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Chapter 6

Explainable PHM

In chapter 5, we touched upon a topic of high significance for PHM and specifically data-driven

PHM, namely uncertainty quantification (UQ). We proposed a technique for uncertainty quan-

tification (UQ) based on Bayesian deep learning (BDL). The hyperparameters of the developed

framework were tuned using a novel bi-objective Bayesian hyperparameter optimization (HPO)

method with objectives the predictive performance and predictive uncertainty, to account for

conflicts between these two objectives. The method was validated on the widely used C-

MAPSS dataset against a single-objective baseline, that aggregates the two objectives through

the harmonic mean (HM). We demonstrated the existence of trade-offs between the predictive

performance and the predictive uncertainty and showed that the bi-objective HPO might be

more suitable for a larger and more diverse set of hyperparameters compared to the single-

objective baseline. Lastly, we saw that the proposed approach exhibits better or comparable

performance to the single-objective baseline when validated on the test sets.

This chapter1 leaves the topic of RUL prediction and follows a parallel track to discuss the

importance of explainability in data-driven methods in PHM, a subject that has not yet received

much attention, despite its value. Through a case study with real-world data from the aerospace

industry, we will motivate the criticality of explainability, the advantages that accompany such

methods, and opportunities for further research in this direction. Lastly, in this chapter, we

present to the user the notion of symbolic regression (SR) and how it can assist as a tool for

explainability.

1Contents of this chapter are based on [113]; Marios Kefalas, Juan de Santiago Rojo, Asteris Apostolidis,
Dirk van den Herik, Bas van Stein, and Thomas Bäck. Explainable Artificial Intelligence for Exhaust Gas
Temperature of Turbofan Engines. Journal of Aerospace Information Systems (JAIS), Volume 19, Issue 6,
pages 447-454, 2022. American Institute of Aeronautics and Astronautics; reprinted with permission of the
American Institute of Aeronautics and Astronautics, Inc.
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6.1. Introduction

6.1 Introduction

Data-driven modeling is a crucial tool in various industrial applications, including many appli-

cations in the sectors of aeronautics and commercial aviation. By data-driven modeling, we do

not imply a conceptual model that is based on the data requirements of an application being

developed but rather a model of the underlying data-generating process. Such predictive mod-

els perform the task of identifying complex patterns in multimodal data, something that can

also be loosely termed as reverse engineering [228]. These models are in charge of providing key

insights, such as which parameters (covariates) are essential on a specific measured outcome

or which parameter values we should expect to observe given a set of input parameters. In

addition, such models can infer future states of the system and distill new or refine existing

physical models of nonlinear dynamical systems [228].

A physics-based model that adequately fits the data requires a thorough understanding of

the system’s physics and processes, which can be prohibitively costly in terms of time and

resources. On the other hand, there are cases where such models are necessary, especially in

applications where no sufficient data have been generated yet. A good example is the design

and certification phase of new aeronautical systems. Linear and nonlinear statistical models

rely on assumptions that might not hold (e.g., stationarity for ARMA [31] models in case of

time-series). In contrast to those, non-parametric machine learning (ML) algorithms, such as

the more recent deep neural networks (DNNs) [98] are considered to be “black box” models,

referring to processes that lack interpretability of their internal workings and can be viewed

only in terms of their inputs and outputs. This means that these models do not explain their

predictions/outputs in a way that is understandable by humans, and as a result, this lack

of transparency and accountability can have severe consequences [191], especially in safety-

critical systems. However, model explainability is very important in a variety of engineering

applications.

An interpretable alternative to the “black box” models and with considerably less assumptions

is symbolic regression (SR). SR is a method for automatically finding a suitable algebraic

expression that best describes the observed/sampled data [125]. It is different from conventional

regression techniques (e.g., linear regression, polynomial regression) in that SR does not rely

on a specific a-priori model structure but instead searches for the optimal model structure

while simultaneously optimizing the model’s parameters. The only assumption made by SR is

that the response surface can be described algebraically [158]. SR can be achieved by various

methods, such as genetic programming (GP) [125, 200], Bayesian methods [105] and physics

inspired artificial intelligence (AI) [225].

Minimal human bias and low complexity of the modeling process that allows function expres-

siveness and insights into the underlying data-generating process is of paramount importance.

For aeronautical applications, safety is of the foremost significance, and the consequences of
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Chapter 6. Explainable PHM

failure or malfunction may be loss of life or serious injury, severe environmental damage, or

harm to plant or property [151]. In aviation, properly understanding the data generating pro-

cess can lead to developing and improving existing physical models for nonlinear dynamical

systems that could lead to new insights, as well as indicate faults and failures that can save

lives and money in the context of prognostics and health management (PHM) [230].

Nowadays, with the growing generation of large amounts of data in the aviation industry (e.g.,

passing from snapshot to continuous data collection), many applications have been developed

and improved. Some of them234 are focused on engine health monitoring (EHM), as this is a cen-

tral topic for engine manufacturers and operators. Continuous engine operating data (CEOD)

are collected at high frequencies in newer aircraft types, a development which -in combination

with suitable algorithms- can improve the predictive capabilities for engine operators. EHM

monitors the state of individual engines or engine fleets by using historical operational data

or data generated during past events to improve the availability and operability of assets. By

optimizing maintenance operations, safety is improved, and asset utilization can be optimized,

leading to reduced costs and improved operational efficiency. This is an area of interest not

only for engine operators and maintenance providers but also for engine manufacturers. The

aim of these data-driven solutions is primarily to avoid imminent failures by identifying possi-

ble anomalies in the engine operation, and secondly, to prevent over-maintenance of parts and

components, exploiting their entire life span.

From an operational context, the use of models like the one presented in this chapter can assist

engine users to understand in depth the evolution of the deterioration of their engines while

making more reliable predictions about the time for maintenance actions and mitigating the

possible disruptions in their flight and passenger operations. At the same time, maintenance

providers can predict the deterioration in detail and anticipate the physical state of the engines

they will inspect and repair in the near future, without first waiting for the real asset to be

inducted in the shop. This way, they can streamline the maintenance process and provide more

accurate quotations to their customers. Last, engine manufacturers – apart from benefiting in

their maintenance business, for the reasons mentioned above – can use this type of work to

understand in a better way the performance of their global fleet. This way, they can identify

the influence of the different operating environments (e.g., presence of sand particles, salty

water, air pollution, etc.) in the evolution of engine’s health and incorporate their findings in

the design of either newer versions of the same engines or even to future engine generations.

The temperature of the exhaust gases of an engine, known as Exhaust Gas Temperature (EGT),

has evolved to become the standard industrial indicator of the health of an aircraft engine [236].

This is because it can capture the cumulative effect of deterioration in the isentropic efficiency

2Predix Platform:https://www.ge.com/digital/iiot-platform
3IntelligentEngine:https://www.rolls-royce.com/products-and-services/civil-aerospace/

intelligentengine.aspx
4The MRO Lab - Prognos: https://www.afiklmem.com/en/solutions/about-prognos
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6.2. Symbolic Regression

of gas path components.

The above information motivates our main research question: Can we uncover a meaningful

algebraic relationship between the EGT and the other measured parameters present in the

CEOD data, using SR? By meaningful we mean that the analytic expression between the

EGT and the other parameters should also be justifiable. The longtime industrial standard in

engine health monitoring is the analysis of static, snapshot data. Despite being computationally

lighter, this approach cannot capture the dynamics of continuous engine operation during the

different flight phases. Having said that, our main contribution in this work is the first, to

our knowledge, attempt to use real-world, continuous data collected during the entire flight

duration at a recording frequency of 1Hz in order to model the EGT analytically against the

rest of the monitored flight parameters. These data, termed continuous engine operational

data (CEOD), allow for a more complete digital representation of the operational history of an

engine.

6.2 Symbolic Regression

Symbolic regression (SR) is a methodology for finding a suitable algebraic expression that

best describes the observed data [125]. In symbolic regression, no a-priori assumptions on the

possible form of the expression are made, as in, for example, conventional regression models

(e.g., linear regression). We could say that the latter class of models constrains the space of

available expressions. The only assumption made by SR is that the relationship between the

input and the output data can be described analytically (or in a symbolic form) [125]. In order

to find the most appropriate solution, SR searches the space of mathematical expressions and

estimates the corresponding parameters simultaneously [125, 105].

Performing this data-to-function regression [125] is a sophisticated task. Various frameworks

have been developed to tackle this problem, such as genetic programming (GP) [125, 200],

Bayesian methods [105] and physics inspired artificial intelligence (AI) [225]. In this work, we

use GP as our framework to perform SR on our data, as with the progress in the field of GP [125],

new ideas and methodologies have made GP a tool that could outperform more traditional

techniques when solving modeling and identification problems, such as autoregressive moving-

average (ARMA) models [240]. Furthermore, GP provides a relatively straightforward solution

to the problem of SR.

6.2.1 Genetic Programming

Genetic Programming (GP), first introduced by Koza [125] in 1992, is a biologically inspired

machine learning method that evolves computer programs to perform a specific task. When

that task is building an empirical mathematical model then GP is called symbolic regres-

86



585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 95PDF page: 95PDF page: 95PDF page: 95

Chapter 6. Explainable PHM

sion (SR). GP is a specialized form of genetic algorithms (GA) [70]. GA is likely the most

widely known type of evolutionary algorithms (EA), which comprises a larger class of direct,

probabilistic search and optimization algorithms inspired from the model of organic structure

evolution [34, 91]. The idea is to evolve randomly generated initial solutions (or chromosomes,

as they are more commonly referred to) on a given problem following Darwin’s theory of evo-

lution and to find the fittest solution after a number of generations or other user-specified

termination criteria [70]. Solution candidates are evolved through what are called genetic op-

erators, which include crossover or recombination and mutation, as well as selection [34, 70].

Each individual solution is evaluated using a fitness function, which essentially tailors the evo-

lutionary algorithm to the specific problem. In essence, solutions are selected in a way that

reflects their evaluation (better solutions have a higher chance of getting selected), recombined

to make offspring solutions and in turn mutated, and replace the parent population for the next

generation. For more information on EA, we refer the interested reader to [34].

Instead of using strings of binary digits as chromosomes to represent solutions, as in GA [70],

solutions in GP are represented as tree-structured chromosomes, formed by nodes called oper-

ators and terminals. As an example, Figure 6.1 represents the simple expression:

(cos(x1) + (x2 · 0.5)) (6.1)

+

cos *

x1 x2 0.5

Figure 6.1: Basic GP tree representation.

Terminals are variables or values that the operator can process. These include input variables

like xi or coefficients to be used. The operators correspond to all those functions that can

be applied to terminal nodes. These could be the fundamental arithmetic operators, such as

{+,−, ·, /, exp, log, sin, cos, . . .}, Boolean logic functions (AND, OR, NOT, etc) or any other

mathematical functions. An individual (tree) is the hierarchical combination of operators and

terminals, which is equivalent to an algebraic expression. When generating these tree structures,

their computational complexity will depend on the method used for building them (hybrid,

declarative, procedural, mathematical). A more detailed description of these tree building
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6.2. Symbolic Regression

methodologies, as well as the algorithmic execution of a GP workflow, can be found in [203]

and is illustrated in Figure 6.2.

Randomly initialize 
population

Individual tness
evaluation

Termination criteria
met?

Terminate Solution

Genetic Operators

O spring generation

Next parent 
population

Yes

No

Figure 6.2: Genetic programming algorithm flowchart.

The standard framework of GP, however, suffers from high complexity and overly complicated

output expressions in SR [124]. In order to mitigate these side effects, multi-gene genetic

programming (MGGP) has been developed as a robust variant of GP [76]. While the standard

representation of a GP algorithm is based on the evaluation of one single tree structure, MGGP

is designed to generate individual members of the GP population (mathematical models of

predictor response data) that are multi-gene in nature, i.e., linear combinations of low-order

nonlinear transformations of the input variables [202, 76]. The user can specify the maximum

allowable number of genes and any gene’s maximum tree depth. This facilitates a remarkable

control over the maximum complexity of the evolved models [202, 76].

Mathematically, a multi-gene regression model can be expressed as:

ŷ = d0 + d1 · Tree1 + . . .+ dn · Treen (6.2)
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where d0 represents the bias term, n is the number of genes which constitutes a certain individual

and d1, . . . , dn are the gene weights. Figure 6.3 represents an example of a multigene genetic

programming model that represents the mathematical expression in Equation 6.3:

d0 + d1 · (cos(x1) + (x2 · 0.5)) + d2 · (x1/x2 + 2) (6.3)

+

cos *

x1 x2 0.5

+

/ 2

x1 x2

Figure 6.3: Multigene genetic programming model example.

6.3 Related Work

Although to the best of our knowledge, SR by means of GP has not been applied to the modeling

of the EGT from real-life continuous flight data, there have been certain related studies. A

study closely resembling our work is from Nayyeri et al. [167] who proposed an offline health

monitoring system by simulating the EGT using SR by means of GP for the take-off and

cruising phases of simulated data. The results returned an error of less than 0.5% and 2.5%

for the take-off and cruising phases, respectively, indicating good performance. However, the

material used was simulated snapshot data, and the authors did not use regularization to reduce

model complexity. Mart̀ınez-Arellano et al. [11] developed an SR approach by means of GP

to predict future values of EGT, amongst other jet engine parameters, for control design. The

data were collected from a small-scale jet engine that operates on the same principles as the

commercial jet engines. In [144] the authors modeled the start-up process of an aero-engine

by performing SR using a specialized GP that generates models that are linear combinations

of nonlinear functions of the inputs and produces more parsimonious solutions. The main idea

is to apply orthogonal least squares to estimate the contribution of the branches of the tree

to the accuracy of the model. The models outperform the results returned from the support

vector machine (SVM) algorithm and can generally identify the dynamic system characteristics

correctly, even without system knowledge. GP has further been used in the field of aviation to

nonlinear identification of aircraft engine [12, 64, 190].
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6.4. Experimental Setup and Results

There have also been numerous contributions of SR in engineering in general, apart from avi-

ation. An example is [63] where the authors used SR by means of a specially designed GP

to predict the fuel flow and the EGT of a gas turbine in an electrical power setting. Their

approach outperformed machine-learning techniques and other symbolic regression techniques,

such as fast function extraction (FFX) and multivariate adaptive regression splines (MARS), on

the EGT problem. The results showed that standard GP algorithms could be used to address

complex real-world problems. In [223] the authors present the first approach for the formula-

tion of a gasoline engine performance parameters (torque and brake specific fuel consumption)

using an extension of GP called gene expression programming (GEP) that evolves computer

programs encoded in linear chromosomes of fixed length. Their results demonstrate that GP

can be effectively used to obtain formulations for highly nonlinear function approximation prob-

lems, in general. Bongard and Lipson [30] generated symbolic equations for nonlinear coupled

dynamical systems in the fields of mechanics, systems biology, and ecology. They also noted

the differences between symbolic and numerical models in terms of complexity, making the

former easier to interpret. In [199] the authors developed a deterministic SR method to derive

algebraic Reynolds-stress models for the Reynolds-Averaged Navier-Stokes (RANS) equations

for turbulence modeling.

Genetic programming has also provided solutions to various problems such as classification

problems [255], telecommunications problems [65] and manufacturing process modeling [66].

The aforementioned list of applications is by no means exhaustive. It shows, nevertheless, that

GP can be successfully applied to real-world industrial problems, with better, comparable, and

interpretable results, compared to “black box” machine learning (ML) and artificial intelligence

(AI) methods. What is more, we can see that there is also a lot of potential and growing

opportunities for GP applications in the field of aviation still to come. This work stands as an

example of such an application on real-life turbo-fan engine data.

6.4 Experimental Setup and Results

Our objective is to see if SR can uncover meaningful relationships in complex engineering

problems. Driven by this aim, we performed the following experiments on a real aircraft

operational dataset to uncover relevant dependencies between the EGT and other measured

parameters of a flight.
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6.4.1 Data

The data used in this study came from a specific GEnx turbofan engine mounted on a Boeing

787 − 10 and were recorded during four flights in July 20195. The collected data are termed

continuous engine operational data (CEOD) [69] and are a data stream made out of several

hundred parameters (696) which are measured during the entire flight duration at a recording

frequency of 1Hz. Due to onboard computational limitations, the data have been off-loaded

post-flight via gate link. The four different flights were anonymized for confidentiality and

security purposes.

An important point is that the recording of CEOD is a relatively new technical development,

so its use in engine health monitoring is still very limited from an operational standpoint. The

longtime industrial standard is still the use of snapshot data, which are recorded only once

during every flight phase. In other words, snapshot data contain only one point for takeoff

and cruise and, depending on the aircraft type, for the remaining flight phases. The advantage

of CEOD for diagnostics and prognostics is obvious when combined with ML algorithms since

their training can be more effective.

The selected target parameter that will be modeled is termed in the CEOD dataset as Selected

Exhaust Gas Temperature (DEG C). In the remainder of this study, we will call this simply

EGT.

6.4.2 Experimental Setup

All experiments were executed on an off-the-shelf PC with a processor running at 1.8 GHz and

8 GB of RAM. The source code has been developed using Python version 3.8.3 and MATLAB

version R2019b. We used GPTIPS version 2 and Pandas version 1.0.3.

Data Pre-processing

We decided to select the most stable phase of the flight for this study, as exhibited by the

data. This phase is assumed to be the cruising phase due to the data’s lack of labeled phase

segmentation. Field experts further validated this assumption. This decision was made to allow

for accurate modeling of the underlying process, as the distribution of EGT measurements does

not exhibit extreme fluctuations, since during cruise the operational and the environmental

conditions are more stable compared to other flight phases. Thus, phases such as taxiing,

take-off, climb, descent, or landing were not investigated as they constitute a transient part

of a flight, where engine performance and thermal effects vary with time and with mission

characteristics. Furthermore, the cruising phase allowed for a larger data sample since it covers

5The data used is proprietary material of the Koninklijke Luchtvaart Maatschappij N.V. (KLM) and cannot
be shared in the public domain.
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6.4. Experimental Setup and Results

the longest in duration part of a long-haul flight. A large sample is vital to uncover any

meaningful relationships between the EGT and the rest of the monitored engine parameters.

For our experiments, three of the flights, henceforth known as flight 1, flight 2, and flight 3 were

concatenated into a single dataset. From this dataset, we discarded parameters providing little

to no information. Specifically, we removed parameters containing at least one NaN (6.9% of the

total parameters) value or string (alphanumeric), retaining only numeric data. Subsequently,

we split the remaining data into training and validation sets by randomly selecting 80% of

the data for training and the remaining 20% for validation6. We further pre-processed the

training data by performing a correlation analysis with different conditions that result in the

different experiments (see Section 6.4.2). The training data will allow the SR algorithm to

learn patterns from the data and, as a result, estimate the model’s parameters. The validation

set is used to reduce any over-fitting of the SR algorithm to the training data by estimating

the generalization capability of the fitted model on the validation data. This will reduce the

possibility of the resulting algebraic expression reflecting only the training data from which

it was generated. The training and validation process can be considered the training phase

of the SR algorithm. A fourth flight (flight 4 ) was selected for testing purposes in order to

measure the final performance of our method on unseen data (the test data). For the validation

and test data we only used the parameters that were retained on the training set after all the

pre-processing steps performed on it. The final pre-processing step involved normalizing each

of the parameters of the training, test, and validation data as follows:

x′ =
x− μ

σ
, (6.4)

where x, x′ are the data item and the transformed data item, respectively, and μ, σ are the

population (or sample) mean and standard deviation, respectively. It should be pointed out

here that μ, σ which were used to normalize the validation and test parameters, are the same

μ, σ learnt from the training data. The last step is standard practice in ML. Furthermore,

we should note here that the selection of the flights to be used for training and validation

has been done randomly, i.e., not taking into consideration flight details or characteristics,

e.g. departure airport, or duration of the flight. Finally, we would like to point out that there

are different potential reasons for the presence of NaN values in the dataset. In general, NaN

values can be attributed to recording and synchronization issues and to the fact that not all

data capturing takes place at the exact same frequency, even if the recording takes place at 1Hz

in the CEOD. In addition, not all parameters are recorded during all the phases of a flight,

so a part of the missing values could be attributed to this reason. Moreover, some secondary

6Please note that the terminology here is different from the original publication [113]. In this chapter and
its corresponding Appendix, we note as validation set (test set) what we noted as test set (validation set) in
the original publication. This has been done for consistency of the terminology between the chapters of this
dissertation.
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systems might not be functional for operational reasons during specific segments or the totality

of the flight, and temporary recording issues cannot be excluded. For calculated parameters,

some required inputs might not be available at the time that specific entries are recorded for the

aforementioned reasons, resulting in NaN values. Finally, due to data ownership agreements

between the original equipment manufacturer and the aircraft operator, some parameters are

missing altogether.

Methodology and System Setup

We decided to use the GPTIPS [202, 201] to perform our experiments because of its ease of

use, as well as its multigene GP approach that was discussed earlier. Additionally, GPTIPS

takes into account the trade off surface of model performance and model complexity [202, 201].

In the multi-gene approach complexity is defined as the simple sum of the expressional com-

plexities of its constituent trees [201]. For each experiment, 10 final models were independently

created, each of which used 10 independent runs internally. The models resulting from the

multiple, internal runs are automatically merged at the end of the execution and the best

model is selected in terms of predictive performance (R2 - see also Performance Metrics 6.4.2

below) among models from a Pareto front of model performance and model complexity. This

internal, multi-start approach mitigates issues with the possible loss of model diversity over a

single run and with the GP algorithm getting stuck in local minima [201]. The repetition (10

times) of the previously mentioned process, per experiment, is performed to have an estimate

of the centrality and dispersion of the performances in each experiment. The population size

was chosen to be 250 individuals, while the number of generations was at maximum 150 gen-

erations. The tournament size is set to 20, Tournament Pareto, which encourages less complex

models, was set to 0.3. Elitism = 30% of the population. The maximum tree depth was set

to 5, and the maximum number of genes was selected to be 10. Finally, the function set con-

tained these operators = {·,−,+, /, x2,√, exp, x3, xa, exp(−x),−x, |x|, log}. In essence, these

operators define our alphabet. See Table 6.1 for a quick reference of the hyperparameters used.

Table 6.1: System setup hyperparameters.

Hyperparameter Value

Runs (internal) 10
Population size 250
Number of generations 150
Tournament size 20
Tournament Pareto 0.3
Elitism 0.3
Maximum tree depth 5
Maximum number of genes 10

Function set ·,−,+, /, x2,√, exp, x3, xa, exp(−x),−x, |x|, log
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6.4. Experimental Setup and Results

By default GPTIPS provides a multigene symbolic regression fitness function, which was used in

order to minimize the root mean squared prediction error on the training data. We used p = 0.1

for the mutation probability and p = 0.85 for the crossover probability for the genetic operators.

The chosen hyperparameters were based on values suggested from literature, in combination

with execution time and preliminary experiments. More specifically, the mutation/crossover

rates are equal to the values in [202] (default values). The same is also true for other non-

mentioned hyperparameters of the algorithm. Lastly, the RMSE (see also Performance Metrics

below) is used as the objective function that is minimised by the process.

Performance Metrics

To measure the performance of our approach against the ground truth, we decided to use the

common error metrics for regression [205], namely, root mean squared error (RMSE), mean

squared error (MSE), mean absolute error (MAE), and R2:

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 , (6.5)

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 , (6.6)

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| , (6.7)

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (6.8)

where yi are the ground truth values, ŷi the predicted values, ȳ is the mean of the observed

data, and n the number of samples.

6.4.3 Experimental Results

For the experiment, a correlation analysis was performed on the input parameters, as a dimen-

sionality reduction step. Specifically, parameters that were highly correlated (over 0.90) were

discarded, retaining only the first representative. After this step, 114/696 CEOD parameters

remained to be used as final input, in the GP framework, in addition to the target EGT. We

performed this experiment 10 times to account for the stochastic nature of GP by combining in-

ternally in each of these executions, 10 independent runs. This resulted in 10 different algebraic

expressions. In Table 6.2 we show the average error metrics (over 10 runs) for the training, the

validation, and the test datasets. The results show us that SR has managed to account for the

variability of the EGT against the used CEOD parameters on both the training and validation

sets (R2 = 1). As a result, the average deviation from the ground truth is less than 1 degree
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Chapter 6. Explainable PHM

Celcius (MAE= 0.77°C and 0.76°C) for the training and validation sets, respectively, which is

negligible from an engineering perspective. We see a larger average error regarding the test set

compared to the training and validation sets. In particular, we see an average error (MAE) of

3°degrees Celcius compared to the ground truth EGT values. This slight increase in the error

is also backed up by the slight decrease of the average R2 = 0.86, indicating a small degree

of overfitting. The slight error increase is, in general, expected. However, considering that we

did not correct for parameters such as the duration of the cruising phase or the flight level, the

current error is within an acceptable range.

Table 6.2: Average error metrics (over 10 runs) of the training error, the validation error and
the test error, on experiment 1. All numbers have been rounded up to the nearest hundredth.

Errors Rˆ2 RMSE MAE MSE

Training Error 1 ± 0 1.3 ± 0.06 0.77 ± 0.03 1.69 ± 0.16
Validation error 1 ± 0 1.27 ± 0.05 0.76 ± 0.03 1.62 ± 0.15
Test error 0.86 ± 0.08 8.44 ± 3.27 3.01 ± 1.01 80.81 ± 46.8

In Figure 6.4 we show a plot of the EGT predictions on the validation set (displayed in orange)

overlaid against the observed EGT values (displayed in blue). The x-axis represents the number

of used data points. We should note here that the y axis represents the scaled EGT measures.

The results show that the resulting algebraic expression has managed to learn the underlying

relationship between the EGT and the other CEOD parameters very well.

Figure 6.4: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Model 1 - Experiment 1). x-axis shows the data sample index in consecutive order according
to their sampling over time.
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6.4. Experimental Setup and Results

In addition, Equation 6.9 is the algebraic expression for the first of the 10 resulting models.

Y 1
1 = 0.141 · x4 + 0.123 · x5 + 0.8 · x6 + 0.0214 · x12 − 0.123 · x18

+ 0.751 · x21 + 0.0261 · x60 + 0.0405 · x74 − 0.0371 · | log(x39)|
+ 1.32 · 10−4 · e(2·x21) − 0.0428 · |x4| − 0.0261 · e(x21)

+ 0.00762 · x2
74 + 0.133

(6.9)

In Table 6.3, we show the input variables that appear in the resulting 10 models as well as their

percentage of appearance. Here, each variable is represented by an x with an index. The reader

Table 6.3: Percentage of appearance per variable over all models (Experiment 1).

Input variables (Index) % of appearance

x4, x6, x21 10,6 %
x43 8,5 %
x12, x74, x113 5,1 %
x5, x110 4,08 %
x11, x14, x39, x59 3,06 %
x18, x23, x24, x94 2,04 %
x1, x8, x13, x25, x46, x52,
x57, x60, x96, x111, x112

1,02 %

might find it interesting to know which of the variables have resulted from this experiment. In

the following list, we provide the technical meaning of the most frequently occurring variables

based on Table 6.3. In the technical explanations, we considered only parameters with more

than 5% occurrence in Table 6.3.

• Actual Calculated HPT Clearance – x4

The tip clearance of the high pressure turbine (HPT) is directly related to its isentropic

efficiency and the gas enthalpy drop through the blade stages. The higher the clearance,

the less efficient the expansion process is, and thus the EGT is higher.

• Average Gas Temperature at Station 25 – x6

This is the gas temperature at the inlet of the high pressure compressor (HPC). A higher

temperature here indicates a less efficient compression process through the engine booster,

which for a given pressure ratio requires increased power input from its corresponding

turbine, the low pressure turbine (LPT). This high power output can only be achieved

via higher fuel flows that lead to increased EGT.

• Corrected Fan Speed to Station 12 – x21

A higher Fan Speed also corresponds to a higher EGT, since the power required from the

interconnected LPT is higher, leading to an increased fuel flow.
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• FSV Minimum Main Fuel Split Regulator – x43

As the fuel splitting valve (FSV) influences the amount of fuel directed to the combustion

chamber, there is a direct relation between this variable and the resulting EGT.

• BPCU 1 GCU Generator Load – x12

This parameter is related to the load control of the engine generators. The higher the

load required from the generators, the higher the power extraction from the engine, which

leads to higher fuel flow to cover the increased energy needs. The higher fuel flow results

in a higher EGT.

• Selected Variable Bleed Valve (VBV) Position – x74

The position of the VBV controls the amount of air that is bled from the engine. With

an increasing degree of bleed, the HPC compresses air that does not contribute to the

power generated by the turbines, resulting in a reduced overall thermal efficiency. This

reduction means that the engine needs to consume a higher amount of fuel for the same

thrust output, which results in an increased EGT.

• WF/(P3 · RTH25) Base (PPH/PSIA) – x113

This is an expression for the non-dimensionalized fuel flow of the engine, which is directly

related to a higher EGT.

In the list above, the station numbering (e.g., “Average Gas Temperature at Station 25”)

is standardized and follows the SAE Aerospace Standard AS755 (Aircraft Propulsion System

Performance Station Designation)7. Under this standard, station 25 (see “Average Gas Tem-

perature at Station 25”) is the interface between the low pressure compressor (LPC) and the

high pressure compressor (HPC), while station 12 (see “Corrected Fan Speed to Station 12”)

is the inlet fan tip station.

Moreover, the coefficients multiplied by the variables in Equation 6.9 indicate the relative

importance (contribution) of that parameter to the output. For example, the coefficients of

variables x4, x6, x21 are the largest among the coefficients of the other variables, showing their

importance to the EGT. This is also backed up by the percentage of appearance of these

variables throughout the repetitions and the nature of these variables, as mentioned before.

In addition, we performed two control experiments to investigate the effect that certain param-

eters might have on estimating the EGT. In particular, in the first, we removed the parameter

Average Temperature at Station 25 (DEG C), which, even though it did not exceed the 0.9 cor-

relation threshold, is in direct relation with the EGT. After removing it we performed the same

experiment described before, which resulted in Table 6.4. The results show a similar pattern

to those of our initial experiments. In addition, we see a slight decrease (by about 6%) in the

7https://www.sae.org/standards/content/as755g/
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6.5. Discussions and Conclusions

average R2 value of the test set and a small increase (by about 8%) in the average MAE value.

Despite the error increase, the deviation from the ground truth is still minimal, indicating that

the EGT can be evaluated non-trivially. With this, we mean that despite dropping parameters

that are closely related to the nature of our target output (e.g., Average Temperature at Station

25 (DEG C)), we still get satisfying results.

Table 6.4: Average error metrics (over 10 runs) of the training error, the validation error, and
the test error, on experiment 2. All numbers have been rounded up to the nearest hundredth.

Errors Rˆ2 RMSE MAE MSE

Training Error 1 ± 0 1.43 ± 0.06 0.88 ± 0.03 2.03 ± 0.17
Validation error 1 ± 0 1.4 ± 0.07 0.87 ± 0.04 1.97 ± 0.2
Test error 0.81 ± 0.04 10.27 ± 1.24 3.26 ± 0.26 106.93 ± 23.73

The second experiment involved discarding all the highly correlated (more than 90%) input

parameters with the EGT before performing the correlation analysis of our initial experiment.

The results of this experiment are summarized in Table 6.5. Here we see the results resembling

more closely those of our initial experiment. However, it is interesting to see a decrease (by

about 7%) of the average MAE of the test data, compared to the same value of the initial

experiment.

Table 6.5: Average error metrics (over 10 runs) of the training error, the validation error, and
the test error, on experiment 3. All numbers have been rounded up to the nearest hundredth.

Errors Rˆ2 RMSE MAE MSE

Training Error 1 ± 0 1.23 ± 0.04 0.75 ± 0.02 1.5 ± 0.1
Validation error 1 ± 0 1.24 ± 0.04 0.75 ± 0.02 1.55 ± 0.09
Test error 0.86 ± 0.08 8.44 ± 3.23 2.8 ± 0.95 80.65 ± 44.63

The resulting models and plots from all experiments can be found in the Appendix A.

6.5 Discussions and Conclusions

In this chapter, we investigated the use of symbolic regression (SR) by means of genetic pro-

gramming (GP) on a real engineering problem. Specifically, we examined the use of SR on

real aircraft operational data with the aim of uncovering meaningful relationships between the

exhaust gas temperature (EGT) - a standard industrial indicator of the health of an aircraft

engine - and the rest of the monitored engine parameters. Our main contribution is the first,

to our knowledge, analytical model of EGT against the rest of the monitored flight parame-

ters, which has been automatically derived from real-world continuous data collected during

the entire flight time at a recording frequency of 1Hz (and been assessed by engine experts to

provide valuable insights). These data, termed continuous engine operational data (CEOD),
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allow for a more complete digital representation of the operational history of an engine, while

the longtime industrial standard is still the use of snapshot data, which are recorded only once

during every flight phase.

The experimental results are promising, both in terms of model accuracy, as well as in explain-

ability. In more detail, the trained models exhibited on average a small amount of overfitting

and an absolute difference of 3°C compared to the ground truth EGT values, a small difference

from an engineering perspective. Furthermore, the resulting formulas demonstrated consistency

from a physics/engineering point of view between the predictor-parameters and the EGT, which

field experts validated. This indicated that the proposed method could uncover meaningful re-

lationships in the data that the end-user can interpret. In addition, we performed two more

experiments to investigate the effect that specific parameters might have on the estimation of

the EGT. The results showed a similar pattern to our initial experimental output.

The importance of our study lies in the fact that with little or no field knowledge, we were

able to generate models that relate the EGT accurately and meaningfully to other monitored

parameters. Such algebraic expressions can assist field practitioners in diagnosing faults or fail-

ures and even uncover new relationships between parameters previously unknown to engineers

or field experts.

At this point, we should also mention some of the limitations of our work. Firstly, we only

considered the cruising phase of the flight, ignoring the others. Having said that, we expect

different behavior in phases such as take-off, where the engine performance is transient and

thermally unstable. Moreover, we did not take into account or correct the data in any way,

based on information such as the cruising flight-level (altitude) or the flight duration, or the

aircraft’s weight during cruising. For example, EGT might increase with increasing HPT tip

clearance since its isentropic thermal efficiency drops. What is more, even though the data

pre-processing that we did, proved to be effective, we had to discard certain data because of

the NaN values. Lastly, we only modeled the EGT as a function of the rest of the observed

parameters. Modeling other parameters might be more difficult or even impossible. However,

as EGT is the standard industrial indicator for the overall engine thermal efficiency, this is not

the main concern.

Our limitations mentioned above clearly pave the road into future directions. Initially, we would

like to model transient flight phases, such as take-off, which constitutes a very intensive time for

the engine. Additionally, it is worth looking into pre-processing the data with minimum loss

of information (e.g., NaN value imputation) and incorporating additional information (data

augmentation), such as weather conditions (e.g., when modeling parameters during climb or

landing). Regarding the CEOD data specifically, we should emphasize that they can play

a significant role since their higher sampling rate can capture, for example, early issues and

pinpoint the exact moment they took place. However, since CEOD contains a larger amount of

information than, e.g., snapshot data, the amount of data for training and testing needs to be
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equally high. In addition, as the engine conditions might vary significantly during take-off due

to different ambient conditions, airport elevation, engine derate, etc., data representativeness

is a key-point for successfully applying the methods we used and any other ML method in

essence. Regarding the modeling, it would be very interesting to perform hyperparameter

optimization on the GP to select the optimal hyperparameters that will allow high accuracy

and low generalization error. It would also be worth building a meta-model that combines all

of the formulas derived from the experiments or an ensemble model by, for example, taking the

average or other aggregation function of the predictions provided by each of the models. Also, as

mentioned before, such models interpretable by the end-users can lend themselves for predictive

maintenance. For example, any substantial deviation between the predicted value of the model

and the monitored parameter(s) can indicate a(n) (imminent) fault or malfunctioning sensor

and can, thus, assist in maintenance planning. This, of course, would be possible if the model

is built from healthy data. These formulas can also be used to generate more data, healthy or

faulty, by tuning the range of the predictor parameters to simulate various conditions. Lastly,

by proper data pre-processing, one can also derive formulas that allow forecasting of parameters

into the future, enabling prognostics. This list is by no means exhaustive, but it is clear that

there are a lot of opportunities.
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