in ultra-high-purity 
water without the need to undergo the time-intensive 
acid wash (see Supplementary information Section 1.1 and 
Supplementary Table 1). Eventually, these cells will become 
contaminated, presumably from contaminants from the 
ambient air and surfaces, so that the CVs, reaction rates 
and kinetic parameters are no longer reproducible.

When coupling aqueous electrochemistry with 
characterization techniques, challenges arise from 
combining the components of a typical electrochemi-
cal cell with the characterization technique in question. 
Spectroscopic techniques are constrained to potential 
ranges free from bubble formation as bubbles interfere 
with the photon beam. For intense photon beams such 
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as those from synchrotrons, one must be wary of beam 
damage to the working electrode (possible alterations of 
the surface morphology, composition), to the electrolyte 
(radical formation, decomposition) and even to the cell, 
depending on the material256. Lastly, limitations inher-
ent to the characterization equipment itself (for example, 
from gas chromatograph sampling) can also direct how 
experiments are designed.

One of the biggest challenges in modelling electro
chemistry is identifying key factors that affect elec-
trocatalytic performance. Less crucial factors can be 
disregarded in the model, leading to feasible simulation 
times. Depending on the experimental study, computa-
tional models of electrocatalytic interfaces may be lim-
ited to simplified surfaces, low coverage adsorbates and 
solvation, or include other electrolyte species (cations, 
anions), electric fields and coverage effects. The choice of 
set-up should aim at the best agreement with experimen-
tal benchmarks. As experimental systems often involve 
a complexity far beyond the limited power of the cur-
rent supercomputers, selected experiments with a fixed 
degree of variables should be performed to validate or 
falsify theoretical predictions. Insights from validated 
models can then trigger future experimental studies in 
the framework of a joint effort towards mutual improve-
ment257. Cross-checks between theoretical/computational 
predictions and experiments are crucially important, also 
to avoid confirmation bias.

Outlook
With the impacts of climate change becoming more 
apparent, there is ever-growing pressure to quickly shift 
from our current unsustainable linear economy that 
relies on fossil fuels to a sustainable circular economy. 
In this section, we provide an outlook on catalyst con-
siderations for scaling up water electrolysis and revisit 
the role of hydrogen in a sustainable circular economy.

Large-scale water electrocatalysis
Catalyst considerations for scale-up. The production of 
catalysts by chemical reduction can be hampered indus-
trially by numerous factors. For example, large-scale 
water electrocatalysis requires large reactors to transport 
high volumes of liquid, often dangerous and polluting 
organic solvents. The fast addition of reagents may be 
difficult on a large scale due to difficulties in the mixing 
of fluids and the use of expensive, unavailable or toxic 
reagents258. These problems can make it challenging 
to adopt a catalyst for a large-scale industrial process. 
An outstanding catalyst made of elements that are too 
expensive or rare, or that is only obtainable with an elab-
orate synthesis, could be easily supplanted by a more 
available lower-performing one.

Another critical point is the catalyst’s resistance and 
response to impurities. Although it is vital to investi-
gate catalysts in ultra-clean systems at the fundamen-
tal level, cleanliness comes at a cost. A rugged catalyst 
able to operate in various conditions could be preferred 
over a more active catalyst needing an environment that 
is more costly to sustain at a large scale259. DFT can be 
used to screen potential poisons that may be found in 
actual stream feeds260,261. Once clean and reproducible 

baseline electrochemical systems have been established, 
the impact of potential impurities should systematically 
be studied.

The choice of an anodic reaction alternative to the 
OER can also provide an additional revenue stream 
to the overall process and, potentially, reduce the cell 
voltage. The production of chlorine at the anode, using 
the anode for electrochemical wastewater treatment or 
performing another oxidation reaction could be bene-
ficial for the economics of the entire process. Running 
a reaction other than the OER at the anode could also 
be more thermodynamically favourable and result in 
a reduction in the cell voltage262–264. Additionally, the 
cell voltage could benefit from the alternative reac-
tion if there is no gas evolution or bubble formation 
at the anode. This idea of hybrid water electrolysis has 
been discussed, but currently there is limited research  
published on experimental work in this area265–267.

Stability and prolonged runs. The main focus of 
laboratory-scale industrial catalyst research for produc-
tion purposes should be to find clean, scalable and cheap 
synthesis methods for promising catalytic materials and 
to investigate the long-term stability and performance 
of electrodes fabricated with these catalysts in real con-
ditions and high currents123,268–274. An important point is 
the time scale of catalyst stability for industrial applica-
tion. Industrial electrolysers have lifetimes in the order 
of several tens of thousands of hours222. This makes the 
assessment of the viability of new catalysts extremely 
challenging and calls for the development and applica-
tion of accelerated stress tests. These tests can assess the 
true lifetime of a catalyst under normal operating con-
ditions, but in a significantly reduced length of time275. 
This is not straightforward, as simply increasing the 
current applied to the system does not necessarily yield 
a proportional reduction in the catalyst lifetime. In fact, 
the root cause of the electrochemical cell’s instability can 
change when operating at the accelerated conditions.

Circular hydrogen economy. Hydrogen produced via 
water electrolysis is key for the energy transition our 
society is going through, considering its role for energy 
storage, fuel and bulk chemical production. Figure 7 illus-
trates a hydrogen economy where hydrogen from water 
is produced using renewable electricity11. This hydrogen 
can be stored when energy demand is low and utilized 
when energy demand is high in the transportation, 
industrial and residential sectors10,11. To offset a signifi-
cant amount of CO2 emissions, renewable hydrogen can 
be used in the Haber–Bosch process to synthesize ammo-
nia276, which can then be used in the agriculture sector 
as fertilizer or as fuel in the transportation sector. When 
ammonia is used in fuel cells, it generates electricity and 
releases N2 and valuable hydrogen as by-products277–279. 
The hydrogen can then be re-converted to ammonia or 
injected back into the hydrogen economy. Hydrogen can 
also be used to synthesize hydrocarbon liquid carriers; 
however, one caveat with hydrocarbon liquid carriers is 
that when used in the fuel cell, the oxidation of hydrocar-
bons releases CO2. Achieving global electrification will 
require serious breakthroughs in the different industrial 
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sectors and, importantly, in society. For instance, stor-
age of renewable energy as hydrogen is crucial to ena-
ble sustainable mobility of trucks and planes, whereas 
electric alternatives are currently impractical due to the 
low energetic density of batteries. Hence, the future of 

electrochemical water splitting is bright, and bridging 
fundamental and applied electrochemistry towards  
practical applications is urgent and necessary.
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