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Chapter 3

Prognostics and Health Management

This chapter1 aims at introducing to the reader the fields of prognostics and health management

(PHM) and predictive maintenance (PdM). We start by discussing the importance of the field

through examples and we present definitions and terminology that is used. Following that,

data-driven applications of PdM in the aerospace industry are discussed. The reason for the

selection of this specific industry is based on the high level of criticality that maintenance has in

it. As a result, timely maintenance is an integral and indispensable aspect of aerospace which

is reflected in the strict safety regulations, high availability expectations by airlines and clients,

as well as maintenance costs. Finally, this chapter is summarized and directions for future work

are presented.

3.1 Introduction

At 11 : 03 Eastern Daylight Time (EDT) on April 17 2018, Southwest Airlines Flight 1380

from New York to Dallas, was at flight level (FL) 320 (an altitude of approximately 32, 000

feet or 9.8 km) and climbing when it experienced a left engine failure. As a result, most of the

engine inlet and parts of the cowling broke off. Fragments from the inlet and cowling struck

the leading edge of the wing and fuselage, causing a rapid depressurization and the death of a

passenger. After investigations, the reason was found to be a failure of a single fan blade, due to

a fatigue crack [2]. A similar event took place on 30th September 2017 when Air France Flight

66 from Paris to Los Angeles suffered an uncontained engine failure and made an emergency

landing at Goose Bay Airport, Canada. Post-flight investigations indicated that the engine’s

fan hub had detached and dragged the air inlet with it during the flight [93]. These examples

are by no means exhaustive. They show, however, how essential maintenance is, especially in

1Contents of this chapter are based on [230]; Duc van Nguyen, Marios Kefalas, Kaifeng Yang, Asteris Apos-
tolidis, Markus Olhofer, Steffen Limmer, and Thomas Bäck. A Review: Prognostics and Health Management
in Automotive and Aerospace. International Journal of Prognostics and Health Management, 10(2):35, 2019.
PHM Society.
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the aerospace industry.

Maintenance comprises a large percentage of operating costs of industries. According to the

annual reports published by the Royal Dutch Airlines (KLM)2, the maintenance costs from

2017 to 2020 are 941, 947, 882 and 738 million euro, respectively. These correspond to about

14% to 21% of the operational costs (total external expenses). DHL has estimated that an

AOG (Aircraft On Ground) due to technical reasons, for an A380 Airbus, costs as much as

925.000 euro per day3. In the worst cases, the consequent costs could not be fully evaluated if

the equipment failure led to a bad accident.

An approach that has surfaced in recent years, in order to mitigate the large maintenance costs

is that of Prognostics and Health Management (PHM). PHM goes beyond CBM, as correct

predictions of the future may allow avoiding failure and other large disturbances [133]. PHM

includes a set of methodologies and actions that aim at minimizing maintenance costs by the

assessment, diagnosis, prognosis, and health management of engineered systems. This allows

a shift from traditional maintenance strategies, such as reactive maintenance (RM) and pre-

ventive maintenance (PM) to what is known as predictive maintenance (PdM). PdM estimates

when maintenance should take place and thus, increases safety, maximizes usability by avoid-

ing immature maintenance. As a consequence reduces operation and maintenance costs and

mitigates logistic bottlenecks. With an increasing prevalence of smart sensing, the progress

of artificial intelligence, and with more powerful computing and increased storage, PHM has

been gaining popularity across a growing spectrum of industries such as aerospace, smart man-

ufacturing, transportation, and power generation [57]. Regardless of the field, one common

expectation of PHM is its capability to translate raw data into actionable information to facili-

tate maintenance decision making [109]. PHM is also referred to as system health management

(SHM), integrated systems health management (ISHM), vehicle health management system

(VHMS) or engine health management (EHM).

PHM systems are designed in such a way that they can detect incipient component or sys-

tem faults and/or failures, perform failure diagnostics, failure prognostics, and general health

management. Among the tasks that a PHM system is expected to perform failure prognostics

is the most significant one and lies in the core of PHM. Failure prognostics refers specifically

to the phase involved with predicting future behavior and the system’s useful lifetime left in

terms of current operating state and the scheduling of required maintenance actions to main-

tain system health [227]. The useful lifetime left is often called the ’Remaining Useful Life

(RUL)’. RUL is typically a random variable and unknown, and as such it must be estimated

from available sources of information such as the information obtained in condition and health

monitoring [208]4.

2https://www.klm.nl/en/information/corporate/publications
3Source: Airbus China
4In this dissertation we will be using the terms RUL prediction and RUL estimation interchangeably, unless

otherwise stated.
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Chapter 3. Prognostics and Health Management

More formally, based on [21], the RUL can be defined as follows:

Definition 3.1 (Remaining Useful Life (RUL)). Let t ∈ R≥0 be an instance of time at which

we predict the RUL of an asset. Then,

RUL(t,Dt) = inf{s ∈ R≥0 : s ≥ t ∧ �S�(CI(s,Dt))} − t , (3.1)

where inf represents the infimum of a set and � is the indicator function. S is a user-defined

system operating envelope. The operating envelope, S, is a collection of boundary limits, that

when exceeded put the integrity of an asset at risk. CI represents a user-specified condition

index, which monitors if the asset has exceeded it’s operating constraints. In this case the

CI lies in the complement of S (S�), which indicates that the system must be repaired or

maintained. Dt represents the data generated by an asset used for the RUL prediction of that

asset. Most commonly Dt is sensor measurements recorded in time (time-series e.g., pressure,

temperature) accompanied by event labels (e.g., times-to-failure), up until time t. In principle

though, Dt can be any type of data, structured or not, that can facilitate the estimation.

The quantity inf{s ∈ R≥0 : s ≥ t ∧ �S�(CI(s,Dt))} in Equation 3.1 can also be referred to

as the end-of-life (EoL), to mark that the system’s “life”, based on user-defined criteria, has

come to an end. Ultimately the estimation of RUL amounts to the approximation of the EoL.

We should note that the EoL does not necessarily mean that the system has gone through a

catastrophic failure but might operate sub-optimally according to user-defined criteria.

Finally, from a data-driven perspective, the estimation of the RUL of an asset involves creating

a model which is trained on data from the same type of assets. In the work presented in this

dissertation, the data used are (multivariate) time-series (see also Definition 2.1). In more

detail, for the RUL estimatiom, let U be the set of training data. Each instance u ∈ U is

presented as a multivariate time-series of sensor readings Xu = [x1,x2, . . . ,xT (u)]
T ∈ Rm×T (u),

with T (u) time-steps where the last time-step corresponds to the end-of-life (EoL) of the unit

u. Each point xt ∈ Rm is an m-dimensional vector corresponding to readings from m sensors

at time t.

The main implementation steps for PHM consist of; i) defining critical component(s), ii) appro-

priate sensor selection for condition monitoring, iii) prognostics feature evaluation under data

analysis and iv) prognostics methodology and tool evaluation metrics [16].

In the next section, we will briefly present diagnostics and prognostics and discuss the relation

between these two notions.

3.2 Diagnostics and Prognostics

Diagnostics and prognostics are related processes of assessment of a system’s health. Diagnostics

aims at detecting, isolating, and identifying a fault or failure, whereas prognostics is the process
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of prediction of future states or RUL estimation based on current and/or historic information of

the monitored asset [227, 138]. A main distinguishing factor between them is that diagnostics

aims to diagnose or detect a fault or failure after, momentarily or shortly before it takes place,

whereas prognostics focuses on anticipating these, within an actionable horizon. Prognostics

is based on the understanding that equipment fails after a period of degradation, which when

estimated (e.g., RUL) can lead to actionable information (e.g., maintenance planning and

logistics management).

In more detail, diagnostics is enabled through the collection of data and/or other information.

The different stages of diagnostics can be explained as follows [227]. Fault detection determines

whether an abnormal operating condition exists. If it is detected, then it is reported. Fault

isolation locates the fault to a specific component, sub-component or system that is failing or

has failed. Fault identification deals with what is called the root cause or the basic event of

the fault or failure. Fault symptoms are signatures that allow identifying the possible faults

or failures. Prognostics is by nature an even more challenging task compared to diagnostics.

Inheriting its name from the Ancient Greek progignoskein, which means knowing in advance, its

task, as previously stated, is the assessment of the future health of a system. More specifically,

prognostics is a CBM estimation of the RUL in order to make better-informed maintenance

decisions [138]. Even though RUL estimation lies at the core of prognostics, it should not be

considered the same task. Besides the RUL prediction, a comprehensive prognostics framework

should be able to quickly and efficiently isolate the root cause of failures. In this sense, if

fault/failure predictions can be made, the allocation of replacement parts or refurbishment

actions can be optimally scheduled to reduce the overall operational and maintenance logistic

footprints.

Finally, before we proceed, it is important to disambiguate two terms, which we will be seeing

a lot and are (often) a source of confusion. These are fault and failure. The former implies

that a system under observation is still operational, but cannot continue operating without any

maintenance action, otherwise, it will cease operating, resulting in a failure.

3.3 PHM approaches

Prognostic approaches are most commonly classified into four types [59], namely i) reliability-

based approaches, ii) model-based approaches, iii) data-driven approaches, and iv) hybrid ap-

proaches. While all approaches have their advantages and limitations, model-based, data-

driven, and hybrid approaches are the most prominent and modern. These approaches can

reason about individual assets, whereas reliability-based approaches rely on collective knowl-

edge from a fleet of similar items.

In the following subsections, we will briefly dive into the different prognostics approaches and

present some of their representative methods. Figure 3.1 summarizes the range of possible

18
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Figure 3.1: Prognostics approaches. Adapted from [227].

prognostics approaches and presents them as a function of applicability and implementation

costs.

3.3.1 Reliability-based Approaches

Experienced-based prognostics, life usage model, statistical reliability-based approaches and

probability-based prognostic techniques are all different terms describing a similar set of ap-

proaches in prognostics [59, 227]. Reliability-based approaches are some of the oldest and

simplest forms of fault prognostics. They take into account the data and the knowledge that

has accumulated by the experience during usage of industrial systems [155]. They require

(massive) historical data and specifically, times-to-event records from a population of identical

items. By “event” we mean failure or fault events or other significant maintenance events.

Reliability-based approaches rely heavily on the assumption that the temporal information of

these events follows specific distributions, which when fit can be used to infer times-to-event of a

new, identical, asset. These distributions usually include but are not limited to, the exponential,

the Weibull, the log-normal, and normal distributions and the Poisson distribution.

The advantages of such approaches in prognostics are the simplicity of their usage and the

minimal need for domain knowledge. What is more, these statistical-based approaches can

provide confidence intervals, which can be important in decision making, as they give a feeling
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of accuracy and precision for the predictions [227, 216]. However, these methods require a

large amount of historical repair and failure data in order to determine the parameters that

faithfully model the life cycle of the system in question [155]. Consequently, such methods

can be inaccurate when applied to newly developed assets, as reliability-based methods require

(massive) historical repair and failure data, which in this case might be scarce [59, 155]. Fur-

thermore, these approaches ignore component-specific conditions and do not take into account

any indications (e.g., from sensor measurements) generated by the assets themselves in order

to assess their health condition. Ignoring such (progressive) degradation phenomena can lead

to premature or late maintenance [59, 83]. As a consequence, these prognostic methods can

be used for scheduled or preventive maintenance (PM) and are used mainly for non-critical,

components, that are not monitored and that are usually mass-produced.

3.3.2 Model-based Approaches

Model-based methods (or physics-based methods) utilize explicit physical models of the moni-

tored components/systems for prognostics and RUL estimation. These physical models describe

the degradation processes of the systems in question through mathematical models based on the

failure mechanisms and first principles of damage [59, 138]. To establish this model, however,

a thorough understanding of the system’s physics is required [59]. For example, physics-based

fatigue models have been extensively used to represent the start and propagation of structural

anomalies [55]. These approaches are deterministic and allow for the estimation and the pre-

diction of the dynamical states of the system in question. Moreover, these methods often use

residuals as their features, where the residuals are defined as the results of consistency checks be-

tween the sensed measurements of a real system and the outputs of a mathematical model [55].

The premise here is that the residuals are large in the presence of failure/faults, and small or

non-significant in the presence of normal disturbances (e.g., due to transient conditions), noise,

and other modeling errors [55]. In this case, when the difference between the model and reality

exceeds a user predefined threshold, an alert is generated. In this view, they can detect shifts

from the nominal conditions of the underlying process when a simulation that is based on the

model is executed in parallel to the real-time process. Of course, the latter demands a model

that is developed based on the design-point (normal) conditions and which represents the ideal

behavior of the system. Since these methods incorporate a physical understanding of the sys-

tem, in many situations, these shifts are closely related to model parameters [8]. Furthermore,

these models, do not require a large amount of data and are ideal when failure data do not exist

or are scarce. What is more, physics-based approaches are very descriptive and interpretable,

as the modeling relies on mathematical equations and established laws. This allows for such

approaches to be efficiently validated and certified [59]. Additionally, these approaches can be

used to simulate component failures for a better understanding of the system in question [8].
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If the comprehension of the system’s behavior together with the fidelity of the models is suffi-

cient, these models allow for high accuracy and precision [59]. Moreover, if this understanding

improves, the models can be adapted to increase their accuracy and address subtle performance

problems [8, 55].

Model-based approaches, however, rely heavily on a thorough understanding of the system’s

physics and underlying processes, something which can be prohibitively costly in terms of time

and money. As a result such a model’s reliability often decreases as the system complexity

increases, since there can exist underlying processes which have not been taken into account

during model development. A direct consequence of this is that physics-based approaches can be

successfully applied to those systems that a thorough understanding of their physics is possible,

as well as of their failure modes and degradation behavior. Also, the developed physics models

are usually component/system-specific and as a result, their reusability is very limited to other

similar cases [59].

Examples of model-based approaches that are developed based on physical principles/laws are

Kalman filters (KF) and their extensions. Namely, extended Kalman filters (EKF), unscented

Kalman filters (UKF), and particle filters (PF).

Kalman filters (KF) were introduced as fault isolation and assessment technique for relative

aircraft engine performance diagnostics in the late 1970s and early 1980s [210]. More widely

used by engineers and other physical scientists, filtering problems are mathematical models

for state estimation in signal processing and related domains. The main idea is to determine

an estimate of some true value of a system from noisy and incomplete observations. Kalman

filters or linear quadratic estimation as they are also known as take into account measurements

recorded over time to make inferences about an unknown variable of interest (the state variable).

Kalman filters work in a two-step process. In the first step, the prediction step, the Kalman

filter produces an estimate of the current state, along with its probability distribution. Once the

outcome of the next measurement is observed, the previously produced estimates are updated.

It is a recursive procedure, which means that it only needs the present observations and the

previously calculated state and its uncertainty matrix, to estimate the current state variable.

The latter hands them the advantage of running in real-time.

Kalman filters (KF), however, are linear model-based estimators, which means that they assume

linearity of the underlying dynamical system [157]. That is, they assume linearities in either

the process model or the observation model, or both. Real-life systems can, however, be highly

complex and as a result nonlinear. In order to overcome this assumption of KF and address

the non-linearities, variants of KF have been created. More notable are the EKF and the

UKF. The former assumes that the nonlinear functions are differentiable and linearizes about

an estimate of the current mean and covariance [219]. The latter, instead, uses deterministic

sampling to form a new mean and covariance estimate [219] with a sampling technique known

as the unscented transform (UT) to determine a minimal set of sample points (sigma points)
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around the mean. UKF perform better than EKF when the prediction and update steps are

highly nonlinear. This is a result of the linearization of the covariance.

The most popular model-based method is particle filters (PF) [41]. Their popularity arises from

the fact that in contrast to KF, EKF, and UKF both linear and nonlinear state process and

measurement models can be used. What is more, PF allow representing state estimates with

arbitrarily shaped probability distributions. In more detail, PF methods or Sequential Monte

Carlo (SMC) techniques are a class of algorithms that are used to approximate the optimal

Bayesian filtering by representing the posterior probability density function (PDF) of the states

discretely, with a population of particles with associated importance weights [50]. The particles

are simply random samples from the unknown state space, representing possible realizations

of the state sequences and the weights are the corresponding discrete probability masses [193].

As the filter iterates, the particles are propagated according to the system state transition

model, while their weights are updated based upon the likelihoods of the measurement given

the particle values [193]. For more details regarding PF, we refer the interested reader to [14].

3.3.3 Data-driven Approaches

In some instances, one might have only historical fault/failure or maintenance data leading

up to a major maintenance event. Other times, the system in question cannot be adequately

modeled due to its complexity. In such cases, one might use data-drive methods. These

methods take their name from the fact that they rely (almost) entirely on data generated from

the monitored asset(s). These data are performance parameters, such as but not limited to,

pressure, temperature, speed, vibration, current, and acceleration [55]. These data or features

derived from them are subsequently used to create an algorithmic model that correlates these

measured parameters and/or features to the system health, degradation and fault progression,

and RUL estimation [59].

As opposed to model-based approaches, data-driven methods can be developed and deployed

much faster as they do not call for (a lot of) expert knowledge. The low cost of algorithm

development and little knowledge required about the physics of the studied system makes this

approach preferable by PHM practicioners [258] and applicable to a wider audience. However,

data-driven methods depend largely on the size and quality of the acquired data. They require

large amounts of historical data, something that is not always possible, especially for newly

developed systems or other fielded applications, due to safety and data privacy concerns. In

addition to that, there is also commonly a lack of a procedure to obtain the training data

and there is further, a lack of run-to-failure data, for the methods to learn from. Due to this,

applications in the literature usually make use of experimental data for model training, and

thus these approaches may have wider confidence intervals than others [55]. Furthermore, this

dependence on data dictates that the developed algorithms must also be robust to artifacts in
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the data (e.g., noise) [59, 55]. In principle, the more failure events are included in the data, the

higher the accuracy of the estimation obtained. What is more, data-driven methods are more

often than not “black box” approaches, in the sense that their internal decision making is not

transparent [216]. As a consequence, the results of such a model are not always intuitive, due to

the lack of physical knowledge about the system. This together with the fact that data-driven

methods are based on approximations makes uncertainty quantification and management of

the results an extra challenge.

Data-driven approaches mainly rely on techniques in the field of artificial intelligence (AI)

and machine learning (ML). This includes, but is not limited to, decision trees (DT), random

forests (RF), support vector machines (SVM), relevance vector machines (RVM), and deep

neural networks (DNN). Often enough, statistical (parametric and non-parametric) approaches

are also used to detect the presence of anomalies in the data [216] and can be considered as

data-driven methods for prognostics. A non-exhaustive list of such techniques is multivariate

statistical methods, partial least squares (PLS), signal analysis (e.g., Fast Fourier Transforma-

tion) hypothesis testing, analysis of variance (ANOVA), maximum - likelihood (ML) estimation,

expectation-maximization (EM), Wilcoxon - Mann - Whitney test, Gaussian mixture models,

and histogram - based approaches [216, 55].

For a more thorough overview on data-driven approaches, readers can find more details in [209,

224, 216, 55, 59, 227].

3.3.4 Hybrid Approaches

Fusion or hybrid-based prognostic methodologies combine the strengths of the model-based and

data-driven approaches, to estimate the RUL under both operating and non-operating life cycle

conditions [176]. By taking advantage of the two respective methods’ strengths, hybrid models

can achieve robust health prediction results that can lead to a more reliable RUL approximation

as compared to only model-based methods. Also, due to the use of a mathematical model, the

amount of data required for training purposes are relatively lower than that needed in pure

data-driven methods [49]. A hybrid model thus combines both data-driven methodologies with

the knowledge of the system under study. It is a promising method, due to the fact that it can

compensate for the lack of knowledge about the system’s physics and the lack of data [10, 87, 23].

3.4 PHM in the Aerospace Industry

Due to the high availability expectations from aircraft operators and clients and the high costs

incurred for maintenance, when an aircraft is out of service [234] or Aircraft On Ground (AOG),

as well as the supportability, testability, and reliability of modern aircraft [248], PHM systems

play a significant role in the aerospace industry, from which it originated in the first place.
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Nowadays, it is very challenging for the industry to keep its costs as low as possible and to

generate maximum revenue, since the last decade has been turbulent for the aviation industry

owing to the unprecedented rise in its commodities due to inflation [175], as well as due to

the fluctuation in the price of fuel. Regarding the latter, IATA published that in 2017 the

airline industry’s estimated fuel bill reached 149 billion USD, more than 3 times the figure of

2003 (estimated at 44 billion USD) [99]. The industry has to ensure that its asset utilization

is optimum and therefore, the maintenance management system of the existing aircraft needs

to be precise to ensure that the aircraft spends maximum time in the air to make the best use

of its machinery [175]. This is because maintenance is extremely expensive, mainly due to the

price of spare parts. As a result, one wants to maximize the use and exploit the remaining

life of the installed parts, keeping them in operation by maintaining and repairing them until

they exhaust their life limit and need to be replaced. Apart from safety and costs-saving, this

also enhances sustainability. This is the role of PHM; to make sure that this happens and

that no part is exchanged prematurely. The notice of pending equipment failure allows for

sufficient lead-time so that necessary personnel, equipment, and spare parts can be organized

and deployed, thus minimizing both equipment downtime and repair costs [204], and optimizing

maintenance. Integration is one of the trends of PHM systems, which means that PHM systems

of the engine and other aircraft parts are integrated with aircraft PHM system [180]. To

the best of our knowledge, however, there is no generic PHM framework and architecture

enabling communication and integration with the various contributing systems [140], as well

as no uniform design framework of aviation PHM systems between countries [248] and even

between carriers/operators. In addition, a systematic method has yet to be established for

developing and deploying a PHM system, as the current ones are application or equipment

specific [134].

Among all the frameworks the most mature system is that of the F35 aircraft, which constitutes

the double-deck architecture. Using this multilayered framework, the system integrates the

airplane airborne information and sends the necessary information to the ground controls. This

integrated health management system determines the safety of the aircraft and allows for the

state management and maintenance guarantee [141]. Another predictive maintenance system,

for a wide range of helicopters flown by the military (rotocrafts), is called HUMS (Health and

Usage Monitoring Systems), developed by UTC Aerospace Systems. This system can detect

several different types of issues using vibration analysis, ranging from shaft unbalance to gear

and bearing deterioration. In civil aviation, the typical representatives are the Airplane Health

Management (AHM) system of Boeing [248], the AIRcraft Maintenance Analysis (AIRMAN)

system of Airbus, and a more recent addition, namely, aircraft real-time health monitoring

system (AiRTHM) [248]. For more detailed information on these specific systems we refer the

interested reader to [243] (Boeing) and [92], [56], [102] (Airbus).

There is also a lack of standards for PHM system development, data collection and analysis
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methods, and data management, although the PHM4SMS (Prognostics and Health Manage-

ment for Smart Manufacturing Systems) of NIST (National Institute of Standards and Tech-

nology) serves in designing such standards [235]. Particularly, in the aircraft industry, the

published standard for the guidance for PHM systems development is MSG-3, developed by

the Maintenance Steering Group (MSG) of the Air Transport Association (ATA) and is titled

“Operator / Manufacturer Scheduled Maintenance Development”. It is used for developing

maintenance plans for aircraft, engines, and systems (Air Transport Association of America,

2013) before the aircraft is in service and it also helps in improving safety while at the same

time reducing unnecessary maintenance tasks [235].

This chapter is intended to familiarize the reader with the PHM systems in the aerospace

industry, by introducing concepts, presenting examples, and discussing research opportunities.

3.4.1 Classification of Sensors of the Gas Turbofan Engine

Here, we briefly classify the most common and informative measurements of a turbofan engine.

An exhaustive list of sensor measurements of the entire airframe and of the stations of a turbofan

engine is out of the scope of this chapter. The authors decided to emphasize the turbofan engine

alone, due to the fact that it is the core of the aircraft and one of the most, if not the most,

expensive assets of the airframe. Furthermore, this is a starting point for researchers in the

quest for informative measurements. In the rest, we classify them by type and by function.

In Table 3.1, we provide a classification of the most common turbofan sensors based on their

type, and in Table 3.2 we present a classification based on their application. We should note

here that in Tables 3.1 and 3.2 N3, which is the speed in 3-spool turbofan engines (e.g., Rolls-

Royce), is not applicable to all engines.

3.4.2 PHM Methods in the Aerospace Industry

In this section, we will give an overview of various PHM methods used in the aerospace industry.

To be more specific, as stated in the introduction, CBM systems are founded upon the ability

to infer equipment conditions using data collected from sensors on monitored systems. In

aerospace, these systems could be engines, thrust reversers, avionics, flight controls, fly-by-wire,

landing gear, braking, environmental control systems (ECS), electrical systems, and auxiliary

power units, to name a few. For each system, there are also numerous sensors, which reflect

their components’ state and the overall system health. For example, the current Airbus A350

model has a total of around 6,000 sensors across the entire plane and this number will increase

as big data analytics software and broadband links become more affordable [206].

In the following sections, we discuss prognostic and diagnostic methods used in aviation as they

are crucial for safety, customer satisfaction, and airline revenue. We will emphasize more on

prognostic applications in the industry, as this type of predictive analytics is common across
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Table 3.1: Turbofan sensors classified by type.

Types Sensors

Temperature

Oil temperature, Total air/gas temperature
Static air/gas temperature,
Nacelle temperature,
Exhaust gas temperature (EGT)

Vibration
Core vibration, Fan vibration,
Core phase angle,
Fan phase angle

Pressure
Total air/gas pressure,
Static air/gas pressure,
Oil pressure

Spoll Speed Core speed (N2), Fan speed (N1), N3

Miscellaneous

Fuel flow, Oil quantity, Altitude,
Mach number,
Variable bleed valve (VBV) position,
Nacelle Anti-ice,
Wing Anti-ice,
Variable stator blades
(VSV) position

Table 3.2: Turbofan sensors classified by application.

Functions Sensors

Gas Path
Total air/gas pressure, Static air/gas
pressure, Total air/gas temperature,
Static air/gas temperature

Engine Oil
Oil temperature, Oil pressure, Oil
quantity

Engine Balance
Core vibration, Fan vibration, Core
phase angle, Fan phase angle

Stalling/Surging
VBV position, Wing anti-ice, Nacelle
anti-ice, VSV position

Thrust Setting
Engine pressure ratio (EPR), Fan
speed (N1), Core speed (N2), N3, Fuel
flow

Exhaust Exhaust gas temperature (EGT)
Flight Envelope Altitude, Mach number
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all fields of industry, but is particularly valuable in commercial aviation. In addition, as men-

tioned previously, diagnostics are included in prognostics and thus, we can consider prognostics

as a natural extension of diagnostics. After all, one needs the latter to find the former [209].

Thus, we can consider the term prognostics to have a broader definition and enclose activities

such as supervising, monitoring, detect and determining initial degradation, as well as making

fault/failure predictions. Finally, in the following subsection, we will discuss only the data-

driven methods used in PHM in aerospace, as these are the main topic of this dissertation. The

reviewed literature is by no means exhaustive, but it serves as proof for the big appeal and inter-

est for data-driven solutions in PHM in general, predictive maintenance, and RUL estimation.

For a more thorough overview of other approaches (e.g., model-based), including applications

in the automotive industry, we refer the interested reader to our original publication [230].

Applications of Prognostics Data-driven Methods in the Aerospace Industry

Neural Networks Neural networks allow the investigation of complex systems without the

need for any knowledge or assumption about system structure. They are sophisticated model-

ing techniques capable of modeling problems that are analytically and inherently difficult and

for which conventional approaches are not practical, including complex physical processes with

nonlinear, high-order, and time-varying dynamics [8]. Recently, in [257], Zhang et al., designed

a back-propagation, feedforward neural network to assess the starter degradation of the APU

using its gas-path measurements. Feedforward NNs are the simplest form of artificial neural

networks where information moves in only one direction from input nodes to output nodes. In a

recent paper by Ma et al. [152] the authors proposed an effective deep learning method, termed

stacked denoising autoencoder (SDA), for health state classification of aircraft engines consid-

ering the environmental noise. SDA proved to be effective in terms of cognitive computing and

pattern classification theory. Furthermore, the proposed method beats its rivals, in terms of

feature extraction due to the benefits of its deep architecture with a data destruction process

that is effective for robust feature representation, where high-order features and shared repre-

sentations can be learnt from the input samples by unsupervised self-learning. The feasibility

of the proposed method was demonstrated using the 2008 PHM challenge datasets (see [183]).

In [264], Ke-Xu et al. designed a particle-swarm optimized NN for spacecraft prognostics.

Other types of NNs that have gained popularity in the field of PHM are recurrent neural net-

works (RNNs). RNNs, developed in the 80s, are a class of NNs that capture time dynamics.

RNNs and their variants, namely the long short term memory (LSTM) and the gated recurrent

unit (GRU) networks differ from the traditional feedforward NNs, in that they can process

information across time, making them ideal for sequential data, such as time-series. Specif-

ically, due to their internal state (memory), they can process a sequence of inputs, granting

them the ability to model temporal dependencies and are thus suited for tasks in which input
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and/or output consist of sequences of points that are not independent. For a more thorough

understanding of RNNs and their variants, we urge the interested reader to [145, 98]. In this di-

rection, Zhong et al. [261] designed a gated recurrent neural network (GRU network) to predict

the exhaust gas temperature (EGT) of a turbofan aero-engine. The temperature of the exhaust

gases of an engine has evolved to become the standard industrial indicator of the health of an

aircraft engine [236]. This is because it can capture the cumulative effect of deterioration in the

isentropic efficiency of gas path components. Their method could address the time-series and

nonlinear characteristics simultaneously by the GRU blocks. The proposed algorithm was com-

pared to five other single prognostic methods, namely, an artificial NN (ANN), support vector

regression (SVR), extreme learning machine (ELM), and ensemble prognostic methods ran-

dom forests-based ELM (RF-ELM) and average aggregation ELM (Avg-ELM). The proposed

method achieved the best prediction accuracy and acceptable prediction stability. In [233],

Vatani et al. predicted the degradation trends of a gas turbine engine by studying their effects

on sensored data (i.e. temperature) by using an RNN as a first approach, as well as a nonlinear

autoregressive model with exogenous input (NARX) neural network architecture. In [260] and

[94], the authors developed an LSTM network for the estimation of RUL. In a similar manner,

the method proposed in [245] uses an LSTM and proposes a dynamic differential technology to

extract inter-frame information to cope with complex operating conditions.

Another type of NN, namely the convolutional neural network (CNN) has also gained recog-

nition in the field of prognostics. CNNs generally differ from RNNs in that they are designed

to effectively process spatial data. They are also very often used in the analysis of visual im-

agery, that exploits the local dependencies of visual information [145]. For a more thorough

understanding of CNNs and their mathematical formulation, we direct the reader to [244, 98].

In [143], Li et al. use a deep convolution NN (DCNN) for estimating the RUL and they demon-

strate the effectiveness of their method using the C-MAPSS dataset [198] for aero-engine unit

prognostics. In [195], the authors present the first attempt for estimating the RUL using CNN-

based regression. The deep architecture allows the network to learn features that provide a

higher-level abstract representation of low-level sensor signals, by employing the convolution

and pooling layers to capture the salient patterns of the sensor signals at different time scales.

However, considering that the collected machinery features are usually from different sensors,

the relationship between the spatially neighboring features is not significant. In [143], Li et

al. address this issue by proposing to use 1-dimensional convolution filters in their CNN. In

[242], Wen et al. propose a CNN with an added Residual Building Block (RBB), in order to

tackle the vanishing/exploding gradient problem in artificial neural networks with gradient-

based learning methods and backpropagation. Zhang et al. [256] investigated the use of CNN

with an extended time window to tackle the RUL estimation problem under varying operating

conditions. Furthermore, to improve the prognostic robustness and avoid the sensitivity to

the abnormal data, CNN and extreme gradient boosting (XGB) are fused with model averag-
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ing (CNN-XGB). NNs might be powerful, however, they do not take into account uncertainty

bounds arising from different sources like process noise, measurement noise, and an inaccurate

process model. Uncertainty quantification is useful in prognostics as it gives an estimate of

confidence on the prediction of the RUL or general health estimation of an asset. This in turn

can help avoid overly confident decisions and further allows the end-user or decision-maker to

make a better-informed choice.

In contrast to NNs, relevance vector machines (RVM) and Gaussian process (GP) regression

take into account the width of the uncertainty bounds in addition to providing damage tra-

jectories [82]. RVM [222] is a Bayesian formalism representing a generalized linear model of

the identical functional form of the support vector machine (SVM). Although SVM [232] is

a state-of-the-art technique for classification and regression, RVM is able to generate proba-

bilistic outputs in a Bayesian framework that make more sense in RUL estimation applications

and furthermore uses a lot of kernel functions for comparable generalization performance [82].

A GP is a collection of random variables, any finite number of which have a joint Gaussian

distribution. The distribution of a GP is the joint distribution of all those (infinitely many)

random variables, and as such, it is a distribution over functions with a continuous domain,

e.g., time, or space. In [82], the authors evaluate the NN-based approach, RVM and GPR

for their prognostic capabilities on a test stand involving rotating equipment in an aerospace

setting. In the paper, however, there is no clear winner, since each of the algorithms came up

with its current state estimates which were not close to each other. The conclusion states that

even though these algorithms can learn the dynamics of the process from sparse and noisy data

fairly well, the RUL estimates depend significantly on the current state estimation.

Time-Series Analysis Other approaches used are methods from time-series analysis. The

autoregressive moving average (ARMA) model forms a class of general linear models used

in modeling and forecasting of time-series. It is comprised of two parts, namely one for the

autoregression (AR) and the second for the moving average (MA). It is a powerful forecasting

methodology that is able to capture trends found in a time-series and projects its future values.

In a recent paper by Baptista et al. [22], the authors integrate the ARMA methodology with

data-driven techniques, to predict fault events on a real industrial case of unscheduled removals

of the engine bleed valve (EBV), based only on life-usage data (maintenance event data). EBV

is used in most designs as a regulator for the flow that goes to the ECS and the anti-icing systems

of the aircraft. The authors proposed a method in which they feed the entire past fault event

history into the ARMA model and the output is then used as a feature that integrates with the

data-driven model. The data-driven modeling gives further insight into the forecasting outcome

from ARMA and improves its accuracy and efficiency. From the data-driven methods they used,

in addition to ARMA (NN, k-nearest neighbors (KNN), random forest (RF), support vector

regression (SVR), generalized linear regression (GLM)) the SVM produced the best overall
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results. In a similar manner, Su et al. used in [212] least squares support vector regression with

sliding ARMA forecasting to model the nonlinear time-series. They demonstrate their method

on a practical case study for the US-made F-16 fighter.

However, ARMAmodels are applied in cases where data show evidence of a stationary stochastic

process. This means that the time-series’ statistical properties are all constant over time. A

stationary series has no trend. That is, its variations around its mean have a constant amplitude,

and it “wiggles” in a consistent fashion, i.e., its autocorrelations remain constant over time.

Equivalently, short-term random time patterns always look the same in a statistical sense. If the

contrary stands, its generalization, the Autoregressive Integrated Moving Average (ARIMA)

model can be adopted. The “Integrated” indicates that the data values have been replaced

with the difference between their values and the previous values, to transform the time-series

to a stationary one. In a recent paper by Ordóñez et al. [170], the authors combine time-

series analysis methods (ARIMA) to forecast the values of the predictor variables with machine

learning techniques to predict the RUL of aircraft engines for more than one period ahead of

those variables.

Graphical Models Another important category of data-driven models used are graphical

models, which denote the conditional independence structure between random variables [41].

In a recent paper, [20], Banghart et al. utilize Bayesian networks (BN) to estimate the risk of

the landing gear system, cockpit warning/caution annunciator panel, and the environmental

control system turbine assembly of the Northrop Grumman EA-6B Prowler military aircraft.

BN is a probabilistic graphical model that represents a set of variables and their conditional

dependencies via a directed acyclic graph (DAG). Nodes represent variables, while arcs represent

probabilistic relationships. For example, engine blade damage impacts non-mission-capable

time, thus an edge/arc is drawn from the respective nodes. It is a combination of graph

theory and probability theory. It is a representation of a joint probability distribution defined

on a finite set of random variables that can be discrete or continuous. From a knowledge

modeling standpoint, Bayesian networks can be seen as a special knowledge representation

system. The advantage of BN lies in the fact that it does not rely the on explicit understanding

of causal connections within the system(s) under observation, nor the identification of sequences

of events leading to failure. Furthermore, given their probabilistic nature, BNs prove to be a

suitable technique to address the inherent uncertainty of RUL estimation. In the same view,

Ferreiro et al. in [67] use BN as a predicting technique and demonstrate their effectiveness by

representing a physical model for aircraft brake wear, originally developed by British Aerospace

Systems. They fit it to the available data (aircraft weight, landing velocity, brake operation

during landing, flap position, and initial brake temperature) from flight conditions extracted

from the operational plan of the aircraft. Although in this example the causal connections are

based on understanding a physical system, the general idea is that BN can be successfully used
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in prognosis also, instead of diagnosis. A subclass of BN is the so-called dynamic Bayesian

networks (DBN), which relate variables to each other, over adjacent time steps. They can be

considered simply as BN for the modeling of time-series data [79]. A specification of DBN is the

hidden Markov models (HMM), which have been applied to prognostic problems in aviation.

Hidden Markov Models HMM is a stochastic process model, characterized by a doubly

embedded stochastic process with an underlying hidden stochastic process that can be ob-

served through some probabilistic behavior. The latter justifies the word “hidden”. It is also

a powerful tool for RUL estimation. HMM is furthermore a parametric model with some dis-

tinct characteristics: it can not only reflect the randomness of machine behavior (i.e., sensor

measurements) but also reveal hidden states and changing processes [8]. For a more thorough

understanding, we direct the reader to [73]. In this view, in [24], the authors investigate the use

of a Hidden semi-Markov model (HSMM) to predict the RUL of the shaft of utility helicopters

until failure. The difference between an HSMM and an HMM is that the latter assumes that

the sojourn time in the (hidden) state process follows a geometric distribution (most likely

with parameter 1) in the discrete case and an exponential distribution. In contrast to that

in semi-Markov processes, an upcoming transition’s distribution is described by a product of

an arbitrary PDF for the waiting time and a categorical distribution for the next state. The

arbitrary condition for the PDF removes the memorylessness property of the process and as

such, the process is Markovian only at the specified jump instants. Dong et al. in [54], proposed

a HSMM for fault classification application for UH-60A Blackhawk main transmission plane-

tary carriers and prognosis of a hydraulic pump health monitoring application. They compare

HSMM with HMM and conclude that the former is capable of identifying the faults under both

test cell and on-aircraft conditions while the performance of the HMM is not comparable with

that of the HSMM. At the same time, the HSMM-based methodology can be used to estimate

the RUL of equipment. However, HMM have some inherent limitations. One is the assumption

that successive system behavior observations are independent and the other is that the Markov

assumption that the probability in a given state at time t only depends on the state at time

t− 1 is clearly untenable in practical applications [8].

In the same context, time-series analysis methods, which we referred to before, have been com-

bined with HMM. Specifically, AR models have been combined with HMM, in what is called an

autoregressive hidden Markov model (ARHMM) [179], initially proposed for speech recognition.

Here the observations are drawn from an autoregression process (linear prediction) [181]. In

this view, Juesas et al. [107] developed a variant of ARHMM, named autoregressive partially-

hidden Markov model (ARPHMM) for fault detection and prognostics of equipment based on

sensors’ data. The authors considered a modification of the learning procedure of the ARHMM,

by integrating prior knowledge on latent variables. Their method was demonstrated on an in-

stance of the C-MAPSS dataset [198]. They compared their approach, on the aforementioned
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dataset, against RULCLIPPER (Remaining Useful Life estimation based on impreCise heaLth

Indicator modeled by Planar Polygons and similarity-basEd Reasoning) [183], and SWELM

(Summation Wavelet Extreme Learning Machine) [104]. The results are promising, in the

sense that they are comparable to RULCLIPPER, and, on average, better than SWELM. It

is interesting, however, as the authors point out, that using an ensemble between ARPHMM

and SWELM outperforms RULCLIPPER, showing a direction towards developing ensemble

approaches made of complementary and advanced prognostics algorithms.

Neuro-Fuzzy Systems Finally, a method with which we would like to conclude this section

is the use of Neuro-Fuzzy systems (NF) for prognostics. NF systems are neural-network-based

fuzzy systems, with the latter being a nonlinear mapping of an input data vector with a scalar

output. Fuzzy logic is based on Zadeh’s fuzzy set theory [111]. For a better understanding of

fuzzy logic and neuro-fuzzy systems, we refer the reader to [189] and [5], respectively. In [40], the

authors propose an integrated adaptive neuro-fuzzy inference systems (ANFIS) and high-order

particle filtering, which forecasts the time evolution of the fault indication and estimates the

probability density function of RUL. The ANFIS is used to model the fault propagation trend

and the high-order particle filtering integrates the ANFIS, as an m-th-order hidden Markov

model, to carry out long-term predictions and estimate the RUL PDF via a set of particles

with associated weights. They apply their method on vibration data from the main gearbox of

a UH-60 helicopter subjected to a seeded carrier plate crack fault and show that its prediction

accuracy is higher than that of both the conventional ANFIS predictor and the particle-filter-

based predictor where the fault growth model is a first-order model that is trained via the

ANFIS.

3.5 Uncertainties in Prognostics

Before concluding, we must comment on uncertainty quantification (UQ) and management,

as this is an indispensable part of PHM. Accounting for uncertainties is of paramount signifi-

cance in prognostics. Uncertainties arise from various sources such as modeling uncertainties,

measurement uncertainties, operating environment uncertainties, future load uncertainties, in-

put data uncertainties. Such information is crucial for any prognostic estimate, otherwise, the

prognostic results might be of limited use and cannot be incorporated in mission-critical ap-

plications. By accounting for the uncertainties the researcher or end-user can determine if, for

example, the training data is not representative of the task, are too noisy, or if the selected

model is poorly trained (i.e., underparameterized NN). The reason for this is that the single

point estimates that we described, assume a deterministic algorithm or additional reasoning.

Due to all the sources of uncertainty though, it is crucial that there must be confidence around

the prediction. There are numerous ways for this, such as probability distributions of the RUL
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instead of a single-point RUL estimate. In [197] and [196], the authors discuss in a very concise

and detailed manner the uncertainty issues and propose solutions by modifying PHM metrics

and recommend suitable ways of graphically representing these metrics.

3.6 Discussions and Conclusions

Prognostics and health management (PHM) is a fairly new discipline that goes beyond condition-

based maintenance (CBM) by predicting the future (health) states of an asset and estimating

its remaining useful life (RUL). This process provides actionable information, enabling in-

telligent decision-making for improved performance, safety, reliability, and maintainability of

engineered systems. This is achieved by using real-time and historical state information of

subsystems and/or their components. Aside from the aforementioned, the significance of PHM

lies in that these early warnings grant the user the horizon to design a timely maintenance

schedule and follow all the required procedures for the logistics. In this chapter, we introduced

PHM, presented the notion of RUL, and gave detailed explanations of the four prevailing PHM

approaches, namely reliability-based, model-based, data-driven, and hybrid approaches. In

addition, we briefly considered the significance of uncertainty quantification in prognostics.

We, further, emphasized data-driven approaches in the aerospace industry where we gave an

overview of recent tools and methods that have been used in the field.

The overview shows that methods other than traditional time-series analysis are gaining pop-

ularity in the data-driven prognostics in aerospace, such as graphical methods and NNs. The

latter, specifically, are emerging as they propel data-driven solutions by not requiring (a lot

of) engineering knowledge and more importantly by alleviating the need for explicit feature

(predictor/parameter) construction. In addition to that, NNs lend themselves naturally to a

multitude of sophisticated and automated methods for hyperparameter optimization, reduc-

ing the need for manual tuning. Moreover, NNs have the ability to model complex, highly

non-linear systems without the need for any knowledge or assumption about system structure.

Despite, however, the recent overall data-driven success in prognostics, in general, but also in

aerospace there are still challenges and practical issues that need to be addressed. Below, we

present some of these needs.

Need for securely obtaining more data. In detail, even though data-driven methods

have been developed to counter the increasing complexity of systems and components, there

is still no standard procedure to obtain data, in terms of a protocol or system. Data are

either not integrated centrally, but scattered around different systems, or cannot be disclosed

due to security and privacy issues and competition. This means that future work should not

only emphasize algorithmic performance but also data quality and the drawing up of certain

conventions per industrial field that govern data quality.

Regarding the issue of data sovereignty, it is important that future research takes into account
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and builds on approaches of collaborative learning, such as federated learning (FL) [6]. FL

serves two purposes. On one side it allows for data augmentation by providing data from

different data owners. In aviation this is significant and beneficial as a predictive maintenance

model will not be trained on data from only one OEM or airline but from multiple, thus enabling

multimodal learning. After all, a model trained on data from a turbofan engine in Northern

Europe will exhibit different degradation patterns to a model trained on data from a turbofan

engine in the Middle East, where high temperatures add more to the stress of the engine. On

the other side, FL allows for data protection by training on the data from each party involved

and simply aggregating and updating the weights/parameters of a global model. Since only

partial model weights are shared with the global model from each party involved, privacy can

be preserved and, this way, the data is less exposed to model inversion [142].

On top of that, there is also the possibility that data do not even exist due to the underlying

cost of acquiring them, as for example run-to-failure data of a turbofan engine or other expen-

sive asset. Future research should, thus, emphasize generating data when it is not available

(e.g. through high fidelity simulations), taking into account that in field applications theoret-

ical predictions and methods developed must be verified and validated first before practical

applications become possible.

Need for real-time prognostics For field applications, another crucial challenge is the real-

time (online) RUL estimation. The issue lies in the fact that the developed methods need

intensive computational resources, which is in direct contradiction with hardware conditions of

onboard computers, such as on cars and aircraft. Future directions should, therefore, investigate

more in this direction, such as in edge computing [6]. For example, safety-critical computations,

such as reliability and health prognostics, could take place on the edge, as edge computing allows

for low latency since the data are processed closer to their source allowing thus, for accelerated

insights. Furthermore, edge computing can increase model accuracy, especially in fields where

the network bandwidth is too low or expensive, such as in aviation. Such issues are typically

mitigated by reducing the size of data used in a (predictive) model. This results in information

loss that could have otherwise been useful. When deployed at the edge, for example, data

feedback loops can be used to improve AI model accuracy and multiple models can be run in

parallel [249]. On the other hand, computations of operations-critical applications that deem

no immediate result (e.g., fuel/energy consumption) can take place offline.

Need for explainable and interpretable data-driven PdM Data-driven methods for

PdM, such as NNs are by construction “black box”. This term refers to processes which lack

interpretability of their internal workings and can be viewed only in terms of their inputs and

outputs. This means that these models do not explain their predictions/outputs in a way that

is understandable by humans, and as a result, this lack of transparency and accountability

can have severe consequences [191], especially in operations-critical, or safety-critical systems,

like aerospace. Interpretability of PdM methods can assist decision-makers in asserting the
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feasibility of the model logic, as well as in the troubleshooting of the developed methods, thus

putting confidence in the process. This is why future research should invest in explainable

PdM.

Need for uncertainty quantification (UQ) Finally, another topic that is of great impor-

tance in PdM is UQ. Uncertainties arise from various sources such as modeling uncertainties,

and input data uncertainties. Quantifying uncertainty is crucial for any prognostic estimate,

otherwise, it is of limited use and cannot be incorporated in safety-critical or operations-critical

applications. By accounting for the uncertainties the researcher or end-user can determine if,

for example, the training data is not representative of the task or too noisy (i.e., measurement

uncertainties, operating environment uncertainties, future load uncertainties, input data uncer-

tainties) or if the selected model is poorly selected (i.e., underparameterized NN). Especially

when it comes to NNs, UQ is a rising topic of interest, given the fact that NNs are being

industrially employed. Although in recent years there has been work done on UQ in NNs and

some work on UQ in PdM, the field is still young with no consensus on how to measure this

uncertainty. Furthermore, while the majority of model-based prognostic methods quantify the

associated uncertainty, only a few studies in the data-driven domain address this matter, de-

spite its importance [26]. Therefore, we recommend this as an important and exciting direction

for further research in data-driven PdM.
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3.6. Discussions and Conclusions
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