
Data-driven predictive maintenance and time-series
applications
Kefalas, M.

Citation
Kefalas, M. (2023, January 19). Data-driven predictive maintenance and time-
series applications. Retrieved from https://hdl.handle.net/1887/3511983

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3511983

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3511983

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

Chapter 7

Scheduling Optimization

In the previous chapters, we described prognostics and health management (PHM), discussed

its role and significance in the industry, and dove into its methods and shortcomings. We then

emphasized one specific type of prognostic method within the PHM sphere, called data-driven

PHM, that, as the name suggests, relies heavily on past and current data sources to estimate

the RUL of an asset. In this direction, we considered the difficulties and challenges of data-

driven RUL estimation, discussed possible solutions, and showcased a type of explainable AI

for PHM in the context of aerospace.

In this and the following final chapter we will change direction. It might, initially, seem that we

are distancing ourselves from PHM and AI-based time-series applications. However, that is not

the case. This chapter1 will deal with the next logical step that arises in predictive maintenance

(PdM) which is scheduling. After determining the RUL of a set of assets, how can we optimally

schedule their maintenance to satisfy specific criteria? In the next chapter, we will deal solely

with AI-based time-series applications in the medical domain and show that tools developed

for industry can lend themselves to other fields as well.

We will start this chapter by introducing the so-called multi-objective flexible job-shop schedul-

ing problem (FJSSP), discuss its inherent difficulties, and present a method that combines

global and local search to solve it. Our proposed method yields competitive results to the

state-of-the-art. It can be extended and be used on top of an RUL estimation method.

7.1 Introduction

The estimation of the RUL (and any other prognostics measure for that matter) lies at the

heart of PHM and PdM. However, determining the RUL is only part of the overall promise

1Contents of this chapter are based on [115]; Marios Kefalas, Steffen Limmer, Asteris Apostolidis, Markus
Olhofer, Michael Emmerich, and Thomas Bäck. A tabu search-based memetic algorithm for the multi-objective
flexible job shop scheduling problem. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO ’19, page 1254–1262, New York, NY, USA, 2019. Association for Computing Machinery.

101

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

7.1. Introduction

of PdM (albeit a pivotal one). As its name suggests, PdM uses prognostics for the sake of

maintenance planning. Therefore, in principle, having the estimated RUL values, one can plan

the maintenance of the assets through scheduling.

Scheduling operations is one of the most important industrial activities, especially in planning

and managing manufacturing processes, such as maintenance. Already in the 1950s, this led to

the formulation of one of the classical operations research problems [38], the job-shop scheduling

problem (JSSP). The JSSP can be described as a set of jobs that must be processed on a set

of pre-determined machines uninterruptedly, where each job is a sequence of consecutive oper-

ations. Each operation requires exactly one machine, and machines are continuously available

and can process one operation in a given duration. A solution to this problem is a schedule that

sequences these operations on the available machines in a way that satisfies predefined perfor-

mance indicators. A typical performance indicator for the solution is the maximum completion

time of all operations, also called the makespan. The usual objective, to find a schedule with

minimum length (minimum makespan), was proven to be NP-hard [77] and belongs to the most

intractable instances of NP-hard problems [131]. Instead of just the makespan, though, several

other performance measures can be used as well, such as the maximum machine workload or

the total machine workload [173]. In this case, the problem automatically becomes a multi-

objective optimization (MOO) problem, in which a variety of incomparable solutions exist. The

set of such solutions, which cannot be improved with respect to one objective without making

another objective worse, is called the Pareto set [62].

An extension of the JSSP is the so-called flexible job-shop scheduling problem (FJSSP). The

difference between the FJSSP and the JSSP, is that the JSSP has the list of machines on which

the operations of the jobs will be processed on, already pre-determined. This is in contrast to

the FJSSP, where the machine assignment (or routing subproblem) is also to be determined.

Therefore, given that in the FJSSP, we deal with the sequencing of operations and the machine

assignments to the operations, it is by nature more complex than the classic JSSP. The FJSSP

is, thus, also NP-hard since it is an extension of the NP-hard JSSP. This work will focus on the

FJSSP as it resembles more closely dynamic, real-world environments where operations can be

processed on different sets of machines.

To deal with the combinatorial complexity, meta-heuristic techniques, such as evolutionary al-

gorithms (EA) [182], particle swarm optimization (PSO) [130] and tabu search (TS) [135] can

be used. Specifically, EA is proven to be a successful candidate for multi-objective optimization

problems as they are capable of finding a good approximation to the Pareto front [188]. EA

comprises a class of direct, probabilistic search and optimization algorithms inspired from the

model of organic structure evolution [34, 91]. TS is a metaheuristic, developed by Glover [81],

that guides a local heuristic search procedure to explore the solution space beyond local opti-

mality in mathematical optimization by directing (stochastic) local search (LS) methods away

from suboptimal regions of the search space. Memetic algorithms combine the two, EA with lo-

102

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 111PDF page: 111PDF page: 111PDF page: 111

Chapter 7. Scheduling Optimization

cal search operators, and have been widely used in combinatorial optimization [163]. Recently,

Yuan et al. [251] have successfully employed memetic algorithms for the multi-objective FJSSP.

In this view, our main research question considers the usage of TS as the local search method

for a multi-objective evolutionary algorithm (MOEA) to solve the multi-objective FJSSP. The

selection of TS as the local search method is based on its versatility (see also Section 7.4), as

well as on the lack of sufficient work that uses TS in the context of memetic algorithms for the

multi-objective FJSSP.

Our contributions lie in the following:

• Tabu search (TS) is used in two ways: As a local search method, as well as part of the

mutation operator.

• Stagnation avoidance based on the hypervolume indicator [61].

• We evaluate our algorithm on the widely used Brandimarte datasets [32] and we compare

ourselves to the state-of-the-art algorithms by Yuan et al. [251].

7.2 Problem Definition

An FJSSP instance can be described as a set N of N jobs that need to be processed on a

set M of M machines. Each job i ∈ {1, ..., N} consists of a tuple of Ni operations Oij, with

j ∈ {1, ..., Ni}, which have a predetermined execution sequence. This means that for job i to

be completed, its Ni operations Oij must be processed in their given order. This is called a

precedence constraint. Furthermore, each operation Oij has a predetermined set of machines

Mij ⊆ M which can process this operation. The processing time pijk of the process Oij on

machine k ∈Mij is also known a-priori. Furthermore, the following assumptions are made:

• All machines are available at time 0.

• All jobs are released at time 0.

• Each machine can process one operation at a time.

• Jobs are independent of each other each other, i.e., there are no precedence constraints

among the operations of different jobs.

• No interruption is allowed once a process has started (no pre-emption of operations is

allowed).

• The setup times of machines and transfer times of operations are considered negligible.

The FJSSP consists of two subproblems:

103

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

7.3. Related Work

1. The routing subproblem, i.e., assigning each operation Oij to a machine k ∈Mij.

2. The sequencing subproblem that determines a sequence of operations on all machines,

to obtain a feasible schedule which satisfies predefined objectives.

As mentioned in Section 7.1 the difference between the FJSSP and the JSSP is that the JSSP

has the machine assignment (the routing subproblem) already pre-determined, as opposed to

the FJSSP, where we not only deal with the sequencing of operations, but also with the machine

assignments to the operations. Therefore, as an extension of the NP-hard JSSP, the FJSSP is

also NP-hard.

Regarding the flexibility of the problem, there are two classifications based on [108]. These are:

1. Total flexibility, where each operation can be processed by any of theM machines (Mij =

M, ∀i ∈ {1, .., n} and j ∈ {1, .., Ni}).

2. Partial flexibility where some operations can only be processed on a subset of the available

M machines in the shop.

Finally, let Ci be the completion time of job i. Wk is the sum of the processing times of

operations on machine k. In this work, the three objectives makespan Cmax, total workload WT

and maximum or critical workload Wmax are to be minimized. These are defined as follows:

Cmax = max{Ci | i ∈ {1, .., N}} , (7.1)

WT =
M∑
k=1

Wk , (7.2)

Wmax = max{Wk | k ∈ {1, ..,M}} . (7.3)

7.3 Related Work

Due to its high relevance, the last three decades have seen extensive development of efficient

techniques to solve the FJSSP [38]. Between 2010 and 2013, a considerable increase in the

number of publications addressing the problem can be observed, with almost 50% of those

contributions using multi-objective performance measures [38]. Regarding the latter, the per-

formance measures mostly used are makespan, total workload, and critical workload. More-

over, emphasis has been given to the use of hybrid techniques, i.e., techniques that combine

one or more heuristics or metaheuristics [38]. The most common form of hybridization is lo-

cal search [9]. The term memetic algorithm (MA) is often used synonymously for hybrid

evolutionary algorithms [162, 163]. Memetic algorithms combine evolutionary algorithms with

local search operators and are widely used in combinatorial optimization. In this view, in [42]

the authors introduce a multi-objective memetic algorithm (MA) with an embedded variable

104

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 113PDF page: 113PDF page: 113PDF page: 113

Chapter 7. Scheduling Optimization

neighborhood descent procedure, and in [251] the authors propose new memetic algorithms

for the multi-objective flexible job-shop scheduling problem (MO-FJSSP) with the objectives

to minimize the makespan, total workload, and critical workload, by adapting the NSGA-II

optimizer [51] through a well-designed chromosome encoding/decoding scheme and genetic op-

erators. They also develop a novel local search method based on critical operations, using a

hierarchical strategy to handle multiple objectives, emphasizing makespan. To the best of our

knowledge, these two papers are the most recent in the field that deal with multiple objectives

using a memetic approach. Most researches with a hybrid/memetic structure usually deal with

one objective, most often makespan (i.e., see [250, 37]), or other forms of hybridization such

as in [246, 164].

7.4 Tabu Search

TS is based on the assumption that problem-solving, to qualify as intelligent, must incorporate

adaptive memory and responsive exploration [38].

Local search methods tend to become stuck in suboptimal regions (local optima) or on plateaus

where many solutions are equally fit. Tabu search overcomes this pitfall of local search by

relaxing its basic rule. First, a worse move can be accepted at each step if no improving move

is available. In addition, prohibitions (hence the term tabu) are introduced to discourage the

search from coming back to previously visited solutions. These prohibitions are facilitated

through a memory structure called the tabu list. In its simplest form, a tabu list is a short-

term set of the solutions that have been visited in the recent past, i.e., within less than a

certain number of iterations which is called the tabu list size |T | or tenure. In this list, one can

alternatively store characteristics or attributes of the forbidden moves [89]. In this approach,

we used solutions instead of attributes or moves. Furthermore, these memory structures can

be divided into three categories:

1. Short-term: The list of solutions recently considered. If a potential solution appears on

the tabu list, it cannot be revisited until it reaches an expiration point, which usually

means |T | iterations. This is the approach used in this work.

2. Intermediate-term: Intensification rules which intend to bias the search towards promising

areas of the search space.

3. Long-term: Diversification rules that drive the search into new regions.

An aspiration criterion can also be used in tabu search to determine when the tabu restriction

can be overridden, thus removing a tabu classification. The aspiration criterion is useful when

the tabu list stores solutions’ attributes rather than the solutions themselves. We did not use

an aspiration criterion in this work since we used entire solutions in the tabu list.

105

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 114PDF page: 114PDF page: 114PDF page: 114

7.5. A New Memetic Genetic Algorithm

The main decisions to be made, in general for TS, are:

• The specification of a neighborhood structure.

• The move attributes (if used).

• The tabu list length (or tenure).

• The aspiration criterion (if used).

• The stopping criteria.

In Algorithm 7.12 we show the pseudocode of the TS algorithm used in this work. The algorithm

considers the minimization of an objective function f . In detail, given an initial solution x0 and

the tabu tenure T , the TS starts in line 4. Line 6 finds the neighbors of the current candidate,

and line 7 checks if the generated neighborhood is empty. This can be the case if, for example,

the number of blocks that generate the moves is not larger than 1 [168] (see also Section 7.5.4

for the notion of blocks.) If that is the case, the search stops and returns the best solution

found so far. Line 10 checks if all elements of the neighborhood belong in the tabu list, and

if they do, the search stops and returns the best solution found so far. On line 13, the best

neighbor in the generated neighborhood is found. If the best neighbor is in the tabu list (line

14), we find a new best neighbor, discarding the previous one (lines 15 and 16). On line 21,

the tabu list is updated by the best neighbor, and on line 23, it is checked whether the best

neighbor is better than the best solution found so far. Lines 26 to 33 check whether there is no

progress in discovering a new best solution, in which case the search terminates after a specific

number of consecutive tries. We continue like this until the termination criterion of a maximum

number of iterations is met.

7.5 A New Memetic Genetic Algorithm

Memetic algorithms combine evolutionary algorithms with local search operators and are widely

used in combinatorial optimization [163]. Our algorithmic approach to the multi-objective

nature of this problem combines a genetic algorithm (GA) [70] with local search (here, with

TS). GA is likely the most widely known type of EA. As such, our approach can be considered

a memetic multi-objective algorithm. A high-level outline of the proposed approach, memetic

genetic algorithm (TSM), is shown in Algorithm 7.23. Details of each step are given in the

following subsections.

2Please note that some of the notations in the pseudocode of Algorithm 7.1 differ from the notations in
the pseudocode of the original publication [115]. We did this for clarity, as well as for consistency among the
chapters of this thesis.

3Please note that some of the notations in the pseudocode of Algorithm 7.2 differ from the notations in
the pseudocode of the original publication [115]. We did this for clarity, as well as for consistency among the
chapters of this thesis.

106

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 115PDF page: 115PDF page: 115PDF page: 115

Chapter 7. Scheduling Optimization

Algorithm 7.1: Tabu search.

Data: x0, T,maxIter, noProg, f ; # Initial solution, Tabu tenure, maximum

number of iterations, maximum number of no progress, objective

function

Result: bestSolution ; # Best solution at the end of the search

1 bestSolution← x0; bestSolution old← x0;
2 bestCandidate← bestSolution; tabu list← [];
3 counter ← 0; count← 0 ; # Counter monitoring maximum iterations, Counter

monitoring no progress

4 while counter ≤ maxIter do
5 counter ← counter + 1;
6 sNeighborhood← getNeighbors(bestCandidate) ; # Generating the

neighborhood from current candidate

7 if not sNeighborhood then
8 Return bestSolution;
9 end

10 if all x in sNeighborhood is in tabu list then
11 Return bestSolution
12 else
13 bestNeighbor ← getBestNeighbor(sNeighborhood) ; # Get the best

neighbor w.r.t. the objective f
14 while bestNeighbor in tabu list do
15 sNeighborhood.remove(bestNeighbor);
16 bestNeighbor← getBestNeighbor(sNeighborhood);

17 end

18 end
19 if |tabu list| = T then
20 tabu list.pop(0);
21 end

Appending best neighbor to the tabu list

22 tabu list← tabu list bestNeighbor ; # Appending best neighbor to the tabu

list

23 bestCandidate← bestNeighbor;
24 if f(bestCandidate) < f(bestSolution) then
25 bestSolution← bestCandidate;
26 end

Checking for stagnation

27 if bestSolution = bestSolution old then
28 count← count+ 1; bestSolution old← bestSolution;
29 else
30 count← 0; bestSolution old← bestSolution;
31 end
32 if count > noProg then
33 Return bestSolution;
34 end

35 end

107

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 116PDF page: 116PDF page: 116PDF page: 116

7.5. A New Memetic Genetic Algorithm

Algorithm 7.2: TSM.

Data: max Solutions, tour,M,m Pr, c Pr, Pr, hv Ref ; # Maximum number of

examined solutions, tournament size, population size, mutation

probability, crossover probability, hypervolume reference point

Result: pop ; # Best individuals found

1 pop← init Pop(M) ; # Initialize population of size M
2 pop← local Search(pop, Pr) ; # Apply local search on population with

probability Pr
3 fitpop ← eval Pop(pop) ; # Evaluate population

4 hvpop ← HV I(pop, hv Ref) ; # Hypervolume calculation of the Pareto front

5 solutions Count←M ; # Initializing solution counter

6 while solutions Count ≤ max Solutions do
7 pop← mut Correct(pop) ; # Mutate individuals mapping to the same value

and evaluate them

8 offspring ← create Offspr(pop, tour, c Pr,m Pr) ; # Create offspring

(parent selection(tour), reproduction(c Pr), mutation(m Pr))
9 offspring ← local Search(offspring, Pr) ; # Apply local search on the

offspring with probability Pr
10 fitoffspring ← eval Pop(offspring) ; # Evaluate offspring

11 poppool ← pop : offspring ; # Merge parent population with offspring

population

12 pop← pop Select(poppool,M) ; # Select new parent population of size M
for next generation

13 hvpop ← HV I(pop, hv Ref) ; # Hypervolume calculation of the Pareto front

14 stagn Check(hvpop) ; # Check for stagnation and adjust parameters

accordingly

15 solutions Count← solutions Count+M

16 end

7.5.1 Representation

For the chromosome representation we follow the approach presented in [241]. In this represen-

tation each individual is a tuple (u, v), where u represents the operation sequences and v the

machine assignment for operations. In detail, u is a vector of integers in which the operations

of each job is denoted by the corresponding job number. Thus, the k−th occurrence of a job

number refers to the k−th operation in the sequence of this job. For example, the operation

sequence u =[1, 2, 1, 2, 1] represents the operation sequence [011021012022013] for jobs 1 and 2

with operation sequences 011, 012, 013 and 021, 022, respectively. For the machine assignment

vector v, each number represents the machine assigned for each operation successively. For

instance, for a two job problem with 3 and 2 operations, respectively, and 3 machines, the vec-

tor v =[[132][12]], means that 011 is sequenced on machine 1, 012 on machine 3 and operation

013 on machine 2 and similarly for the other job. In Figure 7.1 we see an illustration of the

example above, which represents the following operation sequence and their assigned machines:

108

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

Chapter 7. Scheduling Optimization

(011,M1), (021,M1), (012,M3), (022,M2), (013,M2).

1 2 1 2 1 1 3 2 1 2

Operation sequence

Machine assignment

Job 1 Job 2

Figure 7.1: Individual representation. The vertical dashed line in the machine assignment
vector is used to visually distinguish between the machine assignment of the two jobs.

7.5.2 Initialization

For the initialization of the initial population (line 1 in Algorithm 7.2), we follow the proce-

dure introduced in [178] for both the machine assignment sequence and the operation sequence.

For the machine assignment, we switch between two assignment approaches. Assignment rule

1 starts from the operation corresponding to the minimum in the processing timetable. As-

signment rule 2 permutes the jobs randomly in the timetable before applying the approach

by localization, described in [108]. This approach considers both the processing times and the

workload of the machines, i.e., the sum of the processing times of all the operations assigned to

each of the machines. The procedure then consists of finding, for each operation, the machine

with the minimum processing time, fixing that particular assignment, and then adding this

minimum processing time to every subsequent entry in the same column (machine workload

update) [178]. Based on [178] the initialization with the minimum method has a rate of 10%

and the initialization with permutation 90%. After the machine assignment is settled, we move

on to the operation sequencing. The sequencing of the initial assignments is obtained by a mix

of three known dispatching rules:

• Randomly select a job. In this method, a job is randomly selected to be put into the

chromosome.

• Most work remaining. In this method, before selecting an operation, the remaining pro-

cessing times of all jobs are calculated respectively, and the first unselected operation

sequence of the job with the highest remaining processing time is placed into the chro-

mosome.

• Most number of operations remaining. In this method, before selecting an operation,

the number of succeeding operations of all jobs are calculated respectively, and the first

unselected operation sequence of the job with the highest number is placed into the

chromosome.

109

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

7.5. A New Memetic Genetic Algorithm

The three dispatching rules above, are used interchangeably with rates 20%, 40%,40%, respec-

tively, following [178].

7.5.3 Parent Selection and Offspring Generation

For the parent selection, we use tournament selection, i.e., the individual for reproduction is

chosen to be the one with the smallest makespan among a particular number q of randomly

selected individuals. Once the individuals for reproduction have been selected, the crossover

and mutation operators are applied to produce the offspring (line 8 in Algorithm 7.2). The

crossover operator is applied to pairs of chromosomes, while the mutation operator is applied

to single individuals. We distinguish between two kinds of operators:

• Assignment operators, referring to the machine assignment of individuals.

• Sequencing operators, referring to the sequencing of operations of individuals.

Assignment Operators Assignment operators only change the machine assignment of the

individuals, i.e., the sequencing of operations is preserved in the offspring. Assignment crossover

(or crossover) generates the offspring by exchanging the assignment of a subset of operations be-

tween the two parents. On the other hand, assignment mutation only exchanges the assignment

of a single operation in a single parent.

In this work, for the machine assignment operators, we used the recombination operator as

in [241], originally suggested by Zhang et al. [254] and called multipoint preservative crossover

(MPX). This entails the following steps (see also Figure 7.2 for an example):

1. Let Pmach
1 , Pmach

2 be the operation sequence vectors of the parents P1, P2.

2. Generate a random bit-string of 0 and 1 with the same length as the previous selected

chromosomes.

3. Exchange the machine assignment of Pmach
1 to Cmach

2 (representing the second offspring)

and of Pmach
2 to Cmach

1 (representing the first offspring) at the same positions where the ran-

dom bit-string has the value 1. Copy the remaining machine assignments of Pmach
1 , Pmach

2

to Cmach
1 , Cmach

2 in the same position.

For the mutation operator for the assignment, we used a mixture of the approach of [241] and

TS. For the approach suggested in [241] we perform the following [241] (see also Figure 7.3 for

an example):

• Choose two genes randomly from the machine assignment sequence from the chromosome

of an individual, and then change each number in these genes randomly with another

machine from the set of capable machines for these two operations.

110

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 119PDF page: 119PDF page: 119PDF page: 119

Chapter 7. Scheduling Optimization

4 2 1 2 1 3 2 3

2 2 2 3 1 3 2 3

1 2 1 2 44

1 41

1 3

2 2 3 3 2

C2
mach

P1
mach

C1
mach

P2
mach

0 1 0 0 1 1 0 1

Figure 7.2: MPX crossover operation for the machine assignment sequence. Adapted from [241].

4 2 1 2 1 3 2 3P1
mach

C1
mach 4 2 1 3 1 1 2 3

Figure 7.3: Mutation of the machine assignment sequence. “New” machines, 3, 1, belong in
the set of capable machines for the operations that have the same position in the respective
operation sequence, as the position of the exchanged machines. Adapted from [241].

In the TS used here, we used as neighborhood structure of the assignment of the individual

the use of a random selection of two operations. With these operations in hand, we randomly

exchange the machine already assigned to these operations with another one from the set of

available machines. We did this 10 times to define the neighborhood around the current seed

(i.e., a neighborhood of size 10). For efficiency, we only selected operations that have more than

one machine available. We used a neighborhood of steady size equal to 10 and used as the tabu

list tenure the closest integer to the squared root of the size of the neighborhood. We also used

as a stopping rule 20 repetitions of the TS and a limit of 5 repetitions without improvement.

Moreover, we used a 50% probability for the switch between these two mutation methods. The

parameters selected here were based on preliminary results.

Sequencing Operators On the other hand, sequencing operators change the sequence of

the operations in the parent chromosomes, i.e., the assignment of operations to machines is

preserved in the offspring. In applying the sequencing operators, we must respect the precedence

constraints among operations of the same job. We followed the suggestion of [241] for both the

111

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

7.5. A New Memetic Genetic Algorithm

crossover and mutation for the sequencing operator.

For the crossover operator of the operation sequence, the authors use an improved version of the

precedence operation crossover (IPOX). POX was originally developed by Zhang et al. [252].

This works as follows [241] (see also Figure 7.4 for an example):

1. Let P op
1 , P op

2 be the operation sequence vectors of the parents P1, P2. Then we randomly

divide the jobs in the two operation sequences into two sets J1, J2.

2. We then copy the elements of P op
1 that are included in J1 to Cop

1 (representing the first

offspring) in the same position and similarly, copy the elements of P op
2 that are included

in J2 to Cop
2 (representing the second offspring) in the same position.

3. Lastly, we copy the elements of P op
2 that are included in J2 to Cop

1 in the same order and

copy the elements of P op
1 that are included in J1 to Cop

2 in the same order.

4 2 1 2 1 3 2 3 2 1 2 3 3 1 2 4

2 2 3 2 31 1 411 4 2 2 3 3 2

P2
opP1

op

c1
op c2

op

J1={2,3}, J2={1,4}

Figure 7.4: IPOX crossover operation for the operation sequence. Adapted from [241].

For the mutation operator of the operation sequence, we perform the following [241] (see also

Figure 7.5 for an example):

• Choose a gene randomly from the operation sequence chromosome of an individual, and

insert it in a position before a random operation.

4 2 1 2 1 3 2 3P1
op

c1
op 4 2 1 3 2 1 2 3

Figure 7.5: Mutation of the operation sequence vector. Adapted from [241].

Finally, non-dominated sorting and the crowding distance operator from NSGA-II [51] are

applied for parent selection for the next generation after merging the offspring with the current

parent population (i.e., elitism).

112

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 121PDF page: 121PDF page: 121PDF page: 121

Chapter 7. Scheduling Optimization

7.5.4 Local Search

We decided to hybridize genetic algorithms with TS since in many combinatorial optimization

problems, TS can be locally more exhaustive than genetic search [100], as it prevents premature

convergence in sub-optimal regions, such as local optima. The local search we decided to use

is a TS. For the local search we focused on the minimization of the makespan.

In detail, in every iteration, we applied TS to 10% of the individuals after the genetic operators

are applied and before the merging between the parent population and offspring population

takes place (line 9 in Algorithm 7.2). Since we focused on minimizing the makespan, we

employed the notion of the disjunctive graph. The disjunctive graph is a directed acyclic graph

(DAG) used as a compact representation of a schedule [218, 19]. Figure 7.6 shows an example

of a disjunctive graph for a schedule of 3 jobs and 3 machines. The operations of every job are

nodes of the graph. The solid lines show the precedent constraints between the operations in

each job, and the dashed lines (disjunctive arcs) show the sequencing of the operations on the

machines. For example, operation O1,1 is scheduled before operation O2,2 on machine M1. The

numbers outside of each operation-node inform about the processing time of that operation on

the specific machine. Nodes S and E are the source and sink nodes, respectively, and are on the

graph for completeness reasons. Based on [168] we made adjustments only on particular parts

of the critical path of the individual-schedule, called blocks. The critical path is the longest

path on the disjunctive graph. Blocks can be considered as the maximal subset of the critical

path, which contains operations processed on the same machine. The TS parameters used were:

7 for the tabu list size, 5 for the maximum number of iterations without improvement, and 20

for the maximum overall number of iterations (see also Table 7.2). The neighborhood structure

was based on the notion of critical paths and blocks, and as a result, the neighborhood size

varied per iteration.

7.5.5 Problem Specific Hypervolume Calculation

In each iteration of TSM, we calculate the hypervolume indicator (HVI) [61] of the Pareto

front of the solutions. For more details on the HVI we refer the reader to Section 5.4.3. A

possible stagnation of the HVI would mean that TSM is not able to produce solutions that

increasingly dominate the objective space. In turn, this means, that there are no solutions

which are “better” compared to the non-dominated solutions of the previous generation in at

least one of the objectives. To counter this we entered a switch (line 14 in Algorithm 7.2).

Suppose the hypervolume is stagnant for more than 3 generations. In that case, we increase

the number of the possible solutions entering the local search to 50% (instead of 10%). A

problem-specific conservative choice of a reference point is used, as follows: The basic idea is

to find a point that will bound from above the Pareto front, and as such, we decided to go

with the summation of the predefined processing times on all capable machines of all processes

113

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 122PDF page: 122PDF page: 122PDF page: 122

7.5. A New Memetic Genetic Algorithm

S

O1,1 O1,2

O2,2 O2,3O2,1

O3,1 O3,2

E

M2M1

M2 M1 M3

M3 M1

1 2

2 1 2

3 1

Figure 7.6: Example of a disjunctive graph representation of a schedule with 3 jobs, with 2,
3, and 2 operations respectively and 3 machines. Operations are depicted as nodes. The solid
lines show the precedent constraints between the operations in each job and the dashed lines
(disjunctive arcs) show the sequencing of the operations on machines. Nodes S and E are the
source and sink nodes, respectively, and are on the graph for completeness reasons. Adapted
from [251].

overall the jobs. In detail, we used as a reference point the triple (x, x, x), where:

x =
N∑
i=1

Ni∑
j=1

∑
k∈Mij

pijk , (7.4)

where pijk is the process time of 0ij on machine k from its set of machines able to process it.

Obviously, this point varies per problem instance, as it is directly related to its input data.

7.5.6 Solution Redundancy

One issue that is common for the FJSSP is solution redundancy. With this, we mean that

more than one solution in the decision space maps to the same value in the objective space.

That is, the mapping is not injective. There is also the chance that some individuals in the

decision space are duplicates after several generations. In this work we tackled the first matter

by inserting (line 7 in Algorithm 7.2) an operator which determines the individuals that map

to the same objective values. Subsequently, it selects the largest subset of individuals which

map to the same value and mutates them through the mutation process we described earlier

in Section 7.5.3. The second point, which in essence regards monitoring solution diversity, will

be considered in future work.

114

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 123PDF page: 123PDF page: 123PDF page: 123

Chapter 7. Scheduling Optimization

7.6 Experimental Setup and Results

The main research question is whether the use of memetic algorithms with TS as the local

search and as a mutation operator can compete, extend or outperform the state-of-the-art

algorithms in the context of the FJSSP. Experiments, datasets, and comparisons to state-of-

the-art methods are described in this section.

7.6.1 Data

In this work, we used the famous Brandimarte datasets [32]. The dataset consists of 10 FJSSP

problem-instances with the number of jobs ranging from 10 to 20, number of machines ranging

from 4 to 15 and number of operations for each job ranging from 3 to 15.

In Table 7.1 we give an overview of the problem instances.

Table 7.1: Brandimarte dataset [32] characteristics.

Dataset # Jobs # Machines # Operations

Mk01 10 6 5-7
Mk02 10 6 5-7
Mk03 15 8 10-10
Mk04 15 8 3-10
Mk05 15 4 5-10
Mk06 10 15 15-15
Mk07 20 5 5-5
Mk08 20 10 10-5
Mk09 20 10 10-15
Mk10 20 15 10-15

7.6.2 Experimental Setup

The experiments4 were executed on the DAS-4 (Distributed ASCII Computer) [18], with 16

dual quad-core at 2.4GHz with 48GB RAM. Source code has been developed in Python Version

3.0. To the best of our knowledge, this is the first research written in Python on multi-objective

scheduling.

Benchmark Data and Setup We tested the performance of our algorithm on the 10 bench-

mark instances Mk01-10 taken from Brandimarte [32] (see also Section 7.6.1). Table 7.2 summa-

rizes the parameter settings of our new algorithm as used for these runs. We ran our algorithm

on each benchmark 30 times and merged the results keeping, in the end, the non-dominated

4The source code of the experiments can be found at https://moda.liacs.nl/code/

KefalasEtAl2019-Supplement.zip.

115

https://moda.liacs.nl/code/

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 124PDF page: 124PDF page: 124PDF page: 124

7.6. Experimental Setup and Results

solutions from the merged collection. We used as a termination criterion 500.000 examined

solutions, as proposed in [251]. We furthermore used the DEAP [71] framework to build TSM.

Table 7.2: Parameter settings of the TSM.

Parameter Value

Population size 300
Crossover probability 0.5
Mutation probability 1
Tournament size 3
Local search probability 0.1
Mutation tabu tenure 3
Mutation tabu search
maximum number of
no progress

5

Mutation tabu search
maximum number of
iterations

20

Local search tabu tenure 7
Local search maximum
number of no progress

5

Local search maximum
number of iterations

20

Baselines We compared our algorithm to the state-of-the-art algorithms MA-1, MA-2, MA-

1-NH, MA-2-NH, MRLS-1, MRLS-2, and NSGA-II variant, from Yuan et al., [251]. Their

parameter settings and their solutions and reference set can be found in the same paper. We

compared our results with the aggregated results over 30 runs of each of their algorithms, and

we did this for each benchmark. We report the results found between our algorithm and the

algorithms from Yuan et al. and the hypervolume indicator difference between their reference

set (after having added our solutions) and our solutions for each benchmark.

We should note here that, in this work, we did not intend to create a reference Pareto set for

each benchmark, as done by Yuan et al. [251], but instead enrich this field by doing additional

research on ways of determining new or even better solutions to this problem.

7.6.3 Experimental Results

The results are summarized in Tables 7.3 - 7.8. Specifically, on Tables 7.3 and 7.4 we show

our generated solutions, and on Tables 7.5 - 7.8 we compare our solutions to those of [251].

We report our results for each benchmark and the dominated solutions of the algorithms we

compare to, if they exist, otherwise there is a ‘−’. On Tables 7.5 - 7.8 the reader can compare

the results by identifying on which benchmarks TSM is able to dominate solutions from each

116

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 125PDF page: 125PDF page: 125PDF page: 125

Chapter 7. Scheduling Optimization

of the baselines and on which of these benchmarks can TSM extend the solutions returned by

the baselines. Furthermore, we also report on the new solutions found, indicating this with

the phrase Extended by. Identifying new solutions means determining solutions that increase

the diversity of the already-found non-dominated solutions by the other methods. This is

important for creating and/or extending reference sets that approximate the Pareto front,

as well as identifying strengths of one algorithmic method compared to another. For some

benchmarks, specifically for Mk06, Mk07 on Table 7.4 we report only part of the results of

TSM due to their large number. We do the same for the new solutions found against MRLS-1

on Mk06 and Mk10 on Table 7.65.

New and/or Dominating Solutions From the results on Tables 7.3 and 7.4 the non-

dominated solutions from 30 runs of TSM resulted in the following cardinality distribution,

Mk01 (14), Mk02 (7), Mk03 (25), Mk04 (23), Mk05 (20), Mk06 (47), Mk07 (50), Mk08 (9),

Mk09 (30), Mk10(44). Moreover, on Tables 7.5 - 7.8 we see that TSM performs well against both

MRLS-1 and MRLS-2 in all instances by dominating some of their solutions or determining new

points that extend the Pareto front found by MRLS-1 and MRLS-2. Specifically, on Tables 7.5

and 7.6 we that TSM partially dominates the solutions of MRLS-1 in 8 out of 10 benchmarks

(Mk01, Mk02, Mk03, Mk04, Mk05, Mk07, Mk08, Mk09) and finds new Pareto solutions in 2 out

of 10 benchmarks (Mk06 and Mk10). Regarding MRLS-2, from Tables 7.7 and 7.8 we see that

TSM partially dominates the solutions returned by MRLS-2 in 7 out of 10 cases (Mk01, Mk03,

Mk04, Mk05, Mk06, Mk08, Mk10) and identifies new solutions in 3 out of 10 cases (Mk02,

Mk07, Mk09). Furthermore, we see that for instance Mk06, TSM identifies a new solution to

the results returned by MA-1, MA-2, and NSGA-II on Tables 7.6 and 7.8, respectively. However

in most cases MA-1, MA-2, NSGA-II dominate our solutions. Similarly, we did not find any

new or dominating solutions compared to the solutions returned by MA-1-NH and MA-2-NH

in any case.

Hypervolume Indicator We, furthermore, computed the difference between the HVI of the

reference set (after having added our solutions) and the HVI of the non-dominated solutions

found by all algorithms (including TSM) in all 30 runs, for each benchmark. We normalized

the reference sets and the obtained sets by using the nadir point of the reference set multiplying

by 1.1 [166]. The results can be seen in Table 7.9. It is clear from the results that algorithms

MA-1 and MA-2 show the best performance. Nevertheless, our approach gives (see TSM results

in bold), when compared to MRLS-1 and MRLS-2, competitive results on Mk01, better results

in Mk03 and Mk04, Mk05 (compared to MRLS-2), Mk07, Mk08 and Mk09. In Mk08, our

algorithm is able to determine the reference set.

In Table 7.10 we present the median of the difference between the HVI of the reference set

5The full list of solutions is available at https://moda.liacs.nl/code/KefalasEtAl2019-Supplement.zip

117

https://moda.liacs.nl/code/KefalasEtAl2019-Supplement.zip

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 126PDF page: 126PDF page: 126PDF page: 126

7.6. Experimental Setup and Results

Table 7.3: Solutions identified by TSM for benchmarks Mk01-Mk05.

Algorithm Mk01 Mk02 Mk03 Mk04 Mk05

TSM

(40, 168, 37),
(41, 167, 36),
(41, 162, 39),
(41, 165, 37),
(42, 159, 39),
(42, 160, 38),
(40, 174, 36),
(41, 164, 38),
(43, 155, 40),
(42, 163, 37),
(42, 165, 36),
(43, 158, 39),
(44, 154, 40),
(46, 153, 42)

(29, 150, 26),
(29, 144, 28),
(29, 145, 27),
(30, 143, 29),
(31, 141, 31),
(31, 142, 30),
(33, 140, 33)

(204, 864, 204),
(206, 857, 204),
(210, 855, 204),
(213, 852, 204),
(215, 849, 213),
(216, 848, 213),
(222, 847, 222),
(223, 847, 213),
(224, 851, 204),
(226, 843, 222),
(230, 842, 222),
(234, 846, 213),
(237, 844, 213),
(240, 850, 204),
(246, 841, 231),
(247, 849, 210),
(248, 848, 210),
(249, 840, 249),
(256, 838, 249),
(256, 840, 222),
(262, 838, 231),
(274, 839, 222),
(275, 838, 222),
(282, 837, 231),
(297, 843, 221)

(68, 355, 68),
(68, 376, 60),
(69, 360, 60),
(69, 351, 63),
(71, 353, 62),
(72, 347, 66),
(72, 357, 61),
(73, 342, 72),
(73, 348, 63),
(75, 344, 66),
(75, 347, 65),
(77, 340, 72),
(78, 337, 78),
(79, 343, 67),
(84, 334, 84),
(90, 331, 90),
(98, 330, 98),
(106, 329, 106),
(114, 328, 114),
(122, 327, 122),
(130, 326, 130),
(138, 325, 138),
(146, 324, 146)

(174, 687, 173),
(176, 686, 173),
(177, 685, 173),
(178, 683, 175),
(178, 682, 176),
(179, 684, 174),
(179, 680, 179),
(180, 682, 175),
(180, 681, 178),
(181, 684, 173),
(181, 679, 179),
(181, 680, 178),
(182, 683, 173),
(182, 687, 172),
(183, 677, 183),
(185, 676, 185),
(191, 675, 191),
(197, 674, 197),
(203, 673, 203),
(209, 672, 209)

(after having added our solutions) and the HVI of each algorithm on each benchmark over 30

trials. We used the Wilcoxon rank sum test (Mann-Whitney U test), with a significance level

of α = 0.01, to see whether the hypervolume difference values obtained with the TSM strategy

are significantly different than those obtained with one of the other strategies6. We selected

this test to take into account the non-normality of the data and the independence between the

samples. We also used the Bonferroni correction, which means that for each individual test,

the significance level α is divided by the number of tests per test instance. For us, this is 7 and,

thus, α ≈ 0.001. We made the Bonferroni correction, to counteract the increased likelihood of

incorrectly rejecting the null hypothesis (type I error or false positive), which exists because

of the multiple hypotheses tested at once. In Table 7.10 the superscripts in the bold TSM

results, indicate from which of the other 7 algorithms the TSM returned significantly lower

hypervolume difference values. From the table, we see that TSM performed significantly better

than both MRLS-1 and MRLS-2 on Mk03, Mk04, and Mk087.

Finally, in Figure 7.7 we report the average execution time (in seconds) that TSM took on each

of the 10 benchmarks.

6This means that the null hypothesis is that the hypervolume difference values obtained with the TSM
strategy come from the same distribution as those obtained with one of the other strategies.

7Note that in the original publication [115], it was erroneously noted that TSM performed significantly better
in Mk09 as well. This error has been corrected and noted in the remainder of the chapter and in Table 7.10 as
well.

118

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 127PDF page: 127PDF page: 127PDF page: 127

Chapter 7. Scheduling Optimization

Table 7.4: Solutions identified by TSM for benchmarks Mk06-Mk10.

Algorithm Mk06 Mk07 Mk08 Mk09 Mk10

TSM

(91, 474, 57),
(91, 453, 66),
(92, 436, 60),
(93, 480, 54),
(95, 456, 55),
(96, 434, 60),
(96, 428, 61),
(99, 432, 60),
(99, 427, 71),
(100, 476, 54),
(100, 450, 57),
(102, 455, 54),
(103, 452, 54),
(103, 446, 59),
(104, 451, 54),
(105, 449, 55),
(106, 420, 74),
(107, 423, 63),
(108, 421, 69),
(108, 447, 56),
(109, 421, 66),
(109, 441, 59),
(110, 442, 55),
(110, 421, 60),
(112, 417, 67),
(113, 411, 74),
(115, 414, 68),
(115, 415, 63),
(122, 439, 56),
· · ·
(129, 437, 57),
(130, 434, 58),
(131, 440, 55),
(131, 413, 63),
(136, 449, 54),
(139, 407, 69),
(140, 444, 54),
(141, 438, 56),
(141, 439, 55),
(142, 411, 65),
(143, 402, 82),
(144, 406, 67),
(154, 434, 54),
(158, 473, 53)

(144, 690, 144),
(148, 685, 144),
(150, 690, 143),
(150, 684, 149),
(153, 680, 150),
(153, 683, 147),
(154, 673, 150),
(156, 682, 147),
(157, 683, 145),
(157, 691, 142),
(158, 670, 156),
(158, 679, 145),
(158, 690, 140),
(160, 675, 147),
(160, 671, 150),
(160, 677, 144),
(161, 673, 144),
(162, 668, 156),
(163, 666, 162),
(163, 667, 157),
(166, 664, 157),
· · ·
(172, 687, 143),
(174, 688, 140),
(175, 686, 140),
(176, 660, 174),
(178, 668, 152),
(179, 657, 170),
(182, 684, 143),
(185, 665, 156),
(191, 660, 169),
(192, 661, 162),
(193, 659, 162),
(194, 655, 190),
(197, 655, 176),
(206, 653, 202),
(220, 658, 166),
(221, 654, 190),
(227, 653, 187),
(241, 652, 209),
(244, 657, 166),
(265, 651, 209),
(268, 651, 205),
(277, 652, 202)

(523, 2524, 523),
(524, 2519, 524),
(533, 2514, 533),
(542, 2509, 542),
(551, 2504, 551),
(560, 2499, 560),
(569, 2494, 569),
(578, 2489, 578),
(587, 2484, 587)

(369, 2711, 328),
(372, 2493, 310),
(373, 2452, 299),
(377, 2415, 300),
(379, 2396, 299),
(386, 2375, 320),
(389, 2387, 299),
(393, 2365, 315),
(394, 2376, 299),
(396, 2368, 299),
(399, 2364, 307),
(401, 2336, 331),
(401, 2364, 299),
(410, 2340, 316),
(414, 2361, 315),
(419, 2352, 304),
(424, 2361, 299),
(427, 2359, 300),
(427, 2360, 299),
(432, 2341, 299),
(448, 2331, 328),
(468, 2322, 307),
(493, 2339, 299),
(507, 2338, 303),
(523, 2338, 299),
(534, 2335, 301),
(543, 2311, 320),
(559, 2321, 310),
(563, 2335, 299),
(567, 2327, 299)

(300, 2157, 224),
(311, 2128, 256),
(313, 2190, 220),
(313, 2127, 242),
(313, 2132, 241),
(314, 2133, 230),
(315, 2156, 220),
(316, 2128, 220),
(317, 2127, 211),
(318, 2113, 239),
(318, 2125, 230),
(321, 2101, 259),
(322, 2122, 223),
(323, 2113, 224),
(324, 2112, 217),
(325, 2094, 220),
(326, 2090, 221),
(331, 2109, 214),
(332, 2171, 210),
(333, 2137, 210),
(335, 2106, 218),
(336, 2087, 233),
(336, 2112, 208),
(339, 2082, 229),
(343, 2109, 213),
(345, 2107, 216),
(353, 2105, 215),
(357, 2082, 220),
(358, 2111, 212),
(359, 2069, 253),
(359, 2091, 208),
(362, 2080, 250),
(362, 2081, 236),
(363, 2057, 242),
(364, 2054, 210),
(364, 2128, 205),
(368, 2115, 206),
(390, 2092, 205),
(397, 2050, 248),
(416, 2084, 206),
(427, 2127, 204),
(452, 2082, 206),
(460, 2078, 209),
(515, 2132, 202)

119

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 128PDF page: 128PDF page: 128PDF page: 128

7.6. Experimental Setup and Results

Table 7.5: Dominated solutions and extended solutions by TSM on the MA-1, MA-2, MA-1-NH,
MA-2-NH, MRLS-1 algorithms on the Mk01-Mk05 benchmark datasets. Shown solutions are
Pareto dominated solutions by TSM. “-” indicates no Pareto dominated solutions. “Extended
by” marks TSM solutions that extend the solutions returned by the algorithms in [251] on the
benchmark data.

Algorithm Mk01 Mk02 Mk03 Mk04 Mk05

MA-1 - - - - -
MA-2 - - - - -
MA-1-NH - - - - -
MA-2-NH - - - - -

MRLS-1

(43, 163, 37),
(43, 156, 40),
(42, 166, 36),
(46, 153, 46)

(33, 142, 30)

(212, 932, 204),

(204, 956, 204),

(207, 947, 204)

(79, 338, 78),

(84, 335, 84),

(78, 339, 78)

(186, 676, 186),

(192, 675, 192),

(181, 679, 181)

Table 7.6: Dominated solutions and extended solutions by TSM on the MA-1, MA-2, MA-1-NH,
MA-2-NH, MRLS-1 algorithms on the Mk06-Mk10 benchmark datasets. Shown solutions are
Pareto dominated solutions by TSM. “-” indicates no Pareto dominated solutions. “Extended
by” marks TSM solutions that extend the solutions returned by the algorithms in [251] on the
benchmark data.

Algorithm Mk06 Mk07 Mk08 Mk09 Mk10

MA-1
Extended by:

(158, 473, 53)
- - - -

MA-2
Extended by:

(158, 473, 53)
- - - -

MA-1-NH - - - - -
MA-2-NH - - - - -

MRLS-1

Extended by:

(91, 474, 57),
(92, 436, 60),
(93, 480, 54),
(95, 456, 55),
· · ·
(139, 407, 69),
(140, 444, 54),
(141, 438, 56),
(141, 439, 55),
(142, 411, 65),
(144, 406, 67),
(154, 434, 54),
(158, 473, 53)

(157, 673, 150),

(150, 688, 144),

(149, 689, 144)

(555, 2531, 542),

(523, 2542, 523),

(524, 2541, 524),

(533, 2532, 533),

(530, 2540, 524)

(387, 2382, 320)

Extended by:

(300, 2157, 224),
(313, 2190, 220),
(314, 2133, 230),
(315, 2156, 220),
(316, 2128, 220),
(317, 2127, 211),
(318, 2113, 239),
(318, 2125, 230),
(322, 2122, 223),
(323, 2113, 224),
(324, 2112, 217),
· · ·
(390, 2092, 205),
(397, 2050, 248),
(416, 2084, 206),
(427, 2127, 204),
(452, 2082, 206),
(460, 2078, 209),
(515, 2132, 202)

120

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 129PDF page: 129PDF page: 129PDF page: 129

Chapter 7. Scheduling Optimization

Table 7.7: Dominated solutions and extended solutions by TSM on the MRLS-2 and NSGA-
II variant algorithms on the Mk01-Mk05 benchmark datasets. Shown solutions are Pareto
dominated solutions by TSM. “-” indicates no Pareto dominated solutions. “Extended by”
marks TSM solutions that extend the solutions returned by the algorithms in [251] on the
benchmark data.

Algorithm Mk01 Mk02 Mk03 Mk04 Mk05

MRLS-2

(47, 153, 42),
(48, 165, 36),
(43, 163, 37),
(46, 166, 36),
(46, 153, 46)

Extended by:
(33, 140, 33)

(204, 931, 204)

(78, 339, 78),

(84, 336, 84),

(72, 360, 61)

(198, 674, 198),

(186, 676, 186)

NSGA-II - - - - -

7.7 Discussions and Conclusions

The flexible job-shop scheduling problem (FJSSP) is an NP-hard optimization problem, which

can be considered a subsequent step to the RUL estimation and is a pivotal part of PHM.

In this chapter, we presented a memetic multi-objective algorithm for the FJSSP, called tabu

search memetic (TSM) algorithm, which jointly minimizes the makespan, the total machine

workload and the critical machine workload. Our main contributions lie in the usage of tabu

search (TS) as the local search method and mutation operator and the employment of the

hypervolume indicator (HVI) as a stagnation avoidance switch. Although there have been

many publications on the FJSSP, to our knowledge, there has not been any work that uses

TS in the context of multi-objective FJSSP. We evaluated our approach against the reference

solutions set returned by the state-of-the-art algorithms on the multi-objective FJJSP by Yuan

et al. [251] on the widely used Brandimarte dataset [32].

The experimental results show that TSM can outperform 2/7 competing algorithms on the

majority of the benchmark datasets by dominating certain of their solutions. Furthermore,

TSM is able to extend the set of the Pareto solutions returned from 5/7 competing methods on

5/10 benchmark datasets. We, further, extended the reference sets per benchmark introduced

in [251] by adding our solutions to them and showed that TSM can better approximate the

extended reference set compared to 2/7 competing algorithms on 5/10 benchmarks. Finally, the

results showed that TSM could approximate this extended reference set statistically significantly

better than 2/7 algorithms on 3/10 benchmarks.

In summary, the results suggest that the TSM algorithm is an interesting alternative to the

state-of-the-art algorithms introduced by Yuan et al. [251], in terms of quality. More generally,

our work shows that combining local search with global search can have a significant positive

impact for heuristic solvers for the FJSSP. A limitation of this study lies in the small number of

tested benchmarks. Besides, TSM is made available as an open-source Python implementation,

making multi-objective FJSSP available to the big community of Python programmers.

Finally, this method can, in principle, be extended to account for RUL information. For

121

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 130PDF page: 130PDF page: 130PDF page: 130

7.7. Discussions and Conclusions

Table 7.8: Dominated solutions and extended solutions by TSM on the MRLS-2 and NSGA-
II variant algorithms on the Mk06-Mk10 benchmark datasets. Shown solutions are Pareto
dominated solutions by TSM. “-” indicates no Pareto dominated solutions. “Extended by”
marks TSM solutions that extend the solutions returned by the algorithms in [251] on the
benchmark data.

Algorithm Mk06 Mk07 Mk08 Mk09 Mk10

MRLS-2

(92, 439, 62),

(92, 477, 61),

(94, 475, 61),

(99, 486, 60)

Extended by:

(150, 690, 143),
(157, 691, 142),
(158, 679, 145),
(158, 690, 140),
(160, 675, 147),
(160, 671, 150),
(160, 677, 144),
(161, 673, 144),
(166, 670, 150),
(168, 689, 142),
(169, 688, 141),
(169, 663, 162),
(170, 662, 157),
(171, 661, 169),
(172, 667, 156),
(172, 687, 143),
(174, 688, 140),
(175, 686, 140),
(176, 660, 174),
(178, 668, 152),
(179, 657, 170),
(182, 684, 143),
(185, 665, 156),
(191, 660, 169),
(192, 661, 162),
(193, 659, 162),
(194, 655, 190),
(197, 655, 176),
(206, 653, 202),
(220, 658, 166),
(221, 654, 190),
(227, 653, 187),
(241, 652, 209),
(244, 657, 166),
(265, 651, 209),
(268, 651, 205),
(277, 652, 202)

(560, 2528, 560),

(523, 2537, 523),
(524, 2532, 524),

(543, 2530, 542),

(569, 2525, 569)

Extended by:

(373, 2452, 299),
(377, 2415, 300),
(379, 2396, 299),
(386, 2375, 320),
(389, 2387, 299),
(393, 2365, 315),
(394, 2376, 299),
(396, 2368, 299),
(399, 2364, 307),
(401, 2336, 331),
(401, 2364, 299),
(410, 2340, 316),
(414, 2361, 315),
(419, 2352, 304),
(424, 2361, 299),
(427, 2359, 300),
(427, 2360, 299),
(432, 2341, 299),
(448, 2331, 328),
(468, 2322, 307),
(493, 2339, 299),
(507, 2338, 303),
(523, 2338, 299),
(534, 2335, 301),
(543, 2311, 320),
(559, 2321, 310),
(563, 2335, 299),
(567, 2327, 299)

(330, 2100, 239)

NSGA-II
Extended by:

(158, 473, 53)
- - - -

example, knowing the time-to-maintenance of a set of assets, one can introduce these assets in

the job set to the job-shop at the appropriate times each (e.g., the RUL) and adjust the routing

and the sequencing operations appropriately.

122

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 131PDF page: 131PDF page: 131PDF page: 131

Chapter 7. Scheduling Optimization

Figure 7.7: Average (over 30 runs) TSM execution wall-clock time (in seconds) per benchmark.

123

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 132PDF page: 132PDF page: 132PDF page: 132

7.7. Discussions and Conclusions

Table 7.9: HVI difference from reference set (lower is better). TSM solutions that outperform
a competing algorithm from [251] are shown in bold. Superscript numbers indicate the index
of the outperformed algorithm.

A
lg
o
ri
th

m
s

M
k
0
1

M
k
0
2

M
k
0
3

M
k
0
4

M
k
0
5

M
k
0
6

M
k
0
7

M
k
0
8

M
k
0
9

M
k
1
0

T
S
M

0.
00
02
63

0.
00
26
60

0
.0
0
2
0
4
6
5
,6

0
.0
0
4
6
4
7
5
,6

0
.0
0
0
2
4
7
5

0.
05
61
41

0
.0
0
2
0
0
1
5
,6

0
.0
0
0
0
0
0
5
,6

3
.5
0
9
7
4
6
e
-0
3
5
,6

0.
02
16
32

[1
]
M
A
-1

0.
00
00
00

0.
00
00
00

0.
00
00
00

0.
00
00
00

0.
00
00
00

0.
00
36
75

0.
00
00
00

0.
00
00
00

5.
41
41
26
e-
07

0.
00
09
15

[2
]
M
A
-2

0.
00
00
00

0.
00
00
00

0.
00
00
00

0.
00
00
00

0.
00
00
00

0.
00
26
44

0.
00
00
00

0.
00
00
00

1.
59
80
30
e-
09

0.
00
04
12

[3
]
M
A
-1
-N

H
0.
00
00
40

0.
00
00
43

0.
00
00
00

0.
00
01
89

0.
00
00
00

0.
00
21
43

0.
00
00
00

0.
00
00
00

2.
40
43
32
e-
05

0.
00
22
83

[4
]
M
A
-2
-N

H
0.
00
00
00

0.
00
00
47

0.
00
00
00

0.
00
00
76

0.
00
00
00

0.
00
25
96

0.
00
00
00

0.
00
00
00

2.
52
03
81
e-
05

0.
00
20
37

[5
]
M
R
L
S
-1

0.
00
01
31

0.
00
02
26

0.
01
66
91

0.
00
47
66

0.
00
02
66

0.
04
28
05

0.
00
36
20

0.
00
04
09

9.
73
64
24
e-
03

0.
01
94
98

[6
]
M
R
L
S
-2

0.
00
01
13

0.
00
02
17

0.
02
05
01

0.
00
48
12

0.
00
02
19

0.
04
31
04

0.
00
34
03

0.
00
03
55

9.
13
85
69
e-
03

0.
01
92
21

[7
]
N
S
G
A
-I
I

0.
00
00
40

0.
00
01
38

0.
00
00
00

0.
00
05
64

0.
00
00
00

0.
00
76
63

0.
00
00
00

0.
00
00
00

3.
17
41
12
e-
04

0.
00
30
24

124

tel:003675 0.000000
tel:002644 0.000000
tel:002143 0.000000
tel:002596 0.000000
tel:007663 0.000000

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 133PDF page: 133PDF page: 133PDF page: 133

Chapter 7. Scheduling Optimization

Table 7.10: Median of the HVI difference from reference set. TSM solutions that statistically
significantly outperform a competing algorithm from [251] are shown in bold. Superscript
numbers indicate the index of the significantly outperformed algorithm. Note that in the
original publication [115], it was erroneously noted that TSM performed significantly better in
Mk09 as well. This error has been corrected in the Table below.

.

A
lg
o
ri
th

m
s

M
k
0
1

M
k
0
2

M
k
0
3

M
k
0
4

M
k
0
5

M
k
0
6

M
k
0
7

M
k
0
8

M
k
0
9

M
k
1
0

T
S
M

0.
00
09
98

0.
00
37
74

0
.0
0
3
6
4
1
5
,6

0
.0
0
7
0
8
1
5
,6

0.
00
07
72

0.
06
14
26

0.
00
51
47

0
.0
0
0
0
2
0
5
,6

0.
01
06
55

0.
02
22
15

[1
]
M
A
-1

0.
00
00
00

0.
00
00
50

0.
00
00
00

0.
00
02
95

0.
00
00
00

0.
00
54
38

0.
00
00
00

0.
00
00
00

0.
00
00
05

0.
00
18
09

[2
]
M
A
-2

0.
00
00
00

0.
00
00
45

0.
00
00
00

0.
00
03
42

0.
00
00
00

0.
00
52
30

0.
00
00
00

0.
00
00
00

0.
00
00
03

0.
00
14
32

[3
]
M
A
-1
-N

H
0.
00
00
42

0.
00
01
85

0.
00
00
00

0.
00
04
00

0.
00
00
00

0.
00
70
17

0.
00
00
00

0.
00
00
00

0.
00
01
12

0.
00
36
95

[4
]
M
A
-2
-N

H
0.
00
00
40

0.
00
01
42

0.
00
00
00

0.
00
03
81

0.
00
00
00

0.
00
68
97

0.
00
00
00

0.
00
00
00

0.
00
01
10

0.
00
31
74

[5
]
M
R
L
S
-1

0.
00
05
04

0.
00
12
32

0.
02
00
65

0.
01
02
53

0.
00
03
75

0.
04
94
51

0.
00
51
01

0.
00
05
71

0.
01
08
95

0.
02
04
79

[6
]
M
R
L
S
-2

0.
00
04
20

0.
00
11
67

0.
02
10
41

0.
00
98
04

0.
00
03
26

0.
04
87
65

0.
00
47
78

0.
00
05
21

0.
01
04
74

0.
02
01
79

[7
]
N
S
G
A
-I
I

0.
00
01
08

0.
00
09
05

0.
00
00
00

0.
00
18
73

0.
00
01
05

0.
01
01
33

0.
00
07
15

0.
00
00
00

0.
00
03
59

0.
00
44
54

125

tel:005438 0.000000 0
tel:005230 0.000000 0
tel:007017 0.000000 0
tel:006897 0.000000 0
tel:001232 0.020065
tel:005101 0.000571
tel:001167 0.021041
tel:004778 0.000521

585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 134PDF page: 134PDF page: 134PDF page: 134

7.7. Discussions and Conclusions

126

