
Data-driven predictive maintenance and time-series
applications
Kefalas, M.

Citation
Kefalas, M. (2023, January 19). Data-driven predictive maintenance and time-
series applications. Retrieved from https://hdl.handle.net/1887/3511983
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3511983
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3511983


585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 135PDF page: 135PDF page: 135PDF page: 135

Chapter 8

An Automated Machine Learning

Approach for Electromyography Data

In the previous chapters we mostly dealt with AI-based tools for data-driven applications in

predictive maintenance (PdM). In this chapter, we will deal with AI-based time-series appli-

cations in the medical domain. Even though the work presented here is not directly relatable

to prognostics and health management (PHM) and PdM we still believe that it is a valuable

addition to the work discussed in this thesis, as it shows that tools developed for industry can

lend themselves to other fields as well. This idea of knowledge transfer across different scien-

tific fields and disciplines is, generally, rather important in the process of knowledge creation,

the emergence of new fields and the overall progress of science [215]. It has been shown that

knowledge exchange across scientific areas can drive forward and further develop science (see

e.g., [7]).

In more detail, in this chapter1, we will deal with a case study in the field of Neurology, in

which we will use methods from time-series representations and other methods (such as in

Chapter 4) e.g., feature selection, to ultimately classify patients as either being healthy or not.

The approach is automated and limits as many arbitrary choices as possible, providing at the

same time valuable diagnostic information without having to rely heavily on clinical expertise.

We should note here that the term “automated” refers to the fact that the method can be used

in a generic way in different domains (domain-agnostic), as we will also note later on. Thus, it

should not be confused with the notion of “AutoML” (see Section 4.3.5).

1©2021 IEEE. Reprinted, with permission, from [114]; Marios Kefalas, Milan Koch, Victor Geraedts, Hao
Wang, Martijn Tannemaat, and Thomas Bäck, Automated Machine Learning for the Classification of Normal
and Abnormal Electromyography Data, 2020 IEEE International Conference on Big Data (Big Data), 2020, pp.
1176-1185. IEEE
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8.1. Introduction

8.1 Introduction

Needle or intramuscular electromyography (EMG) is a common technique used in clinical neu-

rophysiology to record the electrical activity of muscles at different levels of activation [47].

As the EMG signals of patients with both nerve diseases (neuropathies) and muscle diseases

(myopathies) differ from those in healthy controls, EMG can be used to diagnose various neuro-

logical disorders. The most commonly used method to interpret the EMG is qualitative, based

on visual inspection of the signal in real-time by an experienced examiner. A major drawback

of this method is that it is highly subjective and prone to errors. In particular, for the diagnosis

of myopathies, EMG has been called “one of the most challenging areas in electrodiagnostic

medicine” [47]. In theory, a neuropathic EMG with fibrillation potentials, positive sharp waves,

high-amplitude and long duration motor unit potentials (MUPs), and a reduced interference

pattern should be clearly distinguishable from a myopathic EMG containing smaller, short-

duration polyphasic MUPs and a full interference pattern. In practice, however, the diagnostic

yield of qualitative EMG analysis for distinguishing between both abnormal-myopathic and

neuropathic-myopathic is disappointingly low.

In the past decades, several quantitative EMG (qEMG) methods such as turns-amplitude anal-

ysis have been developed in an attempt to increase the diagnostic yield of the EMG. However,

so far sensitivity and specificity of various qEMG techniques have remained similar to visual in-

spection [80, 211]. Similarly, another quantitative technique called the clustering index method

yielded a sensitivity of 92% for neurogenic and 61% for myopathic patients [226]. Further-

more, most qEMG methods were published several decades ago and are based on assumptions

with regard to MUP morphology and physiology. Interpretation of the EMG in patients with

Inclusion Body Myositis (IBM), a myopathy, is particularly challenging, as it may contain

both myopathic and neurogenic features [106]. As IBM may also mimic motor neuron disease

clinically, inappropriate interpretation of the EMG can lead to an incorrect diagnosis. A ret-

rospective study of mislabeled IBM patients found that routine EMG commonly pointed to

a neurogenic disorder called Amyotrophic Lateral Sclerosis (ALS): it showed fibrillations and

positive sharp waves, as well as excessive amounts of polyphasic long-duration “neurogenic”

MUPs in the majority of mislabeled patients [48]. This is highly unfortunate as ALS, a neu-

ropathy, is a progressive, fatal disease, whereas life expectancy is not significantly affected in

IBM [45].

Recent advances in computer processing power and machine learning techniques enable a “big

data” approach that processes a large number of features without any underlying assumptions

about the nature of the signal. We have previously shown that such an approach, developed for

the automotive industry but applied to electroencephalography (EEG) signals, could distinguish

between Parkinson’s disease patients with good cognition from those with poor cognition with

an accuracy of 91% [122].
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Chapter 8. AI and EMG

Generally, a first approach towards a(n) (automatic) classification of specific diseases, either

myopathic or neuropathic, is the differentiation between a normal EMG assessment of a healthy

individual and an abnormal EMG assessment of a patient with a myopathic or neuropathic

disease.

In this work, our contributions lie in the following:

1. We aim to evaluate an automated time-series classification algorithm for usage in differ-

entiating EMG time-series of healthy individuals and EMG time-series of patients with

either neuropathic or myopathic diseases by considering the two types of disease as one

disease class (binary classification).

2. Our approach is generic and limits as many arbitrary choices as possible, providing at

the same time valuable diagnostic information without having to rely heavily on clinical

expertise.

8.2 Related Work

Electromyography (EMG) is the study of the electric activity of the muscle and assists in the

diagnosis of neuromuscular disorders. EMGs are used to detect and describe different disease

processes affecting the motor unit (MU), the smallest functional unit of the muscle. The motor

unit action potentials (MUPs) are recorded using a needle electrode at slight voluntary contrac-

tion during an EMG. The MUP reflects the electrical activity of a single anatomical motor unit.

It represents the compound action potential of those muscle fibers within the recording range of

the electrode. EMGs can detect neuromuscular disorders due to the structural reorganization

of the MU because of disorders affecting peripheral nerve and muscle [174]. Current clinical

practice is based on expert visual inspection of MUP traces and simultaneous real-time assess-

ment of their audio characteristics. This subjective assessment, even if satisfactory, may not be

sufficient to describe less apparent deviations or mixed patterns of abnormalities [187]. There-

fore, for an automated EMG signal classification to be effective, a systematic and thorough

treatment of EMG signals must be carried out. Because of this, a number of computer-based

quantitative EMG analysis algorithms have been developed [213].

In this view, authors of [58] developed an EMG-based classifier for neuromuscular disorders

using a Multi-Layer Perceptron (MLP). The authors compared the performance of five dif-

ferent feature extraction techniques from the EMG signals (autoregressive, root mean square,

mean absolute value, zero crossing, and waveform length) across five different classification

tasks: healthy-unhealthy, healthy-myopathy, healthy-neuropathy, myopathy-neuropathy, and

healthy-myopathy-neuropathy. Their results showed that the autoregressive feature extraction

from the EMG signal returned the best results in four out of five groups, and they achieved

the highest accuracy (86.3%) when classifying healthy-myopathy-neuropathy. In [13], a dataset

of 50 healthy, 50 neurogenic, and 50 myopathic subjects is generated using an EMG simu-
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8.2. Related Work

lation software. The feature set consists of 8 features regarding signal amplitude and phase

alongside statistical metrics, such as mean and variance. The classification utilizes four dif-

ferent algorithms with a 97.78% classification accuracy using support vector machines (SVM).

In [165] the authors use an openly available clinical database consisting of recordings of ten

healthy subjects, seven myopathic, and eight patients with ALS. They use five feature extrac-

tion techniques (waveform length, zero crossings, slope sign changes, Willison amplitude, and

root mean square). The study reports a 100% accuracy rate for normal subjects, 94% for my-

opathies and 96% for patients with ALS using the linear discriminant analysis (LDA) classifier.

In [101] the authors introduce a novel method for automatic classification of subjects with or

without neuromuscular disorders. This method is based on multiscale entropy of recorded sur-

face electromyograms (sEMG) and support vector classification. They achieved a diagnostic

yield of 81.5% for healthy/patient classification and 70.4% for healthy/myopathy/neuropathy

classification. In [53] the authors describe a method for the classification of neuromuscular

disorders. The approach involves isolating single MUPs, computing their scalograms, taking

the maximum values of the scalograms in five selected scales, and averaging across MUPs to

give a single 5-dimensional feature vector per subject. The SVM analysis reduces the vector

to a single decision parameter, called the wavelet index, allowing the subject to be assigned to

one of three groups: myogenic, neurogenic, or normal. In [165] Naik et al. present an ensemble

empirical mode decomposition algorithm that decomposes a single-channel EMG into a set of

noise-canceled intrinsic mode functions, which are then linearly separated by the FastICA algo-

rithm. Five time-domain features extracted from the separated components are then classified

using the LDA, and the classification results are fine-tuned with a majority voting scheme. The

authors achieved a diagnostic yield of 98% on a clinical EMG database to discriminate between

the normal, myopathic, and ALS subjects. More recently, Subasi et al. [214] present a bagging

ensemble classifier for the automated classification of EMG signals. They use statistical values

of the discrete wavelet transform coefficients and use those as features in a bagging ensemble

of SVM, achieving a 99% accuracy for diagnosing neuromuscular disorders.

The work presented above is by no means exhaustive. To the best of our knowledge, though,

there has not been much research in hyperparameter tuning in the selected algorithms in this

context. The use of hyperparameter optimization techniques would, for example, enhance

the model performance further [44]. What is more, it is evident that most of the studies

only consider a limited number of features as input to the classifiers (i.e., Hudgin’s set of

features [95]). An automatic approach to finding relevant time-series representations would

create and give insights to new features, or rather biomarkers [122], and would assist in avoiding

time-consuming feature engineering processes. In addition, most studies have been done on a

specific muscle (e.g., biceps brachii) and not on an arbitrary set of muscles. This could affect

the general applicability of the classification task if, for example, a different muscle is put to

the test.
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Chapter 8. AI and EMG

This chapter addresses such shortcomings by using a fully automated pipeline to limit arbitrary

choices. The pipeline contains units for feature extraction, feature selection, a machine learning

model, and hyperparameter optimization. Furthermore, the data used are collected from routine

clinical practice rather than in an artificial research setting. Finally, we focus on presenting the

machine learning approach in detail.

8.3 Data

The EMG data contain 380 muscle recordings from 65 muscles (at rest or at maximum con-

traction) based on 65 patients with IBM (n = 20), ALS (n = 20) and healthy (control group)

(n = 25). As IBM is relatively rare, we used all available consecutive recordings from 2004-

2019. As multiple muscles were examined per patient, we have the EMG of 122 muscles of

healthy subjects and 258 muscles of ALS/IBM patients. All recordings were age-matched.

These recordings were made within routine clinical care.

The data were collected by the department of clinical neurophysiology of the Leiden University

Medical Center (LUMC), a tertiary referral center for neuromuscular diseases2. The EMGs

were performed with concentric needle electrodes and recorded using Medelec Synergy elec-

tromyography equipment3. In general, the assessment takes place in three phases: with the

muscle at rest, during slight activation, and during (near-) maximal activation. Recording at

maximal muscle activation is commonly avoided when the EMG signal appears to be normal

at near-maximal activation levels, as the EMG becomes increasingly painful when the muscle

is fully activated. The EMG machine routinely stores the last 40 seconds of the examination

as 200 consecutive segments of 0.2s each (we shall refer to the segment as a trace hereafter).

For this study, the longest artifact-free series of consecutive 0.2s segments from every muscle

recording were selected rigorously by clinicians through visual inspection. This means that for

all pairs of patient and muscle, the number of traces varies, and is at most 200.

The diagnosis was based on established clinical criteria; in brief: the criteria for IBM were the

presence of both typical clinical features and muscle biopsy showing atrophy, inflammation,

and rimmed vacuoles. Criteria for ALS were typical clinical features, EMG abnormalities, and

progressive neurological decline. Finally, criteria for healthy subjects were defined as subjects

with atypical complaints of muscle cramps, pain, or fear of a neuromuscular disease without

clinical weakness upon neurological examination and no signs of muscle weakness during a

follow-up period of at least two years.

For all the patients and muscles, the data were recorded with two sampling rates, namely

4800Hz and 5000Hz comprising of 16642 and 14279 traces, respectively.

Formally, let p ∈ {1, 2, .., 65} denote the patient, m ∈ {1, 2, .., 65} the muscle, and t ∈
2https://www.spierziektencentrum.nl/location/lumc/
3Oxford Instruments, Abingdon, Oxfordshire, UK
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8.4. Data Pre-processing

{1, 2, .., T r(p,m)} the trace. Here, Tr(p,m) stands for the number of traces for each patient

and muscle, which depends on the longest artefact-free segment of the muscle recording.

An EMG trace can then be denoted as:

s
(p,m)
t := (st1, s

t
2, . . . , s

t
lt)

ᵀ ∈ Rlt ∀(p,m, t), (8.1)

where lt is variable and depends on the sampling rate (here 4800Hz or 5000Hz) and duration of

the trace (here 0.2s). We can also denote the muscle recording for the tuple (patient, muscle)

(∀(p,m)) as:

S(p,m) := [s
(p,m)
1 , s

(p,m)
2 , . . . , s

(p,m)
Tr(p,m)

]ᵀ ∈ RN , (8.2)

where N = l1 + · · ·+ lTr(p,m)
.

As stated in Section 8.1, our approach is a binary classification task. It aims to differentiate

between a normal EMG assessment from a healthy individual and an abnormal EMG assess-

ment from a patient with a myopathic (IBM) or neuropathic (ALS) disease. In this view, the

classification targets, labeled by experts, are for each patient p : T p = {DISEASE,CTRL},
where DISEASE includes both ALS and IBM and CTRL represents healthy controls. It goes

without saying that a muscle recording of a patient belonging to a particular class receives the

same class label. In Section 8.4 the data pre-processing is described.

8.4 Data Pre-processing

For data pre-processing, we first downsampled all 5000Hz traces to 4800Hz4. This was done

for consistency as well as for computational purposes. In addition, we renamed certain muscle

groups for consistency between recordings (genioglossus→ tongue). These pre-processing steps

can be considered on a trace level and they transform Equations (8.1) and (8.2) from before to

Equations (8.3) and (8.4), respectively, as:

s
(p,m)
t := (st1, s

t
2, . . . , s

t
l)

ᵀ ∈ Rl ∀(p,m, t), (8.3)

where l = 960 at a trace duration of 0.2s and sampling rate of 4800Hz, and ∀(p,m),

S(p,m) := [s
(p,m)
1 , s

(p,m)
2 , . . . , s

(p,m)
Tr(p,m)

]ᵀ ∈ Rl·Tr(p,m) , (8.4)

In the next steps, we move from the trace level to the muscle level. For this, we designed a

unique ID that takes into account the patient identifier, the muscle examined, and the side

4We used the resample function of the signal module of the scipy package https://docs.scipy.org/doc/

scipy/reference/generated/scipy.signal.resample.html
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Chapter 8. AI and EMG

examined ({Left,Right}). With this unique ID we grouped together traces belonging to the

same patient identifier, the muscle examined, and the side examined. We then reconstructed a

5-second time-series by stitching together consecutive 0.2s segments of each unique ID, which

at 4800Hz results in 24000 data points per examined muscle. By creating time-series of equal

length, we aimed to avoid bias caused by differences in the sample length and reduce the amount

of processing time required. We used the last 5 seconds available from each recording under the

assumption that the part of the recording from the muscle at near-maximal contraction is the

most likely to contain valuable information for the classification. Nine (9) recordings had fewer

than 24000 data points, in which case the entire recording was used. Finally, we discarded 98

recordings with 960 data points in total, which correspond to an entire EMG duration of 0.2s

(at 4800Hz).

Taking Equations (8.3) and (8.4) into account, we denote EMG traces for each patient p, muscle

m, and examination side s ∈ {Left,Right} as follows:

s
(p,m,s)
t := (st1, s

t
2, . . . , s

t
l)

ᵀ ∈ Rl. (8.5)

And the concatenation of all traces for each patient, muscle, and side is:

S(p,m,s) := [s
(p,m,s)
1 , . . . , s

(p,m,s)
Tr(p,m,s)

]ᵀ ∈ RN , (8.6)

where N = l · Tr(p,m,s) and l = 960 is the trace length of 0.2s duration and 4800Hz sampling

rate.

8.5 Machine Learning Pipeline

The pipeline used in this chapter was initially developed for applications in the automotive

industry for time-series classification problems with vehicle onboard data [123, 121]. Later it has

been applied to EEG (electroencephalogram) data to predict cognitive function in Parkinson’s

disease patients potentially eligible for DBS (deep brain stimulation) [122]. The (automated)

pipeline has been continuously developed further and consists of the following steps:

1. Feature Extraction from time-series,

2. Feature Selection,

3. Modeling, and

4. Hyperparameter Optimization of the classifier.

The input of this fully automated pipeline are labeled time-series (here: EMG data). The

output are performance measures after optimizing the hyperparameters.
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8.5. Machine Learning Pipeline

8.5.1 Time-Series Feature Extraction

The pipeline aims at being comprehensible, computationally efficient, and applicable to different

time-series problems. To ensure this, our pipeline uses features computed from the time-series.

Such features are computationally efficient to use and relatively easy to interpret.

In this work, we propose to extract an excessive number of features from the time-series and

subsequently select the most significant ones for the problem at hand, based on some pre-defined

feature selection criterion. Since those numerous features cover a broad range of time-series

characteristics, this procedure allows the application of this pipeline to various problems with

very different relevant features.

In this study, the feature extraction F uses the EMG recordings of each patient and muscle of

each side (see Section 8.4) as input and constructs a k-dimensional (k is the number of features)

real-valued feature vector, F : RN → Rk:

∀(p,m, s), S(p,m,s) → F (
S(p,m,s)

)
.

Thus, each tuple (p,m, s) results in a feature vector which can be denoted as F (p,m,s). This

feature vector represents the input for the feature selection procedure.

For this task, we used the tsfresh package (introduced under Feature Extraction in Sec-

tion 4.4.2). For the importance of feature extraction, in general, we refer the reader to Sec-

tion 4.3.3. In this work, tsfresh has been applied with its default settings. In the next step,

from this generated feature space the most significant features are selected.

8.5.2 Feature Selection

The feature selection phase describes the selection of relevant features from the massive number

of extracted features (in this case from tsfresh) for the classification task. For each tuple

(p,m, s) of patient and muscle, we use F (p,m,s)
sel ∈ Rk′ to represent the vector resulting from

feature selection (sel stands for “selected” and k′ is the number of selected features). Numerous

feature selection methods have been proposed, like the forward or backward selection [36]. To

distinguish between relevant and non-relevant features, the so-called feature importance can be

used as a measure. Feature importance describes the mean decrease of accuracy or the mean

decrease of impurity when modeling with random forests. In a forward selection, features are

added iteratively until the feature importance stagnates or deteriorates. Backward elimination

uses all features in the beginning and gradually removes less important features. For the

importance of feature selection, in general, and other feature selection methods, we refer the

reader to Section 4.3.4.

In our pipeline, another feature selection algorithm called boruta [129] is used since it has

shown better performances when compared to other methods [123]. The boruta algorithm
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Chapter 8. AI and EMG

includes a random forest model, which is built on real features and shadow features. Shadow

features are generated by randomly shuffling the values of each real feature vector. As soon as

a real feature exposes a higher feature importance than the maximal feature importance overall

shadow features, it is considered for selection. This procedure is repeated to guarantee that

the selected features have a statistically significant meaning.

8.5.3 Modeling

In the modeling phase, a random forest model is trained with the selected features of the

previous phase. We have implemented a random forest model due to its simplicity and its

efficiency. Furthermore, random forests are known to achieve good performances in different

domains. However, any other classifier can be implemented here. A random forest is an

ensemble learning method. It is the conglomeration of several decision trees, with the resulting

decision being the average outcome of all those decision trees [85] in the case of regression or

by taking the majority vote in case of classification.

In this EMG study, we can summarize the input to the random forest model as {(F (p,m,s)
sel , T (p))},

where p ∈ {1, . . . , 65}, m ∈ {1, . . . , 65}, s ∈ {Left,Right}.
We have 380 intramuscular EMG recordings, of which 258 belong to patients with a neuro-

muscular disorder and the remaining 122 to healthy individuals. Evidently, this dataset is not

balanced. Thus, we also performed a balanced approach in addition to the previous model-

ing approach. In detail, we used a combination of over-sampling the minority class (healthy)

and under-sampling the majority class (disease) by allowing the two classes to “meet” halfway

(rounded down). In other words, if the difference is 20 data points (EMG recordings), we

under-sample the majority class by 10 and over-sample the minority class by another 10. The

under-sampling of the majority class happens randomly, whereas the oversampling of the mi-

nority class takes place using the well-known Synthetic Minority Over-Sampling Technique

(SMOTE) [39]. The two modeling approaches will be called henceforth Approach 1 and Approach

2. Table 8.1 shows an overview of the modeling approaches.

Since the classification task takes place on the EMG recordings of the muscles, it shall be known

henceforth as muscle-level. Approach 1 and Approach 2 are the two variants of the muscle-level

approach.

8.5.4 Hyperparameter Optimization

The optimization of hyperparameters enhances the performance of a machine learning algo-

rithm. Table 8.2 shows the search space of the hyperparameter optimization (HPO) conducted

in this study. Notably, the search space contains not only integer variables but also categorical

ones. As discussed already in Section 5.3.5, there are various methods available for HPO like
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8.5. Machine Learning Pipeline

Table 8.1: Overview of the approaches for automated EMG assessments with Machine Learning.

Approach 1 2

Description
DISEASE vs. CTRL
muscle level

DISEASE vs. CTRL
over- and under-sampling
muscle level

EMG
# cases

380 time-series (EMG) 380 time-series (EMG)

Length ≤ 24000 data points ≤ 24000 data points
Class 0
(CTRL)

122 time-series (EMG) 258 time-series (EMG)

Class 1
(DISEASE)

122 time-series (EMG) 258 time-series (EMG)

grid search, evolutionary algorithms, and Bayesian optimization [78]. In this study, the (single-

objective) Mixed-integer Parallel Efficient Global Optimization (MIP-EGO) [231] is chosen (see

also Section 5.3.5). MIP-EGO is a state-of-the-art Bayesian optimization algorithm, and is chosen

due to its efficiency in optimizing expensive problems. It can efficiently handle mixed-integer

categorical variables (such as the ones we have in this work). MIP-EGO suggests in each iteration

a candidate hyperparameter setting that is evaluated by measuring the model’s performance

on a test dataset.

To optimize the hyperparameters of the random forest, MIP-EGO optimized the F1-macro score

of a 10-fold cross-validation (CV). In a CV, the dataset is randomly split into K folds (here

K = 10), trained on K − 1 folds, and tested on the remaining Kth fold. This process is

repeated until each fold has served as a test set. The average performance scores from all

K folds represents the final score. We executed MIP-EGO for 200 iterations, and we used the

F1-score macro as our optimization criterion to take into account the class imbalance during

training.

Table 8.2: Hyperparameter search space for optimizing the random forest classifier.

Parameter Range

Max depth of each tree {None, 2, 4, 6, . . . , 100}
Number of trees {1, 2, . . . , 100}
Max number of features when splitting a node {auto, sqrt, log2}
Min number of samples required to split a node {2, 3, . . . , 20}
Min number of samples required in the leaf node {1, 2, . . . , 10}
Use bootstrap training samples? {True, False}
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8.6 Patient-level Approach

As we already pointed out, the pipeline we have proposed so far operates on the level of muscles,

meaning it predicts, for each muscle EMG recording (constructed from the same patient and

the same side), the probability of this muscle falling into the disease class. In addition, we

would like to give a prediction on the level of patients to approach the classification in a more

holistic view. This approach takes all prediction probabilities on the muscles from the same

patient and then aggregates them to make an overall predictive decision for this patient. We

will call this approach the patient-level approach.

Four different aggregation methods are proposed for the patient-level prediction, which utilize

prediction probabilities of the recorded muscles of all the patients:

1. Majority method: classify the patient as being in the disease class if more than half

of his examined muscles have a score greater than 0.5. Otherwise, classify him as being

healthy.

2. Median method: classify the patient as being in the disease class if the median of

the scores of his examined muscles is greater than 0.5. Otherwise, classify him as being

healthy.

3. Two-muscles method: classify the patient as being in the disease class if at least two

of his examined muscles have a score larger than 0.5. Otherwise, classify him as being

healthy. The reason for using more than one muscle in this approach is that by using two

muscles we reduce the impact of a potential outlier.

4. Two-muscles average method: classify the patient as being in the disease class if

the average of two of his examined muscles with the highest score is larger than 0.5.

Otherwise, classify him as being healthy.

The difference between methods 3 and 4 above can be made clear with an example. If a patient

has 0.80 and 0.49 as the two highest scores, then the two-muscles method would classify him

as healthy, whereas the two-muscles-average method would classify him as being in the disease

class. Thus, this seems like a necessary and interesting alternative method to examine.

8.7 Performance Evaluation

As previously mentioned, the dataset used in this chapter contains data from 40 patients

with neuromuscular disorders and 25 healthy patients. In detail, we have 380 intramuscular

EMG recordings, of which 258 have a neuromuscular disorder, and the other 122 are healthy.

Evidently, this dataset is not balanced, and thus classification accuracy is not an appropriate

performance measure, as it will overestimate the performance. We report it for Approach 2, as

the dataset is balanced there, and for completeness, we also report it for Approach 1. In this

view, we have also included some other commonly employed performance measures, namely,
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precision, recall, F1-score, sensitivity, specificity, ROC (Receiver operating characteristic) curve,

and the area under the ROC (AUC). We explain these performance measures briefly as follows:

• accuracy: the number of correct classifications divided by the number of data points.

• positive class: DISEASE (i.e., the disease class).

• negative class: CTRL (i.e., the healthy class).

• true positive: correct classifications to class DISEASE.

• false positive: incorrect classifications to class DISEASE.

• precision: the number of true positive classifications divided by the total number of

positive classifications.

• recall/sensitivity: the number of true positive classifications divided by the total num-

ber of true positives (i.e., true positive rate).

• Specificity: the number of true negative classifications divided by the total number of

true negatives (i.e., true negative rate).

• F1 = 2× precision× recall/(precision + recall).

• The ROC curve describes the trade-off between true positive rate and false positive rate

while the area under the curve (AUC) quantifies such a trade-off.

We calculate the F1-score, the recall, and precision with two schemes, namely, macro and

weighted. The former calculates metrics for each label (DISEASE, CTRL) and finds their

unweighted mean. This does not take label imbalance into account. The latter calculates

metrics for each label (DISEASE, CTRL) and finds their average weighted by the class’s support

(the number of true instances for each label). This alters macro to account for label imbalance.

Furthermore, confusion matrices or visualization methods such as ROC can provide deeper

performance insights. A confusion matrix describes the frequency of cases that are correctly

or incorrectly classified [90] and is considered a useful illustration of the classification quality.

Depending on the data, the ROC additionally helps understanding the performance of the

model [78].

We clarify the two types of results presented in Section 8.8: the ones obtained from the muscle-

level approach and the patient-level approach. The former means that the results underline

the performance of the pipeline on the EMG recordings classification task (introduced in Sec-

tion 8.5.3). Approach 1 and Approach 2 (introduced in Section 8.5.3) are the two variants of

the muscle-level approach. The latter quantifies the performance of the post-processing task,

which aims to classify the patients using the output of the muscle-level pipeline (introduced in

Section 8.6).

8.7.1 Muscle-Level Performance Evaluation

Due to the small number of EMG recordings (380 samples), we decided to validate the entire

muscle-level pipeline using a 10-fold CV. We should note here that the (nested) CV of the
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hyperparameter optimization process (see Section 8.5.4) was executed on the training-fold of

each split of this, overall, 10-fold CV process. This allows the hyperparameter optimization

task to be unbiased, as it does not take into account the test set of the overall 10-fold CV

process. Moreover, the balancing of modeling Approach 2 (see Section 8.5.3) is applied only to

the training set in each fold of the 10-fold CV.

We would also like to emphasize here that during the CV in the pipeline, the folds are gener-

ated in a patient level way (not to be confused with the patient-level approach introduced in

Section 8.6). This means that the EMG recordings belonging to one patient are all included in

the training or testing fold and are never separated between the training data and test data.

This is important in order to prevent data leakage, as two different EMG recordings of one

patient carry similar information about the underlying process that generated them (i.e., same

pathophysiology). Each resulting performance score represents the average of 5 independent

runs of the described pipeline.

8.7.2 Patient-Level Performance Evaluation

The resulting performance scores for the patient-level are based on the post-processing of the

scores returned by the automatic machine learning pipeline (muscle-level). For the patient-

level approach, we follow the procedure explained in detail in Section 8.6. Each resulting

performance score of the patient-level approach represents the average of the post-processing

of the 5 independent runs of the automatic machine learning pipeline.

8.8 Results

In this section, the results of the muscle-level and patient-level classification tasks are presented.

8.8.1 Muscle-level results

The muscle-level approach aims at classifying intramuscular EMG recordings as either being

in the DISEASE class (ALS/IBM) or the CTRL class (healthy). In Table 8.3, we present the

results for Approach 1 and Approach 2 of the muscle-level. For clarity, Approach 1 refers to the

unbalanced muscle-level pipeline and Approach 2 refers to the balanced muscle-level pipeline

(see also Table 8.1 and Section 8.5.3). Furthermore, Figures 8.1 and 8.2 show the confusion

matrices of both modeling approaches 1 and 2 for the training and the test set, respectively.

First of all, the achieved results indicate that machine learning techniques can carry out a

task like this. Comparing between Approaches 1 and 2, Table 8.3 shows that Approach 1

(AUC = 0.817) is generally better suited for this task than Approach 2 (AUC = 0.795),

although the difference between the two is minimal. Here, we take the AUC as the major
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performance value since it quantifies the best potential performance for both approaches, while

the other scores only compare them with a fixed decision threshold (0.5 in this chapter). From

Figures 8.1 and 8.2 we can see that the sensitivity of Approach 1 is greater than that of

Approach 2, however the specificity of Approach 2 is greater than that of Approach 1. This

can also be backed-up from Table 8.3 where the sensitivity of Approach 1 and 2 is 0.896 and

0.816, respectively, whereas the specificities are 0.546 for Approach 1 and 0.604 for Approach 2.

A reason for this behavior could be partially due to the fact that for Approach 2, we reduce in

every fold the training data of our positive class and increase the training data of our negative

class in order to balance the data points between the two labels.

Finally, in Table 8.4 we can see the common features5 selected in every fold of the 10-fold

CV and in every single of the 5 independent runs. We show their aggregated impurity-based

importance values (averaged over a 10-fold CV and then averaged over all 5 repeated runs of the

10-fold CV) and the standard deviation of the means over the 5 runs. The standard deviation

shows that the average importance of these features has been consistent throughout the runs,

and that their ranking is quite reliable. These features should be further investigated for their

predictive power, clinical relevance, and interpretability.

Table 8.3: Performance scores for the muscle-level Approach 1 and Approach 2. The scores
are calculated on the test set and averaged over a 10-fold cross validation. The mean and
standard deviation are calculated from 5 repeated runs of the 10-fold CV.

Score Approach 1 Approach 2

Accuracy 0.778±0.021 0.747±0.009
F1 (macro) 0.708±0.027 0.692±0.012
F1 (weighted) 0.759±0.021 0.740±0.008
Precision (macro) 0.767±0.032 0.723±0.013
Recall (macro) 0.721±0.025 0.710±0.011
Precision (weighted) 0.792±0.029 0.773±0.005
Recall (weighted) 0.778±0.021 0.747±0.009
Sensitivity 0.896±0.015 0.816±0.006
Specificity 0.546±0.037 0.604±0.025
AUC 0.817±0.023 0.795±0.031

8.8.2 Patient-level results

The patient-level approach aims at classifying patients as either being in the DISEASE class

(ALS/IBM) or the CTRL class (healthy), based on the post-processing of the prediction scores

5Please see https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
6Counting starts from 0.
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Predicted
CTRL DIS

A
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u
al CTRL 85.15 24.65

DIS 2.19 230.01

Predicted
CTRL DIS

A
ct
u
al CTRL 6.52 5.69

DIS 2.79 23.01

Figure 8.1: Confusion matrix of modeling Approach 1 for the training data (left) and test
data (right). CTRL is the CTRL class, referring to healthy recordings and DIS is the DISEASE
class, referring to the disease recordings. The scores are calculated and averaged over all folds
of the 10-fold cross validation. The values are averaged over 5 repetitions of the 10-fold CV.

Predicted
CTRL DIS

A
ct
u
al CTRL 169.41 1.84

DIS 0.2 171.062

Predicted
CTRL DIS

A
ct
u
al CTRL 7.38 4.82

DIS 5.1 20.75

Figure 8.2: Confusion matrix of modeling Approach 2 for the training data (left) and test
data (right). CTRL is the CTRL class, referring to healthy recordings and DIS is the DISEASE
class, referring to the disease recordings. The scores are calculated and averaged over all folds
of the 10-fold cross validation. The values are averaged over 5 repetitions of the 10-fold CV.

of their intramuscular EMG recordings, from Approach 1 and Approach 2 of the muscle-level. In

Table 8.6 we show the performance scores of all the methods of the patient-level post-processing

on Approach 1 and Approach 2.

The results indicate again that machine learning techniques can carry out a task like this.

Comparing the methods and approaches within Table 8.6, we see that the patient-level post-

processing of Approach 1 has a higher diagnostic yield than the patient-level post-processing of

Approach 2. This is also backed up when comparing the AUC between the two approaches. In

more details, we see that the AUC of the median and two-muscles average of the patient-level

post-processing of Approach 1 is 0.815 and 0.798, respectively, compared to 0.786 and 0.777 of

patient-level post-processing of Approach 2. A closer look at Table 8.6 suggests that generally,

for the patient-level post-processing of Approach 1, the majority method allows for the best

results in terms of the F1 score (for both “macro” and “weighted” averages), with the two-

muscles coming in the second rank, then the median method for the “macro” average and the

two-muscles average for the “weighted” average. The two-muscles average method comes last

in the “macro” average, and the median method for the “weighted” average. For the patient-

level post-processing of Approach 2, the two-muscles come first, then the two-muscles average,

then the majority method, and last the median method. Note that the AUC score is not

used to compare all methods since it is not defined for the majority and two-muscles methods.

Figure 8.4 show the ROCs curves from all 5 repetitions of the median and two-muscles average

methods of the patient-level post-processing of Approach 1. Figure 8.3 shows the confusion

matrices of all the methods of the patient-level post-processing of Approach 1. From Figure 8.3
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Table 8.4: Impurity-based importance scores for Approach 1 of the muscle-level. These are
the common features selected by Boruta in every fold of the 10-fold CV and in every repetition
of the 10-fold CV. The importance scores are calculated and averaged over all folds of the 10-
fold CV. The mean and standard deviation are calculated from 5 repeated runs of the 10-fold
CV.

Feature Importance Score

Percentage of values that are present
in the time-series more than once.
(percentage of reoccurring values to all values)

4.6± 0.12

Absolute value of the 35th fourier
coefficient6 of the 1D discrete FFT
of a real input.
(fft coefficient coeff 34 attr ”abs”)

4.43± 0.1

Absolute value of the 32nd fourier
coefficient of the 1D discrete FFT
of a real input.
(fft coefficient coeff 31 attr ”abs”)

3.53± 0.13

Factor which is 1 if all values in
the time-series occur only once,
and below one if this is not the case.
(ratio value number to time series length’)

3.48± 0.06

Absolute value of the 41st fourier
coefficient of the 1D discrete FFT
of a real input.
(fft coefficient coeff 40 attr ”abs”)

3.46± 0.12

Percentage of non-unique data points.
(percentage of reoccurring datapoints to all datapoints)

2.91± 0.05

and Table 8.6 we see that the method with the highest sensitivity in the patient-level post-

processing of Approach 1 is the two-muscles average method. The reason for this might lie in

the fact that ALS and IBM are “patchy” diseases, meaning that only a proportion of muscles

may be affected at the time of the EMG recording. Therefore, the two-muscles average method

is more sensitive, as we also explain in Section 8.6.

Finally, in order to see whether using hyperparameter optimization (HPO) on the model’s hy-

perparameters can indeed improve the performance of the developed methodology, in Table 8.5

we calculated the average percentage of improvement for each patient-level method when us-

ing HPO versus not using HPO in both approaches 1 and 2. We averaged the percentages of

improvement overall the performance metrics of each method. The last row shows the overall

average improvement of these methods. From Table 8.5 we can see an average improvement

of 2.94% on the patient-level post-processing of Approach 1 when using HPO on Approach 1,

compared to using the default values of the random forest algorithm7 (no HPO) and 0.75%

7See here for the default values https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
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Table 8.5: Percentage of Improvement of the patient-level post-processing of Approach 1 and
Approach 2, using hyperparameter optimization vs no hyperparameter optimization. Each row
shows the average improvement for that patient-level’s method performance metrics. The last
row shows the average improvement overall these methods.

Patient-level method Approach 1 Approach 2

Majority 4.73% 0.14%

Median 1.87% −1.13%
Two Muscles 2.55% 2.59%

Two Muscles Average 2.61% 1.41%

Average Improvement 2.94% 0.75%

for the patient-level post-processing of Approach 2 when using HPO on Approach 2. From

Table 8.5 we see that HPO can have a positive or negative impact based on the experimental

setup (e.g., median method for patient-level post-processing of Approach 1 vs median method

for patient-level post-processing of Approach 2). However, we can see that the usage of HPO

can, in general, lead to improved performance, even though the improvement can be marginal

in some cases (e.g., in patient-level post-processing of Approach 2).

(a) Predicted
CTRL DIS

A
ct
u
al CTRL 12.6 12.4

DIS 3.4 36.6

(b) Predicted
CTRL DIS

A
ct
u
al CTRL 14.4 10.6

DIS 3.6 36.4

(c) Predicted
CTRL DIS

A
ct
u
al CTRL 12.6 12.4

DIS 2.6 37.4

(d) Predicted
CTRL DIS

A
ct
u
al CTRL 11.2 13.8

DIS 1.4 38.6

Figure 8.3: Confusion matrices of all the methods of the patient-level post-processing of
modeling Approach 1. CTRL is the CTRL class, referring to the healthy controls and DIS is
the DISEASE class, referring to the disease patients. (a) Median method, (b) Majority method,
(c) Two-muscles method, (d) Two-muscles-average method. The entries are averaged over all
5 repetitions.

8.9 Discussions and Conclusions

This chapter presents an automated method for classifying electromyography (EMG) data on

a muscle-level and a patient-level method for classifying patients. Both tasks aim at classifying

between healthy and not healthy. Our dataset contains 65 patients and 65 muscles. As multiple
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muscles were examined per patient, we have the EMG of 122 muscles of healthy subjects and

258 muscles of ALS/IBM patients. The data were collected from routine clinical practice rather

than in an artificial research setting.

Our method extracts and selects the most significant features from the time-series, trains a

random forest model, and optimizes its hyperparameters in an automated approach for the

muscle-level classification task. We develop two approaches for this classification task: one

where the data labels are kept imbalanced (Approach 1) and one where we balance the labels

(Approach 2). The results indicate that machine learning techniques can carry out the task of

distinguishing between normal and abnormal EMGs. Comparing Approach 1 and Approach 2

shows that Approach 1 (AUC = 0.817) is generally better suited for this task than Approach 2

(AUC = 0.795), although the difference between the two is minimal. Taking into consideration

Figure 8.1 for Approach 1, we see that the test error is slightly higher than the training error.

The reason for this can be attributed to the small sample size used in this study. For Approach 2

(see Figure 8.2), we argue that the testing result can not be compared directly to that on the

train set since the class-balancing procedure is only applied on the training set. We also see that

in both approaches, sensitivity outweighs specificity. As a screening algorithm, high sensitivity

is preferable to limit the number of false-negatives. From a clinical point of view, sensitivity is

the more important metric in this algorithm. We should also emphasize that the automatically

computed features allow for a high diagnostic yield. Since EMG classification is routinely

performed qualitatively, this method allows for identifying new EMG biomarkers.

For the patient-level classification task, the achieved results indicate again that we can automate

this process using machine learning techniques. We see that the patient-level post-processing of

Approach 1 has a higher diagnostic yield than the patient-level post-processing of Approach 2.

This is also backed up when comparing the AUC between the two approaches. In more detail,

we see that the AUC of the median and two-muscles average of the patient-level post-processing

of Approach 1 is 0.815 and 0.798, respectively, compared to 0.786 and 0.777 of the patient-level

post-processing of Approach 2. The results further show that the majority method yields the

best results in terms of the F1 score (for both “macro” and “weighted” averages), with the

two-muscles coming in the second rank, then the median method for the “macro” average and

the two-muscles average for the “weighted” average. The two-muscles average method comes

last in the “macro” average and the median method for the “weighted” average. Similarly,

for the patient-level post-processing of Approach 2, the two-muscles come first, then the two-

muscles average, then the majority method, and last the median method. Finally, we saw an

average improvement of 2.94% on the patient-level post-processing of Approach 1 when using

hyperparameter optimization (HPO) on Approach 1, compared to using the default values of the

random forest algorithm (no HPO) and 0.75% for the patient-level post-processing of Approach

2 when using HPO on Approach 2. These results validate the application of HPO to both

approaches. The results further indicate that HPO can have a positive or negative impact based
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on the experimental setup (e.g., median method for patient-level post-processing of Approach

1 vs median method for patient-level post-processing of Approach 2). This, however, is still to

be investigated further.

To conclude, we see that the algorithms presented can assist clinicians in diagnosing if a patient

has a neuropathy/myopathy or is healthy. In fact, the EMG in ALS patients is likely to show

neurogenic changes (e.g., increased MUP amplitudes compared to healthy subjects), whereas

the EMG of IBM patients is more likely to show myopathic changes (e.g., decreased MUP

amplitudes). The fact that our proposed method reaches a relatively high performance despite

the heterogeneity of the “diseased” group shows its potential. Indeed, performance may be

higher when a similar approach is used to distinguish healthy controls from ALS- or IBM-

patients as separate groups. In addition, both ALS and IBM can be “patchy” diseases, meaning

that only a proportion of muscles may be affected at the time of the EMG recording. As the

EMG signal of non-affected other muscles is expected to be similar to that of healthy controls,

at least when using the current qualitative assessment, it is remarkable that the performance

of the muscle-level approach was relatively high. This suggests that the EMG signal of these,

apparently normal, muscles may contain information that is used by the ML-based approach

but not during routine clinical assessment.

A major limitation of this study lies in the relatively small dataset. This is unavoidable given

the rarity of IBM in particular, which has a current population of less than 100 patients in the

Netherlands [17]. We specifically investigated IBM and ALS patients because of the well-known

clinical difficulties in interpreting the EMG of these diseases. Whether our approach works

equally well for other myopathies/neuropathies remains to be established. However, as these

are usually easier to classify using current clinical assessment, we would expect the performance

of our ML approach to be higher, rather than lower, as well. An additional limitation of the

current approach is the random selection of each muscle’s final 5-second EMG segment. This

selection was based on the absence of artifacts without using any information on the level of

muscle activation. However, we aimed to use the last 5 seconds available, assuming that this

segment was more likely to contain information of the muscle at (near-) maximal contraction.

Longer recordings, in which the clinical level of muscle activation is clearly marked, may lead

to further improvements in performance, as muscle activity at rest is different in both IBM and

ALS patients compared to healthy subjects.

Future research should emphasize a more detailed analysis of the nature of the selected features

that could point towards useful biomarkers for disease progression. Furthermore, future work

should investigate a patient-level pipeline to classify patients into a class directly.
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Table 8.6: Performance scores of all the methods of the patient-level post-processing on mod-
eling approaches 1 and 2, tested in this chapter. The scores are calculated on the test set and
averaged in a 10-fold cross validation. The mean and standard deviation are calculated from
5 repeated runs of the 10-fold CV. Note that for the majority and two-muscle methods the
AUC scores are not applicable. The reason behind that is that we decided to use a fixed score
threshold.

Approach Method Accuracy F1 F1 Precision Recall

macro weighted macro macro

Approach 1

Majority 0.782±0.028 0.753±0.032 0.772±0.029 0.789±0.035 0.743±0.03

Median 0.757±0.033 0.718±0.04 0.742±0.036 0.768±0.041 0.710±0.037

Two-Muscles 0.769±0.022 0.73±0.024 0.753±0.022 0.794±0.038 0.72±0.022

Two-Muscles Average 0.766±0.02 0.716±0.021 0.743±0.019 0.815±0.044 0.707±0.018

Approach 2

Majority 0.72±0.02 0.701±0.024 0.718±0.021 0.705±0.021 0.701±0.025

Median 0.717±0.018 0.696±0.023 0.714±0.02 0.7±0.019 0.694±0.025

Two-Muscles 0.738±0.022 0.707±0.021 0.729±0.021 0.732±0.03 0.701±0.019

Two-Muscles Average 0.742±0.013 0.704±0.018 0.728±0.015 0.742±0.015 0.697±0.016

Approach Method Precision Recall Sensitivity Specificity AUC

weighted weighted

Approach 1

Majority 0.786±0.031 0.782±0.028 0.91±0.034 0.576±0.054 —

Median 0.763±0.037 0.757±0.033 0.915±0.03 0.504±0.061 0.815±0.008

Two-Muscles 0.784±0.031 0.769±0.022 0.935±0.038 0.504±0.046 —

Two-Muscles Average 0.797±0.036 0.766±0.02 0.965±0.029 0.448±0.018 0.798±0.01

Approach 2

Majority 0.719±0.021 0.72±0.02 0.785±0.034 0.616±0.061 —

Median 0.714±0.021 0.717±0.018 0.795±0.011 0.592±0.059 0.786±0.021

Two-Muscles 0.736±0.025 0.738±0.022 0.865±0.034 0.536±0.022 —

Two-Muscles Average 0.742±0.013 0.742±0.013 0.890±0.014 0.504±0.036 0.777±0.02
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Chapter 8. AI and EMG

(a)

(b)

Figure 8.4: (a): ROC curves of all 5 repetitions of the median method on the patient-level
post-processing of modeling Approach 1. (b): ROC curves of all 5 repetitions of the two-
muscles average method on the patient-level post-processing of modeling Approach 1.
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8.9. Discussions and Conclusions

148




