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Υπάρχει στον κόσμο τούτον ένας μυστικός νόμος – αν δεν υπήρχε, ο κόσμος
θα ‘ταν από χιλιάδες χρόνια χαμένος – σκληρός κι απαραβίαστος: το κακό

πάντα στην αρχή θριαμβεύει και πάντα στο τέλος νικάται.

–Νίκος Καζαντζάκης, Ελευθερία ή Θάνατος

There is a secret law in this world - if it didn’t exist, the world would have
been lost thousands of years ago - hard and inviolable: evil always prevails

in the beginning and is always defeated in the end.

–Nikos Kazantzakis, Freedom or Death

Στην οικογένειά μου

To my family
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Chapter 1

Introduction

1.1 Background

“Prediction is very difficult, especially if it’s about the future!” With these words, Nobel

laureate in physics Niels Bohr managed to describe in a humorous way the inherent difficulty

of knowing what will happen in the future. Mankind has always been intrigued and challenged

to know what to anticipate. Having this knowledge, one can better prepare against what is

about to occur, thus avoiding any - usually unwanted - surprises, such as a disaster. Driven by

the power that such knowledge can have, humans have managed to devise various methods to

foresee what could happen and when. In antiquity, for example, the Oracle of Delphi in Greece

would consult kings and emperors on military campaigns by foretelling (in a rather cryptic

way) who, for instance, would prevail in battle through the use of fumes and vapors [29, 72, 1].

The Babylonians would predict the weather from cloud patterns and astrology [137, 172] and

people in the Middle Ages through what came to be known as weather lore [33]. In Christianity

and other religions, prophets would try to read the signs of the times to prepare people for the

ominous days that were approaching. Even though, a lot of time has passed since those days,

human nature has remained the same. Nowadays, of course, human interests and needs have

shifted, but the requirement on what to expect is still necessary and pivotal to the existence of

our present-day living.

Modern societies rely heavily on energy, transportation, and (heavy) industry to function

smoothly. As a result, maintenance of these systems is of paramount importance, in order

to maximize safety, usage, and to minimize (unnecessary) downtime, as this can save super-

fluous costs and nuisance. Inevitably, the need to foresee/predict when a system will require

maintenance has gained popularity since the 1990’s, with a slow shift from the classic cor-

rective or reactive maintenance (RM) and scheduled or preventive maintenance (PM) policies

towards what is known as predictive maintenance (PdM) [103, 184, 160]. The former two

- still predominant - types of maintenance either perform corrective actions when they are

1
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1.1. Background

needed (e.g., when a system failure has already occurred) or in regular time intervals in order

to prevent failures (based on e.g., maintenance history of similar assets), respectively. At a

closer look, however, these maintenance strategies naturally introduce significant extra costs

due to machine downtime, component replacement or even unnecessary maintenance interven-

tions. In contrast to these maintenance polices, PdM through the careful monitoring of the

system in question (condition-based maintenance or CBM), determines its state/condition, in

order to predict when maintenance should be performed, overcoming the inefficiencies of the

aforementioned methods. This way, maintenance can be planned accordingly and in advance

by activating needed protocols, preparing the necessary logistics (e.g., personnel, spare parts)

and by optimizing the overall maintenance schedule. PdM achieves this by estimating what is

known as the remaining useful life (RUL) of an asset. The RUL determines the time remaining

until the system in question exceeds its normal operational envelope and is no longer deemed

useful.

The available technologies and applications that enable and are associated with PdM are typi-

cally called prognostics and health management (PHM). RUL as the means to an end, lies in

the heart of PHM and has thus received a lot of attention from the academic and industrial

communities. In general, there are three major classes of approaches which deal with the RUL

estimation. Namely, model-based, data-driven, and hybrid methods [59, 227, 21, 184, 156].

Model-based methods (or physics-based methods) rely on established mathematical/physical

models of the asset and degradation process and consequently require a thorough understanding

of the asset’s and degradation process’s physics. This can sometimes prove to be prohibitively

costly, in terms of time and money, especially for very complex systems. Data-driven methods

are, on the other hand, relatively easier to develop as they do not call for (a lot of) expert

or domain knowledge. However, they do require large amounts of (maintenance) data, a con-

straint that is not always possible due to the nature of certain applications. Machine learning

(ML) and deep learning (DL) commonly belong to this category. Lastly, hybrid (or fusion)

methods attempt to leverage the advantages of the two previous methods while minimizing

their limitations by combining (or fusing) model-based approaches and augmenting them with

data-driven methods and vice versa.

Despite their differences, all methods, in general, make some use of the sensor data generated

by the assets for machine monitoring and/or it’s maintenance history. This has been made pos-

sible due to the progress of (big) data, machine learning, deep learning and the related fields

and applications (e.g., internet-of-things), the wide availability of sensors [177], the increase of

computational power and storage (e.g., cloud computing), and the reduction in the prices of

these. Typically, the generated data are recorded over time, as a sequence of measurements,

known as time-series. All methods use the generated data in order to either develop the equa-

tions of the underlying physical process in the model-based approaches or to extract knowledge

in order to make inferences in the data-driven approaches.

2
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Chapter 1. Introduction

1.2 Objectives

The estimation of the RUL is, in general, an inherently challenging problem. The remaining life

is not simply a target variable that can be predicted from the time-series sensor measurements.

It is a variable that needs to be inferred from a longer trend of degradation patterns and when

those appear. In the data-driven domain specifically, there exist various challenges, such as the

correct pre-processing of the data, the definition of the RUL variable in supervised settings, as

well as the selection of the appropriate learning algorithm to be used. Generally, the design

choices of the algorithm and its respective hyperparameters, next to the choices that need to

be made during pre-processing, make this task challenging for end-users. Apart, however, from

the technical difficulties of the matter, further valuable objectives arise.

A point of key importance is to be able to quantify the confidence of the estimation. Deter-

mining the RUL simply as a point-wise estimation gives no information about the uncertainty

of our prediction. For example, how sure are we that our car will need a new alternator in 6

weeks? After all, when dealing with safety-critical and operations-critical questions we would

like to be sure (as sure as one can be) about the future. Furthermore, it is also desirable to

be able to predict the chance that a machine operates without a fault or failure up to some

future time. This way, maintenance personnel can determine whether the inspection interval is

appropriate or not.

This work is devoted to the usage of data-driven methods for the estimation of the RUL in the

context of PdM. Therefore, an extensive study of data-driven methods in PdM is conducted

to point out the shortcomings, the advancements in the field, as well as opportunities for

future work. Based on this, we developed pipelines with more or less complex methods, such

as Automated Machine Learning (AutoML), Deep Neural Networks (DNNs), hyperparameter

optimization (HPO) and combinations of these to tackle said questions.

In addition, we investigate a method to perform multi-objective scheduling optimization of

a job-shop, which is an appropriate next step of the RUL estimation. After all, apart from

safety, schedule optimization is another major reason for the existence of PHM and for the

notion of RUL specifically. Beyond that, this work investigates an application of interpretable

artificial intelligence (AI) through the use of genetic programming (GP) on a real-world problem

from the aviation industry. It further proposes extensions and ideas, in order to incorporate

similar approaches in the field of PHM. Finally, given the fact that this work deals mainly

with time-series data, we examine a real-world problem from the medical domain concerning

classification. For this task, we make use and extend an earlier implementation of a data-

driven pipeline originally developed for the automotive industry, exhibiting the significance of

knowledge transfer and how it can impact research between different scientific fields.

The relevant research questions (RQ) of this work are stated in the following:

RQ1 What are the advancements, drawbacks, and opportunities in PHM and specifically of

3
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1.3. Outline of the Dissertation

data-driven PdM in the aerospace industry?

RQ2 Can automated machine learning (AutoML) methods be applied for the estimation of the

RUL in data-driven PdM?

RQ3 Can we propose an automated framework for configuring RUL prediction models which

are highly accurate and have less estimation uncertainty?

RQ4 Can explainable AI facilitate the understanding of the data generating process of indus-

trial processes?

RQ5 Can tabu search (TS) support the solution of the multi-objective flexible job-shop schedul-

ing problem (FJSSP)?

RQ6 Can time-series techniques from industry lend themselves to applications in the medical

domain?

The work presented in this thesis has been carried out in the context of the NWO (Neder-

landse Organisatie voor Wetenschappelijk Onderzoek) project, CIMPLO (Cross-Industry Pre-

dictive Maintenance Optimization Platform). The CIMPLO-project aims at developing a cross-

industry predictive maintenance optimization platform, which addresses the real-world require-

ments for dynamic, scalable multiple-criteria maintenance scheduling. Amongst the industry

partners involved in the CIMPLO-project, KLM (Koninklijke Luchtvaart Maatschappij) and

Honda Research Institute Europe have been involved in the work presented in this dissertation.

1.3 Outline of the Dissertation

In this Section, the outline of this dissertation is presented. Furthermore, we briefly describe

the motivation and contents of each following chapter.

• Chapter 2 provides a brief overview of the notions used in the following chapters. Its

aim is to acclimatize the reader with the terminology used and serve as a quick reference

guide.

• Chapter 3 provides a general introduction to the reader of the fields of PHM and PdM

through definitions and examples, and defines the notion of the RUL. It further empha-

sizes on data-driven applications of PdM in the aerospace industry due to the criticality

that PHM has in it and its future. Drawbacks and future research suggestions are also

presented. RQ1 is addressed in this chapter. Contents of this chapter are (partly) based

on [230]; Duc van Nguyen, Marios Kefalas, Kaifeng Yang, Asteris Apostolidis, Markus

4
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Olhofer, Steffen Limmer, and Thomas Bäck. A Review: Prognostics and Health Man-

agement in Automotive and Aerospace. International Journal of Prognostics and Health

Management, 10(2):35, 2019.

• Chapter 4 serves to discuss the difficulties and challenges that accompany the RUL pre-

diction task in the data-driven domain. In this view, it introduces to the reader the

notion and necessity of automated machine learning (AutoML). The presented method is

validated on a simulated dataset for turbofan engines. RQ2 is addressed in this chapter.

Contents of this chapter are (partly) based [112]; Marios Kefalas, Mitra Baratchi, Asteris

Apostolidis, Dirk van den Herik, and Thomas Bäck. Automated Machine Learning for

Remaining Useful Life Estimation of Aircraft Engines. In 2021 IEEE International Con-

ference on Prognostics and Health Management (ICPHM), pages 1–9, Detroit (Romulus),

MI, USA, June 2021. IEEE.

• Chapter 5 deals with a topic of high significance in PHM and specifically in data-driven

PdM, namely uncertainty quantification. The motivation behind this chapter lies in the

fact that in addition to the RUL prediction, one needs to assess also the confidence of

that prediction. This is especially crucial in operations-critical and safety-critical appli-

cations, where an indication of the remaining time until failure should be as confident as

possible. RQ3 is addressed in this chapter. Contents of this chapter are (partly) based

on [116]; Marios Kefalas, Bas van Stein, Mitra Baratci, Asteris Apostolidis, and Thomas

Bäck. An End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life

Estimation: An Application on Aircraft Engines. In 2022 7th European Conference of the

Prognostics and Health Management Society, Turin, Italy, July 2022. PHM Society.

• Chapter 6 discusses the importance of explainability in data-driven methods in PHM.

Through a case study with real-world data from the aerospace industry we motivate the

criticality of explainability, the advantages that accompany such methods, and future

research directions. Additionally, the notion of symbolic regression (SR) is presented

and how it can be used in prognostics. RQ4 is addressed in this chapter. Contents of

this chapter are (partly) based on [113]; Marios Kefalas, Juan de Santiago Rojo, Asteris

Apostolidis, Dirk van den Herik, Bas van Stein, and Thomas Bäck. Explainable Artificial

Intelligence for Exhaust Gas Temperature of Turbofan Engines. Journal of Aerospace

Information Systems, pages 1–8, 2022. Publisher: American Institute of Aeronautics and

Astronautics eprint: https://doi.org/10.2514/1.I011058.

• Chapter 7 deals with the next step that arises in PHM/PdM applications. Scheduling.

The idea presented here, is how to optimally schedule the maintenance of assets. Specifi-

cally, in this chapter we introduce and deal with the flexible job-shop scheduling problem

5
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(FJSSP), an NP-hard problem that closely resembles real maintenance settings. We dis-

cuss its difficulties and propose a method to solve its multi-objective variant. RQ5 is

addressed in this chapter. Contents of this chapter are (partly) based on [115]; Marios

Kefalas, Steffen Limmer, Asteris Apostolidis, Markus Olhofer, Michael Emmerich, and

Thomas Bäck. A tabu search-based memetic algorithm for the multi-objective flexible

job shop scheduling problem. In Proceedings of the Genetic and Evolutionary Computa-

tion Conference Companion, GECCO ’19, page 1254–1262, New York, NY, USA, 2019.

Association for Computing Machinery.

• Chapter 8 exhibits how time-series techniques from industry can lend themselves to ap-

plications in the medical domain. Specifically, we show that a time-series pipeline that

originated in the automotive industry can facilitate the diagnostic process in the field of

Neurology. RQ6 is addressed in this chapter. Contents of this chapter are (partly) based

on [114]; Marios Kefalas, Milan Koch, Victor Geraedts, Hao Wang, Martijn Tannemaat,

and Thomas Bäck, Automated Machine Learning for the Classification of Normal and Ab-

normal Electromyography Data, 2020 IEEE International Conference on Big Data (Big

Data), 2020, pp. 1176-1185. IEEE.

• Chapter 9 concludes the work of this thesis by summarizing the answers to the research

questions and providing suggestions for future work.

1.4 Author’s Contributions

Below we show, in chronological order, a list of publications that the author has contributed

to.

[1] Asep Maulana, Marios Kefalas, and Michael Emmerich,“Immunization of networks us-

ing genetic algorithms and multiobjective metaheuristics”, 2017 IEEE Symposium Series

on Computational Intelligence (SSCI), 2017, pp. 1-8. IEEE. DOI: https://doi.org/

10.1109/SSCI.2017.8285368.

[2] Marios Kefalas, Steffen Limmer, Asteris Apostolidis, Markus Olhofer, Michael Em-

merich, and Thomas H. W. Bäck. 2019. “A tabu search-based memetic algorithm for the

multi-objective flexible job shop scheduling problem”. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion (GECCO ‘19). Association for Com-

puting Machinery, New York, NY, USA, 1254–1262. DOI:https://doi.org/10.1145/

3319619.3326817.

[3] Duc van Nguyen, Marios Kefalas1, Kaifeng Yang, Asteris Apostolidis, Markus Olhofer,

1Duc van Nguyen and Marios Kefalas have contributed equally to this publication (co-first authorship).

6

https://doi.org/
https://doi.org/10.1145/


585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

Chapter 1. Introduction
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Chapter 2

Preliminaries

This chapter serves as a brief introduction to the notions of time-series and artificial intelligence.

We should note here that this chapter does by no means offer an exhaustive overview of the

aforementioned fields, as this would lie out of the scope of the present thesis. Its aim, instead, is

to acclimatize the reader to the definitions of terminology that will be recurring in the following

chapters and to demonstrate the significance and purpose of the said fields.

We will start with the concept of time-series.

2.1 Time-Series

Oddly enough time-series, as the name suggests, are not series in the strict mathematical sense

(i.e., summation of infinitely many quantities), but instead are a sequence of numbers that

are indexed usually through time (although other indices are possible as well). These numbers

can represent almost anything and the indices are, most commonly, equally spaced points in

time. The purpose of time-series and their analysis is to understand or model the stochastic

mechanisms of various phenomena that take place in an interval of time and predict or forecast

future values.

There are ample examples of time-series that we deal with (almost) daily. A weather forecast

for the next 10 days or hours, the monthly national unemployment figures and even the steps

we take daily and which are recorded on our wearables (e.g., smart watches) are examples of

time-series. Perhaps the reader might find more interesting that the number of daily Covid-19

cases (caused by the SARS-CoV-2 virus) since January 2020, the increasing numbers of the

global temperature and the sea level in the last 100 years, and the earth’s population since the

initial recordings are all examples of time-series.

Time-series, of course, need not only measure a single quantity such as the temperature in the

next 10 days, but also multiple quantities, such as the humidity, the UV index, and the wind

speed during that time. When time-series hold multiple values per time-index, then we talk

9



585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 18PDF page: 18PDF page: 18PDF page: 18

2.2. Artificial Intelligence (AI)

about multivariate time-series. This is in contrast to univariate time-series which represent

only a single quantity per time-index.

More formally a time-series T is defined as follows:

Definition 2.1 (Time-series). Let T be a time-series. Then T= {xi ∈ Rm : i ∈ N}, where
m ∈ N. When m = 1 we refer to T as a univariate or simple time-series and when m > 1 we will

be talking about multivariate time-series. The values of the time-series T are also called data

points, instances or simply data and the time-index i, accompanying a value, is also referred

to as a time-step. Finally, the variables measured by a time-series T are also most commonly

referred to as features or attributes.

We should note here that in Definition 2.1 we did not bound the time-index i, but instead we

let it tend to infinity. Mathematically this is sound. However, in practical applications, such as

the ones presented in this thesis, whenever we refer to a time-series T it will be of finite length

n ∈ N, unless stated otherwise. One can see the usefulness of this constraint when taking

into account that an “infinite” time-series would also require infinite memory in a computing

machine. What is more, even though xi can lie in any set of numbers, such as the complex

numbers Cm, in this thesis we will not be dealing with time-series data in that domain, but

we will remain in the set of real numbers Rm. Lastly, the interpretation of the time-index as

time is in, general, unimportant from a mathematical perspective, and as such the index can

lie in any set of numbers. The applications, though, that we will deal with demand a natural

interpretation of the time-index as time and as such, will restrain the time-index in the set of

natural numbers N.

We will, furthermore, often talk about a part or a subsequence of a time-series T .

Definition 2.2 (Subsequence). A subsequence Ti,k of a time-series T of length n ∈ N is a

contiguous subset of values from T of length k ∈ N starting at position with index i ∈ N.

Ti,k = {xj ∈ Rm : j ∈ N, i ≤ j ≤ i+k−1}, where 1 ≤ i ≤ n−k+1 and m ∈ N. A subsequence

of size k is also frequently called a window of size k.

The significance of time-series is paramount and consequently the mathematical tools and the

theory that have been developed are vast. We refer the interested reader to [46, 207].

2.2 Artificial Intelligence (AI)

Artificial intelligence (AI) is one of the most fresh fields in science and engineering. The name

was coined back in 1956 at Dartmouth College with work being done as soon as 1943 from

Warren McCulloch and Walter Pitts and after the Second World War [192]. It can, however,

be traced back to the 1840s when Augusta Ada King, Countess of Lovelace and the daughter of

Lord Byron (Ada Lovelace) conceived the idea of a programmable computer being intelligent,

10
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as notes to the works of Babbage and Menabrea [192, 149]. She stated that: “[. . . ] the engine

[the programmable computer] might compose elaborate and scientific pieces of music of any

degree of complexity or extent.” [149].

Nowadays AI has found itself intertwined with our daily lives. From search engines (e.g.,

Google), recommendation systems (e.g., Netflix ) and virtual assistants (e.g., Apple’s Siri) all

the way to agriculture [148, 220, 75], healthcare [117, 186, 150, 122], law [15] and the automotive

industry (e.g., the Tesla self-driving car), to name a few. But what exactly is AI?

The answer to that question is not an easy one. After all, what is intelligence [136]? Fur-

thermore, defining a particular field or discipline to the satisfaction of all involved parties is

an extremely challenging endeavor and lies outside the scope of this thesis. However, Russel

and Norvig [192] suggested that AI be defined in terms of its goals and adopted the following

definition:

Definition 2.3 (Artificial Intelligence). “[. . . ] we adopt the view that intelligence is concerned

mainly with rational action. Ideally, an intelligent agent takes the best possible action in a

situation. We study the problem of building agents that are intelligent in this sense.”

To alleviate the murkiness of the aforementioned, we refer the interested reader to [136, 192, 98]

for a more thorough overview of the field. We will now briefly dive into two related concepts

from AI that we will encounter in the following chapters, namely machine learning and deep

learning.

2.2.1 Machine Learning (ML) and Deep Learning (DL)

Machine learning (ML) as a term was first introduced by Arthur Lee Samuel an American

pioneer in the field of computer gaming and artificial intelligence (AI) in his 1959 paper titled

“Some Studies in Machine Learning Using the Game of Checkers” [194]. There he defined ML

as:

Definition 2.4 (Machine Learning). “Machine Learning is the field of study that gives com-

puters the ability to learn without being explicitly programmed.”

But what does it mean for a computer to “learn”? Tom Mitchell defined learning in his

book [159] as follows:

Definition 2.5 (Learning). “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P , if its performance at tasks in T ,

as measured by P , improves with experience E.”

Essentially, this means, that ML comprises a set of computational methods which use experience

to improve performance, by having the ability to acquire their own knowledge through the

11
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extraction of patterns from (raw) data [98]. According to Ian Goodfellow, Yoshua Bengio and

Aaron Courville, ML is the only viable approach to creating AI systems that can operate in

complex, real-world environments [98].

A closely related concept to ML is that of deep learning (DL), which can be considered a

particular type of ML [98]. Yann Lecun, Yoshua Bengio and Geoffrey Hinton defined DL as

follows [132]:

Definition 2.6 (Deep Learning). “Deep learning allows computational models that are com-

posed of multiple processing layers to learn representations of data with multiple levels of

abstraction.”

As can be seen from the definition, the essence of DL lies in its representational power. It can

achieve great power and flexibility by learning to represent the data as a nested hierarchy of

concepts defined from simpler concepts [98]. These multiple levels of representation transform

the representation at one level into a representation at a higher and slightly more abstract

level [132]. The key aspect of DL is that these layers of representations are not designed by

humans, but instead they are learnt from data using a general-purpose learning procedure [132].

The adjective “deep” in DL stems exactly from this hierarchy of concepts. If we draw a graph

showing how these concepts are related to each other, the graph will be deep, with many layers

of concepts and abstractions [98].

At this point we should disambiguate between DL and another term that will often appear:

artificial neural networks (ANN) or simply neural networks (NN). Historically, the earliest

learning algorithms were intended to be computational models of how learning takes place in

the brain. As a result of this ANN is one of the names that DL has gone by [98]. Obviously the

modern area of DL goes beyond and above this neuroscientific perspective and finds applications

in areas were learning is not necessarily neurally inspired. However, most researchers in the

field of AI use the term DL to describe very large NN, in which case “large” points to deep. In

fact, occasionally the number of layers in an ANN distinguishes an ANN from a DL approach.

Even though there is no definite number that qualifies an ANN as being deep, DL and ANN

are very deeply intertwined and both terms are often used interchangeably meaning the same

thing.

Finally, we would like to end this chapter by defining certain terms in the context of AI that

are important to the understanding of this thesis. Namely, supervised learning, regression,

classification training data, test data, validation data, features, labels, hyperparameters and

hyperparameter optimization.

Definition 2.7 (Supervised Learning [192]). Given a training set of N example input-output

pairs:

(x1, y1), (x2, y2), · · · , (xN , yN) ,

12
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where each yj was generated by an unknown function y = f(x), the task of supervised learning

is to discover a function h that approximates f (the underlying relationship between x and y).

Definition 2.8 (Classification). Classification is the task in which a learning algorithm assigns

a category (class) to each item (input) [161]. In other words, the output y in Definition 2.7 is

one of a finite set of values [192]. It is called binary (or Boolean) classification if there are only

two possible values [192].

Definition 2.9 (Regression). Regression is the task in which a learning algorithm predicts a

(real) value for each item (input). In other words, the output y in Definition 2.7 is a num-

ber [192].

Definition 2.10 (Training data). Training data are the examples that are used to train a

learning algorithm [161]. It can be related to the experience E of the algorithm (see Defini-

tion 2.5). Another name for training data is training samples. In a supervised learning setting

the training data have the form as in Definition 2.7.

Definition 2.11 (Test data). Test data are the examples that are used to evaluate the per-

formance of a learning algorithm (see Definition 2.5) [161]. The test data play the role of the

proxy to unseen, real-life data. Another name for test data is test samples.

Definition 2.12 (Features). Features are the set of attributes associated to the data [161].

Another name for features is attributes or variables.

Definition 2.13 (Labels). Labels are the values or categories (classes) assigned to the data [161].

Definition 2.14 (Hyperparameters). The hyperparameters of a learning algorithm are the

parameters that dictate the behavior of the learning process. These parameters cannot be

learnt by the algorithm from its experience E (see Definition 2.5), but need to be set by the

researcher.

Definition 2.15 (Hyperparameter Optimization). Hyperparameter optimization (HPO) is the

task of determining the optimal (with respect to some measure) hyperparameters of a learning

algorithm (see Definition 2.14).

Definition 2.16 (Validation data). Validation data are the examples that are used to tune the

hyperparameters of a learning algorithm in the process of hyperparameter optimization (see

Definition 2.15), when working with labeled data [161]. Validation data play the role of a proxy

to the test data. Another name for validation data is validation samples.

Having defined all the tools we need we are ready to move on to the main subject of this thesis:

predictive maintenance.
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Chapter 3

Prognostics and Health Management

This chapter1 aims at introducing to the reader the fields of prognostics and health management

(PHM) and predictive maintenance (PdM). We start by discussing the importance of the field

through examples and we present definitions and terminology that is used. Following that,

data-driven applications of PdM in the aerospace industry are discussed. The reason for the

selection of this specific industry is based on the high level of criticality that maintenance has in

it. As a result, timely maintenance is an integral and indispensable aspect of aerospace which

is reflected in the strict safety regulations, high availability expectations by airlines and clients,

as well as maintenance costs. Finally, this chapter is summarized and directions for future work

are presented.

3.1 Introduction

At 11 : 03 Eastern Daylight Time (EDT) on April 17 2018, Southwest Airlines Flight 1380

from New York to Dallas, was at flight level (FL) 320 (an altitude of approximately 32, 000

feet or 9.8 km) and climbing when it experienced a left engine failure. As a result, most of the

engine inlet and parts of the cowling broke off. Fragments from the inlet and cowling struck

the leading edge of the wing and fuselage, causing a rapid depressurization and the death of a

passenger. After investigations, the reason was found to be a failure of a single fan blade, due to

a fatigue crack [2]. A similar event took place on 30th September 2017 when Air France Flight

66 from Paris to Los Angeles suffered an uncontained engine failure and made an emergency

landing at Goose Bay Airport, Canada. Post-flight investigations indicated that the engine’s

fan hub had detached and dragged the air inlet with it during the flight [93]. These examples

are by no means exhaustive. They show, however, how essential maintenance is, especially in

1Contents of this chapter are based on [230]; Duc van Nguyen, Marios Kefalas, Kaifeng Yang, Asteris Apos-
tolidis, Markus Olhofer, Steffen Limmer, and Thomas Bäck. A Review: Prognostics and Health Management
in Automotive and Aerospace. International Journal of Prognostics and Health Management, 10(2):35, 2019.
PHM Society.
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the aerospace industry.

Maintenance comprises a large percentage of operating costs of industries. According to the

annual reports published by the Royal Dutch Airlines (KLM)2, the maintenance costs from

2017 to 2020 are 941, 947, 882 and 738 million euro, respectively. These correspond to about

14% to 21% of the operational costs (total external expenses). DHL has estimated that an

AOG (Aircraft On Ground) due to technical reasons, for an A380 Airbus, costs as much as

925.000 euro per day3. In the worst cases, the consequent costs could not be fully evaluated if

the equipment failure led to a bad accident.

An approach that has surfaced in recent years, in order to mitigate the large maintenance costs

is that of Prognostics and Health Management (PHM). PHM goes beyond CBM, as correct

predictions of the future may allow avoiding failure and other large disturbances [133]. PHM

includes a set of methodologies and actions that aim at minimizing maintenance costs by the

assessment, diagnosis, prognosis, and health management of engineered systems. This allows

a shift from traditional maintenance strategies, such as reactive maintenance (RM) and pre-

ventive maintenance (PM) to what is known as predictive maintenance (PdM). PdM estimates

when maintenance should take place and thus, increases safety, maximizes usability by avoid-

ing immature maintenance. As a consequence reduces operation and maintenance costs and

mitigates logistic bottlenecks. With an increasing prevalence of smart sensing, the progress

of artificial intelligence, and with more powerful computing and increased storage, PHM has

been gaining popularity across a growing spectrum of industries such as aerospace, smart man-

ufacturing, transportation, and power generation [57]. Regardless of the field, one common

expectation of PHM is its capability to translate raw data into actionable information to facili-

tate maintenance decision making [109]. PHM is also referred to as system health management

(SHM), integrated systems health management (ISHM), vehicle health management system

(VHMS) or engine health management (EHM).

PHM systems are designed in such a way that they can detect incipient component or sys-

tem faults and/or failures, perform failure diagnostics, failure prognostics, and general health

management. Among the tasks that a PHM system is expected to perform failure prognostics

is the most significant one and lies in the core of PHM. Failure prognostics refers specifically

to the phase involved with predicting future behavior and the system’s useful lifetime left in

terms of current operating state and the scheduling of required maintenance actions to main-

tain system health [227]. The useful lifetime left is often called the ’Remaining Useful Life

(RUL)’. RUL is typically a random variable and unknown, and as such it must be estimated

from available sources of information such as the information obtained in condition and health

monitoring [208]4.

2https://www.klm.nl/en/information/corporate/publications
3Source: Airbus China
4In this dissertation we will be using the terms RUL prediction and RUL estimation interchangeably, unless

otherwise stated.
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More formally, based on [21], the RUL can be defined as follows:

Definition 3.1 (Remaining Useful Life (RUL)). Let t ∈ R≥0 be an instance of time at which

we predict the RUL of an asset. Then,

RUL(t,Dt) = inf{s ∈ R≥0 : s ≥ t ∧ �S�(CI(s,Dt))} − t , (3.1)

where inf represents the infimum of a set and � is the indicator function. S is a user-defined

system operating envelope. The operating envelope, S, is a collection of boundary limits, that

when exceeded put the integrity of an asset at risk. CI represents a user-specified condition

index, which monitors if the asset has exceeded it’s operating constraints. In this case the

CI lies in the complement of S (S�), which indicates that the system must be repaired or

maintained. Dt represents the data generated by an asset used for the RUL prediction of that

asset. Most commonly Dt is sensor measurements recorded in time (time-series e.g., pressure,

temperature) accompanied by event labels (e.g., times-to-failure), up until time t. In principle

though, Dt can be any type of data, structured or not, that can facilitate the estimation.

The quantity inf{s ∈ R≥0 : s ≥ t ∧ �S�(CI(s,Dt))} in Equation 3.1 can also be referred to

as the end-of-life (EoL), to mark that the system’s “life”, based on user-defined criteria, has

come to an end. Ultimately the estimation of RUL amounts to the approximation of the EoL.

We should note that the EoL does not necessarily mean that the system has gone through a

catastrophic failure but might operate sub-optimally according to user-defined criteria.

Finally, from a data-driven perspective, the estimation of the RUL of an asset involves creating

a model which is trained on data from the same type of assets. In the work presented in this

dissertation, the data used are (multivariate) time-series (see also Definition 2.1). In more

detail, for the RUL estimatiom, let U be the set of training data. Each instance u ∈ U is

presented as a multivariate time-series of sensor readings Xu = [x1,x2, . . . ,xT (u)]
T ∈ Rm×T (u),

with T (u) time-steps where the last time-step corresponds to the end-of-life (EoL) of the unit

u. Each point xt ∈ Rm is an m-dimensional vector corresponding to readings from m sensors

at time t.

The main implementation steps for PHM consist of; i) defining critical component(s), ii) appro-

priate sensor selection for condition monitoring, iii) prognostics feature evaluation under data

analysis and iv) prognostics methodology and tool evaluation metrics [16].

In the next section, we will briefly present diagnostics and prognostics and discuss the relation

between these two notions.

3.2 Diagnostics and Prognostics

Diagnostics and prognostics are related processes of assessment of a system’s health. Diagnostics

aims at detecting, isolating, and identifying a fault or failure, whereas prognostics is the process
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of prediction of future states or RUL estimation based on current and/or historic information of

the monitored asset [227, 138]. A main distinguishing factor between them is that diagnostics

aims to diagnose or detect a fault or failure after, momentarily or shortly before it takes place,

whereas prognostics focuses on anticipating these, within an actionable horizon. Prognostics

is based on the understanding that equipment fails after a period of degradation, which when

estimated (e.g., RUL) can lead to actionable information (e.g., maintenance planning and

logistics management).

In more detail, diagnostics is enabled through the collection of data and/or other information.

The different stages of diagnostics can be explained as follows [227]. Fault detection determines

whether an abnormal operating condition exists. If it is detected, then it is reported. Fault

isolation locates the fault to a specific component, sub-component or system that is failing or

has failed. Fault identification deals with what is called the root cause or the basic event of

the fault or failure. Fault symptoms are signatures that allow identifying the possible faults

or failures. Prognostics is by nature an even more challenging task compared to diagnostics.

Inheriting its name from the Ancient Greek progignoskein, which means knowing in advance, its

task, as previously stated, is the assessment of the future health of a system. More specifically,

prognostics is a CBM estimation of the RUL in order to make better-informed maintenance

decisions [138]. Even though RUL estimation lies at the core of prognostics, it should not be

considered the same task. Besides the RUL prediction, a comprehensive prognostics framework

should be able to quickly and efficiently isolate the root cause of failures. In this sense, if

fault/failure predictions can be made, the allocation of replacement parts or refurbishment

actions can be optimally scheduled to reduce the overall operational and maintenance logistic

footprints.

Finally, before we proceed, it is important to disambiguate two terms, which we will be seeing

a lot and are (often) a source of confusion. These are fault and failure. The former implies

that a system under observation is still operational, but cannot continue operating without any

maintenance action, otherwise, it will cease operating, resulting in a failure.

3.3 PHM approaches

Prognostic approaches are most commonly classified into four types [59], namely i) reliability-

based approaches, ii) model-based approaches, iii) data-driven approaches, and iv) hybrid ap-

proaches. While all approaches have their advantages and limitations, model-based, data-

driven, and hybrid approaches are the most prominent and modern. These approaches can

reason about individual assets, whereas reliability-based approaches rely on collective knowl-

edge from a fleet of similar items.

In the following subsections, we will briefly dive into the different prognostics approaches and

present some of their representative methods. Figure 3.1 summarizes the range of possible
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Figure 3.1: Prognostics approaches. Adapted from [227].

prognostics approaches and presents them as a function of applicability and implementation

costs.

3.3.1 Reliability-based Approaches

Experienced-based prognostics, life usage model, statistical reliability-based approaches and

probability-based prognostic techniques are all different terms describing a similar set of ap-

proaches in prognostics [59, 227]. Reliability-based approaches are some of the oldest and

simplest forms of fault prognostics. They take into account the data and the knowledge that

has accumulated by the experience during usage of industrial systems [155]. They require

(massive) historical data and specifically, times-to-event records from a population of identical

items. By “event” we mean failure or fault events or other significant maintenance events.

Reliability-based approaches rely heavily on the assumption that the temporal information of

these events follows specific distributions, which when fit can be used to infer times-to-event of a

new, identical, asset. These distributions usually include but are not limited to, the exponential,

the Weibull, the log-normal, and normal distributions and the Poisson distribution.

The advantages of such approaches in prognostics are the simplicity of their usage and the

minimal need for domain knowledge. What is more, these statistical-based approaches can

provide confidence intervals, which can be important in decision making, as they give a feeling
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of accuracy and precision for the predictions [227, 216]. However, these methods require a

large amount of historical repair and failure data in order to determine the parameters that

faithfully model the life cycle of the system in question [155]. Consequently, such methods

can be inaccurate when applied to newly developed assets, as reliability-based methods require

(massive) historical repair and failure data, which in this case might be scarce [59, 155]. Fur-

thermore, these approaches ignore component-specific conditions and do not take into account

any indications (e.g., from sensor measurements) generated by the assets themselves in order

to assess their health condition. Ignoring such (progressive) degradation phenomena can lead

to premature or late maintenance [59, 83]. As a consequence, these prognostic methods can

be used for scheduled or preventive maintenance (PM) and are used mainly for non-critical,

components, that are not monitored and that are usually mass-produced.

3.3.2 Model-based Approaches

Model-based methods (or physics-based methods) utilize explicit physical models of the moni-

tored components/systems for prognostics and RUL estimation. These physical models describe

the degradation processes of the systems in question through mathematical models based on the

failure mechanisms and first principles of damage [59, 138]. To establish this model, however,

a thorough understanding of the system’s physics is required [59]. For example, physics-based

fatigue models have been extensively used to represent the start and propagation of structural

anomalies [55]. These approaches are deterministic and allow for the estimation and the pre-

diction of the dynamical states of the system in question. Moreover, these methods often use

residuals as their features, where the residuals are defined as the results of consistency checks be-

tween the sensed measurements of a real system and the outputs of a mathematical model [55].

The premise here is that the residuals are large in the presence of failure/faults, and small or

non-significant in the presence of normal disturbances (e.g., due to transient conditions), noise,

and other modeling errors [55]. In this case, when the difference between the model and reality

exceeds a user predefined threshold, an alert is generated. In this view, they can detect shifts

from the nominal conditions of the underlying process when a simulation that is based on the

model is executed in parallel to the real-time process. Of course, the latter demands a model

that is developed based on the design-point (normal) conditions and which represents the ideal

behavior of the system. Since these methods incorporate a physical understanding of the sys-

tem, in many situations, these shifts are closely related to model parameters [8]. Furthermore,

these models, do not require a large amount of data and are ideal when failure data do not exist

or are scarce. What is more, physics-based approaches are very descriptive and interpretable,

as the modeling relies on mathematical equations and established laws. This allows for such

approaches to be efficiently validated and certified [59]. Additionally, these approaches can be

used to simulate component failures for a better understanding of the system in question [8].
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If the comprehension of the system’s behavior together with the fidelity of the models is suffi-

cient, these models allow for high accuracy and precision [59]. Moreover, if this understanding

improves, the models can be adapted to increase their accuracy and address subtle performance

problems [8, 55].

Model-based approaches, however, rely heavily on a thorough understanding of the system’s

physics and underlying processes, something which can be prohibitively costly in terms of time

and money. As a result such a model’s reliability often decreases as the system complexity

increases, since there can exist underlying processes which have not been taken into account

during model development. A direct consequence of this is that physics-based approaches can be

successfully applied to those systems that a thorough understanding of their physics is possible,

as well as of their failure modes and degradation behavior. Also, the developed physics models

are usually component/system-specific and as a result, their reusability is very limited to other

similar cases [59].

Examples of model-based approaches that are developed based on physical principles/laws are

Kalman filters (KF) and their extensions. Namely, extended Kalman filters (EKF), unscented

Kalman filters (UKF), and particle filters (PF).

Kalman filters (KF) were introduced as fault isolation and assessment technique for relative

aircraft engine performance diagnostics in the late 1970s and early 1980s [210]. More widely

used by engineers and other physical scientists, filtering problems are mathematical models

for state estimation in signal processing and related domains. The main idea is to determine

an estimate of some true value of a system from noisy and incomplete observations. Kalman

filters or linear quadratic estimation as they are also known as take into account measurements

recorded over time to make inferences about an unknown variable of interest (the state variable).

Kalman filters work in a two-step process. In the first step, the prediction step, the Kalman

filter produces an estimate of the current state, along with its probability distribution. Once the

outcome of the next measurement is observed, the previously produced estimates are updated.

It is a recursive procedure, which means that it only needs the present observations and the

previously calculated state and its uncertainty matrix, to estimate the current state variable.

The latter hands them the advantage of running in real-time.

Kalman filters (KF), however, are linear model-based estimators, which means that they assume

linearity of the underlying dynamical system [157]. That is, they assume linearities in either

the process model or the observation model, or both. Real-life systems can, however, be highly

complex and as a result nonlinear. In order to overcome this assumption of KF and address

the non-linearities, variants of KF have been created. More notable are the EKF and the

UKF. The former assumes that the nonlinear functions are differentiable and linearizes about

an estimate of the current mean and covariance [219]. The latter, instead, uses deterministic

sampling to form a new mean and covariance estimate [219] with a sampling technique known

as the unscented transform (UT) to determine a minimal set of sample points (sigma points)
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around the mean. UKF perform better than EKF when the prediction and update steps are

highly nonlinear. This is a result of the linearization of the covariance.

The most popular model-based method is particle filters (PF) [41]. Their popularity arises from

the fact that in contrast to KF, EKF, and UKF both linear and nonlinear state process and

measurement models can be used. What is more, PF allow representing state estimates with

arbitrarily shaped probability distributions. In more detail, PF methods or Sequential Monte

Carlo (SMC) techniques are a class of algorithms that are used to approximate the optimal

Bayesian filtering by representing the posterior probability density function (PDF) of the states

discretely, with a population of particles with associated importance weights [50]. The particles

are simply random samples from the unknown state space, representing possible realizations

of the state sequences and the weights are the corresponding discrete probability masses [193].

As the filter iterates, the particles are propagated according to the system state transition

model, while their weights are updated based upon the likelihoods of the measurement given

the particle values [193]. For more details regarding PF, we refer the interested reader to [14].

3.3.3 Data-driven Approaches

In some instances, one might have only historical fault/failure or maintenance data leading

up to a major maintenance event. Other times, the system in question cannot be adequately

modeled due to its complexity. In such cases, one might use data-drive methods. These

methods take their name from the fact that they rely (almost) entirely on data generated from

the monitored asset(s). These data are performance parameters, such as but not limited to,

pressure, temperature, speed, vibration, current, and acceleration [55]. These data or features

derived from them are subsequently used to create an algorithmic model that correlates these

measured parameters and/or features to the system health, degradation and fault progression,

and RUL estimation [59].

As opposed to model-based approaches, data-driven methods can be developed and deployed

much faster as they do not call for (a lot of) expert knowledge. The low cost of algorithm

development and little knowledge required about the physics of the studied system makes this

approach preferable by PHM practicioners [258] and applicable to a wider audience. However,

data-driven methods depend largely on the size and quality of the acquired data. They require

large amounts of historical data, something that is not always possible, especially for newly

developed systems or other fielded applications, due to safety and data privacy concerns. In

addition to that, there is also commonly a lack of a procedure to obtain the training data

and there is further, a lack of run-to-failure data, for the methods to learn from. Due to this,

applications in the literature usually make use of experimental data for model training, and

thus these approaches may have wider confidence intervals than others [55]. Furthermore, this

dependence on data dictates that the developed algorithms must also be robust to artifacts in
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the data (e.g., noise) [59, 55]. In principle, the more failure events are included in the data, the

higher the accuracy of the estimation obtained. What is more, data-driven methods are more

often than not “black box” approaches, in the sense that their internal decision making is not

transparent [216]. As a consequence, the results of such a model are not always intuitive, due to

the lack of physical knowledge about the system. This together with the fact that data-driven

methods are based on approximations makes uncertainty quantification and management of

the results an extra challenge.

Data-driven approaches mainly rely on techniques in the field of artificial intelligence (AI)

and machine learning (ML). This includes, but is not limited to, decision trees (DT), random

forests (RF), support vector machines (SVM), relevance vector machines (RVM), and deep

neural networks (DNN). Often enough, statistical (parametric and non-parametric) approaches

are also used to detect the presence of anomalies in the data [216] and can be considered as

data-driven methods for prognostics. A non-exhaustive list of such techniques is multivariate

statistical methods, partial least squares (PLS), signal analysis (e.g., Fast Fourier Transforma-

tion) hypothesis testing, analysis of variance (ANOVA), maximum - likelihood (ML) estimation,

expectation-maximization (EM), Wilcoxon - Mann - Whitney test, Gaussian mixture models,

and histogram - based approaches [216, 55].

For a more thorough overview on data-driven approaches, readers can find more details in [209,

224, 216, 55, 59, 227].

3.3.4 Hybrid Approaches

Fusion or hybrid-based prognostic methodologies combine the strengths of the model-based and

data-driven approaches, to estimate the RUL under both operating and non-operating life cycle

conditions [176]. By taking advantage of the two respective methods’ strengths, hybrid models

can achieve robust health prediction results that can lead to a more reliable RUL approximation

as compared to only model-based methods. Also, due to the use of a mathematical model, the

amount of data required for training purposes are relatively lower than that needed in pure

data-driven methods [49]. A hybrid model thus combines both data-driven methodologies with

the knowledge of the system under study. It is a promising method, due to the fact that it can

compensate for the lack of knowledge about the system’s physics and the lack of data [10, 87, 23].

3.4 PHM in the Aerospace Industry

Due to the high availability expectations from aircraft operators and clients and the high costs

incurred for maintenance, when an aircraft is out of service [234] or Aircraft On Ground (AOG),

as well as the supportability, testability, and reliability of modern aircraft [248], PHM systems

play a significant role in the aerospace industry, from which it originated in the first place.
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Nowadays, it is very challenging for the industry to keep its costs as low as possible and to

generate maximum revenue, since the last decade has been turbulent for the aviation industry

owing to the unprecedented rise in its commodities due to inflation [175], as well as due to

the fluctuation in the price of fuel. Regarding the latter, IATA published that in 2017 the

airline industry’s estimated fuel bill reached 149 billion USD, more than 3 times the figure of

2003 (estimated at 44 billion USD) [99]. The industry has to ensure that its asset utilization

is optimum and therefore, the maintenance management system of the existing aircraft needs

to be precise to ensure that the aircraft spends maximum time in the air to make the best use

of its machinery [175]. This is because maintenance is extremely expensive, mainly due to the

price of spare parts. As a result, one wants to maximize the use and exploit the remaining

life of the installed parts, keeping them in operation by maintaining and repairing them until

they exhaust their life limit and need to be replaced. Apart from safety and costs-saving, this

also enhances sustainability. This is the role of PHM; to make sure that this happens and

that no part is exchanged prematurely. The notice of pending equipment failure allows for

sufficient lead-time so that necessary personnel, equipment, and spare parts can be organized

and deployed, thus minimizing both equipment downtime and repair costs [204], and optimizing

maintenance. Integration is one of the trends of PHM systems, which means that PHM systems

of the engine and other aircraft parts are integrated with aircraft PHM system [180]. To

the best of our knowledge, however, there is no generic PHM framework and architecture

enabling communication and integration with the various contributing systems [140], as well

as no uniform design framework of aviation PHM systems between countries [248] and even

between carriers/operators. In addition, a systematic method has yet to be established for

developing and deploying a PHM system, as the current ones are application or equipment

specific [134].

Among all the frameworks the most mature system is that of the F35 aircraft, which constitutes

the double-deck architecture. Using this multilayered framework, the system integrates the

airplane airborne information and sends the necessary information to the ground controls. This

integrated health management system determines the safety of the aircraft and allows for the

state management and maintenance guarantee [141]. Another predictive maintenance system,

for a wide range of helicopters flown by the military (rotocrafts), is called HUMS (Health and

Usage Monitoring Systems), developed by UTC Aerospace Systems. This system can detect

several different types of issues using vibration analysis, ranging from shaft unbalance to gear

and bearing deterioration. In civil aviation, the typical representatives are the Airplane Health

Management (AHM) system of Boeing [248], the AIRcraft Maintenance Analysis (AIRMAN)

system of Airbus, and a more recent addition, namely, aircraft real-time health monitoring

system (AiRTHM) [248]. For more detailed information on these specific systems we refer the

interested reader to [243] (Boeing) and [92], [56], [102] (Airbus).

There is also a lack of standards for PHM system development, data collection and analysis
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methods, and data management, although the PHM4SMS (Prognostics and Health Manage-

ment for Smart Manufacturing Systems) of NIST (National Institute of Standards and Tech-

nology) serves in designing such standards [235]. Particularly, in the aircraft industry, the

published standard for the guidance for PHM systems development is MSG-3, developed by

the Maintenance Steering Group (MSG) of the Air Transport Association (ATA) and is titled

“Operator / Manufacturer Scheduled Maintenance Development”. It is used for developing

maintenance plans for aircraft, engines, and systems (Air Transport Association of America,

2013) before the aircraft is in service and it also helps in improving safety while at the same

time reducing unnecessary maintenance tasks [235].

This chapter is intended to familiarize the reader with the PHM systems in the aerospace

industry, by introducing concepts, presenting examples, and discussing research opportunities.

3.4.1 Classification of Sensors of the Gas Turbofan Engine

Here, we briefly classify the most common and informative measurements of a turbofan engine.

An exhaustive list of sensor measurements of the entire airframe and of the stations of a turbofan

engine is out of the scope of this chapter. The authors decided to emphasize the turbofan engine

alone, due to the fact that it is the core of the aircraft and one of the most, if not the most,

expensive assets of the airframe. Furthermore, this is a starting point for researchers in the

quest for informative measurements. In the rest, we classify them by type and by function.

In Table 3.1, we provide a classification of the most common turbofan sensors based on their

type, and in Table 3.2 we present a classification based on their application. We should note

here that in Tables 3.1 and 3.2 N3, which is the speed in 3-spool turbofan engines (e.g., Rolls-

Royce), is not applicable to all engines.

3.4.2 PHM Methods in the Aerospace Industry

In this section, we will give an overview of various PHM methods used in the aerospace industry.

To be more specific, as stated in the introduction, CBM systems are founded upon the ability

to infer equipment conditions using data collected from sensors on monitored systems. In

aerospace, these systems could be engines, thrust reversers, avionics, flight controls, fly-by-wire,

landing gear, braking, environmental control systems (ECS), electrical systems, and auxiliary

power units, to name a few. For each system, there are also numerous sensors, which reflect

their components’ state and the overall system health. For example, the current Airbus A350

model has a total of around 6,000 sensors across the entire plane and this number will increase

as big data analytics software and broadband links become more affordable [206].

In the following sections, we discuss prognostic and diagnostic methods used in aviation as they

are crucial for safety, customer satisfaction, and airline revenue. We will emphasize more on

prognostic applications in the industry, as this type of predictive analytics is common across
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Table 3.1: Turbofan sensors classified by type.

Types Sensors

Temperature

Oil temperature, Total air/gas temperature
Static air/gas temperature,
Nacelle temperature,
Exhaust gas temperature (EGT)

Vibration
Core vibration, Fan vibration,
Core phase angle,
Fan phase angle

Pressure
Total air/gas pressure,
Static air/gas pressure,
Oil pressure

Spoll Speed Core speed (N2), Fan speed (N1), N3

Miscellaneous

Fuel flow, Oil quantity, Altitude,
Mach number,
Variable bleed valve (VBV) position,
Nacelle Anti-ice,
Wing Anti-ice,
Variable stator blades
(VSV) position

Table 3.2: Turbofan sensors classified by application.

Functions Sensors

Gas Path
Total air/gas pressure, Static air/gas
pressure, Total air/gas temperature,
Static air/gas temperature

Engine Oil
Oil temperature, Oil pressure, Oil
quantity

Engine Balance
Core vibration, Fan vibration, Core
phase angle, Fan phase angle

Stalling/Surging
VBV position, Wing anti-ice, Nacelle
anti-ice, VSV position

Thrust Setting
Engine pressure ratio (EPR), Fan
speed (N1), Core speed (N2), N3, Fuel
flow

Exhaust Exhaust gas temperature (EGT)
Flight Envelope Altitude, Mach number
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all fields of industry, but is particularly valuable in commercial aviation. In addition, as men-

tioned previously, diagnostics are included in prognostics and thus, we can consider prognostics

as a natural extension of diagnostics. After all, one needs the latter to find the former [209].

Thus, we can consider the term prognostics to have a broader definition and enclose activities

such as supervising, monitoring, detect and determining initial degradation, as well as making

fault/failure predictions. Finally, in the following subsection, we will discuss only the data-

driven methods used in PHM in aerospace, as these are the main topic of this dissertation. The

reviewed literature is by no means exhaustive, but it serves as proof for the big appeal and inter-

est for data-driven solutions in PHM in general, predictive maintenance, and RUL estimation.

For a more thorough overview of other approaches (e.g., model-based), including applications

in the automotive industry, we refer the interested reader to our original publication [230].

Applications of Prognostics Data-driven Methods in the Aerospace Industry

Neural Networks Neural networks allow the investigation of complex systems without the

need for any knowledge or assumption about system structure. They are sophisticated model-

ing techniques capable of modeling problems that are analytically and inherently difficult and

for which conventional approaches are not practical, including complex physical processes with

nonlinear, high-order, and time-varying dynamics [8]. Recently, in [257], Zhang et al., designed

a back-propagation, feedforward neural network to assess the starter degradation of the APU

using its gas-path measurements. Feedforward NNs are the simplest form of artificial neural

networks where information moves in only one direction from input nodes to output nodes. In a

recent paper by Ma et al. [152] the authors proposed an effective deep learning method, termed

stacked denoising autoencoder (SDA), for health state classification of aircraft engines consid-

ering the environmental noise. SDA proved to be effective in terms of cognitive computing and

pattern classification theory. Furthermore, the proposed method beats its rivals, in terms of

feature extraction due to the benefits of its deep architecture with a data destruction process

that is effective for robust feature representation, where high-order features and shared repre-

sentations can be learnt from the input samples by unsupervised self-learning. The feasibility

of the proposed method was demonstrated using the 2008 PHM challenge datasets (see [183]).

In [264], Ke-Xu et al. designed a particle-swarm optimized NN for spacecraft prognostics.

Other types of NNs that have gained popularity in the field of PHM are recurrent neural net-

works (RNNs). RNNs, developed in the 80s, are a class of NNs that capture time dynamics.

RNNs and their variants, namely the long short term memory (LSTM) and the gated recurrent

unit (GRU) networks differ from the traditional feedforward NNs, in that they can process

information across time, making them ideal for sequential data, such as time-series. Specif-

ically, due to their internal state (memory), they can process a sequence of inputs, granting

them the ability to model temporal dependencies and are thus suited for tasks in which input
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and/or output consist of sequences of points that are not independent. For a more thorough

understanding of RNNs and their variants, we urge the interested reader to [145, 98]. In this di-

rection, Zhong et al. [261] designed a gated recurrent neural network (GRU network) to predict

the exhaust gas temperature (EGT) of a turbofan aero-engine. The temperature of the exhaust

gases of an engine has evolved to become the standard industrial indicator of the health of an

aircraft engine [236]. This is because it can capture the cumulative effect of deterioration in the

isentropic efficiency of gas path components. Their method could address the time-series and

nonlinear characteristics simultaneously by the GRU blocks. The proposed algorithm was com-

pared to five other single prognostic methods, namely, an artificial NN (ANN), support vector

regression (SVR), extreme learning machine (ELM), and ensemble prognostic methods ran-

dom forests-based ELM (RF-ELM) and average aggregation ELM (Avg-ELM). The proposed

method achieved the best prediction accuracy and acceptable prediction stability. In [233],

Vatani et al. predicted the degradation trends of a gas turbine engine by studying their effects

on sensored data (i.e. temperature) by using an RNN as a first approach, as well as a nonlinear

autoregressive model with exogenous input (NARX) neural network architecture. In [260] and

[94], the authors developed an LSTM network for the estimation of RUL. In a similar manner,

the method proposed in [245] uses an LSTM and proposes a dynamic differential technology to

extract inter-frame information to cope with complex operating conditions.

Another type of NN, namely the convolutional neural network (CNN) has also gained recog-

nition in the field of prognostics. CNNs generally differ from RNNs in that they are designed

to effectively process spatial data. They are also very often used in the analysis of visual im-

agery, that exploits the local dependencies of visual information [145]. For a more thorough

understanding of CNNs and their mathematical formulation, we direct the reader to [244, 98].

In [143], Li et al. use a deep convolution NN (DCNN) for estimating the RUL and they demon-

strate the effectiveness of their method using the C-MAPSS dataset [198] for aero-engine unit

prognostics. In [195], the authors present the first attempt for estimating the RUL using CNN-

based regression. The deep architecture allows the network to learn features that provide a

higher-level abstract representation of low-level sensor signals, by employing the convolution

and pooling layers to capture the salient patterns of the sensor signals at different time scales.

However, considering that the collected machinery features are usually from different sensors,

the relationship between the spatially neighboring features is not significant. In [143], Li et

al. address this issue by proposing to use 1-dimensional convolution filters in their CNN. In

[242], Wen et al. propose a CNN with an added Residual Building Block (RBB), in order to

tackle the vanishing/exploding gradient problem in artificial neural networks with gradient-

based learning methods and backpropagation. Zhang et al. [256] investigated the use of CNN

with an extended time window to tackle the RUL estimation problem under varying operating

conditions. Furthermore, to improve the prognostic robustness and avoid the sensitivity to

the abnormal data, CNN and extreme gradient boosting (XGB) are fused with model averag-
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ing (CNN-XGB). NNs might be powerful, however, they do not take into account uncertainty

bounds arising from different sources like process noise, measurement noise, and an inaccurate

process model. Uncertainty quantification is useful in prognostics as it gives an estimate of

confidence on the prediction of the RUL or general health estimation of an asset. This in turn

can help avoid overly confident decisions and further allows the end-user or decision-maker to

make a better-informed choice.

In contrast to NNs, relevance vector machines (RVM) and Gaussian process (GP) regression

take into account the width of the uncertainty bounds in addition to providing damage tra-

jectories [82]. RVM [222] is a Bayesian formalism representing a generalized linear model of

the identical functional form of the support vector machine (SVM). Although SVM [232] is

a state-of-the-art technique for classification and regression, RVM is able to generate proba-

bilistic outputs in a Bayesian framework that make more sense in RUL estimation applications

and furthermore uses a lot of kernel functions for comparable generalization performance [82].

A GP is a collection of random variables, any finite number of which have a joint Gaussian

distribution. The distribution of a GP is the joint distribution of all those (infinitely many)

random variables, and as such, it is a distribution over functions with a continuous domain,

e.g., time, or space. In [82], the authors evaluate the NN-based approach, RVM and GPR

for their prognostic capabilities on a test stand involving rotating equipment in an aerospace

setting. In the paper, however, there is no clear winner, since each of the algorithms came up

with its current state estimates which were not close to each other. The conclusion states that

even though these algorithms can learn the dynamics of the process from sparse and noisy data

fairly well, the RUL estimates depend significantly on the current state estimation.

Time-Series Analysis Other approaches used are methods from time-series analysis. The

autoregressive moving average (ARMA) model forms a class of general linear models used

in modeling and forecasting of time-series. It is comprised of two parts, namely one for the

autoregression (AR) and the second for the moving average (MA). It is a powerful forecasting

methodology that is able to capture trends found in a time-series and projects its future values.

In a recent paper by Baptista et al. [22], the authors integrate the ARMA methodology with

data-driven techniques, to predict fault events on a real industrial case of unscheduled removals

of the engine bleed valve (EBV), based only on life-usage data (maintenance event data). EBV

is used in most designs as a regulator for the flow that goes to the ECS and the anti-icing systems

of the aircraft. The authors proposed a method in which they feed the entire past fault event

history into the ARMA model and the output is then used as a feature that integrates with the

data-driven model. The data-driven modeling gives further insight into the forecasting outcome

from ARMA and improves its accuracy and efficiency. From the data-driven methods they used,

in addition to ARMA (NN, k-nearest neighbors (KNN), random forest (RF), support vector

regression (SVR), generalized linear regression (GLM)) the SVM produced the best overall
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results. In a similar manner, Su et al. used in [212] least squares support vector regression with

sliding ARMA forecasting to model the nonlinear time-series. They demonstrate their method

on a practical case study for the US-made F-16 fighter.

However, ARMAmodels are applied in cases where data show evidence of a stationary stochastic

process. This means that the time-series’ statistical properties are all constant over time. A

stationary series has no trend. That is, its variations around its mean have a constant amplitude,

and it “wiggles” in a consistent fashion, i.e., its autocorrelations remain constant over time.

Equivalently, short-term random time patterns always look the same in a statistical sense. If the

contrary stands, its generalization, the Autoregressive Integrated Moving Average (ARIMA)

model can be adopted. The “Integrated” indicates that the data values have been replaced

with the difference between their values and the previous values, to transform the time-series

to a stationary one. In a recent paper by Ordóñez et al. [170], the authors combine time-

series analysis methods (ARIMA) to forecast the values of the predictor variables with machine

learning techniques to predict the RUL of aircraft engines for more than one period ahead of

those variables.

Graphical Models Another important category of data-driven models used are graphical

models, which denote the conditional independence structure between random variables [41].

In a recent paper, [20], Banghart et al. utilize Bayesian networks (BN) to estimate the risk of

the landing gear system, cockpit warning/caution annunciator panel, and the environmental

control system turbine assembly of the Northrop Grumman EA-6B Prowler military aircraft.

BN is a probabilistic graphical model that represents a set of variables and their conditional

dependencies via a directed acyclic graph (DAG). Nodes represent variables, while arcs represent

probabilistic relationships. For example, engine blade damage impacts non-mission-capable

time, thus an edge/arc is drawn from the respective nodes. It is a combination of graph

theory and probability theory. It is a representation of a joint probability distribution defined

on a finite set of random variables that can be discrete or continuous. From a knowledge

modeling standpoint, Bayesian networks can be seen as a special knowledge representation

system. The advantage of BN lies in the fact that it does not rely the on explicit understanding

of causal connections within the system(s) under observation, nor the identification of sequences

of events leading to failure. Furthermore, given their probabilistic nature, BNs prove to be a

suitable technique to address the inherent uncertainty of RUL estimation. In the same view,

Ferreiro et al. in [67] use BN as a predicting technique and demonstrate their effectiveness by

representing a physical model for aircraft brake wear, originally developed by British Aerospace

Systems. They fit it to the available data (aircraft weight, landing velocity, brake operation

during landing, flap position, and initial brake temperature) from flight conditions extracted

from the operational plan of the aircraft. Although in this example the causal connections are

based on understanding a physical system, the general idea is that BN can be successfully used
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in prognosis also, instead of diagnosis. A subclass of BN is the so-called dynamic Bayesian

networks (DBN), which relate variables to each other, over adjacent time steps. They can be

considered simply as BN for the modeling of time-series data [79]. A specification of DBN is the

hidden Markov models (HMM), which have been applied to prognostic problems in aviation.

Hidden Markov Models HMM is a stochastic process model, characterized by a doubly

embedded stochastic process with an underlying hidden stochastic process that can be ob-

served through some probabilistic behavior. The latter justifies the word “hidden”. It is also

a powerful tool for RUL estimation. HMM is furthermore a parametric model with some dis-

tinct characteristics: it can not only reflect the randomness of machine behavior (i.e., sensor

measurements) but also reveal hidden states and changing processes [8]. For a more thorough

understanding, we direct the reader to [73]. In this view, in [24], the authors investigate the use

of a Hidden semi-Markov model (HSMM) to predict the RUL of the shaft of utility helicopters

until failure. The difference between an HSMM and an HMM is that the latter assumes that

the sojourn time in the (hidden) state process follows a geometric distribution (most likely

with parameter 1) in the discrete case and an exponential distribution. In contrast to that

in semi-Markov processes, an upcoming transition’s distribution is described by a product of

an arbitrary PDF for the waiting time and a categorical distribution for the next state. The

arbitrary condition for the PDF removes the memorylessness property of the process and as

such, the process is Markovian only at the specified jump instants. Dong et al. in [54], proposed

a HSMM for fault classification application for UH-60A Blackhawk main transmission plane-

tary carriers and prognosis of a hydraulic pump health monitoring application. They compare

HSMM with HMM and conclude that the former is capable of identifying the faults under both

test cell and on-aircraft conditions while the performance of the HMM is not comparable with

that of the HSMM. At the same time, the HSMM-based methodology can be used to estimate

the RUL of equipment. However, HMM have some inherent limitations. One is the assumption

that successive system behavior observations are independent and the other is that the Markov

assumption that the probability in a given state at time t only depends on the state at time

t− 1 is clearly untenable in practical applications [8].

In the same context, time-series analysis methods, which we referred to before, have been com-

bined with HMM. Specifically, AR models have been combined with HMM, in what is called an

autoregressive hidden Markov model (ARHMM) [179], initially proposed for speech recognition.

Here the observations are drawn from an autoregression process (linear prediction) [181]. In

this view, Juesas et al. [107] developed a variant of ARHMM, named autoregressive partially-

hidden Markov model (ARPHMM) for fault detection and prognostics of equipment based on

sensors’ data. The authors considered a modification of the learning procedure of the ARHMM,

by integrating prior knowledge on latent variables. Their method was demonstrated on an in-

stance of the C-MAPSS dataset [198]. They compared their approach, on the aforementioned
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dataset, against RULCLIPPER (Remaining Useful Life estimation based on impreCise heaLth

Indicator modeled by Planar Polygons and similarity-basEd Reasoning) [183], and SWELM

(Summation Wavelet Extreme Learning Machine) [104]. The results are promising, in the

sense that they are comparable to RULCLIPPER, and, on average, better than SWELM. It

is interesting, however, as the authors point out, that using an ensemble between ARPHMM

and SWELM outperforms RULCLIPPER, showing a direction towards developing ensemble

approaches made of complementary and advanced prognostics algorithms.

Neuro-Fuzzy Systems Finally, a method with which we would like to conclude this section

is the use of Neuro-Fuzzy systems (NF) for prognostics. NF systems are neural-network-based

fuzzy systems, with the latter being a nonlinear mapping of an input data vector with a scalar

output. Fuzzy logic is based on Zadeh’s fuzzy set theory [111]. For a better understanding of

fuzzy logic and neuro-fuzzy systems, we refer the reader to [189] and [5], respectively. In [40], the

authors propose an integrated adaptive neuro-fuzzy inference systems (ANFIS) and high-order

particle filtering, which forecasts the time evolution of the fault indication and estimates the

probability density function of RUL. The ANFIS is used to model the fault propagation trend

and the high-order particle filtering integrates the ANFIS, as an m-th-order hidden Markov

model, to carry out long-term predictions and estimate the RUL PDF via a set of particles

with associated weights. They apply their method on vibration data from the main gearbox of

a UH-60 helicopter subjected to a seeded carrier plate crack fault and show that its prediction

accuracy is higher than that of both the conventional ANFIS predictor and the particle-filter-

based predictor where the fault growth model is a first-order model that is trained via the

ANFIS.

3.5 Uncertainties in Prognostics

Before concluding, we must comment on uncertainty quantification (UQ) and management,

as this is an indispensable part of PHM. Accounting for uncertainties is of paramount signifi-

cance in prognostics. Uncertainties arise from various sources such as modeling uncertainties,

measurement uncertainties, operating environment uncertainties, future load uncertainties, in-

put data uncertainties. Such information is crucial for any prognostic estimate, otherwise, the

prognostic results might be of limited use and cannot be incorporated in mission-critical ap-

plications. By accounting for the uncertainties the researcher or end-user can determine if, for

example, the training data is not representative of the task, are too noisy, or if the selected

model is poorly trained (i.e., underparameterized NN). The reason for this is that the single

point estimates that we described, assume a deterministic algorithm or additional reasoning.

Due to all the sources of uncertainty though, it is crucial that there must be confidence around

the prediction. There are numerous ways for this, such as probability distributions of the RUL
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instead of a single-point RUL estimate. In [197] and [196], the authors discuss in a very concise

and detailed manner the uncertainty issues and propose solutions by modifying PHM metrics

and recommend suitable ways of graphically representing these metrics.

3.6 Discussions and Conclusions

Prognostics and health management (PHM) is a fairly new discipline that goes beyond condition-

based maintenance (CBM) by predicting the future (health) states of an asset and estimating

its remaining useful life (RUL). This process provides actionable information, enabling in-

telligent decision-making for improved performance, safety, reliability, and maintainability of

engineered systems. This is achieved by using real-time and historical state information of

subsystems and/or their components. Aside from the aforementioned, the significance of PHM

lies in that these early warnings grant the user the horizon to design a timely maintenance

schedule and follow all the required procedures for the logistics. In this chapter, we introduced

PHM, presented the notion of RUL, and gave detailed explanations of the four prevailing PHM

approaches, namely reliability-based, model-based, data-driven, and hybrid approaches. In

addition, we briefly considered the significance of uncertainty quantification in prognostics.

We, further, emphasized data-driven approaches in the aerospace industry where we gave an

overview of recent tools and methods that have been used in the field.

The overview shows that methods other than traditional time-series analysis are gaining pop-

ularity in the data-driven prognostics in aerospace, such as graphical methods and NNs. The

latter, specifically, are emerging as they propel data-driven solutions by not requiring (a lot

of) engineering knowledge and more importantly by alleviating the need for explicit feature

(predictor/parameter) construction. In addition to that, NNs lend themselves naturally to a

multitude of sophisticated and automated methods for hyperparameter optimization, reduc-

ing the need for manual tuning. Moreover, NNs have the ability to model complex, highly

non-linear systems without the need for any knowledge or assumption about system structure.

Despite, however, the recent overall data-driven success in prognostics, in general, but also in

aerospace there are still challenges and practical issues that need to be addressed. Below, we

present some of these needs.

Need for securely obtaining more data. In detail, even though data-driven methods

have been developed to counter the increasing complexity of systems and components, there

is still no standard procedure to obtain data, in terms of a protocol or system. Data are

either not integrated centrally, but scattered around different systems, or cannot be disclosed

due to security and privacy issues and competition. This means that future work should not

only emphasize algorithmic performance but also data quality and the drawing up of certain

conventions per industrial field that govern data quality.

Regarding the issue of data sovereignty, it is important that future research takes into account
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and builds on approaches of collaborative learning, such as federated learning (FL) [6]. FL

serves two purposes. On one side it allows for data augmentation by providing data from

different data owners. In aviation this is significant and beneficial as a predictive maintenance

model will not be trained on data from only one OEM or airline but from multiple, thus enabling

multimodal learning. After all, a model trained on data from a turbofan engine in Northern

Europe will exhibit different degradation patterns to a model trained on data from a turbofan

engine in the Middle East, where high temperatures add more to the stress of the engine. On

the other side, FL allows for data protection by training on the data from each party involved

and simply aggregating and updating the weights/parameters of a global model. Since only

partial model weights are shared with the global model from each party involved, privacy can

be preserved and, this way, the data is less exposed to model inversion [142].

On top of that, there is also the possibility that data do not even exist due to the underlying

cost of acquiring them, as for example run-to-failure data of a turbofan engine or other expen-

sive asset. Future research should, thus, emphasize generating data when it is not available

(e.g. through high fidelity simulations), taking into account that in field applications theoret-

ical predictions and methods developed must be verified and validated first before practical

applications become possible.

Need for real-time prognostics For field applications, another crucial challenge is the real-

time (online) RUL estimation. The issue lies in the fact that the developed methods need

intensive computational resources, which is in direct contradiction with hardware conditions of

onboard computers, such as on cars and aircraft. Future directions should, therefore, investigate

more in this direction, such as in edge computing [6]. For example, safety-critical computations,

such as reliability and health prognostics, could take place on the edge, as edge computing allows

for low latency since the data are processed closer to their source allowing thus, for accelerated

insights. Furthermore, edge computing can increase model accuracy, especially in fields where

the network bandwidth is too low or expensive, such as in aviation. Such issues are typically

mitigated by reducing the size of data used in a (predictive) model. This results in information

loss that could have otherwise been useful. When deployed at the edge, for example, data

feedback loops can be used to improve AI model accuracy and multiple models can be run in

parallel [249]. On the other hand, computations of operations-critical applications that deem

no immediate result (e.g., fuel/energy consumption) can take place offline.

Need for explainable and interpretable data-driven PdM Data-driven methods for

PdM, such as NNs are by construction “black box”. This term refers to processes which lack

interpretability of their internal workings and can be viewed only in terms of their inputs and

outputs. This means that these models do not explain their predictions/outputs in a way that

is understandable by humans, and as a result, this lack of transparency and accountability

can have severe consequences [191], especially in operations-critical, or safety-critical systems,

like aerospace. Interpretability of PdM methods can assist decision-makers in asserting the
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feasibility of the model logic, as well as in the troubleshooting of the developed methods, thus

putting confidence in the process. This is why future research should invest in explainable

PdM.

Need for uncertainty quantification (UQ) Finally, another topic that is of great impor-

tance in PdM is UQ. Uncertainties arise from various sources such as modeling uncertainties,

and input data uncertainties. Quantifying uncertainty is crucial for any prognostic estimate,

otherwise, it is of limited use and cannot be incorporated in safety-critical or operations-critical

applications. By accounting for the uncertainties the researcher or end-user can determine if,

for example, the training data is not representative of the task or too noisy (i.e., measurement

uncertainties, operating environment uncertainties, future load uncertainties, input data uncer-

tainties) or if the selected model is poorly selected (i.e., underparameterized NN). Especially

when it comes to NNs, UQ is a rising topic of interest, given the fact that NNs are being

industrially employed. Although in recent years there has been work done on UQ in NNs and

some work on UQ in PdM, the field is still young with no consensus on how to measure this

uncertainty. Furthermore, while the majority of model-based prognostic methods quantify the

associated uncertainty, only a few studies in the data-driven domain address this matter, de-

spite its importance [26]. Therefore, we recommend this as an important and exciting direction

for further research in data-driven PdM.
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3.6. Discussions and Conclusions
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Chapter 4

Automated Machine Learning and

Remaining Useful Life

In chapter 3 we introduced the field of PHM to the reader and discussed its significance in in-

dustry and society. We presented the notion of the remaining useful life (RUL) its importance

in predictive maintenance (PdM) and classified the estimation approaches in four broad classes:

model-based, data-driven, hybrid, and reliability-based approaches. We subsequently empha-

sized the importance of data-driven methods in the aerospace industry. We showcased various

applications of PHM in the field and categorized them based on their underlying methodol-

ogy. Finally, we presented drawbacks and opportunities for future improvements of data-driven

methods.

In this chapter1, we will discuss the difficulties and challenges that accompany the task of the

RUL estimation in the data-driven domain. We will discuss the plethora of choices that the

end-user or researcher has when choosing a method to estimate the RUL, and we will introduce

the notion of automated machine learning (AutoML). We propose a task-specific data pre-

processing technique that involves the extraction of statistical features from the data and an

expanding window transformation that aims to collect the degradation information that has

been accumulating from the early stages of a unit’s usage. We evaluate our propositions against

state-of-the-art methods in the field of data-driven prognostics and we validate our method on

the widely used C-MAPSS dataset [198].

Lastly, the objective of this chapter is to present AutoML as a feasible tool in the data-driven

estimation of the RUL.

1©2021 IEEE. Reprinted, with permission, from [112]; Marios Kefalas, Mitra Baratchi, Asteris Apostolidis,
Dirk van den Herik, and Thomas Bäck. Automated Machine Learning for Remaining Useful Life Estimation of
Aircraft Engines. In 2021 IEEE International Conference on Prognostics and Health Management (ICPHM),
pages 1–9, Detroit (Romulus), MI, USA, June 2021. IEEE.
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4.1. Introduction

4.1 Introduction

The estimation of the RUL allows for managing pending equipment failure and grants sufficient

lead-time so that necessary decisions, personnel, equipment, and spare parts can be organized

and deployed, thus minimizing both equipment downtime and repair costs. By leveraging

RUL estimation, industries, such as aerospace, can improve maintenance schedules to avoid

catastrophic failures and consequently save lives and costs [253]. The industry also has to

assure that its asset utilization is optimum by guaranteeing a timely - but not premature -

maintenance. This ensures that the aircraft and its installed parts spend maximum time in

service and are not exchanged prematurely.

The estimation of the RUL can be done in various ways. We briefly mention them here (for more

details see Section 3.3). Model-based, data-driven, and hybrid methods are the most prominent

approaches [230], and in general all methods make some use of the sensor data of the equipment

and/or maintenance history (see Paragraph 3.3 for more details). Among these approaches,

data-driven methods are relatively easier to develop as they do not call for (a lot of) expert or

domain knowledge and are, thus, available to a broader audience due to their domain-agnostic

nature. Additionally, the recent advances in automated machine learning (AutoML) [97] (see

also Section 4.3.5) have made data-driven modeling, in general, more accessible by providing

methods and processes to make machine learning available for non-machine learning experts,

to improve efficiency of machine learning and to accelerate research on machine learning2.

Most data-driven approaches either fall under the category of classic machine learning algo-

rithms (such as random forests (RF)) or the more recently proposed deep neural networks

(DNNs). In both cases, though, the estimation of the RUL is a challenging problem. The

RUL is not merely a target variable that can be predicted from sensor measurements but more

of a variable that needs to be inferred from a longer trend of degradation patterns and when

those begin to occur. The main challenges of this problem, thus, lie in pre-processing the data

and defining the target RUL variable (if it doesn’t exist) for training efficient machine learn-

ing models. Such pre-processing steps and related transformations are not readily available in

AutoML methods. In addition, one needs to decide which learning algorithm to use from the

vast number of options. However, the selection of a learning scheme implicitly requires that

the researcher (or end-user) is aware, able and has the time to make this choice. The design

choices of the algorithm and its hyperparameters, next to the choices that need to be made

during pre-processing, make this task challenging for end-users. This often leads also to select-

ing an algorithm a-priori or selecting one from a limited list of algorithms during preliminary

experiments. This can result in overlooking learning schemes that could potentially give better

or comparable results and direct us to more suitable learning algorithms for the problem at

hand.

2https://www.automl.org/automl/
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This motivates our main research question: Can we automatically select a high-performing

machine learning pipeline for the estimation of the RUL, which can result in comparable or

better results compared to the current techniques? More specifically, our contributions are as

follows:

• We present a method for estimating the RUL, based on the use of AutoML [97] which

can automatically generate a suitable pipeline.

• We use a data pre-processing technique that involves extracting statistical features from

expanded windows of the original (multivariate) time-series.

• We evaluate the proposed method against the state-of-the-art data-driven methods and

against a baseline experiment in order to investigate the effects of the suggested steps.

Our approach is validated on the widely used C-MAPSS datasets [198].

The rest of the chapter is organized as follows. In Section 4.2, we present related work done

in this field and in Section 4.3, the proposed method and its modules are introduced. In

Section 4.4 we present the dataset used, the experimental setup, and discuss the experimental

results. Finally, in Section 4.5 we conclude, discuss the limitations of our work, and suggest

future work.

4.2 Related Work

PHM has been widely credited in the past years with numerous contributions from researchers.

Industrial applications as well as the scientific challenge of developing methods to forecast

a failure have been the driving forces. This section will present related work in the field,

concentrating only on data-driven approaches. This collection is by no means exhaustive, as

the amount of work in this field is vast. We refer the interested reader to [230], and [128] for a

more thorough overview of scientific work on PHM, as well as Chapter 3 of this dissertation.

Classic machine learning algorithms are a great example of data-driven methods. In [195]

the authors make use of a multi-layer perceptron (MLP), support vector regression (SVR),

and relevance vector regression (RVR) in order to estimate the RUL by feeding the learning

algorithms with every time-step. However, this neglects some useful temporal information that

could improve prediction performance. To address this issue, the authors of [253] utilize a fixed

time window to enclose multivariate data points sampled at consecutive time-steps. This means

that during every specific time-step, multivariate data points within the window that covers

the current time-step and its several preceding time-steps are fed into the prediction models

used (such as support vector machines (SVM), least absolute shrinkage and selection operator

(LASSO) regression, k-nearest neighbor regression (KNR), gradient boosting (GB), random

forests (RF)).
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The use of deep neural networks (DNNs) has also been introduced in PHM to cope with

potentially highly nonlinear relationships. In [195], the authors present the first attempt for es-

timating the RUL using CNN-based regression (for CNN see [98]). The deep architecture allows

the network to learn features that provide a higher-level abstract representation of low-level

sensor signals by employing the convolution and pooling layers to capture the salient patterns

of the sensor signals at different time scales. However, considering that the collected machinery

features are usually from different sensors, the relationship between the spatially neighboring

features is not significant. In [143], Li et al. address this issue by proposing to use 1-dimensional

convolution filters in their CNN. Zhang et al. [256] investigated the use of CNN with extended

time window to tackle the RUL estimation problem under varying operating conditions. Fur-

thermore, to improve the prognostic robustness and avoid the sensitivity to the abnormal data,

CNN and extreme gradient boosting (XGB) are fused with model averaging (CNN-XGB). Long

short term memory networks (LSTM; see [98]) are other widely used approaches in PHM. They,

generally, differ from CNNs in that LSTMS belong to the broader category of recurrent neural

networks (RNNs). They are designed to effectively process sequential data (such as time-series)

by leveraging their temporal nature. In [260] and [94], the authors developed an LSTM network

for the estimation of RUL. Similarly, the method proposed in [245] uses an LSTM and proposes

a dynamic differential technology to extract inter-frame information to cope with complex op-

erating conditions. Authors of [146] investigate the effect of unsupervised pre-training in RUL

predictions utilizing a semi-supervised setup to extract degradation-related features from raw

unlabeled training data automatically. The results suggest that unsupervised pre-training is a

promising approach in RUL prediction problems subject to multiple operating conditions and

fault modes.

These recent studies have made a great contribution to the field of PHM. However, the design

choices of the algorithm and its hyperparameters, next to the choices that need to be made

during pre-processing, make this task a challenging one. This can lead to overlooking some

models with potentially high performance or pre-processing steps, that could consequently give

better or comparable results. In this work, we present an approach for estimating the RUL,

based on the use of automatic machine learning (AutoML) [97] which can suggest to users a

suitable pipeline. As a first step towards automatically selecting a machine learning pipeline,

in this work, we are focusing only on pipelines based on classic machine learning.

4.3 Proposed Method

The proposed framework is summarized in Figure 4.1. We start the process by pre-processing

the data, removing any redundant signals, and normalizing the remaining sensor values before

transforming the data using an expanding window. After the expanding window transformation,

we extract features from each expanded window and construct the RUL-targets (or labels)
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needed to approach this problem as a regression problem. The previous steps result in a tuple

of (features, target/labels): 〈f1, . . . , fn, t〉 where each fi is a feature and t is the target/label,

that the learning algorithm will use. The next step involves feature selection to remove any

redundant features from the created dataset. Finally, we feed the transformed dataset into an

automatic machine learning module, which will use the data to automatically suggest a pipeline

that will efficiently solve the task at hand.

Figure 4.1: Overview of the proposed framework.

4.3.1 Pre-processing

Given a set of training instances (or units) U , for each instance u ∈ U we consider multivariate

time-series of sensor readings Xu = [x1,x2, . . . ,xT (u)]
T ∈ Rm×T (u), with T (u) time-steps where

the last time-step corresponds to the end-of-life (EoL) of the unit u. Each point xt ∈ Rm is an

m-dimensional vector corresponding to readings from m sensors at time t.

Sensor selection is an initial step of pre-processing multivariate time-series data. It involves

filtering the available data from sensor measurements which, for example, either do not exhibit

any correlation with the target or have strong correlations with other sensors. In the latter

case, we usually discard some of the correlated features. Furthermore, even if no correlation is

present but the sensors do not exhibit any variation, it is often the case that these features can

be discarded as they do not add any valuable information. Having a large number of sensors is

not always beneficial for training models as it increases the chance of overfitting.

Pre-processing also involves normalizing the available data to mitigate any effect that different

ranges of values or large deviations can have in the subsequent learning phase. Two of the most

often used normalization methods are Z-normalization and Min-max normalization:

• Z - normalization (or standardization): This normalization transforms the data into hav-

ing 0 mean and unit variance as: x′ = (x− μ)/σ;

• Min - max normalization (or rescaling): This normalization maps the range of the data

into [0, 1] or more generally into [a, b] as: x′ = a+ (x−min(S))(b−a)
max(S)−min(S)

,

where S is a feature (e.g., a sensor), x, x′ are the value and the transformed value of the

feature S, and μ, σ are the mean and standard deviation of S, respectively. In addition, a, b
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are the lower and upper bounds of the projection, and min(S), max(S), are the minimum

value and maximum value of S, respectively. Normalization is applied on every sensor/feature

independently.

As a next step, for each Xu, we start by taking the first w time-steps (sensor readings) and

perform what we call an expanding window transformation. We do this by expanding a window

of size w from the initial time-step (t = 0) until we reach the last time-step. In Algorithm 4.13,

we describe this transformation.

In general time-series problems, the aim is to forecast future time-steps based on the recent

history or predict/identify anomalous recordings. These problems can rely on a moving or

rolling window in the recent time from when we would like to make a prediction. The RUL

estimation, however, is an intrinsically much more complicated task. We are dealing with

(usually) multivariate, non-stationary data, where degradation has been accumulating due to

usage. Thus, all previous time-steps can be relevant for the problem at hand. The reason

for using an expanding window, rather than a moving or rolling window, is that RUL at a

particular time-step reflects not only the degradation at that time-step or its w previous time-

steps. Instead, it also carries the degradation that has been accumulating from the early stages

of the unit’s usage or after an overhaul, assuming that there are no major maintenance steps

in between.

Algorithm 4.1: Expanding window algorithm

Data: Xu = [x1,x2, . . . ,xT (u)]
T , w ; # Sensor measurements, window size

Result: W u ; # List of expanded windows of unit u

1 Wu ← [ ] ; increment size← w ;
2 for i← 1 to T (u) do
3 if increment size < T(u) then
4 W u

i ←Xu[0 : increment size] ;
5 W u ← W uW u

i ; # Appending arrays of increasing size

6 increment size← increment size+ w ;

7 else if increment size ≥ T(u) then
8 W u ← W uXu ; # Appending arrays of increasing size

9 break ;

10 end

11 end

4.3.2 Target-RUL Construction

We would like to tackle this problem as a regression problem. However, one of the main

challenges of RUL estimation is the lack of ground-truth values [195]. In the majority of cases,

3Please note that some of the notations in the pseudocode of Algorithm 4.1 differ from the notations in
the pseudocode of the original publication [112]. We did this for clarity, as well as for consistency among the
chapters of this thesis.
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the only available data are the data from the sensor measurements (e.g., in the form of time-

series). However, these data are not labeled with any information regarding the RUL, such as

maintenance times. The latter is important and needed for the training procedure as it carries

vital information that will allow the learner to uncover rules that estimate the RUL given sensor

measurements. For example, if for a specific asset the times until maintenance are recorded,

these can be used as the training labels. The learner then will try to uncover the relationship

(if any) between the sensor measurements and the time to maintenance or, in general, the times

to an event of interest.

There are two popular ways to create these labels, namely taking a linear and a piece-wise linear

approach [195]. The former interprets the RUL in the strictest sense, as time to failure. Thus,

every time-step is mapped to a value equal to EoL− t, where t is the current time-step. This

approach, however, implies that the health of the system degrades linearly with usage [195].

The latter reflects the fact that initially the degradation is negligible, and after a specific point

in time, it becomes more evident (see Figure 4.2 for an example). The point after which the

RUL degrades linearly is called the reflection point [94].

This way, we can construct an RUL curve for each u ∈ U . We do this by mapping each

expanding window W u
i to a Y u

i ∈ N representing the RUL at the end of that window, for every

i = 1, . . . , ku, where ku = |W u|.
With the previous steps, the original data is transformed into a tuple (W,Y ), with W =

∪u∈UW u ⊆ Rm×T , Y = ∪u∈UY u ∈ Nn×1, n =
∑

u∈U ku, T = max{T (u) : u ∈ U}.

4.3.3 Feature Extraction

Feature extraction is the process of extracting a set of new features from the original features

through functional mappings that will be used as input in the learning algorithm [147]. Without

informative features, it is not possible to train a model that generalizes well, but if relevant

features can be extracted, then even a simple method can show remarkable results [229]. In

addition, in this particular method, feature extraction allows translating data from different

window sizes (expanding window) into feature vectors of the same size, a condition which is

needed for the classic machine learning model.

In this work, the feature extraction F uses the expanding windows W u
i of each unit as input

and constructs a d-dimensional (d is the number of features) real-valued feature vector. F is,

generally, defined as:

F : A ⊆ Rm×T → Rd : ∀(u, i), W u
i 
→ F (W u

i ) , (4.1)

where A is any subset of Rm×T of appropriate dimensionality4.

4Remember that T was defined as T = max{T (u) : u ∈ U}.

43



585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 52PDF page: 52PDF page: 52PDF page: 52

4.3. Proposed Method

Figure 4.2: Toy example of a piece-wise linear RUL target function. The reflection point is at
time cycle 125.

Thus, each tuple (u, i) results in a feature vector which can be denoted as F (u,i). This feature

vector represents the input for the feature selection phase.

4.3.4 Feature Selection

The feature selection phase deals with selecting relevant features from the, possibly massive,

number of extracted features of the input data. It does this while reducing effects from noise or

irrelevant variables and still providing good prediction results for the task at hand [36]. Feature

selection can allow for shorter training times. It also improves generalization by reducing

overfitting and simplifies the models by using those relevant features for the model construction

phase. Furthermore, it allows for a better understanding of the data [36]. Numerous feature

selection methods have been proposed, which can be divided into (i) wrapper methods, (ii)

embedded methods and (iii) filter methods [36].

With the aforementioned steps, the RUL estimation task turns into a regression problem,

where input data corresponds to the statistical features from each expanded window, and the

respective labels are the generated RUL values.

The next step is to to find an optimal pipeline for our transformed data automatically. This
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way, a machine learning algorithm can learn from the statistical features when the end of life

is approaching. This assumption is based on the fact that degraded signals must manifest

statistical properties that reflect the state of the unit.

4.3.5 Automatic Modeling

Automated machine learning (AutoML) deals with the automation of applying machine learning

to real-world problems. In general, AutoML covers the complete pipeline from processing the

raw data to the deployment of the model, and it was proposed as an artificial intelligence-based

solution to the ever-growing challenges of applying machine learning in an efficient manner [97].

In more detail, AutoML aims to solve the so-called CASH problem, standing for combined

algorithm selection and hyperparameter optimization [221]. This is essentially the task of

choosing the suitable machine learning model for the dataset at hand, along with the proper

pre-processing method(s) and the various hyperparameters of all involved components in the

pipeline, without requiring human intervention [97].

AutoML systems, however, do not support the pre-processing steps that we introduced in

the previous paragraphs. This is why it is important to bring the original raw data into a

form that can be processed further by an AutoML system. AutoML can, furthermore, target

various stages of the machine learning process from pre-processing to model selection and

hyperparameter optimization.

4.4 Experimental Setup and Results

We are interested to see if the use of AutoML for automatically selecting a pipeline, in combi-

nation with using statistical embeddings from expanding windows in the pre-processing phase

yields better or comparable results to existing methods of RUL estimation. Experiments,

datasets, and comparisons to state-of-the-art methods are described in this section.

4.4.1 Data

In this work, we use the widely used C-MAPSS benchmark dataset [198]. The dataset was

released in 2008 [198] and it has been used in the field of PHM ever since, in order to develop

techniques and methods for estimating the RUL [183, 128]. It is a simulated turbofan engine

degradation dataset from NASA’s Prognostics Centre of Excellence5. The dataset consists of

four subsets: FD001, FD002, FD003, and FD004. Each of these datasets is arranged in an

n × 26 matrix where n corresponds to the number of data points (samples) in each unit and

26 is the number of columns/features. Each row is a snapshot of data taken during a single

5https://ti.arc.nasa.gov/tech/dash/groups/pcoe/
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operating time cycle. Regarding the 26 features, the 1st represents the engine number, the 2nd

represents the operational cycle number. Features 3− 5 represent the operational settings, and

features 6−26 represent the 21 sensor values. Engine performance can be significantly affected

by the three operating settings. More information about these 21 sensors can be found in [170].

What is more, each subset exhibits a different number of faults (see Table 4.1).

Each of these subsets is further split into training set and test set (see Table 4.1 for details). For

each engine trajectory within the training sets, the last data entry corresponds to the end-of-life

(EoL) of the engine, i.e., the moment the engine is declared unhealthy or in failure status. The

test sets contain data up to some time before the failure and the aim here is to predict the RUL

for each of the test engines.

These multivariate time-series are from a different engine, i.e., the data can be considered to be

from a fleet of engines of the same type, though, and each trajectory is assumed to be the life-

cycle of an engine. Every engine starts with different degrees of initial wear and manufacturing

variation, unknown to the user. This wear and variation are considered normal, i.e., it is not

considered a fault condition.

To compare the model performance on the test data, we need some objective performance mea-

sures. In this work, we used two measures: the Scoring function S (also known as Timeliness

in literature), and the Root Mean Square Error (RMSE) [260, 146, 143, 195, 94]. We introduce

them below (n denotes the number of samples):

• The Scoring function S (see also [198]), is defined as:

S =

⎧⎨
⎩
∑n

i=1(exp(−di/13)− 1) if di < 0∑n
i=1(exp(di/10)− 1) if di ≥ 0

(4.2)

• RMSE (root mean squared error) is defined as RMSE =
√
1/n

∑n
i=1 d

2
i ,

where di = R̂ULi−RULi, R̂ULi is the estimated RUL and RULi is the ground truth RUL for

instance (engine) i, respectively.

The scoring function S penalizes more an overestimation than an underestimation. The scoring

algorithm is asymmetric around the true time of failure, such that late predictions are more

heavily penalized than early predictions. In both cases, the penalty grows exponentially with

increasing error. The asymmetric preference is controlled by the constants 13 and 10 in the

scoring function, as introduced in [198]. This is logical, as a turbofan engine’s overestimation

of the RUL can have catastrophic results.
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Table 4.1: CMAPSS dataset details.

Dataset FD001 FD002 FD003 FD004

Train trajectories 100 260 100 249
Test trajectories 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2
Max train trajectory (cycles) 362 378 525 543
Min train trajectory (cycles) 128 128 145 128
Max test trajectory (cycles) 303 367 475 486
Min test trajectory (cycles) 31 21 38 19
Training samples 20631 53759 24720 61249

4.4.2 Experimental Setup

The experiments6 were executed on 64 cores of 2 Intel® Xeon® Gold 6142 CPU, 2.60GHz and

256GB of DDR4 memory. Source code has been developed in Python V3.6.97.

Pre-processing

Following the steps of Section 4.3 we start by selecting relevant sensors. In detail, sensors

1, 5, 6, 10, 16, 18, and 19 in subsets FD001 and FD003 exhibit constant sensor measurements

throughout the engine’s lifetime. Constant sensor measurements do not provide any useful

degradation information for determining the RUL [146]. In addition, subsets FD001 and

FD003 operate under a single operating condition. Thus, the three operational settings are

dropped. In this view, the sensor measurements retained for subsets FD001 and FD003 are

2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21. As a result, 14 sensor measurements out of the

total 21 are used as the raw input features, as in [146, 88, 143]. Subsets FD002 and FD004 are

more complex due to more operating conditions, making it more challenging for the algorithm

to detect degradation patterns in the input data. Thus, for these subsets, we decided to retain

all three operational settings and all sensor measurements, as in [146]. We continue by pre-

processing the data by Z-normalizing (standardizing) the sensor values of the training set and

using the learnt parameters to standardize the test set. Next, we apply the expanding window

transformation to the data. Typically, a larger window size results in fewer samples but allows

for a greater overview of the degradation process as more information is available for the target

RUL. A smaller window size results in less information being available to map to the respective

RUL target but allows for more samples. As a result, it is also more computationally expen-

sive. To ease the computational burden, we use a window size w = 10. Regarding RUL-target

6The source code of the experiments can be found at https://github.com/MariosKef/automated-rul .
7We used tsfresh(0.17.0), TPOT (0.11.7), scikit-learn(0.24.1), pandas(1.1.5), numpy(1.19.5).

47

https://github.com/MariosKef/automated-rul


585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 56PDF page: 56PDF page: 56PDF page: 56
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construction, we use the piece-wise linear approach, as we consider it to reflect more accurately

a degradation of a turbofan engine [88], since these machines are designed to sustain multiple

cycles and excessive loads and stress. Furthermore, this is still the most common approach

in literature [146]. The values of the initial, constant, RUL were selected from [146], and the

reflection point is selected as EoL/2 [94].

Feature Extraction

In the feature extraction phase, we use the tsfresh pipeline (Time Series Feature extraction

based on scalable hypothesis tests) [43], since one of our main research questions concerns sta-

tistical embeddings of the signal in question and, specifically, if they can reflect the degradation

process. Tsfresh extracts 63 time-series characterization features (e.g., auto-correlation, kurto-

sis, skewness). By taking different parameterizations (i.e., different time lags when calculating

the auto-correlation) for each feature function, it computes 794 features for each time-series8.

The use of tsfresh allows extraction of a multitude of features by non-experts, and it allows for

the identification of features that might be more informative from traditional ones in a given

field9.

Feature Selection

In the subsequent step, we select the relevant features for the overall regression task in order to

reduce the massive number of extracted features in F (W u
i ). We decided to use a filter method

for this phase to select a subset of features independently from the learning scheme. We check

the significance of all extracted features from the previous step to the target RUL values. We

return a possibly reduced feature matrix only containing relevant features for the subsequent

steps. For this step tsfresh.select features is used, which calculates the feature significance of a

real-valued feature to a real-valued target as a p-value, using Kendall’s tau. The algorithm has

been applied with its default settings10.

Automatic Modeling

We approach this regression problem without using an a-priori selected pipeline, aiming to

automatically identify the pipeline that gives the best cross-validated score on the training set.

8See https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html, for a complete list of
features.

9tsfresh has been applied with EfficientFCParameters as its extracted features list to reduce the computa-
tional cost (see https://tsfresh.readthedocs.io/en/latest/text/feature_extraction_settings.html#
for-the-advanced-how-do-i-set-the-parameters-for-all-kind-of-time-series). The rest of the in-
put parameters are left in their default settings. (see https://tsfresh.readthedocs.io/en/latest/api/

tsfresh.feature_extraction.html#module-tsfresh.feature_extraction.extraction)
10https://tsfresh.readthedocs.io/en/latest/_modules/tsfresh/feature_selection/selection.

html#select_features
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Chapter 4. AutoML and RUL

To tackle this, we used TPOT (Tree-based Pipeline Optimization Tool) [169, 97]. Based on

genetic programming (GP) [126], TPOT develops and optimizes machine learning pipelines

in an automatic manner. The pipeline’s operators (pre-processing, feature selection, models)

with the respective hyperparameters are combined in a pipeline. Based on GP, the whole

sequence and each operator evolve, optimizing a performance metric. TPOT is designed for

Pareto optimization in order to optimize the pipeline according to a performance measure

(e.g., accuracy, MSE) and simultaneously minimize its complexity. Compared to basic machine

learning approaches, TPOT is considered efficient and competitive [169, 238]. We used a

population size of 20 for all datasets and evolved the pipelines for 10 generations. The TPOT

default settings, 5-fold cross-validation, and maximum evaluation time per generated pipeline

of 5 minutes, were used. Lastly, we should note here that TPOT allows for different scoring

functions to be defined and used as an objective in its optimization process during training.

We performed our experiments using the Scoring function S (see Equation 4.2) in TPOT as

its loss function to be optimized (here minimized) during the training process. The remaining

hyperparameters used in TPOT were kept in their default setting11. In Table 4.2, we show all

the hyperparameters used in this study and their values.

Table 4.2: Hyperparameters used in the experiments.

Hyperparameter FD001 FD002 FD003 FD004

Window size (w) 10 10 10 10
Initial RUL 115 135 125 135
Reflection point EoL/2 EoL/2 EoL/2 EoL/2
Generations 10 10 10 10
Population size 20 20 20 20
CV 5 5 5 5
Objective Score S Score S Score S Score S

Baseline

We also performed a baseline experiment to evaluate our main ideas and the pre-processing.

Our baseline disregards the temporal aspect of the problem at hand. As a result, we do not

perform any expanding window transformation or feature extraction. Moreover, since this is a

time-agnostic method, we also decided not to use the piece-wise linear function for the RUL

construction but instead we used the linear scheme. We also did not use feature selection

prior to using TPOT like in the proposed method, as we did not extract features. All other

pre-processing steps remain the same (sensor selection, standardization of sensor values). The

transformed dataset is fed again to an AutoML learning scheme. We use this baseline to show

the benefits of using the expanding window and the statistical features together with the specific

11http://epistasislab.github.io/TPOT/api/#regression
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RUL construction in an AutoML setting.

4.4.3 Experimental Results

After TPOT terminates, it returns the optimal pipeline with respect to its cross-validated score.

The optimal pipeline is then applied to the test data. The test data have also been transformed

in the feature extraction phase, just like the training data. However, the test data do not

undergo an expanding window transformation prior to the feature extraction phase because

we are interested in estimating the RUL of the test instance, and therefore statistical features

extracted from the entirety of the test recordings are needed to make the prediction. Thus, we

make predictions on 100, 259, 100 and 248 test trajectories from all 4 datasets, respectively (see

Table 4.1). Regarding our baseline experiment, the inference on the test set is simply applied

to the final time-step of its trajectory.

In Table 4.3 we show the results of both of our experiments (the proposed method and the

baseline), on all 4 test datasets. To mitigate any random artifacts, we ran the experiments 10

times. We chose 10 due to the fact that TPOT is extremely time consuming. We show both

the average and the standard deviation of the values of Scoring function S and RMSE of our

predictions, as well as the average execution times. In bold we show that the proposed method

has a statistically significant smaller mean compared to the baseline, both in terms of the score

S and the RMSE, on all 4 of the datasets. We assessed this by bootstrapping our samples per

dataset a total of 105 times to create a sampling distribution of the means. We then performed

a Wilcoxon rank sum test (Mann-Whitney U test)12 with a significance level of a = 0.01 to

check if the sampling distribution of the means of our proposed method is significantly different

than the sampling distribution of the means of the baseline13. We selected this test to take

into account the non-normality of the data and the independence between the samples. The

resulting p-value is p < 0.01 signifying that the observed samples cannot come from the same

distribution (rejecting thus, the null hypothesis)14.

We further compare our proposed method to some of the state-of-the-art methods. In more

detail, we compare against selected methods that employ deep neural networks (DNN) (such

as CNN and LSTM) and classic machine learning (such as random forests (RF), support vec-

tor machines (SVM))), and as such represent the vast majority of employed methods for this

problem. The selected algorithms are good representatives of their respective categories as they

either serve as the first attempts [195] or have achieved remarkable results [94, 260, 146, 143].

12In the original publication [112], a Wilcoxon signed-rank test was erroneously performed, instead of the
Wilcoxon rank sum test. Since the samples are not paired (an assumption of the Wilcoxon signed-rank test) we
corrected the statistical test in this chapter. We should note that despite the mistake in the original publication,
the conclusions of the - corrected - statistical test remain the same.

13The null hypothesis is that the sampling distributions of the two methods are the same.
14The returned p-value is p = 0.00. In practice, this means that the p-value returned by the software is a very

small float rendering it practically 0.00.
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Regarding the application of classic machine learning algorithms on this problem, since there

have not been many attempts, we report on all of those that to our knowledge exist (e.g.,

random forest (RF), LASSO regression, support vector regression (SVR), support vector ma-

chine (SVM), gradient boosting (GB), KNeighbors regressor (KNR), relevance vector regression

(RVR), extra tree regressor (ETR). In Table 4.4, in bold, we show the average results of our

proposed method and the instances it outperforms. Below, we discuss these results distinguish-

ing between classic machine learning and deep neural networks.

Classic Machine Learning

The results show that the proposed method outperforms the multilayer perceptron (MLP),

support vector regression (SVR), relevance vector regression (RVR) [195], LASSO regression,

SVM and KNR regression [253] on all 4 datasets both in terms of the score function S and

the RMSE. Moreover, the proposed method outperforms the RF [253] algorithm in terms of

both the score S and RMSE on FD001 and FD002, of RMSE on FD003, and of score function

S on FD004. In addition, it outperforms the GB [253] algorithm on FD002 in terms of the

score function S and the RMSE, outperforms FD001 on the score function S and achieves

comparable results on its RMSE. Lastly, it can outperform ETR [253] on all datasets, except

for FD004 in terms of RMSE, where it achieves a comparable result. In general, we see that

in terms of the score S, the proposed method outperforms all 9 of the classic machine learning

algorithms considered here, on 2/4 datasets (FD001 and FD002) by at least 19%15 (on FD001)

and outperforms 6/9 of these algorithms on all 4 datasets by at least 13.2% (on FD003). In

terms of the RMSE, our proposed method outperforms all 9 of the classic machine learning

algorithms considered here, on 1/4 datasets (FD002) by 3.1% and outperforms 6/9 of these

algorithms on all 4 datasets, by at least 1.9% (on FD004).

Deep Neural Networks

When compared to DNNs, our method outperforms the first CNN approach [195] on all cases

except on FD004. When compared, however, to LSTM [94, 260, 146] and a recent CNN

approach with 1D convolution [143] our algorithm is outperformed or comparable in terms of

RMSE. In more detail, our proposed method outperforms the CNN [195] on FD001, FD002

and FD003 by at least 22.1% (on FD002) in terms of the score S and by at least 0.6% (on

FD003) in terms of the RMSE. Our method is also comparable on FD004 in terms of the

RMSE. Regarding LSTMs, our results are comparable to those proposed in [94]. In more

detail, our method outperforms [94] by 1.23% on FD001 in terms of the score S, by 5% in

terms of the RMSE and on FD002 by 0.8% on the score S and by 4.2% in terms of the RMSE.

15The percentage of improvement, in this case, is calculated as PI=1 − proposed method performance
min(other methods performance) ∗ 100%,

since we are interested to see how much better we perform from the best method (lower is better).
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Our method is also comparable to [94] on FD003 in terms of the RMSE and the score S, and

on FD004 in terms of the RMSE. Furthermore, it outperforms by 1.5% the algorithm of [260]

on FD001 in terms of the RMSE. The proposed method is also outperformed by the other

LSTMs [260, 146] and CNN [143] by at least 1.5% (on FD002) in terms of the score S and at

least 13.2% in terms of the RMSE (on FD002)16. The reason is that the usage of advanced

LSTM (e.g., using unsupervised pre-training) and CNN with 1D convolution allow for learning

highly nonlinear relationships that might describe the mapping between the time-steps and the

RUL more accurately, compared to classic machine learning schemes. This also leads to more

favourable results on FD004, which incorporates 6 operating conditions and 2 fault modes.

From the previous results we can conclude that AutoML in combination with extracting statisti-

cal features can outperform or achieve comparable results compared to classic machine learning

techniques. When compared to DNNs, however, our method is comparable or outperformed,

one reason being that DNNs have the ability to learn highly nonlinear relationships that might

describe the mapping between the time-steps and the RUL. What is more, we should note

here that DNNs were not included in our algorithm search space. Furthermore, using neural

architecture search (NAS) based methods can be useful. However, some of these approaches

use very complex handcrafted pipelines (e.g., using unsupervised pre-training) that cannot be

efficiently automated with current NAS systems. Thus, considering NAS for this problem is

much broader than the scope of this chapter.

4.5 Discussions and Conclusions

In this chapter, we presented the first, to our knowledge, AutoML approach [97] for the estima-

tion of the RUL of machinery. We investigated the usage of TPOT ([169, 97]) in automatically

selecting a pipeline for this problem and the usage of statistical embeddings of time-series in

the pre-processing phase, using an expanding window transformation. The role of the AutoML

was to take as input this transformed dataset and output a pipeline where the pre-processing,

feature selection and modeling are all selected automatically.

We evaluated the proposed method on the widely used C-MAPSS dataset [198]. The gathered

results show the benefits of using AutoML in combination with extracting statistical features

(embeddings) and constructing the RUL in a piece-wise linear manner. In detail, the results in-

dicate that such an approach can outperform or achieve comparable results compared to classic

machine learning techniques (such as SVR, LASSO, SVM [195, 253]). However, when compared

to deep architectures such as CNN and LSTM [94, 260, 146, 143], our method is able to outper-

form the first CNN approach on 3/4 of datasets. In general, it achieves a comparable perfor-

mance or is outperformed by other deep learning baselines. This suggests that the combination

16In this case, the percentage is calculated as 1− max(other methods performance)
proposed method performance ∗ 100%, since we are interested

to see by how much the “worst” (lower is better) of the better methods outperforms us.
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Chapter 4. AutoML and RUL

of statistical features and classic ML might not be sufficient to uncover the highly nonlinear

relationship between the observed/measured values and the RUL. The proposed method also

allows for a helpful direction towards which classic machine learning algorithms would be more

beneficial, as well as providing the optimal pipeline as a starting point for further research.

As indicated, a limitation of our approach is the investigation of only classic ML algorithms

(e.g., no neural networks) and no hyperparameter optimization (e.g., for the window size).

For future directions, we recommend the inclusion of neural networks in the AutoML approach,

by means of NAS [60], as well as investigating effective dimensionality reduction techniques for

the statistical embeddings or other effective representations that are able to retain the nec-

essary degradation information. Finally, augmenting such approaches with a hyperparameter

optimization wrapper is always vital to reduce the unwanted bias of the hyperparameter selec-

tion or add domain knowledge to the process.
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Table 4.3: Performance metrics and wall-clock time (in minutes) of the proposed method and
the baseline. Here the Scoring function S has been used as the scoring function in TPOT
(lower is better). In bold, we show the optimal results.
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Table 4.4: Comparison of the proposed method with other methods in terms of Scoring function
S and RMSE (Lower is better). In bold, we show the average results of our proposed method
and the instances it outperforms. The Type column indicates the methods that belong in the
classic machine learning domain and the ones belonging in the deep neural network category.
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4.5. Discussions and Conclusions
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Chapter 5

Uncertainty Quantification in RUL

Estimation

In Chapter 4, we introduced AutoML to the reader, discussed its significance to the data-driven

domain generally and, specifically, its role in PHM. We further showcased through performing

experiments on a specific simulated dataset from the aerospace industry that AutoML with

traditional ML methods in its search space outperforms or is comparable to pre-selected tra-

ditional ML techniques and standard NNs while being outperformed by specifically designed

NNs.

This chapter1 will touch upon a topic of high significance in PHM and specifically data-driven

PdM, namely uncertainty quantification (UQ). The motivation behind this chapter lies in the

fact that in addition to the RUL prediction, one needs to assess also the confidence of that

prediction. This is especially crucial in operations-critical and safety-critical applications, where

an indication of the remaining time until failure should be as confident as possible. Otherwise,

for example, unnecessary downtime of the asset might occur. Furthermore, by accounting

for the uncertainties, the researcher or end-user can determine if, for example, the training

data is not representative of the task or is too noisy (i.e., measurement uncertainties, operating

environment uncertainties, future load uncertainties, input data uncertainties) or if the selected

model is poorly selected (i.e., underparameterized NN).

To address this, we propose a technique for uncertainty quantification (UQ) based on Bayesian

deep learning. The hyperparameters of the framework are tuned using a novel bi-objective

Bayesian hyperparameter optimization (HPO) method with two objectives: predictive perfor-

mance and predictive uncertainty. The method also integrates the data pre-processing steps

into the HPO stage, models the RUL as a Weibull distribution, and returns the survival curves

1Contents of this chapter are based on [116]; Marios Kefalas, Bas van Stein, Mitra Baratci, Asteris Apos-
tolidis, and Thomas Bäck. An End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life
Estimation: An Application on Aircraft Engines. In 2022 7th European Conference of the Prognostics and
Health Management Society, Turin, Italy, July 2022. PHM Society.
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5.1. Introduction

of the monitored assets to allow informed decision-making. We validate this method on the

widely used C-MAPSS dataset.

5.1 Introduction

Prognostics and health management (PHM) includes multiple methodologies and functions as a

decision support tool that aims at minimizing maintenance costs and predicting when a failure

could occur by the assessment, prognosis, diagnosis, and health management of engineered

systems [230]. The core of PHM is failure prognostics. Failure prognostics refers specifically

to the phase involved with predicting future behavior and the system’s useful lifetime left in

terms of current operating state and the scheduling of required maintenance actions to maintain

system health [227]. This useful lifetime left is often called the remaining useful life (RUL) [230]

and is defined as the length from the current time and operating state to the end of the useful

life [208] (for more information on the RUL see Section 3.1). The notice of pending equipment

failure allows for sufficient lead-time so that necessary decisions, personnel, equipment, and

spare parts can be organized and deployed, thus minimizing equipment downtime and repair

costs. By leveraging RUL estimation2, industries, such as aerospace, maritime, and energy, can

improve maintenance schedules to avoid catastrophic failures and consequently save lives and

costs [253]. The industry has to also assure that its asset utilization is optimum by guaranteeing

a timely - but not premature - maintenance. Furthermore, this practice promotes sustainability

as the use of spare parts is optimum and no useful life is wasted.

As has already been mentioned in previous chapters, the estimation of the RUL can be done in

various ways. Model-based, data-driven, and hybrid methods are the most prominent approaches

[230], and in general, all methods make some use of the sensor data of the equipment and/or

maintenance history. For more details on these methods, we refer the reader to Section 3.3

and Section 4.1. It is worth mentioning here, though, that amongst the three said methods,

data-driven methods are relatively easier to develop as they do not need (a lot of) expert or do-

main knowledge to develop the model, rendering them domain-agnostic and easily transferable

between domains, and because of the plethora of tools that have been and are being developed.

The previous make data-driven methods available to a broader audience of researchers and

end-users.. They can require, however, large amounts of data.

Data-driven approaches either fall under the category of classic machine learning (ML) algo-

rithms (such as random forests (RF)) [253, 195] or the more recently proposed deep neural

networks (DNNs) [94, 146, 260]. In both cases, though, the estimation of the RUL is a chal-

lenging problem. The remaining useful life is not merely a target variable that can be predicted

from sensor measurements, but it is a variable that needs to be inferred from a longer trend

2In this work we will be using the terms RUL prediction and RUL estimation interchangeably, unless other-
wise stated.
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of degradation patterns and when those begin to occur. In this view, and due to the advances

in the general field of artificial intelligence (AI), deep learning (DL) and DNNs have proven

to be a successful candidate to the RUL estimation task [138, 25, 112, 35, 177, 237]. One

significant advantage of DNNs lies in their ability to learn features from raw data automat-

ically and extract patterns that can enhance the RUL estimation accuracy [25, 237]. DNNs

owe their success to their representational power and their capacity to learn sets of hierarchical

features from simpler features due to their deep, multilayer architectures [98]. However, most of

the state-of-the-art DL approaches used in prognostics provide mainly point estimates to their

RUL predictions [177, 35, 26]. This is because DNNs do not inherently quantify the uncertainty

associated with their predictions but instead treat their weights and biases as deterministic val-

ues. These predictions, though, are uncertain since they are prone to noise and wrong model

inference (see Section 5.3.4).

Specifically, there are two sources of uncertainty, namely epistemic (or model) uncertainty and

aleatory (or data) uncertainty [96]. The former occurs due to inadequate knowledge, data, and

representational capacity of the model and the latter due to the inherent uncertainty of the

data distribution [35, 4]. Additionally, from the nature of epistemic uncertainty we can see

that it is a reducible part of the (total) uncertainty of a modeling process, as it can be reduced

on the basis of additional information. On the contrary, aleatory uncertainty is an irreducible

part of the (total) uncertainty, due to the inherently random effects in the data-generating

process [96]. Most problems in engineering involve both sources of uncertainties. However, it

may be difficult to distinguish whether a particular uncertainty should be put in the aleatory

category or the epistemic category, in the modeling phase [120].

The lack of a measure of uncertainty, however, can lead to overly confident decisions [35, 74].

When it comes, for example, to cost-critical or safety-critical applications, it is necessary to

know how much confidence a DL method has on its prognostic results and even more so when

it comes to the RUL estimation [177, 26, 25, 35]. In addition, even though DNNs output

predictive probabilities (e.g., image classification), these probabilities are falsely interpreted as

model confidence [74]. For example, the probability of the softmax on the final layer of a neural

network (NN) will not reflect if the network has knowledge of the input (see also adversarial

examples [217]). Additionally, decision-making based on a single-point estimate is error-prone

and leaves no room for the decision-maker to make an actionable choice [177]. When such

an uncertainty estimate is available (see also Section 5.2) it is often the case that end-users

and decision-makers need to choose by lacking broader information, such as distribution of

predictions or other statistics that can assist the logistics further.

Furthermore, the end-user or researcher is faced with a multitude of decisions around the

hyperparameters of the pre-processing of the data (e.g., label construction for RUL data), and

of the learning algorithm (e.g., the number of layers in a DNN). Hyperparameters are not

learnt but have to be set a-priori, and they have a large impact on the predictive performance
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of a method but also uncertainty. On top of that, there can be hyperparameter configurations

that allow low prediction error but have (relatively) large uncertainty and vice versa. In such

scenarios, where trade-offs exist, it is vital to move towards a more user-centric approach, where

the end-user can decide which hyperparameter configuration to adopt based on the criticality

of the task. As such, hyperparameters need to be considered carefully both in terms of model

accuracy and the uncertainty estimates.

The aforementioned statements motivate our main research question: Can we propose an au-

tomated framework for configuring RUL prediction models which are highly accurate and have

less estimation uncertainty?

More specifically, our contributions are as follows:

1. We automatically optimize the hyperparameters of the Bayesian deep learning model

through a Bayesian multi-objective optimization algorithm, jointly minimizing the RUL

prediction error and the combined aleatory and epistemic uncertainties of the estimations.

The reasoning behind this is that in certain tasks, there can be conflicts between these

two objectives, as we briefly mentioned previously.

2. Together with the model hyperparameters, we further optimize the hyperparameters

which are specific to the task of RUL estimation (the RUL label construction, see also

Section 5.3), which is known to have an effect on the algorithmic performance [195]. We

provide a thorough, end-to-end approach that can further assist researchers and end-users

for offline RUL estimation.

3. We adopt a user-centric approach that allows the user to estimate the RUL based on

the model output, as it promotes a more interpretable RUL decision. We demonstrate

how survival curves can provide the end-user with information regarding the RUL and

its confidence.

4. We evaluate our multi-objective hyperparameter optimization (HPO) approach against a

single-objective HPO by taking the harmonic mean (HM) of the objectives. Our approach

is validated on two subsets of the widely used C-MAPSS dataset [3].

The rest of the chapter is organized as follows. In Section 5.2, we present related work in this

field and in Section 5.3, the proposed method and its modules are introduced. In Section 5.4

we present the dataset used and discuss the experimental results. Finally, in Section 5.5 we

conclude and discuss the limitations of our framework and suggest future work.

5.2 Related Work

The field of PHM has been widely credited in the past years with numerous contributions

from researchers. Academic interest, industrial applications, as well as the scientific challenge
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of developing methods to forecast a failure, have been the driving forces. While model-based

prognostic methods, such as Kalman filters and their variants [84, 110], take into account

the modeling and data uncertainty, only a few studies in the data-driven domain address this

matter, despite its importance [26]. Touching upon the previous statement, in this section,

we will present related work in the context of uncertainty quantification (UQ) for the RUL

estimation, attending only to data-driven approaches.

From the traditional ML methods, only Gaussian process regression (GPR) [185] (also known

as Kriging) addresses UQ. GPR is a stochastic interpolation method where unseen locations

of a stochastic process are estimated as a linear function of observed values. It can further

be understood as a form of Bayesian inference. Specifically, GPR places a Gaussian prior

over the functions that could have generated the observed data. Using Bayes’s theorem by

combining the Gaussian prior and the Gaussian likelihood function (for tractability), we get

the predictive distribution for a new value. However, GPR might not be the optimal model for

some data, e.g., if the data does not come from a Gaussian process, or the dimensionality is

high. Furthermore, the data generating the predictions are not learnt automatically as in DL

but need proper pre-processing (e.g., feature extraction), and also GPR variance is known that

it can be over-optimistic [52].

In this view, from the data-driven approaches, we will only review recent work that adopted a

DL solution. We made this decision because, as also mentioned in Section 5.1, DL is becoming

prominent in data-driven prognostics, as well as there has recently been a lot of attention on

UQ for DL [74, 28, 171, 4]. This collection is by no means exhaustive. We refer the interested

reader to [230] and [128] for a more thorough overview of related work on PHM.

Epistemic Uncertainty The work by Peng et al. [177] is a recent data-driven example

of UQ in prognostics. The authors present a DL approach from a Bayesian viewpoint to

address the confidence of their RUL predictions and implement the Bayesian approximation

using Monte Carlo Dropout (MC Dropout) [74] (see also Section 5.3.4). Kraus et al. [127] dealt

with epistemic uncertainty in prognostics using variational inference (see also Section 5.3.4) and

combine DL with notions from survival analysis to increase the intepretability of the estimation.

In the same domain, Wang et al. [237] used MC Dropout to estimate the epistemic uncertainty

of a recurrent convolutional neural network (RCNN) for the RUL estimation. However, none

of the previous studies touched upon aleatory uncertainty.

Aleatory Uncertainty Zhao et al. [259], addressed the aleatory uncertainty by using a deep

convolutional neural network (DCNN) through a shortened version of the ResNet [86] and

assumed that the target RUL values follow a Gaussian distribution with parameters μ and σ

being the network’s outputs. They also adopted a non-parametric approach by combining the

predicted RUL from the network with quantile regression, predicting this way multiple RUL at
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5.3. Proposed Method

different quantile levels. However, this approach did not take into account epistemic uncertainty

and, to the extent of our knowledge, there was no HPO.

Epistemic and Aleatory Uncertainties Caceres et al. considered in [35] both epistemic

and aleatory uncertainties. They used an explicit form of variational inference to account for

the epistemic uncertainty and addressed the aleatory uncertainty by a probabilistic output layer

parameterized by a Gaussian distribution and further performed HPO through grid search. In

the same manner, Kim et al. [118], and Li et al. [139] designed RUL frameworks by taking into

account the effects of both epistemic and aleatory uncertainties. They both used MC dropout

to address the epistemic uncertainties. Kim et al. [118] addressed the aleatory uncertainty by a

probabilistic output layer parameterized by a Gaussian distribution and assumed a monotoni-

cally decreasing relationship between the aleatory uncertainty and RUL, and further performed

HPO on the number of hidden layers amongst other hyperparameters. Li et al. [139] modeled

aleatory uncertainty by a probabilistic output layer following various types of lifetime distribu-

tions (Weibull, Gaussian, and Logistic). Benker et al. [25] adopted a Bayesian neural network

and addressed both uncertainties as well, but took into account the aleatory uncertainty post-

training. They further quantified the epistemic uncertainty using a Hamiltonian Monte Carlo

method, a more efficient variant of the Markov Chain Monte Carlo (MCMC) methods in high

dimensional spaces.

These recent studies have made a great contribution to the field of data-driven prognostics by

proposing methods to account for and quantify the uncertainty of their predictions. Nonethe-

less, there remain perspectives to consider. In more detail, most of the literature reviewed

([259, 139, 25]) did not state any form of HPO and those that did ([177, 35, 118, 26]), did not

optimize necessary hyperparameters in the pre-processing stage and used less efficient HPO

techniques (e.g., grid search). What is more, the reviewed methods that perform some form of

HPO used only the RUL prediction error as the only criterion to guide the HPO, as opposed

to also taking into account the epistemic and aleatory uncertainties. Lastly, in our literature

review, we did not come across any methods that allow the end-user to make an informed RUL

prediction based on information output by the model.

5.3 Proposed Method

Our method works by training a Bayesian deep learning model on training data U presented

in the form of multivariate time-series (see also Definition 3.1 in Section 3.1 for details in the

notation). The steps of our method are summarized as:

1. Data pre-processing by removing any redundant signals, normalizing the remaining sensor

values and performing a sliding window transformation.
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2. Target-RUL construction to allow supervised learning.

3. Modeling using a Bayesian deep learning model and taking into account the uncertainty

of the predictions.

4. Hyperparameter optimization of the hyperparameters of steps 1,2, and 3.

5.3.1 Pre-Processing

The pre-processing stage has already been introduced in Chapter 4. We refer the reader to

Section 4.3.1 for a more in-detail discussion. In brief, pre-processing time-series data involves

sensor selection and value normalization. Sensor selection involves filtering the available data

from sensor measurements which, for example, either do not exhibit any correlation with the

target or have strong correlations with other sensors. Furthermore, even if no correlation is

present, but the sensor values do not exhibit any variation, these features can often be discarded

as they do not add any valuable information.

Pre-processing also involves normalizing the available data to mitigate any effect that different

ranges of values or large deviations can have in the subsequent learning phase. Two of the

most often used normalization methods are Z-normalization and Min-max normalization (see

also Section 4.3.1 for more details on these two normalization methods).

In this chapter, as a next step, for each Xu (see also Definition 3.1 in Section 3.1 for details

in the notation), we perform a sliding window transformation with a sequence of length w

(window size), in order to enclose the inputs into multidimensional sequential data, which are

to be considered as one sample. This transformation allows one to increase the number of

training data, standardize the sample input lengths, and accelerate model training [35]. For

this work, the window size w is treated as pre-processing hyperparameter.

5.3.2 Target-RUL Construction

We would like to tackle this problem as a regression problem. For the target-RUL construction

we followed the same process described in Chapter 4. We refer the reader to Section 4.3.2 for

a more in-detail discussion. In brief, there are two popular ways to create these labels, namely

linear and piece-wise linear methods [195]. The former interprets the RUL in the strictest

sense, as time to failure. Thus, every time-step is mapped to a value equal to EoL− t, where t

is the current time-step. This approach, however, implies that the health of the system degrades

linearly with usage [195]. The latter reflects the fact that initially the degradation is negligible,

and after a specific point in time, it becomes more evident (see Figure 4.2 for an example).

The point after which the RUL degrades linearly is called the reflection point [94]. This, way

we can construct an RUL curve for each u ∈ U , by mapping each rolling window to the RUL

63



585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 72PDF page: 72PDF page: 72PDF page: 72
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at the end of that window. For this work, the type of label creation method and the reflection

point are treated as pre-processing hyperparameters.

5.3.3 Modeling

As mentioned in Section 5.1, amongst the data-driven methods employed for prognostics DNNs

have proven to be good candidates due to their representational power [138, 25, 112, 35, 177,

237]. In general, shallow learning methods are not designed for large-scale datasets and, more

importantly, need extensive feature engineering efforts [262]. In this view, we decided to employ

DL to address the RUL estimation problem. As this task is based on sequential data (mul-

tivariate time-series), we decided to use recurrent layers and specifically gated recurrent unit

(GRU) layers as the model base due to their lower complexity and similarly good performance in

modeling long dependencies [139], when compared to long short-term memory (LSTM) layers.

5.3.4 Uncertainty Quantification

As discussed briefly in Section 5.1 predictions made by neural networks are inherently uncertain,

as they are prone to noise and/or wrong model inference. At the same time, however, NNs treat

their weights and biases as deterministic values. This results in NNs being overly confident,

even when they should not be. In general, there are two sources of uncertainty. In the context

of NN, the epistemic and aleatory uncertainties can be considered by putting a prior on model

parameters or the outputs. The latter means assuming that the model outputs follow a specific

distribution, such as Weibull. The former can be addressed by treating the weights and biases

(we jointly note them as W ) of the network as random variables, defining a prior over them, and

then using Bayesian inference to learn the posterior distributions of the network’s weights [177,

262, 35] as:

p(W |X, Y ) =
p(Y |X,W )p(W )

p(X, Y )
, (5.1)

where X, Y are the training data and their labels, respectively. The posterior distribution on

the network’s parameters is, however, computationally intractable even for NNs of any practical

size, as the number of parameters is very large and the functional form of a NN does not allow

for exact integration [28, 74, 35]. Moreover, the denominator in Equation 5.1 is unavailable in

closed form or requires exponential time to compute [27].

A large part of ongoing research is focused on approximating such posterior distributions [26].

Amongst these, prominent methods are Markov Chain Monte Carlo (MCMC) methods and its

variants, and variational inference (VI) [26, 262, 27, 35]. The former, generally, converge slowly

and are computationally expensive for large datasets or complex models. Instead, variational

inference solves the same problem by using optimization techniques rather than sampling meth-

ods like MCMC [27]. Specifically, variational inference sidesteps the difficulty mentioned above
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altogether by defining an approximate variational distribution q(W ) from a distributional fam-

ily D, that is the best approximation to the exact posterior p(W |X, Y ), with respect to the

Kullback-Leibler (KL) divergence. This means that,

q∗(W ) = argmin
q(W )∈D

KL(q(W ) || p(W |X, Y )), (5.2)

where KL(q(W ) || p(W |X, Y )) is defined as:

KL(q(W ) || p(W |X, Y )) = Eq(W )

[
log

q(W )

p(W |X, Y )

]
(5.3)

However, because Equation 5.2 is intractable3 VI maximizes instead what is called the evidence

lower bound (ELBO), which is defined as:

ELBO(q(W )) = E [log(p(X, Y |W )]−KL(q(W ) || p(W )) (5.4)

In turn, though, exactly maximizing Equation 5.4 is computationally prohibitive. To address

this, variational inference can be divided into methods that implicitly use model uncertainties,

such as MC Dropout [74] and methods that explicitly model weight parameters as probability

distributions such as Bayes-by-Backprop [28, 35, 262].

In this work, we have decided to use MC Dropout to model the epistemic uncertainty due

to its simplicity, scalability, and computational efficiency compared to other Bayesian deep

learning approaches [74, 118]. It is implemented through gradient-based learning methods and

stochastic regularization techniques, which are widely available in existing DL libraries [177].

MC Dropout is, in essence, regular dropout applied at both training and inference steps. The

addition of dropout between every layer can switch off some portion of neurons in each layer

and generate random predictions as samples from a probability distribution that is considered

equivalent to performing approximate VI. In more detail, MC Dropout showed that by choosing

a specific form of an approximate distribution q, as a distribution over matrices whose columns

are randomly set to zero, the VI in a NN can be interpreted as performing one forward pass

through the NN with dropout. For more details on MC Dropout, see [74] and the accompanying

appendix.

We should note here that there is a current debate as to the validity of MC Dropout being

Bayesian [35, 262, 171]. In [171], Osband et al. highlighted that a shortcoming of MC Dropout

is that the dropout rate does not depend on the data, which translates into the fact that

employing dropout for posterior approximation cannot say anything about a set of data being

observed once or more times. This, of course, can have significant implications in support

of reliable uncertainty quantification and consequently deserves attention. As this work was

3See [27] page 6 for details.
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mainly devoted to the usage of bi-objective HPO and user-centric approach, we have decided

to address this highly relevant but challenging issue in future work.

Finally, in order to model the aleatory uncertainty, inspired by [154], we further assume

that the RUL values follow a Weibull distribution, the reason being that Weibull is extensively

employed in survival and reliability analysis to model times-to-failure. Moreover, it is simple,

but also expressive, being able to take various forms, such as the exponential distribution [139].

The probability density function (PDF) of the 2-parameter Weibull that we used is defined as:

f(x) =
β

α

(x
α

)b−1

e−(x/α)β , (5.5)

for x ≥ 0, α, β ∈ (0,+∞), where α is the scale parameter and β the shape parameter of the

distribution.

In this view and to adopt a user-centric approach for the RUL estimation (3rd contribution),

the output layer of the DNN (see Section 5.3.3) will output the parameters of the Weibull

distribution, α, β. This is a more user-centric approach, as for a sample input (e.g., a sequence

of sensor values), the end-user is presented with the parameters that govern the distribution

of the times-to-failure. This allows for more informative and interpretable decision-making in

subsequent steps. The end-user can decide himself what statistics or percentiles (e.g., the mean-

time-to-failure (MTTF)) to use as the point estimate of the RUL and the overall knowledge of

the distribution of failure times can allow decision-makers to reason if the results are plausible

or not. This contrasts with most methods that return a point-estimate to the end-user.

5.3.5 Hyperparameter Optimization

The optimization of hyperparameters enhances the performance of a machine learning algo-

rithm, and thus, HPO is considered an important step in developing AI and ML frameworks.

Various methods and algorithms are available for HPO, such as grid search (GS), random search

(RS), evolutionary algorithms (EA), and Bayesian optimization (BO) [68]. In this study, a bi-

objective variant of a state-of-the-art BO algorithm, namely Mixed-integer Parallel Efficient

Global Optimization (MIP-EGO), is chosen due to its efficiency for optimizing expensive prob-

lems [231]. MIP-EGO is based on efficient global optimization (EGO), also known as Bayesian

optimization (BO). The algorithm uses random forest (RF) models to handle mixed integer

data and mixed integer evolution strategies (MIES) as internal optimizer. The bi-objective

variant of MIP-EGO uses the S-metric hyper-volume (see also Section 5.4.3) improvement infill

criterion to select new candidate solutions.

In order to perform the HPO of the Bayesian deep learning and the problem-specific pre-

processing hyperparameters by jointly optimizing the prediction error and uncertainty address

(1st and 2nd contributions), MIP-EGO is set to determine the hyperparameter values that
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minimize simultaneously the pointwise root mean squared error (RMSE) and the uncertainty

by optimizing the bi-objective function described in Algorithm 5.14. In more detail, MIP-EGO

will evaluate different configurations hp by pre-processing the data and training a DNN (lines

1 and 2). In lines 5 − 15 the trained network is used to make predictions on each sample of

the validation set (size m) (see Section 5.4.2 for information on the validation set) by multiple

passes R which output different α, β at each pass using MC Dropout (see Section 5.3.4). To

determine the RUL estimate for an input sample, we calculated the median of the predicted α

values (ᾱ) and the median of the predicted β values (β̄) (line 11) and used the mean-time-to-

failure (MTTF) of the Weibull distribution with parameters the calculated medians (line 13).

The choice of the MTTF was to reduce the selection bias to any statistic and the choice of

median to counteract effects of possible outliers. Of course, any other statistic could be used

here. The mean-time-to-failure is defined as: MTTF (α, β) = αΓ(1 + 1/β), where Γ is the

gamma function. For the over all point-wise performance, f1, we calculated the RMSE between

the predicted RUL (over all the instances) and the ground truth values (line 16). To determine

the uncertainty for an input sample, we calculated the standard deviation of the predicted α

values (α̂) and the standard deviation of the predicted β values (β̂) (line 12) and averaged

the two values (line 14). For the overall uncertainty f2, we calculated the average over all the

uncertainties (line 17).

5.4 Experimental Setup and Results

We are interested in investigating the existence and trade-offs between the RUL prediction error

and the prediction uncertainty when using bi-objective HPO, and to examine the advantages

that can be gained compared to using a single-objective variant. Furthermore, we show how

the proposed method can be more user-centric compared to the current techniques. Datasets

and experimental results are described in this section.

5.4.1 Data

In this study, we use the widely used C-MAPSS benchmark dataset [3]. The dataset was

released in 2008 [198] and it has been used in the field of PHM ever since, to develop techniques

and methods for estimating the RUL [183, 128]. It is a simulated turbofan engine degradation

dataset from NASA’s Prognostics Centre of Excellence5. The dataset consists of four subsets:

FD001, FD002, FD003, and FD004, each of each exhibits a different number of operating

conditions and fault modes. In this work, we used datasets FD001 and FD003, which exhibited

4Please note that some of the notations in the pseudocode of Algorithm 5.1 differ from the notations in
the pseudocode of the original publication [116]. We did this for clarity, as well as for consistency among the
chapters of this thesis.

5https://ti.arc.nasa.gov/tech/dash/groups/pcoe/
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Algorithm 5.1: Bi-objective Function

Data: X, V, hp,R ; # Training data, validation data, hyperparameter

configuration, sample size of MC Dropout passes

Result: f1, f2 ; # RMSE, uncertainty

1 X ′, V ′, YX′ , YV ′ ← Pre processing(X, V, hp) ; # Data pre-processing and RUL

creation for the training and validation data (see Sections 5.3.1

and 5.3.2)

2 M ← DNN(X ′, V ′, YX′ , YV ′ , hp) ; # Model training

3 m← |V ′| ;
4 RUL← [ ] ; V ar ← [ ] ; # Initializing empty lists for RUL and uncertainty

5 for i← 1 to m do
6 A← [ ]; B ← [ ];
7 for j ← 1 to R do
8 α, β ←M(Vi) ; # Predicting using trained DNN through MC Dropout

(see Section 5.3.4)

9 A← A α ; B ← B β ; # Appending α and β into A and B lists

10 end
11 ᾱ← median(A); β̄ ← median(B) ; # Median values of A and B

12 α̂← std(A); β̂ ← std(B) ; # Standard deviations of A and B

13 RUL← RUL E[Weibull(ᾱ, β̄)] ; # Appending calculated RUL into RUL list

14 V ar ← V ar mean([α̂, β̂]) ; # Appending average between α̂, β̂ to Var list

15 end
16 f1 ← RMSE(RUL, YV ′) ; # Root mean squared error

17 f2 ← mean(V ar) ; # Average value of Var

the same number of operating conditions but different number of fault modes. Each of these

datasets is arranged in an n × 26 matrix where n corresponds to the number of data points

(samples) in each unit and 26 is the number of columns/features. Each row is a snapshot of

data taken during a single operating time cycle. Regarding the 26 features, the 1st represents

the engine number, the 2nd represents the operational cycle number. Features 3− 5 represent

the operational settings, and features 6−26 represent the 21 sensor values. Engine performance

can be significantly affected by the three operating settings. More information about these 21

sensors can be found in [170]. What is more, each subset exhibits a different number of faults

(see Table 5.1).

Each of these subsets are further split into training set and test set (see Table 5.1 for details).

For each engine trajectory within the training sets, the last data entry corresponds to the end-

of-life (EoL) of the engine, i.e., the moment the engine is declared unhealthy or in failure status.

The test sets contain data up to some time before the failure and the aim here is to predict the

RUL for each of the test engines.

These multivariate time-series are from a different engine i.e., the data can be considered to be

from a fleet of engines, of the same type though, and each trajectory is assumed to be the life-
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cycle of an engine. Every engine starts with different degrees of initial wear and manufacturing

variation which is unknown to the user. This wear and variation is considered normal, i.e., it

is not considered a fault condition.

To compare the model performance on the test data, we need some objective performance

measures. In this study, we us the Root Mean Square Error (RMSE) [260, 146, 143], defined

as: RMSE =
√

1/n
∑n

i=1 d
2
i , where di = R̂ULi−RULi, R̂ULi is the estimated RUL and RULi

is the ground truth RUL for instance (engine) i, respectively.

Table 5.1: FD001 and FD003 C-MAPSS dataset details.

Dataset FD001 FD003

Train trajectories 100 100
Test trajectories 100 100
Operating conditions 1 1
Fault conditions 1 2
Max train trajectory (cycles) 362 525
Min train trajectory (cycles) 128 145
Max test trajectory (cycles) 303 475
Min test trajectory (cycles) 31 38
Training samples 20631 24720

5.4.2 Experimental Setup

The experiments6 were executed on 10 NVIDIA Tesla T4 GPUs, of 16GB, GDDR6 memory.

Source code has been developed in Python V3.8.87. Experimental time was around 3-5 days

(wall clock time), per dataset.

We began by randomly selecting 80% of units from the training set and using the remaining 20%

as the validation set to select the hyperparameters. We then randomly truncate the trajectories

of the validation set at five different locations such that five different cases are obtained from

each trajectory following [153]. The truncation is needed to replicate the dedicated test data,

i.e., trajectories up to some time before the failure. Note here, however, that we did not

use any information from the dedicated test set. Minimum truncation is 5% of the total life,

and maximum truncation is 96% of the total life. We continued with the pre-processing of

the training and validation sets. In more detail, we normalized the data transforming the 3

operational settings and 21 sensor values to the range [−1, 1] (min-max normalization) and

discarded any of them that have zero variance. Constant values do not provide any useful

degradation information for determining the RUL.

6The source code of the experiments can be found at
https://github.com/MariosKef/RULe.

7We used tensorflow(2.5.0), scikit-learn(0.24.1), pandas(1.2.3), numpy(1.19.5).
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For the next steps of the pre-processing and data transformation (sliding window and RUL tar-

get construction), as well as for the DNN training, we performed HPO to select their optimal

hyperparameter values that optimize simultaneously the pointwise RMSE and the uncertainty,

in order to address our 1st and 2nd contributions (see Section 5.3.5). The tuned hyperpa-

rameters and their respective ranges can be seen in Table 5.2. Note that the search space

contains not only integer variables but also categorical ones. We executed the hyperparameter

optimization (see Section 5.3.5) with a budget of 300 function evaluations (of which 100 are

initial configurations sampled with the latin hypercube sampling (LHS) method). Moreover,

the MIP-EGO configurator is set to evaluate 10 configurations per step in parallel for FD001

and 9 configurations for dataset FD0038.

Following the hyperparameter optimization phase, we are presented with a two-dimensional

set of points showing the RMSE and UQ on the validation set. Each point corresponds to a

specific hyperparameter configuration. By considering only the non-dominated solutions, we

end up with (an approximation to) the Pareto front. The Pareto front is set of points, which

cannot be improved with respect to one objective without making another objective worse [62]

(see blue points in Figure 5.1). The non-dominated set of solutions delivers hyperparameter

configurations which allow us to view the trade-offs between the RMSE and the UQ. We can

subsequently pre-process and train on the entirety of the training data (training and validation)

using the configurations corresponding to the points on the Pareto front and finally test our

method on the dedicated test set. During this stage, we use Algorithm 5.1 by inputting as X

the entire training set, V the dedicated test set, and hp the configuration corresponding to the

selected point from the Pareto front.

Additionally, we used the Adam optimizer [119] with a clip value of 0.5, R = 30 for the number

of MC Dropout passes, and trained for 100 epochs with early-stopping (patience = 5). Finally,

since we want our DNN to learn the relationship between the input sequences and the Weibull

parameters, we used as a loss function the negative log-likelihood of the 2-parameter Weibull

distribution [247, 154] to train the network.

Baseline

We also performed a baseline experiment to evaluate the bi-objective hyperparameter approach.

Our baseline differs from the work we reviewed in Section 5.2, as none of the related work took

into account the joint optimization of the RMSE and the uncertainty. Our baseline transforms

the bi-objective optimization problem into a single-objective by minimizing the harmonic mean

(HM) of the RMSE and uncertainty, as:

HM =
2

RMSE−1 + Uncertainty−1
(5.6)

8This was a result of GPU availability. In any case, this did not affect the validity of the computations.
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For this task we used the single-objective MIP-EGO, which uses the so-called Moment-Generating

Function (MGF) based infill-criterion [239] to select new candidate solutions. Moreover, the

MIP-EGO configurator is set to evaluate 10 configurations per step in parallel for FD001 and

FD003, for a maximum of 300 function evaluations. We used this baseline in order to investi-

gate the benefits of using the bi-objective HPO compared to the single-objective approach. The

reason of taking the HM compared to e.g., the arithmetic mean, is because it is less susceptible

to fluctuation of the observations, thus making it a more ideal baseline for this first study.

5.4.3 Hypervolume Indicator

To compare the bi-objective HPO approach to the single-objective approach based on the

HM we decided to use the hypervolume indicator (HVI). The HVI or S-metric [263] is the

hypervolume in the objective space Rm that is dominated by the Pareto points bounded by

a reference point yref ∈ Rm. The reason for choosing the HVI as a measure of comparison is

that it is intuitive, as dominating a large part of the objective space is desirable. Furthermore,

the HVI is widely used in evaluating the performance of various multi-objective optimization

algorithms.

Table 5.2: Hyperparameters in the model development for the C-MAPSS dataset.

Type Hyperparameter Search Space

Pre-processing

Sliding window size [20, 50]

Reflection point

(percentage of total life)
[25, 75]

Initial RUL value [110, 130]

RUL degradation style [’linear’, ’nonlinear’]

DNN

Number of recurrent layers [1, 3]

Number of dense layers [1, 3]

Number of neurons per layer [10, 100]

Activations [’tanh’, ’sigmoid’]

Recurrent dropout rate [1e-5, 0.9]

Dropout rate [1e-5, 0.9]

Output activations [’softplus’, ’exp’]

Learning rate
[1e-1, 1e-2, 1e-3,

1e-4, 1e-5, 2e-5]

Batch size [32,64,128]

5.4.4 Results and Discussion

Having generated the Pareto front of the hyperparameter configurations (see Section 5.4.2) we

selected each configuration, trained on the entirety of the dataset and made inferences about
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both the training and (dedicated) test data.

Figures 5.1 and 5.2 show in blue circles the Pareto front of the hyperparameter configurations

performance on the validation sets of datasets FD001 and FD003, respectively. The red triangles

depict the results on the dedicated test set (dominated solutions might exist). The number next

to each point represents the hyperparameter configuration giving rise to that specific solution

and are shown here to manifest how the solutions’ topology changes when validated on the

dedicated test set.

In order to see if the neural network can learn from the data, in Figures 5.3 and 5.4, we show the

evolution, over time, of the Weibull PDFs, of units 2 and 9 from the FD001 and FD003 training

data, respectively. We do this by plotting the Weibull PDFs per time-index of the units’ data.

For this task, we used the models which returned the lowest RMSE on the dedicated test sets

of FD001 and FD003 (points with green shade in Figures 5.1 and 5.2). In Figures 5.3 and 5.4,

we can see that as the time-index of the data increases (darker-red shades in the legend), the

PDFs variance decreases. Even though the distributions’ variance does not initially seem to be

monotonically decreasing, as we approach the end-of-life of the assets (darker-red shades), we

can see that the variance decreases, giving more mass to the expected time-to-failure, and that

the expected time-to-failure approaches 0. This is a desirable property as it indicates that the

model can learn the correct failure dynamics because the more time-steps have passed, the more

data has been collected, and consequently, there is more degradation information, especially

near the end-of-life of the asset.

In Figures 5.5 and 5.6 we show the evolution of the HVI per a maximum of 300 function

evaluations between the bi-objective and single-objective HPO. To be able to compare the HVI

of the single-objective approach to the bi-objective approach, we calculated the HVI of the

Pareto efficient solutions of the RMSE and uncertainty as pre-images of the HM. Furthermore,

we normalized both objectives to [0, 1] and used as yref = (1.1, 1.1).

We can see from the two figures that the HVI of the single-objective approach and the bi-

objective approach plateau to the same final HVI, albeit the bi-objective approach reaches

the plateau in fewer iterations, on FD001, whereas on FD003, the single-objective approach

reaches the plateau in slightly fewer iterations than the bi-objective method. The HVI might

indicate that the harmonic mean manages to also identify a balance between the objectives

and can be used as an alternative to the bi-objective HPO. The seemingly smaller number

of function evaluations of the single-objective approach in the figures, compared to the bi-

objective approach, is simply an artifact of infeasible configurations that were discarded by the

single-objective MIP-EGO.

Examining Figures 5.1 and 5.7 we can see that the bi-objective approach returned more hy-

perparameter configurations lying on the Pareto front (7 blue points on Figure 5.1) compared

to the single-objective approach (6 blue points on Figure 5.7). Even though the number is

marginally larger, this suggests that the bi-objective approach might be more suitable for iden-
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Figure 5.1: RMSE-UQ points corresponding to the hyperparameter configurations on FD001
using the bi-objective approach. Blue circles are the Pareto front as calculated on the validation
set. The red triangles are the points calculated on the dedicated test set. The green point
represents the model with the lowest RMSE on the dedicated test set.

tifying a larger and more diverse set of hyperparameters. Moreover, it is interesting to see that

the configurations returned from the two HPO methods (blue points in Figures 5.1 and 5.7)

present similar values of uncertainty, even though more than 80% of the configurations of the

single-objective HPO exhibit uncertainty lower than 2, with that number being around 29%

for the bi-objective HPO. Regarding RMSE, however, we observe the inverse trend. In the bi-

objective method, more than 70% of the returned configurations result in RMSE lower than 20,

with this number being 50% in the single-objective approach. In addition, we can see that the

performance of the resulting hyperparameters (blue points) on the dedicated test set (red trian-

gles) differs between the two figures. Firstly, in the bi-objective approach, the performances on

the dedicated test set per hyperparameter configuration are clustered together when compared

to the single-objective approach in Figure 5.7 where the points are spread out more, especially

in the uncertainty axis. Secondly, in the bi-objective method, the RMSE and uncertainty values

of the dedicated test set lie in the range of [20.73, 29.82] and [4.88, 8.51], respectively. In the

single-objective method these ranges are [25.97, 37.51] and [0, 7.93], respectively, for the RMSE

and uncertainty. It is interesting to see that the bi-objective HPO returned better scores for
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Figure 5.2: RMSE-UQ points corresponding to the hyperparameter configurations on FD003
using the bi-objective approach. Blue circles are the Pareto front as calculated on the validation
set. The red triangles are the points calculated on the dedicated test set. The green point
represents the model with the lowest RMSE on the dedicated test set.

the RMSE and more “concentrated scores” for the uncertainty compared to the single-objective

approach.

Regarding FD003 when examining Figures 5.2 and 5.8 we can see that the bi-objective approach

returned, again, a larger number of hyperparameter configurations lying on the Pareto front

(9 blue points on Figure 5.2) compared to the single-objective approach (7 blue points on

Figure 5.8). Even though the number is marginally larger, this suggests, like previously, that

the bi-objective approach might be more suitable for identifying a larger and more diverse set of

hyperparameters. In the bi-objective method, around 44% of the returned configurations result

in RMSE lower than 20, with this number being around 57% in the single-objective approach.

Nevertheless, we observe that the hyperparameter configurations from the bi-objective approach

returned overall configurations with lower levels of uncertainty compared to the single-objective

method. Specifically, more than 66% of the configurations on the bi-objective HPO result in

uncertainty that is less than 2, with this number being around 43% in the single-objective

HPO. Regarding the resulting hyperparameters’ performance (blue points) on the dedicated

test set (red triangles), there are no apparent differences between the two methods’ topologies.
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Figure 5.3: Evolution of Weibull distributions of unit 2 from FD001. Blue shades indicate the
start of the unit’s trajectory and red shades the end. Note that the x-axis is inverted for clarity.

Lastly, in the bi-objective method, the RMSE and uncertainty values of the dedicated test set

lie in the range of [28.05, 68.01] and [0, 10.96], respectively. In the single-objective method,

these ranges are [23.82, 50.76] and [0.14, 18.53], respectively, for the RMSE and uncertainty.

This shows that for this dataset, the bi-objective method returned lower uncertainty values,

but the single-objective approach returned RMSE values that lie in a more favorable range,

thus indicating no clear winner.

From the previous results, we conclude that the usage of bi-objective HPO can reveal in-

teresting trade-offs between the RMSE and uncertainty. Additionally, the results show that

even though the bi-objective approach can return more configurations on the Pareto front, the

single-objective HPO is also a good alternative for this task. The differences in the experi-

mental findings between the two datasets might be justified by the the fact that FD003 has

2 simulated fault conditions compared to FD001. In addition, we cannot rule out that the

maximum allowable number of function evaluations or training epochs might have affected the

findings, as more epochs might allow the network to learn more. More function evaluations of

the HPO, on the other hand, will explore a larger part of the hyperparameter configuration

space which might uncover more promising configurations.
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Figure 5.4: Evolution of Weibull distributions of unit 9 from FD003. Blue shades indicate the
start of the unit’s trajectory and red shades the end. Note that the x-axis is inverted for clarity.

5.4.5 Application

Next, we will demonstrate how the proposed method can allow a more user-centric and inter-

pretable approach to end-users (3rd contribution). For this application, we used the models

which returned the lowest RMSE on the dedicated test sets of FD001 and FD003. These points

are indicated with a green marker on Figures 5.1 and 5.2. Specifically, since the trained network

outputs the α and β parameters per input sample, the end-user can utilize this information to

visualize, for example, the survival curves corresponding to each input sample, as well as other

important information.

Survival curves are visualization methods from survival analysis that show the probability of

an event not happening up to a point in time. In our case, this means that a failure has not

occurred up to a point it time t (hence the asset will survive longer than t). A survival curve

is defined as 1−CDF, where CDF stands for the cumulative distribution function (in this case,

the Weibull’s CDF). For example in Figures 5.9 and 5.10 we plot the survival curves of test

units 81, 4 from the FD001 dataset and test units 28, 3 from the FD003 dataset. For each test

unit, we plot all the survival curves (shown within shaded areas for clarity) resulting from the

multiple values of α and β that the network outputs through the MC Dropout, as well as the
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Figure 5.5: Evolution of the HVI of the bi-objective HPO and the single-objective HPO on
FD001.

“median” curves that have as parameters the median values of the αs and βs, for a reference.

This allows two things: the end-user can visually inspect the survival curves and, for instance,

select a probability-of-survival threshold, based on one of them (e.g., the “median” curve), after

which a unit should be maintained. Additionally, based on how wide the shaded areas are, the

user can decide whether to employ the recommendation or proceed to further actions, such as

further inspection by a field expert. For example, in Figure 5.10 the “median” survival curve of

test unit 28 tells us that the probability of not having a failure up to time 100 from the current

point in time (time 0) is about 80% and that this estimation is “more confident” compared to

that of test unit 3, as the shaded area is less wide than the shaded area of test unit 3. Similarly,

in Figure 5.9 the estimation of the survival curves of test unit 81 is “more confident” compared

to that of test unit 4.

5.5 Discussions and Conclusions

In this work, we dealt with the remaining useful life (RUL) estimation using Bayesian deep

learning by taking into consideration the uncertainty of the estimate together with the pre-

77



585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

5.5. Discussions and Conclusions

Figure 5.6: Evolution of the HVI of the bi-objective HPO and the single-objective HPO on
FD003.

dicted point estimate. We investigated the first, to our knowledge, usage of bi-objective hy-

perparameter optimization (HPO) that minimizes simultaneously the pointwise RMSE and the

uncertainty. In this direction, we optimized together with the hyperparameters of the neural

network (NN) the hyperparameters that govern the pre-processing steps, delivering thus, an

end-to-end, data-driven, pipeline for the (offline) RUL prediction. We validated our approach

on two subsets of the widely used C-MAPSS dataset [3]. We, further, demonstrated how sur-

vival curves can provide the end-user with information regarding the RUL and its confidence.

The experimental results indicate that, the bi-objective HPO might be more suitable for iden-

tifying a larger and more diverse set of hyperparameter configurations compared to the single-

objective HPO that aggregates the two objectives through the harmonic mean (HM). However,

both methods reach the same hypervolume indicator value of the Pareto front in, more or less,

the same number of function evaluations and the findings did not indicate whether a method

is more suitable for lower uncertainty or lower RMSE scores. Regarding the performance of

the Pareto front configurations, when validated on the dedicated test sets, there was no clear

winner between the two methods, although in the first examined case the RMSE values are

better and the overall performance scores are clustered together. Overall, the results show

that, for the examined cases, the bi-objective method is able to suggest more hyperparameter
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Figure 5.7: RMSE-UQ points corresponding to the hyperparameter configurations on FD001
using the harmonic mean approach. Blue circles are the Pareto front as calculated on the
validation set. The red triangles are the points calculated on the dedicated test set.

configurations and that the single-objective alternative is able to compete in terms of scores.

This suggests that for a certain class of problems single-objective HPO methods are sufficient,

allowing practitioners an ample selection of efficient single-objective HPO methods.

Concerning the limitations of our work, due to the high computational costs of running the

experiments multiple times no statistical significance tests are performed. Despite that fact,

our methodology is experimentally sound and suggests an alternative approach for HPO in

PHM. Furthermore, as indicated, we are aware that there is a current debate as to the validity

of Monte Carlo Dropout being Bayesian [171]. This could, in turn, make the corresponding

predictive models problematic in support of reliable uncertainty quantification. As this work

was mainly devoted to the usage of bi-objective hyperparameter optimization and user-centric

approach, we have decided to address this highly relevant but challenging issue in future work.

Future work should, in general, emphasize research on computationally efficient and accurate

uncertainty quantification of DL models, as this will further open the road of AI applied in

real-world applications.

Finally, we would be very interested in extending the bi-objective HPO to a many-objective

context (> 2 objectives) to add more objectives, such as run-time, to find a compromise between
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Figure 5.8: RMSE-UQ points corresponding to the hyperparameter configurations on FD003
using the harmonic mean approach. Blue circles are the Pareto front as calculated on the
validation set. The red triangles are the points calculated on the dedicated test set.

accuracy, uncertainty, and training time. The authors hope that multi-objective hyperparame-

ter optimization methods become a new alternative, as it is not the case that a single-objective

method can always capture the conflicting interests that exist in real-world problems.
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Figure 5.9: Survival curves of three units 81, 4 from FD001. The shaded areas include all the
survival curves from the multiple passes through MC Dropout.
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5.5. Discussions and Conclusions

Figure 5.10: Survival curves of three units 28, 3 from FD003. The shaded areas include all the
survival curves from the multiple passes through MC Dropout.
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Chapter 6

Explainable PHM

In chapter 5, we touched upon a topic of high significance for PHM and specifically data-driven

PHM, namely uncertainty quantification (UQ). We proposed a technique for uncertainty quan-

tification (UQ) based on Bayesian deep learning (BDL). The hyperparameters of the developed

framework were tuned using a novel bi-objective Bayesian hyperparameter optimization (HPO)

method with objectives the predictive performance and predictive uncertainty, to account for

conflicts between these two objectives. The method was validated on the widely used C-

MAPSS dataset against a single-objective baseline, that aggregates the two objectives through

the harmonic mean (HM). We demonstrated the existence of trade-offs between the predictive

performance and the predictive uncertainty and showed that the bi-objective HPO might be

more suitable for a larger and more diverse set of hyperparameters compared to the single-

objective baseline. Lastly, we saw that the proposed approach exhibits better or comparable

performance to the single-objective baseline when validated on the test sets.

This chapter1 leaves the topic of RUL prediction and follows a parallel track to discuss the

importance of explainability in data-driven methods in PHM, a subject that has not yet received

much attention, despite its value. Through a case study with real-world data from the aerospace

industry, we will motivate the criticality of explainability, the advantages that accompany such

methods, and opportunities for further research in this direction. Lastly, in this chapter, we

present to the user the notion of symbolic regression (SR) and how it can assist as a tool for

explainability.

1Contents of this chapter are based on [113]; Marios Kefalas, Juan de Santiago Rojo, Asteris Apostolidis,
Dirk van den Herik, Bas van Stein, and Thomas Bäck. Explainable Artificial Intelligence for Exhaust Gas
Temperature of Turbofan Engines. Journal of Aerospace Information Systems (JAIS), Volume 19, Issue 6,
pages 447-454, 2022. American Institute of Aeronautics and Astronautics; reprinted with permission of the
American Institute of Aeronautics and Astronautics, Inc.

83



585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

6.1. Introduction

6.1 Introduction

Data-driven modeling is a crucial tool in various industrial applications, including many appli-

cations in the sectors of aeronautics and commercial aviation. By data-driven modeling, we do

not imply a conceptual model that is based on the data requirements of an application being

developed but rather a model of the underlying data-generating process. Such predictive mod-

els perform the task of identifying complex patterns in multimodal data, something that can

also be loosely termed as reverse engineering [228]. These models are in charge of providing key

insights, such as which parameters (covariates) are essential on a specific measured outcome

or which parameter values we should expect to observe given a set of input parameters. In

addition, such models can infer future states of the system and distill new or refine existing

physical models of nonlinear dynamical systems [228].

A physics-based model that adequately fits the data requires a thorough understanding of

the system’s physics and processes, which can be prohibitively costly in terms of time and

resources. On the other hand, there are cases where such models are necessary, especially in

applications where no sufficient data have been generated yet. A good example is the design

and certification phase of new aeronautical systems. Linear and nonlinear statistical models

rely on assumptions that might not hold (e.g., stationarity for ARMA [31] models in case of

time-series). In contrast to those, non-parametric machine learning (ML) algorithms, such as

the more recent deep neural networks (DNNs) [98] are considered to be “black box” models,

referring to processes that lack interpretability of their internal workings and can be viewed

only in terms of their inputs and outputs. This means that these models do not explain their

predictions/outputs in a way that is understandable by humans, and as a result, this lack

of transparency and accountability can have severe consequences [191], especially in safety-

critical systems. However, model explainability is very important in a variety of engineering

applications.

An interpretable alternative to the “black box” models and with considerably less assumptions

is symbolic regression (SR). SR is a method for automatically finding a suitable algebraic

expression that best describes the observed/sampled data [125]. It is different from conventional

regression techniques (e.g., linear regression, polynomial regression) in that SR does not rely

on a specific a-priori model structure but instead searches for the optimal model structure

while simultaneously optimizing the model’s parameters. The only assumption made by SR is

that the response surface can be described algebraically [158]. SR can be achieved by various

methods, such as genetic programming (GP) [125, 200], Bayesian methods [105] and physics

inspired artificial intelligence (AI) [225].

Minimal human bias and low complexity of the modeling process that allows function expres-

siveness and insights into the underlying data-generating process is of paramount importance.

For aeronautical applications, safety is of the foremost significance, and the consequences of
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failure or malfunction may be loss of life or serious injury, severe environmental damage, or

harm to plant or property [151]. In aviation, properly understanding the data generating pro-

cess can lead to developing and improving existing physical models for nonlinear dynamical

systems that could lead to new insights, as well as indicate faults and failures that can save

lives and money in the context of prognostics and health management (PHM) [230].

Nowadays, with the growing generation of large amounts of data in the aviation industry (e.g.,

passing from snapshot to continuous data collection), many applications have been developed

and improved. Some of them234 are focused on engine health monitoring (EHM), as this is a cen-

tral topic for engine manufacturers and operators. Continuous engine operating data (CEOD)

are collected at high frequencies in newer aircraft types, a development which -in combination

with suitable algorithms- can improve the predictive capabilities for engine operators. EHM

monitors the state of individual engines or engine fleets by using historical operational data

or data generated during past events to improve the availability and operability of assets. By

optimizing maintenance operations, safety is improved, and asset utilization can be optimized,

leading to reduced costs and improved operational efficiency. This is an area of interest not

only for engine operators and maintenance providers but also for engine manufacturers. The

aim of these data-driven solutions is primarily to avoid imminent failures by identifying possi-

ble anomalies in the engine operation, and secondly, to prevent over-maintenance of parts and

components, exploiting their entire life span.

From an operational context, the use of models like the one presented in this chapter can assist

engine users to understand in depth the evolution of the deterioration of their engines while

making more reliable predictions about the time for maintenance actions and mitigating the

possible disruptions in their flight and passenger operations. At the same time, maintenance

providers can predict the deterioration in detail and anticipate the physical state of the engines

they will inspect and repair in the near future, without first waiting for the real asset to be

inducted in the shop. This way, they can streamline the maintenance process and provide more

accurate quotations to their customers. Last, engine manufacturers – apart from benefiting in

their maintenance business, for the reasons mentioned above – can use this type of work to

understand in a better way the performance of their global fleet. This way, they can identify

the influence of the different operating environments (e.g., presence of sand particles, salty

water, air pollution, etc.) in the evolution of engine’s health and incorporate their findings in

the design of either newer versions of the same engines or even to future engine generations.

The temperature of the exhaust gases of an engine, known as Exhaust Gas Temperature (EGT),

has evolved to become the standard industrial indicator of the health of an aircraft engine [236].

This is because it can capture the cumulative effect of deterioration in the isentropic efficiency

2Predix Platform:https://www.ge.com/digital/iiot-platform
3IntelligentEngine:https://www.rolls-royce.com/products-and-services/civil-aerospace/

intelligentengine.aspx
4The MRO Lab - Prognos: https://www.afiklmem.com/en/solutions/about-prognos
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of gas path components.

The above information motivates our main research question: Can we uncover a meaningful

algebraic relationship between the EGT and the other measured parameters present in the

CEOD data, using SR? By meaningful we mean that the analytic expression between the

EGT and the other parameters should also be justifiable. The longtime industrial standard in

engine health monitoring is the analysis of static, snapshot data. Despite being computationally

lighter, this approach cannot capture the dynamics of continuous engine operation during the

different flight phases. Having said that, our main contribution in this work is the first, to

our knowledge, attempt to use real-world, continuous data collected during the entire flight

duration at a recording frequency of 1Hz in order to model the EGT analytically against the

rest of the monitored flight parameters. These data, termed continuous engine operational

data (CEOD), allow for a more complete digital representation of the operational history of an

engine.

6.2 Symbolic Regression

Symbolic regression (SR) is a methodology for finding a suitable algebraic expression that

best describes the observed data [125]. In symbolic regression, no a-priori assumptions on the

possible form of the expression are made, as in, for example, conventional regression models

(e.g., linear regression). We could say that the latter class of models constrains the space of

available expressions. The only assumption made by SR is that the relationship between the

input and the output data can be described analytically (or in a symbolic form) [125]. In order

to find the most appropriate solution, SR searches the space of mathematical expressions and

estimates the corresponding parameters simultaneously [125, 105].

Performing this data-to-function regression [125] is a sophisticated task. Various frameworks

have been developed to tackle this problem, such as genetic programming (GP) [125, 200],

Bayesian methods [105] and physics inspired artificial intelligence (AI) [225]. In this work, we

use GP as our framework to perform SR on our data, as with the progress in the field of GP [125],

new ideas and methodologies have made GP a tool that could outperform more traditional

techniques when solving modeling and identification problems, such as autoregressive moving-

average (ARMA) models [240]. Furthermore, GP provides a relatively straightforward solution

to the problem of SR.

6.2.1 Genetic Programming

Genetic Programming (GP), first introduced by Koza [125] in 1992, is a biologically inspired

machine learning method that evolves computer programs to perform a specific task. When

that task is building an empirical mathematical model then GP is called symbolic regres-
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sion (SR). GP is a specialized form of genetic algorithms (GA) [70]. GA is likely the most

widely known type of evolutionary algorithms (EA), which comprises a larger class of direct,

probabilistic search and optimization algorithms inspired from the model of organic structure

evolution [34, 91]. The idea is to evolve randomly generated initial solutions (or chromosomes,

as they are more commonly referred to) on a given problem following Darwin’s theory of evo-

lution and to find the fittest solution after a number of generations or other user-specified

termination criteria [70]. Solution candidates are evolved through what are called genetic op-

erators, which include crossover or recombination and mutation, as well as selection [34, 70].

Each individual solution is evaluated using a fitness function, which essentially tailors the evo-

lutionary algorithm to the specific problem. In essence, solutions are selected in a way that

reflects their evaluation (better solutions have a higher chance of getting selected), recombined

to make offspring solutions and in turn mutated, and replace the parent population for the next

generation. For more information on EA, we refer the interested reader to [34].

Instead of using strings of binary digits as chromosomes to represent solutions, as in GA [70],

solutions in GP are represented as tree-structured chromosomes, formed by nodes called oper-

ators and terminals. As an example, Figure 6.1 represents the simple expression:

(cos(x1) + (x2 · 0.5)) (6.1)

+

cos *

x1 x2 0.5

Figure 6.1: Basic GP tree representation.

Terminals are variables or values that the operator can process. These include input variables

like xi or coefficients to be used. The operators correspond to all those functions that can

be applied to terminal nodes. These could be the fundamental arithmetic operators, such as

{+,−, ·, /, exp, log, sin, cos, . . .}, Boolean logic functions (AND, OR, NOT, etc) or any other

mathematical functions. An individual (tree) is the hierarchical combination of operators and

terminals, which is equivalent to an algebraic expression. When generating these tree structures,

their computational complexity will depend on the method used for building them (hybrid,

declarative, procedural, mathematical). A more detailed description of these tree building
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methodologies, as well as the algorithmic execution of a GP workflow, can be found in [203]

and is illustrated in Figure 6.2.

Randomly initialize 
population

Individual tness
evaluation

Termination criteria
met?

Terminate Solution

Genetic Operators

O spring generation

Next parent 
population

Yes

No

Figure 6.2: Genetic programming algorithm flowchart.

The standard framework of GP, however, suffers from high complexity and overly complicated

output expressions in SR [124]. In order to mitigate these side effects, multi-gene genetic

programming (MGGP) has been developed as a robust variant of GP [76]. While the standard

representation of a GP algorithm is based on the evaluation of one single tree structure, MGGP

is designed to generate individual members of the GP population (mathematical models of

predictor response data) that are multi-gene in nature, i.e., linear combinations of low-order

nonlinear transformations of the input variables [202, 76]. The user can specify the maximum

allowable number of genes and any gene’s maximum tree depth. This facilitates a remarkable

control over the maximum complexity of the evolved models [202, 76].

Mathematically, a multi-gene regression model can be expressed as:

ŷ = d0 + d1 · Tree1 + . . .+ dn · Treen (6.2)
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where d0 represents the bias term, n is the number of genes which constitutes a certain individual

and d1, . . . , dn are the gene weights. Figure 6.3 represents an example of a multigene genetic

programming model that represents the mathematical expression in Equation 6.3:

d0 + d1 · (cos(x1) + (x2 · 0.5)) + d2 · (x1/x2 + 2) (6.3)

+

cos *

x1 x2 0.5

+

/ 2

x1 x2

Figure 6.3: Multigene genetic programming model example.

6.3 Related Work

Although to the best of our knowledge, SR by means of GP has not been applied to the modeling

of the EGT from real-life continuous flight data, there have been certain related studies. A

study closely resembling our work is from Nayyeri et al. [167] who proposed an offline health

monitoring system by simulating the EGT using SR by means of GP for the take-off and

cruising phases of simulated data. The results returned an error of less than 0.5% and 2.5%

for the take-off and cruising phases, respectively, indicating good performance. However, the

material used was simulated snapshot data, and the authors did not use regularization to reduce

model complexity. Mart̀ınez-Arellano et al. [11] developed an SR approach by means of GP

to predict future values of EGT, amongst other jet engine parameters, for control design. The

data were collected from a small-scale jet engine that operates on the same principles as the

commercial jet engines. In [144] the authors modeled the start-up process of an aero-engine

by performing SR using a specialized GP that generates models that are linear combinations

of nonlinear functions of the inputs and produces more parsimonious solutions. The main idea

is to apply orthogonal least squares to estimate the contribution of the branches of the tree

to the accuracy of the model. The models outperform the results returned from the support

vector machine (SVM) algorithm and can generally identify the dynamic system characteristics

correctly, even without system knowledge. GP has further been used in the field of aviation to

nonlinear identification of aircraft engine [12, 64, 190].
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There have also been numerous contributions of SR in engineering in general, apart from avi-

ation. An example is [63] where the authors used SR by means of a specially designed GP

to predict the fuel flow and the EGT of a gas turbine in an electrical power setting. Their

approach outperformed machine-learning techniques and other symbolic regression techniques,

such as fast function extraction (FFX) and multivariate adaptive regression splines (MARS), on

the EGT problem. The results showed that standard GP algorithms could be used to address

complex real-world problems. In [223] the authors present the first approach for the formula-

tion of a gasoline engine performance parameters (torque and brake specific fuel consumption)

using an extension of GP called gene expression programming (GEP) that evolves computer

programs encoded in linear chromosomes of fixed length. Their results demonstrate that GP

can be effectively used to obtain formulations for highly nonlinear function approximation prob-

lems, in general. Bongard and Lipson [30] generated symbolic equations for nonlinear coupled

dynamical systems in the fields of mechanics, systems biology, and ecology. They also noted

the differences between symbolic and numerical models in terms of complexity, making the

former easier to interpret. In [199] the authors developed a deterministic SR method to derive

algebraic Reynolds-stress models for the Reynolds-Averaged Navier-Stokes (RANS) equations

for turbulence modeling.

Genetic programming has also provided solutions to various problems such as classification

problems [255], telecommunications problems [65] and manufacturing process modeling [66].

The aforementioned list of applications is by no means exhaustive. It shows, nevertheless, that

GP can be successfully applied to real-world industrial problems, with better, comparable, and

interpretable results, compared to “black box” machine learning (ML) and artificial intelligence

(AI) methods. What is more, we can see that there is also a lot of potential and growing

opportunities for GP applications in the field of aviation still to come. This work stands as an

example of such an application on real-life turbo-fan engine data.

6.4 Experimental Setup and Results

Our objective is to see if SR can uncover meaningful relationships in complex engineering

problems. Driven by this aim, we performed the following experiments on a real aircraft

operational dataset to uncover relevant dependencies between the EGT and other measured

parameters of a flight.
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6.4.1 Data

The data used in this study came from a specific GEnx turbofan engine mounted on a Boeing

787 − 10 and were recorded during four flights in July 20195. The collected data are termed

continuous engine operational data (CEOD) [69] and are a data stream made out of several

hundred parameters (696) which are measured during the entire flight duration at a recording

frequency of 1Hz. Due to onboard computational limitations, the data have been off-loaded

post-flight via gate link. The four different flights were anonymized for confidentiality and

security purposes.

An important point is that the recording of CEOD is a relatively new technical development,

so its use in engine health monitoring is still very limited from an operational standpoint. The

longtime industrial standard is still the use of snapshot data, which are recorded only once

during every flight phase. In other words, snapshot data contain only one point for takeoff

and cruise and, depending on the aircraft type, for the remaining flight phases. The advantage

of CEOD for diagnostics and prognostics is obvious when combined with ML algorithms since

their training can be more effective.

The selected target parameter that will be modeled is termed in the CEOD dataset as Selected

Exhaust Gas Temperature (DEG C). In the remainder of this study, we will call this simply

EGT.

6.4.2 Experimental Setup

All experiments were executed on an off-the-shelf PC with a processor running at 1.8 GHz and

8 GB of RAM. The source code has been developed using Python version 3.8.3 and MATLAB

version R2019b. We used GPTIPS version 2 and Pandas version 1.0.3.

Data Pre-processing

We decided to select the most stable phase of the flight for this study, as exhibited by the

data. This phase is assumed to be the cruising phase due to the data’s lack of labeled phase

segmentation. Field experts further validated this assumption. This decision was made to allow

for accurate modeling of the underlying process, as the distribution of EGT measurements does

not exhibit extreme fluctuations, since during cruise the operational and the environmental

conditions are more stable compared to other flight phases. Thus, phases such as taxiing,

take-off, climb, descent, or landing were not investigated as they constitute a transient part

of a flight, where engine performance and thermal effects vary with time and with mission

characteristics. Furthermore, the cruising phase allowed for a larger data sample since it covers

5The data used is proprietary material of the Koninklijke Luchtvaart Maatschappij N.V. (KLM) and cannot
be shared in the public domain.
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the longest in duration part of a long-haul flight. A large sample is vital to uncover any

meaningful relationships between the EGT and the rest of the monitored engine parameters.

For our experiments, three of the flights, henceforth known as flight 1, flight 2, and flight 3 were

concatenated into a single dataset. From this dataset, we discarded parameters providing little

to no information. Specifically, we removed parameters containing at least one NaN (6.9% of the

total parameters) value or string (alphanumeric), retaining only numeric data. Subsequently,

we split the remaining data into training and validation sets by randomly selecting 80% of

the data for training and the remaining 20% for validation6. We further pre-processed the

training data by performing a correlation analysis with different conditions that result in the

different experiments (see Section 6.4.2). The training data will allow the SR algorithm to

learn patterns from the data and, as a result, estimate the model’s parameters. The validation

set is used to reduce any over-fitting of the SR algorithm to the training data by estimating

the generalization capability of the fitted model on the validation data. This will reduce the

possibility of the resulting algebraic expression reflecting only the training data from which

it was generated. The training and validation process can be considered the training phase

of the SR algorithm. A fourth flight (flight 4 ) was selected for testing purposes in order to

measure the final performance of our method on unseen data (the test data). For the validation

and test data we only used the parameters that were retained on the training set after all the

pre-processing steps performed on it. The final pre-processing step involved normalizing each

of the parameters of the training, test, and validation data as follows:

x′ =
x− μ

σ
, (6.4)

where x, x′ are the data item and the transformed data item, respectively, and μ, σ are the

population (or sample) mean and standard deviation, respectively. It should be pointed out

here that μ, σ which were used to normalize the validation and test parameters, are the same

μ, σ learnt from the training data. The last step is standard practice in ML. Furthermore,

we should note here that the selection of the flights to be used for training and validation

has been done randomly, i.e., not taking into consideration flight details or characteristics,

e.g. departure airport, or duration of the flight. Finally, we would like to point out that there

are different potential reasons for the presence of NaN values in the dataset. In general, NaN

values can be attributed to recording and synchronization issues and to the fact that not all

data capturing takes place at the exact same frequency, even if the recording takes place at 1Hz

in the CEOD. In addition, not all parameters are recorded during all the phases of a flight,

so a part of the missing values could be attributed to this reason. Moreover, some secondary

6Please note that the terminology here is different from the original publication [113]. In this chapter and
its corresponding Appendix, we note as validation set (test set) what we noted as test set (validation set) in
the original publication. This has been done for consistency of the terminology between the chapters of this
dissertation.
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Chapter 6. Explainable PHM

systems might not be functional for operational reasons during specific segments or the totality

of the flight, and temporary recording issues cannot be excluded. For calculated parameters,

some required inputs might not be available at the time that specific entries are recorded for the

aforementioned reasons, resulting in NaN values. Finally, due to data ownership agreements

between the original equipment manufacturer and the aircraft operator, some parameters are

missing altogether.

Methodology and System Setup

We decided to use the GPTIPS [202, 201] to perform our experiments because of its ease of

use, as well as its multigene GP approach that was discussed earlier. Additionally, GPTIPS

takes into account the trade off surface of model performance and model complexity [202, 201].

In the multi-gene approach complexity is defined as the simple sum of the expressional com-

plexities of its constituent trees [201]. For each experiment, 10 final models were independently

created, each of which used 10 independent runs internally. The models resulting from the

multiple, internal runs are automatically merged at the end of the execution and the best

model is selected in terms of predictive performance (R2 - see also Performance Metrics 6.4.2

below) among models from a Pareto front of model performance and model complexity. This

internal, multi-start approach mitigates issues with the possible loss of model diversity over a

single run and with the GP algorithm getting stuck in local minima [201]. The repetition (10

times) of the previously mentioned process, per experiment, is performed to have an estimate

of the centrality and dispersion of the performances in each experiment. The population size

was chosen to be 250 individuals, while the number of generations was at maximum 150 gen-

erations. The tournament size is set to 20, Tournament Pareto, which encourages less complex

models, was set to 0.3. Elitism = 30% of the population. The maximum tree depth was set

to 5, and the maximum number of genes was selected to be 10. Finally, the function set con-

tained these operators = {·,−,+, /, x2,√, exp, x3, xa, exp(−x),−x, |x|, log}. In essence, these

operators define our alphabet. See Table 6.1 for a quick reference of the hyperparameters used.

Table 6.1: System setup hyperparameters.

Hyperparameter Value

Runs (internal) 10
Population size 250
Number of generations 150
Tournament size 20
Tournament Pareto 0.3
Elitism 0.3
Maximum tree depth 5
Maximum number of genes 10

Function set ·,−,+, /, x2,√, exp, x3, xa, exp(−x),−x, |x|, log
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By default GPTIPS provides a multigene symbolic regression fitness function, which was used in

order to minimize the root mean squared prediction error on the training data. We used p = 0.1

for the mutation probability and p = 0.85 for the crossover probability for the genetic operators.

The chosen hyperparameters were based on values suggested from literature, in combination

with execution time and preliminary experiments. More specifically, the mutation/crossover

rates are equal to the values in [202] (default values). The same is also true for other non-

mentioned hyperparameters of the algorithm. Lastly, the RMSE (see also Performance Metrics

below) is used as the objective function that is minimised by the process.

Performance Metrics

To measure the performance of our approach against the ground truth, we decided to use the

common error metrics for regression [205], namely, root mean squared error (RMSE), mean

squared error (MSE), mean absolute error (MAE), and R2:

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 , (6.5)

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 , (6.6)

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| , (6.7)

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (6.8)

where yi are the ground truth values, ŷi the predicted values, ȳ is the mean of the observed

data, and n the number of samples.

6.4.3 Experimental Results

For the experiment, a correlation analysis was performed on the input parameters, as a dimen-

sionality reduction step. Specifically, parameters that were highly correlated (over 0.90) were

discarded, retaining only the first representative. After this step, 114/696 CEOD parameters

remained to be used as final input, in the GP framework, in addition to the target EGT. We

performed this experiment 10 times to account for the stochastic nature of GP by combining in-

ternally in each of these executions, 10 independent runs. This resulted in 10 different algebraic

expressions. In Table 6.2 we show the average error metrics (over 10 runs) for the training, the

validation, and the test datasets. The results show us that SR has managed to account for the

variability of the EGT against the used CEOD parameters on both the training and validation

sets (R2 = 1). As a result, the average deviation from the ground truth is less than 1 degree
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Celcius (MAE= 0.77°C and 0.76°C) for the training and validation sets, respectively, which is

negligible from an engineering perspective. We see a larger average error regarding the test set

compared to the training and validation sets. In particular, we see an average error (MAE) of

3°degrees Celcius compared to the ground truth EGT values. This slight increase in the error

is also backed up by the slight decrease of the average R2 = 0.86, indicating a small degree

of overfitting. The slight error increase is, in general, expected. However, considering that we

did not correct for parameters such as the duration of the cruising phase or the flight level, the

current error is within an acceptable range.

Table 6.2: Average error metrics (over 10 runs) of the training error, the validation error and
the test error, on experiment 1. All numbers have been rounded up to the nearest hundredth.

Errors Rˆ2 RMSE MAE MSE

Training Error 1 ± 0 1.3 ± 0.06 0.77 ± 0.03 1.69 ± 0.16
Validation error 1 ± 0 1.27 ± 0.05 0.76 ± 0.03 1.62 ± 0.15
Test error 0.86 ± 0.08 8.44 ± 3.27 3.01 ± 1.01 80.81 ± 46.8

In Figure 6.4 we show a plot of the EGT predictions on the validation set (displayed in orange)

overlaid against the observed EGT values (displayed in blue). The x-axis represents the number

of used data points. We should note here that the y axis represents the scaled EGT measures.

The results show that the resulting algebraic expression has managed to learn the underlying

relationship between the EGT and the other CEOD parameters very well.

Figure 6.4: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Model 1 - Experiment 1). x-axis shows the data sample index in consecutive order according
to their sampling over time.
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In addition, Equation 6.9 is the algebraic expression for the first of the 10 resulting models.

Y 1
1 = 0.141 · x4 + 0.123 · x5 + 0.8 · x6 + 0.0214 · x12 − 0.123 · x18

+ 0.751 · x21 + 0.0261 · x60 + 0.0405 · x74 − 0.0371 · | log(x39)|
+ 1.32 · 10−4 · e(2·x21) − 0.0428 · |x4| − 0.0261 · e(x21)

+ 0.00762 · x2
74 + 0.133

(6.9)

In Table 6.3, we show the input variables that appear in the resulting 10 models as well as their

percentage of appearance. Here, each variable is represented by an x with an index. The reader

Table 6.3: Percentage of appearance per variable over all models (Experiment 1).

Input variables (Index) % of appearance

x4, x6, x21 10,6 %
x43 8,5 %
x12, x74, x113 5,1 %
x5, x110 4,08 %
x11, x14, x39, x59 3,06 %
x18, x23, x24, x94 2,04 %
x1, x8, x13, x25, x46, x52,
x57, x60, x96, x111, x112

1,02 %

might find it interesting to know which of the variables have resulted from this experiment. In

the following list, we provide the technical meaning of the most frequently occurring variables

based on Table 6.3. In the technical explanations, we considered only parameters with more

than 5% occurrence in Table 6.3.

• Actual Calculated HPT Clearance – x4

The tip clearance of the high pressure turbine (HPT) is directly related to its isentropic

efficiency and the gas enthalpy drop through the blade stages. The higher the clearance,

the less efficient the expansion process is, and thus the EGT is higher.

• Average Gas Temperature at Station 25 – x6

This is the gas temperature at the inlet of the high pressure compressor (HPC). A higher

temperature here indicates a less efficient compression process through the engine booster,

which for a given pressure ratio requires increased power input from its corresponding

turbine, the low pressure turbine (LPT). This high power output can only be achieved

via higher fuel flows that lead to increased EGT.

• Corrected Fan Speed to Station 12 – x21

A higher Fan Speed also corresponds to a higher EGT, since the power required from the

interconnected LPT is higher, leading to an increased fuel flow.
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• FSV Minimum Main Fuel Split Regulator – x43

As the fuel splitting valve (FSV) influences the amount of fuel directed to the combustion

chamber, there is a direct relation between this variable and the resulting EGT.

• BPCU 1 GCU Generator Load – x12

This parameter is related to the load control of the engine generators. The higher the

load required from the generators, the higher the power extraction from the engine, which

leads to higher fuel flow to cover the increased energy needs. The higher fuel flow results

in a higher EGT.

• Selected Variable Bleed Valve (VBV) Position – x74

The position of the VBV controls the amount of air that is bled from the engine. With

an increasing degree of bleed, the HPC compresses air that does not contribute to the

power generated by the turbines, resulting in a reduced overall thermal efficiency. This

reduction means that the engine needs to consume a higher amount of fuel for the same

thrust output, which results in an increased EGT.

• WF/(P3 · RTH25) Base (PPH/PSIA) – x113

This is an expression for the non-dimensionalized fuel flow of the engine, which is directly

related to a higher EGT.

In the list above, the station numbering (e.g., “Average Gas Temperature at Station 25”)

is standardized and follows the SAE Aerospace Standard AS755 (Aircraft Propulsion System

Performance Station Designation)7. Under this standard, station 25 (see “Average Gas Tem-

perature at Station 25”) is the interface between the low pressure compressor (LPC) and the

high pressure compressor (HPC), while station 12 (see “Corrected Fan Speed to Station 12”)

is the inlet fan tip station.

Moreover, the coefficients multiplied by the variables in Equation 6.9 indicate the relative

importance (contribution) of that parameter to the output. For example, the coefficients of

variables x4, x6, x21 are the largest among the coefficients of the other variables, showing their

importance to the EGT. This is also backed up by the percentage of appearance of these

variables throughout the repetitions and the nature of these variables, as mentioned before.

In addition, we performed two control experiments to investigate the effect that certain param-

eters might have on estimating the EGT. In particular, in the first, we removed the parameter

Average Temperature at Station 25 (DEG C), which, even though it did not exceed the 0.9 cor-

relation threshold, is in direct relation with the EGT. After removing it we performed the same

experiment described before, which resulted in Table 6.4. The results show a similar pattern

to those of our initial experiments. In addition, we see a slight decrease (by about 6%) in the

7https://www.sae.org/standards/content/as755g/
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average R2 value of the test set and a small increase (by about 8%) in the average MAE value.

Despite the error increase, the deviation from the ground truth is still minimal, indicating that

the EGT can be evaluated non-trivially. With this, we mean that despite dropping parameters

that are closely related to the nature of our target output (e.g., Average Temperature at Station

25 (DEG C)), we still get satisfying results.

Table 6.4: Average error metrics (over 10 runs) of the training error, the validation error, and
the test error, on experiment 2. All numbers have been rounded up to the nearest hundredth.

Errors Rˆ2 RMSE MAE MSE

Training Error 1 ± 0 1.43 ± 0.06 0.88 ± 0.03 2.03 ± 0.17
Validation error 1 ± 0 1.4 ± 0.07 0.87 ± 0.04 1.97 ± 0.2
Test error 0.81 ± 0.04 10.27 ± 1.24 3.26 ± 0.26 106.93 ± 23.73

The second experiment involved discarding all the highly correlated (more than 90%) input

parameters with the EGT before performing the correlation analysis of our initial experiment.

The results of this experiment are summarized in Table 6.5. Here we see the results resembling

more closely those of our initial experiment. However, it is interesting to see a decrease (by

about 7%) of the average MAE of the test data, compared to the same value of the initial

experiment.

Table 6.5: Average error metrics (over 10 runs) of the training error, the validation error, and
the test error, on experiment 3. All numbers have been rounded up to the nearest hundredth.

Errors Rˆ2 RMSE MAE MSE

Training Error 1 ± 0 1.23 ± 0.04 0.75 ± 0.02 1.5 ± 0.1
Validation error 1 ± 0 1.24 ± 0.04 0.75 ± 0.02 1.55 ± 0.09
Test error 0.86 ± 0.08 8.44 ± 3.23 2.8 ± 0.95 80.65 ± 44.63

The resulting models and plots from all experiments can be found in the Appendix A.

6.5 Discussions and Conclusions

In this chapter, we investigated the use of symbolic regression (SR) by means of genetic pro-

gramming (GP) on a real engineering problem. Specifically, we examined the use of SR on

real aircraft operational data with the aim of uncovering meaningful relationships between the

exhaust gas temperature (EGT) - a standard industrial indicator of the health of an aircraft

engine - and the rest of the monitored engine parameters. Our main contribution is the first,

to our knowledge, analytical model of EGT against the rest of the monitored flight parame-

ters, which has been automatically derived from real-world continuous data collected during

the entire flight time at a recording frequency of 1Hz (and been assessed by engine experts to

provide valuable insights). These data, termed continuous engine operational data (CEOD),
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allow for a more complete digital representation of the operational history of an engine, while

the longtime industrial standard is still the use of snapshot data, which are recorded only once

during every flight phase.

The experimental results are promising, both in terms of model accuracy, as well as in explain-

ability. In more detail, the trained models exhibited on average a small amount of overfitting

and an absolute difference of 3°C compared to the ground truth EGT values, a small difference

from an engineering perspective. Furthermore, the resulting formulas demonstrated consistency

from a physics/engineering point of view between the predictor-parameters and the EGT, which

field experts validated. This indicated that the proposed method could uncover meaningful re-

lationships in the data that the end-user can interpret. In addition, we performed two more

experiments to investigate the effect that specific parameters might have on the estimation of

the EGT. The results showed a similar pattern to our initial experimental output.

The importance of our study lies in the fact that with little or no field knowledge, we were

able to generate models that relate the EGT accurately and meaningfully to other monitored

parameters. Such algebraic expressions can assist field practitioners in diagnosing faults or fail-

ures and even uncover new relationships between parameters previously unknown to engineers

or field experts.

At this point, we should also mention some of the limitations of our work. Firstly, we only

considered the cruising phase of the flight, ignoring the others. Having said that, we expect

different behavior in phases such as take-off, where the engine performance is transient and

thermally unstable. Moreover, we did not take into account or correct the data in any way,

based on information such as the cruising flight-level (altitude) or the flight duration, or the

aircraft’s weight during cruising. For example, EGT might increase with increasing HPT tip

clearance since its isentropic thermal efficiency drops. What is more, even though the data

pre-processing that we did, proved to be effective, we had to discard certain data because of

the NaN values. Lastly, we only modeled the EGT as a function of the rest of the observed

parameters. Modeling other parameters might be more difficult or even impossible. However,

as EGT is the standard industrial indicator for the overall engine thermal efficiency, this is not

the main concern.

Our limitations mentioned above clearly pave the road into future directions. Initially, we would

like to model transient flight phases, such as take-off, which constitutes a very intensive time for

the engine. Additionally, it is worth looking into pre-processing the data with minimum loss

of information (e.g., NaN value imputation) and incorporating additional information (data

augmentation), such as weather conditions (e.g., when modeling parameters during climb or

landing). Regarding the CEOD data specifically, we should emphasize that they can play

a significant role since their higher sampling rate can capture, for example, early issues and

pinpoint the exact moment they took place. However, since CEOD contains a larger amount of

information than, e.g., snapshot data, the amount of data for training and testing needs to be
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equally high. In addition, as the engine conditions might vary significantly during take-off due

to different ambient conditions, airport elevation, engine derate, etc., data representativeness

is a key-point for successfully applying the methods we used and any other ML method in

essence. Regarding the modeling, it would be very interesting to perform hyperparameter

optimization on the GP to select the optimal hyperparameters that will allow high accuracy

and low generalization error. It would also be worth building a meta-model that combines all

of the formulas derived from the experiments or an ensemble model by, for example, taking the

average or other aggregation function of the predictions provided by each of the models. Also, as

mentioned before, such models interpretable by the end-users can lend themselves for predictive

maintenance. For example, any substantial deviation between the predicted value of the model

and the monitored parameter(s) can indicate a(n) (imminent) fault or malfunctioning sensor

and can, thus, assist in maintenance planning. This, of course, would be possible if the model

is built from healthy data. These formulas can also be used to generate more data, healthy or

faulty, by tuning the range of the predictor parameters to simulate various conditions. Lastly,

by proper data pre-processing, one can also derive formulas that allow forecasting of parameters

into the future, enabling prognostics. This list is by no means exhaustive, but it is clear that

there are a lot of opportunities.
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Chapter 7

Scheduling Optimization

In the previous chapters, we described prognostics and health management (PHM), discussed

its role and significance in the industry, and dove into its methods and shortcomings. We then

emphasized one specific type of prognostic method within the PHM sphere, called data-driven

PHM, that, as the name suggests, relies heavily on past and current data sources to estimate

the RUL of an asset. In this direction, we considered the difficulties and challenges of data-

driven RUL estimation, discussed possible solutions, and showcased a type of explainable AI

for PHM in the context of aerospace.

In this and the following final chapter we will change direction. It might, initially, seem that we

are distancing ourselves from PHM and AI-based time-series applications. However, that is not

the case. This chapter1 will deal with the next logical step that arises in predictive maintenance

(PdM) which is scheduling. After determining the RUL of a set of assets, how can we optimally

schedule their maintenance to satisfy specific criteria? In the next chapter, we will deal solely

with AI-based time-series applications in the medical domain and show that tools developed

for industry can lend themselves to other fields as well.

We will start this chapter by introducing the so-called multi-objective flexible job-shop schedul-

ing problem (FJSSP), discuss its inherent difficulties, and present a method that combines

global and local search to solve it. Our proposed method yields competitive results to the

state-of-the-art. It can be extended and be used on top of an RUL estimation method.

7.1 Introduction

The estimation of the RUL (and any other prognostics measure for that matter) lies at the

heart of PHM and PdM. However, determining the RUL is only part of the overall promise

1Contents of this chapter are based on [115]; Marios Kefalas, Steffen Limmer, Asteris Apostolidis, Markus
Olhofer, Michael Emmerich, and Thomas Bäck. A tabu search-based memetic algorithm for the multi-objective
flexible job shop scheduling problem. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO ’19, page 1254–1262, New York, NY, USA, 2019. Association for Computing Machinery.
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of PdM (albeit a pivotal one). As its name suggests, PdM uses prognostics for the sake of

maintenance planning. Therefore, in principle, having the estimated RUL values, one can plan

the maintenance of the assets through scheduling.

Scheduling operations is one of the most important industrial activities, especially in planning

and managing manufacturing processes, such as maintenance. Already in the 1950s, this led to

the formulation of one of the classical operations research problems [38], the job-shop scheduling

problem (JSSP). The JSSP can be described as a set of jobs that must be processed on a set

of pre-determined machines uninterruptedly, where each job is a sequence of consecutive oper-

ations. Each operation requires exactly one machine, and machines are continuously available

and can process one operation in a given duration. A solution to this problem is a schedule that

sequences these operations on the available machines in a way that satisfies predefined perfor-

mance indicators. A typical performance indicator for the solution is the maximum completion

time of all operations, also called the makespan. The usual objective, to find a schedule with

minimum length (minimum makespan), was proven to be NP-hard [77] and belongs to the most

intractable instances of NP-hard problems [131]. Instead of just the makespan, though, several

other performance measures can be used as well, such as the maximum machine workload or

the total machine workload [173]. In this case, the problem automatically becomes a multi-

objective optimization (MOO) problem, in which a variety of incomparable solutions exist. The

set of such solutions, which cannot be improved with respect to one objective without making

another objective worse, is called the Pareto set [62].

An extension of the JSSP is the so-called flexible job-shop scheduling problem (FJSSP). The

difference between the FJSSP and the JSSP, is that the JSSP has the list of machines on which

the operations of the jobs will be processed on, already pre-determined. This is in contrast to

the FJSSP, where the machine assignment (or routing subproblem) is also to be determined.

Therefore, given that in the FJSSP, we deal with the sequencing of operations and the machine

assignments to the operations, it is by nature more complex than the classic JSSP. The FJSSP

is, thus, also NP-hard since it is an extension of the NP-hard JSSP. This work will focus on the

FJSSP as it resembles more closely dynamic, real-world environments where operations can be

processed on different sets of machines.

To deal with the combinatorial complexity, meta-heuristic techniques, such as evolutionary al-

gorithms (EA) [182], particle swarm optimization (PSO) [130] and tabu search (TS) [135] can

be used. Specifically, EA is proven to be a successful candidate for multi-objective optimization

problems as they are capable of finding a good approximation to the Pareto front [188]. EA

comprises a class of direct, probabilistic search and optimization algorithms inspired from the

model of organic structure evolution [34, 91]. TS is a metaheuristic, developed by Glover [81],

that guides a local heuristic search procedure to explore the solution space beyond local opti-

mality in mathematical optimization by directing (stochastic) local search (LS) methods away

from suboptimal regions of the search space. Memetic algorithms combine the two, EA with lo-
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cal search operators, and have been widely used in combinatorial optimization [163]. Recently,

Yuan et al. [251] have successfully employed memetic algorithms for the multi-objective FJSSP.

In this view, our main research question considers the usage of TS as the local search method

for a multi-objective evolutionary algorithm (MOEA) to solve the multi-objective FJSSP. The

selection of TS as the local search method is based on its versatility (see also Section 7.4), as

well as on the lack of sufficient work that uses TS in the context of memetic algorithms for the

multi-objective FJSSP.

Our contributions lie in the following:

• Tabu search (TS) is used in two ways: As a local search method, as well as part of the

mutation operator.

• Stagnation avoidance based on the hypervolume indicator [61].

• We evaluate our algorithm on the widely used Brandimarte datasets [32] and we compare

ourselves to the state-of-the-art algorithms by Yuan et al. [251].

7.2 Problem Definition

An FJSSP instance can be described as a set N of N jobs that need to be processed on a

set M of M machines. Each job i ∈ {1, ..., N} consists of a tuple of Ni operations Oij, with

j ∈ {1, ..., Ni}, which have a predetermined execution sequence. This means that for job i to

be completed, its Ni operations Oij must be processed in their given order. This is called a

precedence constraint. Furthermore, each operation Oij has a predetermined set of machines

Mij ⊆ M which can process this operation. The processing time pijk of the process Oij on

machine k ∈Mij is also known a-priori. Furthermore, the following assumptions are made:

• All machines are available at time 0.

• All jobs are released at time 0.

• Each machine can process one operation at a time.

• Jobs are independent of each other each other, i.e., there are no precedence constraints

among the operations of different jobs.

• No interruption is allowed once a process has started (no pre-emption of operations is

allowed).

• The setup times of machines and transfer times of operations are considered negligible.

The FJSSP consists of two subproblems:
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1. The routing subproblem, i.e., assigning each operation Oij to a machine k ∈Mij.

2. The sequencing subproblem that determines a sequence of operations on all machines,

to obtain a feasible schedule which satisfies predefined objectives.

As mentioned in Section 7.1 the difference between the FJSSP and the JSSP is that the JSSP

has the machine assignment (the routing subproblem) already pre-determined, as opposed to

the FJSSP, where we not only deal with the sequencing of operations, but also with the machine

assignments to the operations. Therefore, as an extension of the NP-hard JSSP, the FJSSP is

also NP-hard.

Regarding the flexibility of the problem, there are two classifications based on [108]. These are:

1. Total flexibility, where each operation can be processed by any of theM machines (Mij =

M, ∀i ∈ {1, .., n} and j ∈ {1, .., Ni}).

2. Partial flexibility where some operations can only be processed on a subset of the available

M machines in the shop.

Finally, let Ci be the completion time of job i. Wk is the sum of the processing times of

operations on machine k. In this work, the three objectives makespan Cmax, total workload WT

and maximum or critical workload Wmax are to be minimized. These are defined as follows:

Cmax = max{Ci | i ∈ {1, .., N}} , (7.1)

WT =
M∑
k=1

Wk , (7.2)

Wmax = max{Wk | k ∈ {1, ..,M}} . (7.3)

7.3 Related Work

Due to its high relevance, the last three decades have seen extensive development of efficient

techniques to solve the FJSSP [38]. Between 2010 and 2013, a considerable increase in the

number of publications addressing the problem can be observed, with almost 50% of those

contributions using multi-objective performance measures [38]. Regarding the latter, the per-

formance measures mostly used are makespan, total workload, and critical workload. More-

over, emphasis has been given to the use of hybrid techniques, i.e., techniques that combine

one or more heuristics or metaheuristics [38]. The most common form of hybridization is lo-

cal search [9]. The term memetic algorithm (MA) is often used synonymously for hybrid

evolutionary algorithms [162, 163]. Memetic algorithms combine evolutionary algorithms with

local search operators and are widely used in combinatorial optimization. In this view, in [42]

the authors introduce a multi-objective memetic algorithm (MA) with an embedded variable
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neighborhood descent procedure, and in [251] the authors propose new memetic algorithms

for the multi-objective flexible job-shop scheduling problem (MO-FJSSP) with the objectives

to minimize the makespan, total workload, and critical workload, by adapting the NSGA-II

optimizer [51] through a well-designed chromosome encoding/decoding scheme and genetic op-

erators. They also develop a novel local search method based on critical operations, using a

hierarchical strategy to handle multiple objectives, emphasizing makespan. To the best of our

knowledge, these two papers are the most recent in the field that deal with multiple objectives

using a memetic approach. Most researches with a hybrid/memetic structure usually deal with

one objective, most often makespan (i.e., see [250, 37]), or other forms of hybridization such

as in [246, 164].

7.4 Tabu Search

TS is based on the assumption that problem-solving, to qualify as intelligent, must incorporate

adaptive memory and responsive exploration [38].

Local search methods tend to become stuck in suboptimal regions (local optima) or on plateaus

where many solutions are equally fit. Tabu search overcomes this pitfall of local search by

relaxing its basic rule. First, a worse move can be accepted at each step if no improving move

is available. In addition, prohibitions (hence the term tabu) are introduced to discourage the

search from coming back to previously visited solutions. These prohibitions are facilitated

through a memory structure called the tabu list. In its simplest form, a tabu list is a short-

term set of the solutions that have been visited in the recent past, i.e., within less than a

certain number of iterations which is called the tabu list size |T | or tenure. In this list, one can

alternatively store characteristics or attributes of the forbidden moves [89]. In this approach,

we used solutions instead of attributes or moves. Furthermore, these memory structures can

be divided into three categories:

1. Short-term: The list of solutions recently considered. If a potential solution appears on

the tabu list, it cannot be revisited until it reaches an expiration point, which usually

means |T | iterations. This is the approach used in this work.

2. Intermediate-term: Intensification rules which intend to bias the search towards promising

areas of the search space.

3. Long-term: Diversification rules that drive the search into new regions.

An aspiration criterion can also be used in tabu search to determine when the tabu restriction

can be overridden, thus removing a tabu classification. The aspiration criterion is useful when

the tabu list stores solutions’ attributes rather than the solutions themselves. We did not use

an aspiration criterion in this work since we used entire solutions in the tabu list.
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The main decisions to be made, in general for TS, are:

• The specification of a neighborhood structure.

• The move attributes (if used).

• The tabu list length (or tenure).

• The aspiration criterion (if used).

• The stopping criteria.

In Algorithm 7.12 we show the pseudocode of the TS algorithm used in this work. The algorithm

considers the minimization of an objective function f . In detail, given an initial solution x0 and

the tabu tenure T , the TS starts in line 4. Line 6 finds the neighbors of the current candidate,

and line 7 checks if the generated neighborhood is empty. This can be the case if, for example,

the number of blocks that generate the moves is not larger than 1 [168] (see also Section 7.5.4

for the notion of blocks.) If that is the case, the search stops and returns the best solution

found so far. Line 10 checks if all elements of the neighborhood belong in the tabu list, and

if they do, the search stops and returns the best solution found so far. On line 13, the best

neighbor in the generated neighborhood is found. If the best neighbor is in the tabu list (line

14), we find a new best neighbor, discarding the previous one (lines 15 and 16). On line 21,

the tabu list is updated by the best neighbor, and on line 23, it is checked whether the best

neighbor is better than the best solution found so far. Lines 26 to 33 check whether there is no

progress in discovering a new best solution, in which case the search terminates after a specific

number of consecutive tries. We continue like this until the termination criterion of a maximum

number of iterations is met.

7.5 A New Memetic Genetic Algorithm

Memetic algorithms combine evolutionary algorithms with local search operators and are widely

used in combinatorial optimization [163]. Our algorithmic approach to the multi-objective

nature of this problem combines a genetic algorithm (GA) [70] with local search (here, with

TS). GA is likely the most widely known type of EA. As such, our approach can be considered

a memetic multi-objective algorithm. A high-level outline of the proposed approach, memetic

genetic algorithm (TSM), is shown in Algorithm 7.23. Details of each step are given in the

following subsections.

2Please note that some of the notations in the pseudocode of Algorithm 7.1 differ from the notations in
the pseudocode of the original publication [115]. We did this for clarity, as well as for consistency among the
chapters of this thesis.

3Please note that some of the notations in the pseudocode of Algorithm 7.2 differ from the notations in
the pseudocode of the original publication [115]. We did this for clarity, as well as for consistency among the
chapters of this thesis.
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Algorithm 7.1: Tabu search.

Data: x0, T,maxIter, noProg, f ; # Initial solution, Tabu tenure, maximum

number of iterations, maximum number of no progress, objective

function

Result: bestSolution ; # Best solution at the end of the search

1 bestSolution← x0; bestSolution old← x0;
2 bestCandidate← bestSolution; tabu list← [ ];
3 counter ← 0; count← 0 ; # Counter monitoring maximum iterations, Counter

monitoring no progress

4 while counter ≤ maxIter do
5 counter ← counter + 1;
6 sNeighborhood← getNeighbors(bestCandidate) ; # Generating the

neighborhood from current candidate

7 if not sNeighborhood then
8 Return bestSolution;
9 end

10 if all x in sNeighborhood is in tabu list then
11 Return bestSolution
12 else
13 bestNeighbor ← getBestNeighbor(sNeighborhood) ; # Get the best

neighbor w.r.t. the objective f
14 while bestNeighbor in tabu list do
15 sNeighborhood.remove(bestNeighbor);
16 bestNeighbor← getBestNeighbor(sNeighborhood);

17 end

18 end
19 if |tabu list| = T then
20 tabu list.pop(0);
21 end

# Appending best neighbor to the tabu list

22 tabu list← tabu list bestNeighbor ; # Appending best neighbor to the tabu

list

23 bestCandidate← bestNeighbor;
24 if f(bestCandidate) < f(bestSolution) then
25 bestSolution← bestCandidate;
26 end

# Checking for stagnation

27 if bestSolution = bestSolution old then
28 count← count+ 1; bestSolution old← bestSolution;
29 else
30 count← 0; bestSolution old← bestSolution;
31 end
32 if count > noProg then
33 Return bestSolution;
34 end

35 end
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Algorithm 7.2: TSM.

Data: max Solutions, tour,M,m Pr, c Pr, Pr, hv Ref ; # Maximum number of

examined solutions, tournament size, population size, mutation

probability, crossover probability, hypervolume reference point

Result: pop ; # Best individuals found

1 pop← init Pop(M) ; # Initialize population of size M
2 pop← local Search(pop, Pr) ; # Apply local search on population with

probability Pr
3 fitpop ← eval Pop(pop) ; # Evaluate population

4 hvpop ← HV I(pop, hv Ref) ; # Hypervolume calculation of the Pareto front

5 solutions Count←M ; # Initializing solution counter

6 while solutions Count ≤ max Solutions do
7 pop← mut Correct(pop) ; # Mutate individuals mapping to the same value

and evaluate them

8 offspring ← create Offspr(pop, tour, c Pr,m Pr) ; # Create offspring

(parent selection(tour), reproduction(c Pr), mutation(m Pr))
9 offspring ← local Search(offspring, Pr) ; # Apply local search on the

offspring with probability Pr
10 fitoffspring ← eval Pop(offspring) ; # Evaluate offspring

11 poppool ← pop : offspring ; # Merge parent population with offspring

population

12 pop← pop Select(poppool,M) ; # Select new parent population of size M
for next generation

13 hvpop ← HV I(pop, hv Ref) ; # Hypervolume calculation of the Pareto front

14 stagn Check(hvpop) ; # Check for stagnation and adjust parameters

accordingly

15 solutions Count← solutions Count+M

16 end

7.5.1 Representation

For the chromosome representation we follow the approach presented in [241]. In this represen-

tation each individual is a tuple (u, v), where u represents the operation sequences and v the

machine assignment for operations. In detail, u is a vector of integers in which the operations

of each job is denoted by the corresponding job number. Thus, the k−th occurrence of a job

number refers to the k−th operation in the sequence of this job. For example, the operation

sequence u =[1, 2, 1, 2, 1] represents the operation sequence [011021012022013] for jobs 1 and 2

with operation sequences 011, 012, 013 and 021, 022, respectively. For the machine assignment

vector v, each number represents the machine assigned for each operation successively. For

instance, for a two job problem with 3 and 2 operations, respectively, and 3 machines, the vec-

tor v =[[132][12]], means that 011 is sequenced on machine 1, 012 on machine 3 and operation

013 on machine 2 and similarly for the other job. In Figure 7.1 we see an illustration of the

example above, which represents the following operation sequence and their assigned machines:
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(011,M1), (021,M1), (012,M3), (022,M2), (013,M2).

1 2 1 2 1 1 3 2 1 2

Operation sequence

Machine assignment

Job 1 Job 2

Figure 7.1: Individual representation. The vertical dashed line in the machine assignment
vector is used to visually distinguish between the machine assignment of the two jobs.

7.5.2 Initialization

For the initialization of the initial population (line 1 in Algorithm 7.2), we follow the proce-

dure introduced in [178] for both the machine assignment sequence and the operation sequence.

For the machine assignment, we switch between two assignment approaches. Assignment rule

1 starts from the operation corresponding to the minimum in the processing timetable. As-

signment rule 2 permutes the jobs randomly in the timetable before applying the approach

by localization, described in [108]. This approach considers both the processing times and the

workload of the machines, i.e., the sum of the processing times of all the operations assigned to

each of the machines. The procedure then consists of finding, for each operation, the machine

with the minimum processing time, fixing that particular assignment, and then adding this

minimum processing time to every subsequent entry in the same column (machine workload

update) [178]. Based on [178] the initialization with the minimum method has a rate of 10%

and the initialization with permutation 90%. After the machine assignment is settled, we move

on to the operation sequencing. The sequencing of the initial assignments is obtained by a mix

of three known dispatching rules:

• Randomly select a job. In this method, a job is randomly selected to be put into the

chromosome.

• Most work remaining. In this method, before selecting an operation, the remaining pro-

cessing times of all jobs are calculated respectively, and the first unselected operation

sequence of the job with the highest remaining processing time is placed into the chro-

mosome.

• Most number of operations remaining. In this method, before selecting an operation,

the number of succeeding operations of all jobs are calculated respectively, and the first

unselected operation sequence of the job with the highest number is placed into the

chromosome.
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The three dispatching rules above, are used interchangeably with rates 20%, 40%,40%, respec-

tively, following [178].

7.5.3 Parent Selection and Offspring Generation

For the parent selection, we use tournament selection, i.e., the individual for reproduction is

chosen to be the one with the smallest makespan among a particular number q of randomly

selected individuals. Once the individuals for reproduction have been selected, the crossover

and mutation operators are applied to produce the offspring (line 8 in Algorithm 7.2). The

crossover operator is applied to pairs of chromosomes, while the mutation operator is applied

to single individuals. We distinguish between two kinds of operators:

• Assignment operators, referring to the machine assignment of individuals.

• Sequencing operators, referring to the sequencing of operations of individuals.

Assignment Operators Assignment operators only change the machine assignment of the

individuals, i.e., the sequencing of operations is preserved in the offspring. Assignment crossover

(or crossover) generates the offspring by exchanging the assignment of a subset of operations be-

tween the two parents. On the other hand, assignment mutation only exchanges the assignment

of a single operation in a single parent.

In this work, for the machine assignment operators, we used the recombination operator as

in [241], originally suggested by Zhang et al. [254] and called multipoint preservative crossover

(MPX). This entails the following steps (see also Figure 7.2 for an example):

1. Let Pmach
1 , Pmach

2 be the operation sequence vectors of the parents P1, P2.

2. Generate a random bit-string of 0 and 1 with the same length as the previous selected

chromosomes.

3. Exchange the machine assignment of Pmach
1 to Cmach

2 (representing the second offspring)

and of Pmach
2 to Cmach

1 (representing the first offspring) at the same positions where the ran-

dom bit-string has the value 1. Copy the remaining machine assignments of Pmach
1 , Pmach

2

to Cmach
1 , Cmach

2 in the same position.

For the mutation operator for the assignment, we used a mixture of the approach of [241] and

TS. For the approach suggested in [241] we perform the following [241] (see also Figure 7.3 for

an example):

• Choose two genes randomly from the machine assignment sequence from the chromosome

of an individual, and then change each number in these genes randomly with another

machine from the set of capable machines for these two operations.
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4 2 1 2 1 3 2 3

2 2 2 3 1 3 2 3

1 2 1 2 44

1 41

1 3

2 2 3 3 2

C2
mach

P1
mach

C1
mach

P2
mach

0     1     0    0    1    1     0    1

Figure 7.2: MPX crossover operation for the machine assignment sequence. Adapted from [241].

4 2 1 2 1 3 2 3P1
mach

C1
mach 4 2 1 3 1 1 2 3

Figure 7.3: Mutation of the machine assignment sequence. “New” machines, 3, 1, belong in
the set of capable machines for the operations that have the same position in the respective
operation sequence, as the position of the exchanged machines. Adapted from [241].

In the TS used here, we used as neighborhood structure of the assignment of the individual

the use of a random selection of two operations. With these operations in hand, we randomly

exchange the machine already assigned to these operations with another one from the set of

available machines. We did this 10 times to define the neighborhood around the current seed

(i.e., a neighborhood of size 10). For efficiency, we only selected operations that have more than

one machine available. We used a neighborhood of steady size equal to 10 and used as the tabu

list tenure the closest integer to the squared root of the size of the neighborhood. We also used

as a stopping rule 20 repetitions of the TS and a limit of 5 repetitions without improvement.

Moreover, we used a 50% probability for the switch between these two mutation methods. The

parameters selected here were based on preliminary results.

Sequencing Operators On the other hand, sequencing operators change the sequence of

the operations in the parent chromosomes, i.e., the assignment of operations to machines is

preserved in the offspring. In applying the sequencing operators, we must respect the precedence

constraints among operations of the same job. We followed the suggestion of [241] for both the
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crossover and mutation for the sequencing operator.

For the crossover operator of the operation sequence, the authors use an improved version of the

precedence operation crossover (IPOX). POX was originally developed by Zhang et al. [252].

This works as follows [241] (see also Figure 7.4 for an example):

1. Let P op
1 , P op

2 be the operation sequence vectors of the parents P1, P2. Then we randomly

divide the jobs in the two operation sequences into two sets J1, J2.

2. We then copy the elements of P op
1 that are included in J1 to Cop

1 (representing the first

offspring) in the same position and similarly, copy the elements of P op
2 that are included

in J2 to Cop
2 (representing the second offspring) in the same position.

3. Lastly, we copy the elements of P op
2 that are included in J2 to Cop

1 in the same order and

copy the elements of P op
1 that are included in J1 to Cop

2 in the same order.

4 2 1 2 1 3 2 3 2 1 2 3 3 1 2 4

2 2 3 2 31 1 411 4 2 2 3 3 2

P2
opP1

op

c1
op c2

op

J1={2,3}, J2={1,4}

Figure 7.4: IPOX crossover operation for the operation sequence. Adapted from [241].

For the mutation operator of the operation sequence, we perform the following [241] (see also

Figure 7.5 for an example):

• Choose a gene randomly from the operation sequence chromosome of an individual, and

insert it in a position before a random operation.

4 2 1 2 1 3 2 3P1
op

c1
op 4 2 1 3 2 1 2 3

Figure 7.5: Mutation of the operation sequence vector. Adapted from [241].

Finally, non-dominated sorting and the crowding distance operator from NSGA-II [51] are

applied for parent selection for the next generation after merging the offspring with the current

parent population (i.e., elitism).
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7.5.4 Local Search

We decided to hybridize genetic algorithms with TS since in many combinatorial optimization

problems, TS can be locally more exhaustive than genetic search [100], as it prevents premature

convergence in sub-optimal regions, such as local optima. The local search we decided to use

is a TS. For the local search we focused on the minimization of the makespan.

In detail, in every iteration, we applied TS to 10% of the individuals after the genetic operators

are applied and before the merging between the parent population and offspring population

takes place (line 9 in Algorithm 7.2). Since we focused on minimizing the makespan, we

employed the notion of the disjunctive graph. The disjunctive graph is a directed acyclic graph

(DAG) used as a compact representation of a schedule [218, 19]. Figure 7.6 shows an example

of a disjunctive graph for a schedule of 3 jobs and 3 machines. The operations of every job are

nodes of the graph. The solid lines show the precedent constraints between the operations in

each job, and the dashed lines (disjunctive arcs) show the sequencing of the operations on the

machines. For example, operation O1,1 is scheduled before operation O2,2 on machine M1. The

numbers outside of each operation-node inform about the processing time of that operation on

the specific machine. Nodes S and E are the source and sink nodes, respectively, and are on the

graph for completeness reasons. Based on [168] we made adjustments only on particular parts

of the critical path of the individual-schedule, called blocks. The critical path is the longest

path on the disjunctive graph. Blocks can be considered as the maximal subset of the critical

path, which contains operations processed on the same machine. The TS parameters used were:

7 for the tabu list size, 5 for the maximum number of iterations without improvement, and 20

for the maximum overall number of iterations (see also Table 7.2). The neighborhood structure

was based on the notion of critical paths and blocks, and as a result, the neighborhood size

varied per iteration.

7.5.5 Problem Specific Hypervolume Calculation

In each iteration of TSM, we calculate the hypervolume indicator (HVI) [61] of the Pareto

front of the solutions. For more details on the HVI we refer the reader to Section 5.4.3. A

possible stagnation of the HVI would mean that TSM is not able to produce solutions that

increasingly dominate the objective space. In turn, this means, that there are no solutions

which are “better” compared to the non-dominated solutions of the previous generation in at

least one of the objectives. To counter this we entered a switch (line 14 in Algorithm 7.2).

Suppose the hypervolume is stagnant for more than 3 generations. In that case, we increase

the number of the possible solutions entering the local search to 50% (instead of 10%). A

problem-specific conservative choice of a reference point is used, as follows: The basic idea is

to find a point that will bound from above the Pareto front, and as such, we decided to go

with the summation of the predefined processing times on all capable machines of all processes
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S

O1,1 O1,2

O2,2 O2,3O2,1

O3,1 O3,2

E

M2M1

M2 M1 M3

M3 M1

1 2

2 1 2

3 1

Figure 7.6: Example of a disjunctive graph representation of a schedule with 3 jobs, with 2,
3, and 2 operations respectively and 3 machines. Operations are depicted as nodes. The solid
lines show the precedent constraints between the operations in each job and the dashed lines
(disjunctive arcs) show the sequencing of the operations on machines. Nodes S and E are the
source and sink nodes, respectively, and are on the graph for completeness reasons. Adapted
from [251].

overall the jobs. In detail, we used as a reference point the triple (x, x, x), where:

x =
N∑
i=1

Ni∑
j=1

∑
k∈Mij

pijk , (7.4)

where pijk is the process time of 0ij on machine k from its set of machines able to process it.

Obviously, this point varies per problem instance, as it is directly related to its input data.

7.5.6 Solution Redundancy

One issue that is common for the FJSSP is solution redundancy. With this, we mean that

more than one solution in the decision space maps to the same value in the objective space.

That is, the mapping is not injective. There is also the chance that some individuals in the

decision space are duplicates after several generations. In this work we tackled the first matter

by inserting (line 7 in Algorithm 7.2) an operator which determines the individuals that map

to the same objective values. Subsequently, it selects the largest subset of individuals which

map to the same value and mutates them through the mutation process we described earlier

in Section 7.5.3. The second point, which in essence regards monitoring solution diversity, will

be considered in future work.
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Chapter 7. Scheduling Optimization

7.6 Experimental Setup and Results

The main research question is whether the use of memetic algorithms with TS as the local

search and as a mutation operator can compete, extend or outperform the state-of-the-art

algorithms in the context of the FJSSP. Experiments, datasets, and comparisons to state-of-

the-art methods are described in this section.

7.6.1 Data

In this work, we used the famous Brandimarte datasets [32]. The dataset consists of 10 FJSSP

problem-instances with the number of jobs ranging from 10 to 20, number of machines ranging

from 4 to 15 and number of operations for each job ranging from 3 to 15.

In Table 7.1 we give an overview of the problem instances.

Table 7.1: Brandimarte dataset [32] characteristics.

Dataset # Jobs # Machines # Operations

Mk01 10 6 5-7
Mk02 10 6 5-7
Mk03 15 8 10-10
Mk04 15 8 3-10
Mk05 15 4 5-10
Mk06 10 15 15-15
Mk07 20 5 5-5
Mk08 20 10 10-5
Mk09 20 10 10-15
Mk10 20 15 10-15

7.6.2 Experimental Setup

The experiments4 were executed on the DAS-4 (Distributed ASCII Computer) [18], with 16

dual quad-core at 2.4GHz with 48GB RAM. Source code has been developed in Python Version

3.0. To the best of our knowledge, this is the first research written in Python on multi-objective

scheduling.

Benchmark Data and Setup We tested the performance of our algorithm on the 10 bench-

mark instances Mk01-10 taken from Brandimarte [32] (see also Section 7.6.1). Table 7.2 summa-

rizes the parameter settings of our new algorithm as used for these runs. We ran our algorithm

on each benchmark 30 times and merged the results keeping, in the end, the non-dominated

4The source code of the experiments can be found at https://moda.liacs.nl/code/

KefalasEtAl2019-Supplement.zip.
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solutions from the merged collection. We used as a termination criterion 500.000 examined

solutions, as proposed in [251]. We furthermore used the DEAP [71] framework to build TSM.

Table 7.2: Parameter settings of the TSM.

Parameter Value

Population size 300
Crossover probability 0.5
Mutation probability 1
Tournament size 3
Local search probability 0.1
Mutation tabu tenure 3
Mutation tabu search
maximum number of
no progress

5

Mutation tabu search
maximum number of
iterations

20

Local search tabu tenure 7
Local search maximum
number of no progress

5

Local search maximum
number of iterations

20

Baselines We compared our algorithm to the state-of-the-art algorithms MA-1, MA-2, MA-

1-NH, MA-2-NH, MRLS-1, MRLS-2, and NSGA-II variant, from Yuan et al., [251]. Their

parameter settings and their solutions and reference set can be found in the same paper. We

compared our results with the aggregated results over 30 runs of each of their algorithms, and

we did this for each benchmark. We report the results found between our algorithm and the

algorithms from Yuan et al. and the hypervolume indicator difference between their reference

set (after having added our solutions) and our solutions for each benchmark.

We should note here that, in this work, we did not intend to create a reference Pareto set for

each benchmark, as done by Yuan et al. [251], but instead enrich this field by doing additional

research on ways of determining new or even better solutions to this problem.

7.6.3 Experimental Results

The results are summarized in Tables 7.3 - 7.8. Specifically, on Tables 7.3 and 7.4 we show

our generated solutions, and on Tables 7.5 - 7.8 we compare our solutions to those of [251].

We report our results for each benchmark and the dominated solutions of the algorithms we

compare to, if they exist, otherwise there is a ‘−’. On Tables 7.5 - 7.8 the reader can compare

the results by identifying on which benchmarks TSM is able to dominate solutions from each
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of the baselines and on which of these benchmarks can TSM extend the solutions returned by

the baselines. Furthermore, we also report on the new solutions found, indicating this with

the phrase Extended by. Identifying new solutions means determining solutions that increase

the diversity of the already-found non-dominated solutions by the other methods. This is

important for creating and/or extending reference sets that approximate the Pareto front,

as well as identifying strengths of one algorithmic method compared to another. For some

benchmarks, specifically for Mk06, Mk07 on Table 7.4 we report only part of the results of

TSM due to their large number. We do the same for the new solutions found against MRLS-1

on Mk06 and Mk10 on Table 7.65.

New and/or Dominating Solutions From the results on Tables 7.3 and 7.4 the non-

dominated solutions from 30 runs of TSM resulted in the following cardinality distribution,

Mk01 (14), Mk02 (7), Mk03 (25), Mk04 (23), Mk05 (20), Mk06 (47), Mk07 (50), Mk08 (9),

Mk09 (30), Mk10(44). Moreover, on Tables 7.5 - 7.8 we see that TSM performs well against both

MRLS-1 and MRLS-2 in all instances by dominating some of their solutions or determining new

points that extend the Pareto front found by MRLS-1 and MRLS-2. Specifically, on Tables 7.5

and 7.6 we that TSM partially dominates the solutions of MRLS-1 in 8 out of 10 benchmarks

(Mk01, Mk02, Mk03, Mk04, Mk05, Mk07, Mk08, Mk09) and finds new Pareto solutions in 2 out

of 10 benchmarks (Mk06 and Mk10). Regarding MRLS-2, from Tables 7.7 and 7.8 we see that

TSM partially dominates the solutions returned by MRLS-2 in 7 out of 10 cases (Mk01, Mk03,

Mk04, Mk05, Mk06, Mk08, Mk10) and identifies new solutions in 3 out of 10 cases (Mk02,

Mk07, Mk09). Furthermore, we see that for instance Mk06, TSM identifies a new solution to

the results returned by MA-1, MA-2, and NSGA-II on Tables 7.6 and 7.8, respectively. However

in most cases MA-1, MA-2, NSGA-II dominate our solutions. Similarly, we did not find any

new or dominating solutions compared to the solutions returned by MA-1-NH and MA-2-NH

in any case.

Hypervolume Indicator We, furthermore, computed the difference between the HVI of the

reference set (after having added our solutions) and the HVI of the non-dominated solutions

found by all algorithms (including TSM) in all 30 runs, for each benchmark. We normalized

the reference sets and the obtained sets by using the nadir point of the reference set multiplying

by 1.1 [166]. The results can be seen in Table 7.9. It is clear from the results that algorithms

MA-1 and MA-2 show the best performance. Nevertheless, our approach gives (see TSM results

in bold), when compared to MRLS-1 and MRLS-2, competitive results on Mk01, better results

in Mk03 and Mk04, Mk05 (compared to MRLS-2), Mk07, Mk08 and Mk09. In Mk08, our

algorithm is able to determine the reference set.

In Table 7.10 we present the median of the difference between the HVI of the reference set

5The full list of solutions is available at https://moda.liacs.nl/code/KefalasEtAl2019-Supplement.zip
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Table 7.3: Solutions identified by TSM for benchmarks Mk01-Mk05.

Algorithm Mk01 Mk02 Mk03 Mk04 Mk05

TSM

(40, 168, 37),
(41, 167, 36),
(41, 162, 39),
(41, 165, 37),
(42, 159, 39),
(42, 160, 38),
(40, 174, 36),
(41, 164, 38),
(43, 155, 40),
(42, 163, 37),
(42, 165, 36),
(43, 158, 39),
(44, 154, 40),
(46, 153, 42)

(29, 150, 26),
(29, 144, 28),
(29, 145, 27),
(30, 143, 29),
(31, 141, 31),
(31, 142, 30),
(33, 140, 33)

(204, 864, 204),
(206, 857, 204),
(210, 855, 204),
(213, 852, 204),
(215, 849, 213),
(216, 848, 213),
(222, 847, 222),
(223, 847, 213),
(224, 851, 204),
(226, 843, 222),
(230, 842, 222),
(234, 846, 213),
(237, 844, 213),
(240, 850, 204),
(246, 841, 231),
(247, 849, 210),
(248, 848, 210),
(249, 840, 249),
(256, 838, 249),
(256, 840, 222),
(262, 838, 231),
(274, 839, 222),
(275, 838, 222),
(282, 837, 231),
(297, 843, 221)

(68, 355, 68),
(68, 376, 60),
(69, 360, 60),
(69, 351, 63),
(71, 353, 62),
(72, 347, 66),
(72, 357, 61),
(73, 342, 72),
(73, 348, 63),
(75, 344, 66),
(75, 347, 65),
(77, 340, 72),
(78, 337, 78),
(79, 343, 67),
(84, 334, 84),
(90, 331, 90),
(98, 330, 98),
(106, 329, 106),
(114, 328, 114),
(122, 327, 122),
(130, 326, 130),
(138, 325, 138),
(146, 324, 146)

(174, 687, 173),
(176, 686, 173),
(177, 685, 173),
(178, 683, 175),
(178, 682, 176),
(179, 684, 174),
(179, 680, 179),
(180, 682, 175),
(180, 681, 178),
(181, 684, 173),
(181, 679, 179),
(181, 680, 178),
(182, 683, 173),
(182, 687, 172),
(183, 677, 183),
(185, 676, 185),
(191, 675, 191),
(197, 674, 197),
(203, 673, 203),
(209, 672, 209)

(after having added our solutions) and the HVI of each algorithm on each benchmark over 30

trials. We used the Wilcoxon rank sum test (Mann-Whitney U test), with a significance level

of α = 0.01, to see whether the hypervolume difference values obtained with the TSM strategy

are significantly different than those obtained with one of the other strategies6. We selected

this test to take into account the non-normality of the data and the independence between the

samples. We also used the Bonferroni correction, which means that for each individual test,

the significance level α is divided by the number of tests per test instance. For us, this is 7 and,

thus, α ≈ 0.001. We made the Bonferroni correction, to counteract the increased likelihood of

incorrectly rejecting the null hypothesis (type I error or false positive), which exists because

of the multiple hypotheses tested at once. In Table 7.10 the superscripts in the bold TSM

results, indicate from which of the other 7 algorithms the TSM returned significantly lower

hypervolume difference values. From the table, we see that TSM performed significantly better

than both MRLS-1 and MRLS-2 on Mk03, Mk04, and Mk087.

Finally, in Figure 7.7 we report the average execution time (in seconds) that TSM took on each

of the 10 benchmarks.

6This means that the null hypothesis is that the hypervolume difference values obtained with the TSM
strategy come from the same distribution as those obtained with one of the other strategies.

7Note that in the original publication [115], it was erroneously noted that TSM performed significantly better
in Mk09 as well. This error has been corrected and noted in the remainder of the chapter and in Table 7.10 as
well.
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Table 7.4: Solutions identified by TSM for benchmarks Mk06-Mk10.

Algorithm Mk06 Mk07 Mk08 Mk09 Mk10

TSM

(91, 474, 57),
(91, 453, 66),
(92, 436, 60),
(93, 480, 54),
(95, 456, 55),
(96, 434, 60),
(96, 428, 61),
(99, 432, 60),
(99, 427, 71),
(100, 476, 54),
(100, 450, 57),
(102, 455, 54),
(103, 452, 54),
(103, 446, 59),
(104, 451, 54),
(105, 449, 55),
(106, 420, 74),
(107, 423, 63),
(108, 421, 69),
(108, 447, 56),
(109, 421, 66),
(109, 441, 59),
(110, 442, 55),
(110, 421, 60),
(112, 417, 67),
(113, 411, 74),
(115, 414, 68),
(115, 415, 63),
(122, 439, 56),
· · ·
(129, 437, 57),
(130, 434, 58),
(131, 440, 55),
(131, 413, 63),
(136, 449, 54),
(139, 407, 69),
(140, 444, 54),
(141, 438, 56),
(141, 439, 55),
(142, 411, 65),
(143, 402, 82),
(144, 406, 67),
(154, 434, 54),
(158, 473, 53)

(144, 690, 144),
(148, 685, 144),
(150, 690, 143),
(150, 684, 149),
(153, 680, 150),
(153, 683, 147),
(154, 673, 150),
(156, 682, 147),
(157, 683, 145),
(157, 691, 142),
(158, 670, 156),
(158, 679, 145),
(158, 690, 140),
(160, 675, 147),
(160, 671, 150),
(160, 677, 144),
(161, 673, 144),
(162, 668, 156),
(163, 666, 162),
(163, 667, 157),
(166, 664, 157),
· · ·
(172, 687, 143),
(174, 688, 140),
(175, 686, 140),
(176, 660, 174),
(178, 668, 152),
(179, 657, 170),
(182, 684, 143),
(185, 665, 156),
(191, 660, 169),
(192, 661, 162),
(193, 659, 162),
(194, 655, 190),
(197, 655, 176),
(206, 653, 202),
(220, 658, 166),
(221, 654, 190),
(227, 653, 187),
(241, 652, 209),
(244, 657, 166),
(265, 651, 209),
(268, 651, 205),
(277, 652, 202)

(523, 2524, 523),
(524, 2519, 524),
(533, 2514, 533),
(542, 2509, 542),
(551, 2504, 551),
(560, 2499, 560),
(569, 2494, 569),
(578, 2489, 578),
(587, 2484, 587)

(369, 2711, 328),
(372, 2493, 310),
(373, 2452, 299),
(377, 2415, 300),
(379, 2396, 299),
(386, 2375, 320),
(389, 2387, 299),
(393, 2365, 315),
(394, 2376, 299),
(396, 2368, 299),
(399, 2364, 307),
(401, 2336, 331),
(401, 2364, 299),
(410, 2340, 316),
(414, 2361, 315),
(419, 2352, 304),
(424, 2361, 299),
(427, 2359, 300),
(427, 2360, 299),
(432, 2341, 299),
(448, 2331, 328),
(468, 2322, 307),
(493, 2339, 299),
(507, 2338, 303),
(523, 2338, 299),
(534, 2335, 301),
(543, 2311, 320),
(559, 2321, 310),
(563, 2335, 299),
(567, 2327, 299)

(300, 2157, 224),
(311, 2128, 256),
(313, 2190, 220),
(313, 2127, 242),
(313, 2132, 241),
(314, 2133, 230),
(315, 2156, 220),
(316, 2128, 220),
(317, 2127, 211),
(318, 2113, 239),
(318, 2125, 230),
(321, 2101, 259),
(322, 2122, 223),
(323, 2113, 224),
(324, 2112, 217),
(325, 2094, 220),
(326, 2090, 221),
(331, 2109, 214),
(332, 2171, 210),
(333, 2137, 210),
(335, 2106, 218),
(336, 2087, 233),
(336, 2112, 208),
(339, 2082, 229),
(343, 2109, 213),
(345, 2107, 216),
(353, 2105, 215),
(357, 2082, 220),
(358, 2111, 212),
(359, 2069, 253),
(359, 2091, 208),
(362, 2080, 250),
(362, 2081, 236),
(363, 2057, 242),
(364, 2054, 210),
(364, 2128, 205),
(368, 2115, 206),
(390, 2092, 205),
(397, 2050, 248),
(416, 2084, 206),
(427, 2127, 204),
(452, 2082, 206),
(460, 2078, 209),
(515, 2132, 202)
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Table 7.5: Dominated solutions and extended solutions by TSM on the MA-1, MA-2, MA-1-NH,
MA-2-NH, MRLS-1 algorithms on the Mk01-Mk05 benchmark datasets. Shown solutions are
Pareto dominated solutions by TSM. “-” indicates no Pareto dominated solutions. “Extended
by” marks TSM solutions that extend the solutions returned by the algorithms in [251] on the
benchmark data.

Algorithm Mk01 Mk02 Mk03 Mk04 Mk05

MA-1 - - - - -
MA-2 - - - - -
MA-1-NH - - - - -
MA-2-NH - - - - -

MRLS-1

(43, 163, 37),
(43, 156, 40),
(42, 166, 36),
(46, 153, 46)

(33, 142, 30)

(212, 932, 204),

(204, 956, 204),

(207, 947, 204)

(79, 338, 78),

(84, 335, 84),

(78, 339, 78)

(186, 676, 186),

(192, 675, 192),

(181, 679, 181)

Table 7.6: Dominated solutions and extended solutions by TSM on the MA-1, MA-2, MA-1-NH,
MA-2-NH, MRLS-1 algorithms on the Mk06-Mk10 benchmark datasets. Shown solutions are
Pareto dominated solutions by TSM. “-” indicates no Pareto dominated solutions. “Extended
by” marks TSM solutions that extend the solutions returned by the algorithms in [251] on the
benchmark data.

Algorithm Mk06 Mk07 Mk08 Mk09 Mk10

MA-1
Extended by:

(158, 473, 53)
- - - -

MA-2
Extended by:

(158, 473, 53)
- - - -

MA-1-NH - - - - -
MA-2-NH - - - - -

MRLS-1

Extended by:

(91, 474, 57),
(92, 436, 60),
(93, 480, 54),
(95, 456, 55),
· · ·
(139, 407, 69),
(140, 444, 54),
(141, 438, 56),
(141, 439, 55),
(142, 411, 65),
(144, 406, 67),
(154, 434, 54),
(158, 473, 53)

(157, 673, 150),

(150, 688, 144),

(149, 689, 144)

(555, 2531, 542),

(523, 2542, 523),

(524, 2541, 524),

(533, 2532, 533),

(530, 2540, 524)

(387, 2382, 320)

Extended by:

(300, 2157, 224),
(313, 2190, 220),
(314, 2133, 230),
(315, 2156, 220),
(316, 2128, 220),
(317, 2127, 211),
(318, 2113, 239),
(318, 2125, 230),
(322, 2122, 223),
(323, 2113, 224),
(324, 2112, 217),
· · ·
(390, 2092, 205),
(397, 2050, 248),
(416, 2084, 206),
(427, 2127, 204),
(452, 2082, 206),
(460, 2078, 209),
(515, 2132, 202)
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Table 7.7: Dominated solutions and extended solutions by TSM on the MRLS-2 and NSGA-
II variant algorithms on the Mk01-Mk05 benchmark datasets. Shown solutions are Pareto
dominated solutions by TSM. “-” indicates no Pareto dominated solutions. “Extended by”
marks TSM solutions that extend the solutions returned by the algorithms in [251] on the
benchmark data.

Algorithm Mk01 Mk02 Mk03 Mk04 Mk05

MRLS-2

(47, 153, 42),
(48, 165, 36),
(43, 163, 37),
(46, 166, 36),
(46, 153, 46)

Extended by:
(33, 140, 33)

(204, 931, 204)

(78, 339, 78),

(84, 336, 84),

(72, 360, 61)

(198, 674, 198),

(186, 676, 186)

NSGA-II - - - - -

7.7 Discussions and Conclusions

The flexible job-shop scheduling problem (FJSSP) is an NP-hard optimization problem, which

can be considered a subsequent step to the RUL estimation and is a pivotal part of PHM.

In this chapter, we presented a memetic multi-objective algorithm for the FJSSP, called tabu

search memetic (TSM) algorithm, which jointly minimizes the makespan, the total machine

workload and the critical machine workload. Our main contributions lie in the usage of tabu

search (TS) as the local search method and mutation operator and the employment of the

hypervolume indicator (HVI) as a stagnation avoidance switch. Although there have been

many publications on the FJSSP, to our knowledge, there has not been any work that uses

TS in the context of multi-objective FJSSP. We evaluated our approach against the reference

solutions set returned by the state-of-the-art algorithms on the multi-objective FJJSP by Yuan

et al. [251] on the widely used Brandimarte dataset [32].

The experimental results show that TSM can outperform 2/7 competing algorithms on the

majority of the benchmark datasets by dominating certain of their solutions. Furthermore,

TSM is able to extend the set of the Pareto solutions returned from 5/7 competing methods on

5/10 benchmark datasets. We, further, extended the reference sets per benchmark introduced

in [251] by adding our solutions to them and showed that TSM can better approximate the

extended reference set compared to 2/7 competing algorithms on 5/10 benchmarks. Finally, the

results showed that TSM could approximate this extended reference set statistically significantly

better than 2/7 algorithms on 3/10 benchmarks.

In summary, the results suggest that the TSM algorithm is an interesting alternative to the

state-of-the-art algorithms introduced by Yuan et al. [251], in terms of quality. More generally,

our work shows that combining local search with global search can have a significant positive

impact for heuristic solvers for the FJSSP. A limitation of this study lies in the small number of

tested benchmarks. Besides, TSM is made available as an open-source Python implementation,

making multi-objective FJSSP available to the big community of Python programmers.

Finally, this method can, in principle, be extended to account for RUL information. For
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7.7. Discussions and Conclusions

Table 7.8: Dominated solutions and extended solutions by TSM on the MRLS-2 and NSGA-
II variant algorithms on the Mk06-Mk10 benchmark datasets. Shown solutions are Pareto
dominated solutions by TSM. “-” indicates no Pareto dominated solutions. “Extended by”
marks TSM solutions that extend the solutions returned by the algorithms in [251] on the
benchmark data.

Algorithm Mk06 Mk07 Mk08 Mk09 Mk10

MRLS-2

(92, 439, 62),

(92, 477, 61),

(94, 475, 61),

(99, 486, 60)

Extended by:

(150, 690, 143),
(157, 691, 142),
(158, 679, 145),
(158, 690, 140),
(160, 675, 147),
(160, 671, 150),
(160, 677, 144),
(161, 673, 144),
(166, 670, 150),
(168, 689, 142),
(169, 688, 141),
(169, 663, 162),
(170, 662, 157),
(171, 661, 169),
(172, 667, 156),
(172, 687, 143),
(174, 688, 140),
(175, 686, 140),
(176, 660, 174),
(178, 668, 152),
(179, 657, 170),
(182, 684, 143),
(185, 665, 156),
(191, 660, 169),
(192, 661, 162),
(193, 659, 162),
(194, 655, 190),
(197, 655, 176),
(206, 653, 202),
(220, 658, 166),
(221, 654, 190),
(227, 653, 187),
(241, 652, 209),
(244, 657, 166),
(265, 651, 209),
(268, 651, 205),
(277, 652, 202)

(560, 2528, 560),

(523, 2537, 523),
(524, 2532, 524),

(543, 2530, 542),

(569, 2525, 569)

Extended by:

(373, 2452, 299),
(377, 2415, 300),
(379, 2396, 299),
(386, 2375, 320),
(389, 2387, 299),
(393, 2365, 315),
(394, 2376, 299),
(396, 2368, 299),
(399, 2364, 307),
(401, 2336, 331),
(401, 2364, 299),
(410, 2340, 316),
(414, 2361, 315),
(419, 2352, 304),
(424, 2361, 299),
(427, 2359, 300),
(427, 2360, 299),
(432, 2341, 299),
(448, 2331, 328),
(468, 2322, 307),
(493, 2339, 299),
(507, 2338, 303),
(523, 2338, 299),
(534, 2335, 301),
(543, 2311, 320),
(559, 2321, 310),
(563, 2335, 299),
(567, 2327, 299)

(330, 2100, 239)

NSGA-II
Extended by:

(158, 473, 53)
- - - -

example, knowing the time-to-maintenance of a set of assets, one can introduce these assets in

the job set to the job-shop at the appropriate times each (e.g., the RUL) and adjust the routing

and the sequencing operations appropriately.
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Chapter 7. Scheduling Optimization

Figure 7.7: Average (over 30 runs) TSM execution wall-clock time (in seconds) per benchmark.
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7.7. Discussions and Conclusions

Table 7.9: HVI difference from reference set (lower is better). TSM solutions that outperform
a competing algorithm from [251] are shown in bold. Superscript numbers indicate the index
of the outperformed algorithm.
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Chapter 7. Scheduling Optimization

Table 7.10: Median of the HVI difference from reference set. TSM solutions that statistically
significantly outperform a competing algorithm from [251] are shown in bold. Superscript
numbers indicate the index of the significantly outperformed algorithm. Note that in the
original publication [115], it was erroneously noted that TSM performed significantly better in
Mk09 as well. This error has been corrected in the Table below.
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Chapter 8

An Automated Machine Learning

Approach for Electromyography Data

In the previous chapters we mostly dealt with AI-based tools for data-driven applications in

predictive maintenance (PdM). In this chapter, we will deal with AI-based time-series appli-

cations in the medical domain. Even though the work presented here is not directly relatable

to prognostics and health management (PHM) and PdM we still believe that it is a valuable

addition to the work discussed in this thesis, as it shows that tools developed for industry can

lend themselves to other fields as well. This idea of knowledge transfer across different scien-

tific fields and disciplines is, generally, rather important in the process of knowledge creation,

the emergence of new fields and the overall progress of science [215]. It has been shown that

knowledge exchange across scientific areas can drive forward and further develop science (see

e.g., [7]).

In more detail, in this chapter1, we will deal with a case study in the field of Neurology, in

which we will use methods from time-series representations and other methods (such as in

Chapter 4) e.g., feature selection, to ultimately classify patients as either being healthy or not.

The approach is automated and limits as many arbitrary choices as possible, providing at the

same time valuable diagnostic information without having to rely heavily on clinical expertise.

We should note here that the term “automated” refers to the fact that the method can be used

in a generic way in different domains (domain-agnostic), as we will also note later on. Thus, it

should not be confused with the notion of “AutoML” (see Section 4.3.5).

1©2021 IEEE. Reprinted, with permission, from [114]; Marios Kefalas, Milan Koch, Victor Geraedts, Hao
Wang, Martijn Tannemaat, and Thomas Bäck, Automated Machine Learning for the Classification of Normal
and Abnormal Electromyography Data, 2020 IEEE International Conference on Big Data (Big Data), 2020, pp.
1176-1185. IEEE
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8.1. Introduction

8.1 Introduction

Needle or intramuscular electromyography (EMG) is a common technique used in clinical neu-

rophysiology to record the electrical activity of muscles at different levels of activation [47].

As the EMG signals of patients with both nerve diseases (neuropathies) and muscle diseases

(myopathies) differ from those in healthy controls, EMG can be used to diagnose various neuro-

logical disorders. The most commonly used method to interpret the EMG is qualitative, based

on visual inspection of the signal in real-time by an experienced examiner. A major drawback

of this method is that it is highly subjective and prone to errors. In particular, for the diagnosis

of myopathies, EMG has been called “one of the most challenging areas in electrodiagnostic

medicine” [47]. In theory, a neuropathic EMG with fibrillation potentials, positive sharp waves,

high-amplitude and long duration motor unit potentials (MUPs), and a reduced interference

pattern should be clearly distinguishable from a myopathic EMG containing smaller, short-

duration polyphasic MUPs and a full interference pattern. In practice, however, the diagnostic

yield of qualitative EMG analysis for distinguishing between both abnormal-myopathic and

neuropathic-myopathic is disappointingly low.

In the past decades, several quantitative EMG (qEMG) methods such as turns-amplitude anal-

ysis have been developed in an attempt to increase the diagnostic yield of the EMG. However,

so far sensitivity and specificity of various qEMG techniques have remained similar to visual in-

spection [80, 211]. Similarly, another quantitative technique called the clustering index method

yielded a sensitivity of 92% for neurogenic and 61% for myopathic patients [226]. Further-

more, most qEMG methods were published several decades ago and are based on assumptions

with regard to MUP morphology and physiology. Interpretation of the EMG in patients with

Inclusion Body Myositis (IBM), a myopathy, is particularly challenging, as it may contain

both myopathic and neurogenic features [106]. As IBM may also mimic motor neuron disease

clinically, inappropriate interpretation of the EMG can lead to an incorrect diagnosis. A ret-

rospective study of mislabeled IBM patients found that routine EMG commonly pointed to

a neurogenic disorder called Amyotrophic Lateral Sclerosis (ALS): it showed fibrillations and

positive sharp waves, as well as excessive amounts of polyphasic long-duration “neurogenic”

MUPs in the majority of mislabeled patients [48]. This is highly unfortunate as ALS, a neu-

ropathy, is a progressive, fatal disease, whereas life expectancy is not significantly affected in

IBM [45].

Recent advances in computer processing power and machine learning techniques enable a “big

data” approach that processes a large number of features without any underlying assumptions

about the nature of the signal. We have previously shown that such an approach, developed for

the automotive industry but applied to electroencephalography (EEG) signals, could distinguish

between Parkinson’s disease patients with good cognition from those with poor cognition with

an accuracy of 91% [122].
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Chapter 8. AI and EMG

Generally, a first approach towards a(n) (automatic) classification of specific diseases, either

myopathic or neuropathic, is the differentiation between a normal EMG assessment of a healthy

individual and an abnormal EMG assessment of a patient with a myopathic or neuropathic

disease.

In this work, our contributions lie in the following:

1. We aim to evaluate an automated time-series classification algorithm for usage in differ-

entiating EMG time-series of healthy individuals and EMG time-series of patients with

either neuropathic or myopathic diseases by considering the two types of disease as one

disease class (binary classification).

2. Our approach is generic and limits as many arbitrary choices as possible, providing at

the same time valuable diagnostic information without having to rely heavily on clinical

expertise.

8.2 Related Work

Electromyography (EMG) is the study of the electric activity of the muscle and assists in the

diagnosis of neuromuscular disorders. EMGs are used to detect and describe different disease

processes affecting the motor unit (MU), the smallest functional unit of the muscle. The motor

unit action potentials (MUPs) are recorded using a needle electrode at slight voluntary contrac-

tion during an EMG. The MUP reflects the electrical activity of a single anatomical motor unit.

It represents the compound action potential of those muscle fibers within the recording range of

the electrode. EMGs can detect neuromuscular disorders due to the structural reorganization

of the MU because of disorders affecting peripheral nerve and muscle [174]. Current clinical

practice is based on expert visual inspection of MUP traces and simultaneous real-time assess-

ment of their audio characteristics. This subjective assessment, even if satisfactory, may not be

sufficient to describe less apparent deviations or mixed patterns of abnormalities [187]. There-

fore, for an automated EMG signal classification to be effective, a systematic and thorough

treatment of EMG signals must be carried out. Because of this, a number of computer-based

quantitative EMG analysis algorithms have been developed [213].

In this view, authors of [58] developed an EMG-based classifier for neuromuscular disorders

using a Multi-Layer Perceptron (MLP). The authors compared the performance of five dif-

ferent feature extraction techniques from the EMG signals (autoregressive, root mean square,

mean absolute value, zero crossing, and waveform length) across five different classification

tasks: healthy-unhealthy, healthy-myopathy, healthy-neuropathy, myopathy-neuropathy, and

healthy-myopathy-neuropathy. Their results showed that the autoregressive feature extraction

from the EMG signal returned the best results in four out of five groups, and they achieved

the highest accuracy (86.3%) when classifying healthy-myopathy-neuropathy. In [13], a dataset

of 50 healthy, 50 neurogenic, and 50 myopathic subjects is generated using an EMG simu-
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8.2. Related Work

lation software. The feature set consists of 8 features regarding signal amplitude and phase

alongside statistical metrics, such as mean and variance. The classification utilizes four dif-

ferent algorithms with a 97.78% classification accuracy using support vector machines (SVM).

In [165] the authors use an openly available clinical database consisting of recordings of ten

healthy subjects, seven myopathic, and eight patients with ALS. They use five feature extrac-

tion techniques (waveform length, zero crossings, slope sign changes, Willison amplitude, and

root mean square). The study reports a 100% accuracy rate for normal subjects, 94% for my-

opathies and 96% for patients with ALS using the linear discriminant analysis (LDA) classifier.

In [101] the authors introduce a novel method for automatic classification of subjects with or

without neuromuscular disorders. This method is based on multiscale entropy of recorded sur-

face electromyograms (sEMG) and support vector classification. They achieved a diagnostic

yield of 81.5% for healthy/patient classification and 70.4% for healthy/myopathy/neuropathy

classification. In [53] the authors describe a method for the classification of neuromuscular

disorders. The approach involves isolating single MUPs, computing their scalograms, taking

the maximum values of the scalograms in five selected scales, and averaging across MUPs to

give a single 5-dimensional feature vector per subject. The SVM analysis reduces the vector

to a single decision parameter, called the wavelet index, allowing the subject to be assigned to

one of three groups: myogenic, neurogenic, or normal. In [165] Naik et al. present an ensemble

empirical mode decomposition algorithm that decomposes a single-channel EMG into a set of

noise-canceled intrinsic mode functions, which are then linearly separated by the FastICA algo-

rithm. Five time-domain features extracted from the separated components are then classified

using the LDA, and the classification results are fine-tuned with a majority voting scheme. The

authors achieved a diagnostic yield of 98% on a clinical EMG database to discriminate between

the normal, myopathic, and ALS subjects. More recently, Subasi et al. [214] present a bagging

ensemble classifier for the automated classification of EMG signals. They use statistical values

of the discrete wavelet transform coefficients and use those as features in a bagging ensemble

of SVM, achieving a 99% accuracy for diagnosing neuromuscular disorders.

The work presented above is by no means exhaustive. To the best of our knowledge, though,

there has not been much research in hyperparameter tuning in the selected algorithms in this

context. The use of hyperparameter optimization techniques would, for example, enhance

the model performance further [44]. What is more, it is evident that most of the studies

only consider a limited number of features as input to the classifiers (i.e., Hudgin’s set of

features [95]). An automatic approach to finding relevant time-series representations would

create and give insights to new features, or rather biomarkers [122], and would assist in avoiding

time-consuming feature engineering processes. In addition, most studies have been done on a

specific muscle (e.g., biceps brachii) and not on an arbitrary set of muscles. This could affect

the general applicability of the classification task if, for example, a different muscle is put to

the test.
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Chapter 8. AI and EMG

This chapter addresses such shortcomings by using a fully automated pipeline to limit arbitrary

choices. The pipeline contains units for feature extraction, feature selection, a machine learning

model, and hyperparameter optimization. Furthermore, the data used are collected from routine

clinical practice rather than in an artificial research setting. Finally, we focus on presenting the

machine learning approach in detail.

8.3 Data

The EMG data contain 380 muscle recordings from 65 muscles (at rest or at maximum con-

traction) based on 65 patients with IBM (n = 20), ALS (n = 20) and healthy (control group)

(n = 25). As IBM is relatively rare, we used all available consecutive recordings from 2004-

2019. As multiple muscles were examined per patient, we have the EMG of 122 muscles of

healthy subjects and 258 muscles of ALS/IBM patients. All recordings were age-matched.

These recordings were made within routine clinical care.

The data were collected by the department of clinical neurophysiology of the Leiden University

Medical Center (LUMC), a tertiary referral center for neuromuscular diseases2. The EMGs

were performed with concentric needle electrodes and recorded using Medelec Synergy elec-

tromyography equipment3. In general, the assessment takes place in three phases: with the

muscle at rest, during slight activation, and during (near-) maximal activation. Recording at

maximal muscle activation is commonly avoided when the EMG signal appears to be normal

at near-maximal activation levels, as the EMG becomes increasingly painful when the muscle

is fully activated. The EMG machine routinely stores the last 40 seconds of the examination

as 200 consecutive segments of 0.2s each (we shall refer to the segment as a trace hereafter).

For this study, the longest artifact-free series of consecutive 0.2s segments from every muscle

recording were selected rigorously by clinicians through visual inspection. This means that for

all pairs of patient and muscle, the number of traces varies, and is at most 200.

The diagnosis was based on established clinical criteria; in brief: the criteria for IBM were the

presence of both typical clinical features and muscle biopsy showing atrophy, inflammation,

and rimmed vacuoles. Criteria for ALS were typical clinical features, EMG abnormalities, and

progressive neurological decline. Finally, criteria for healthy subjects were defined as subjects

with atypical complaints of muscle cramps, pain, or fear of a neuromuscular disease without

clinical weakness upon neurological examination and no signs of muscle weakness during a

follow-up period of at least two years.

For all the patients and muscles, the data were recorded with two sampling rates, namely

4800Hz and 5000Hz comprising of 16642 and 14279 traces, respectively.

Formally, let p ∈ {1, 2, .., 65} denote the patient, m ∈ {1, 2, .., 65} the muscle, and t ∈
2https://www.spierziektencentrum.nl/location/lumc/
3Oxford Instruments, Abingdon, Oxfordshire, UK
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8.4. Data Pre-processing

{1, 2, .., T r(p,m)} the trace. Here, Tr(p,m) stands for the number of traces for each patient

and muscle, which depends on the longest artefact-free segment of the muscle recording.

An EMG trace can then be denoted as:

s
(p,m)
t := (st1, s

t
2, . . . , s

t
lt)

ᵀ ∈ Rlt ∀(p,m, t), (8.1)

where lt is variable and depends on the sampling rate (here 4800Hz or 5000Hz) and duration of

the trace (here 0.2s). We can also denote the muscle recording for the tuple (patient, muscle)

(∀(p,m)) as:

S(p,m) := [s
(p,m)
1 , s

(p,m)
2 , . . . , s

(p,m)
Tr(p,m)

]ᵀ ∈ RN , (8.2)

where N = l1 + · · ·+ lTr(p,m)
.

As stated in Section 8.1, our approach is a binary classification task. It aims to differentiate

between a normal EMG assessment from a healthy individual and an abnormal EMG assess-

ment from a patient with a myopathic (IBM) or neuropathic (ALS) disease. In this view, the

classification targets, labeled by experts, are for each patient p : T p = {DISEASE,CTRL},
where DISEASE includes both ALS and IBM and CTRL represents healthy controls. It goes

without saying that a muscle recording of a patient belonging to a particular class receives the

same class label. In Section 8.4 the data pre-processing is described.

8.4 Data Pre-processing

For data pre-processing, we first downsampled all 5000Hz traces to 4800Hz4. This was done

for consistency as well as for computational purposes. In addition, we renamed certain muscle

groups for consistency between recordings (genioglossus→ tongue). These pre-processing steps

can be considered on a trace level and they transform Equations (8.1) and (8.2) from before to

Equations (8.3) and (8.4), respectively, as:

s
(p,m)
t := (st1, s

t
2, . . . , s

t
l)

ᵀ ∈ Rl ∀(p,m, t), (8.3)

where l = 960 at a trace duration of 0.2s and sampling rate of 4800Hz, and ∀(p,m),

S(p,m) := [s
(p,m)
1 , s

(p,m)
2 , . . . , s

(p,m)
Tr(p,m)

]ᵀ ∈ Rl·Tr(p,m) , (8.4)

In the next steps, we move from the trace level to the muscle level. For this, we designed a

unique ID that takes into account the patient identifier, the muscle examined, and the side

4We used the resample function of the signal module of the scipy package https://docs.scipy.org/doc/

scipy/reference/generated/scipy.signal.resample.html
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Chapter 8. AI and EMG

examined ({Left,Right}). With this unique ID we grouped together traces belonging to the

same patient identifier, the muscle examined, and the side examined. We then reconstructed a

5-second time-series by stitching together consecutive 0.2s segments of each unique ID, which

at 4800Hz results in 24000 data points per examined muscle. By creating time-series of equal

length, we aimed to avoid bias caused by differences in the sample length and reduce the amount

of processing time required. We used the last 5 seconds available from each recording under the

assumption that the part of the recording from the muscle at near-maximal contraction is the

most likely to contain valuable information for the classification. Nine (9) recordings had fewer

than 24000 data points, in which case the entire recording was used. Finally, we discarded 98

recordings with 960 data points in total, which correspond to an entire EMG duration of 0.2s

(at 4800Hz).

Taking Equations (8.3) and (8.4) into account, we denote EMG traces for each patient p, muscle

m, and examination side s ∈ {Left,Right} as follows:

s
(p,m,s)
t := (st1, s

t
2, . . . , s

t
l)

ᵀ ∈ Rl. (8.5)

And the concatenation of all traces for each patient, muscle, and side is:

S(p,m,s) := [s
(p,m,s)
1 , . . . , s

(p,m,s)
Tr(p,m,s)

]ᵀ ∈ RN , (8.6)

where N = l · Tr(p,m,s) and l = 960 is the trace length of 0.2s duration and 4800Hz sampling

rate.

8.5 Machine Learning Pipeline

The pipeline used in this chapter was initially developed for applications in the automotive

industry for time-series classification problems with vehicle onboard data [123, 121]. Later it has

been applied to EEG (electroencephalogram) data to predict cognitive function in Parkinson’s

disease patients potentially eligible for DBS (deep brain stimulation) [122]. The (automated)

pipeline has been continuously developed further and consists of the following steps:

1. Feature Extraction from time-series,

2. Feature Selection,

3. Modeling, and

4. Hyperparameter Optimization of the classifier.

The input of this fully automated pipeline are labeled time-series (here: EMG data). The

output are performance measures after optimizing the hyperparameters.
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8.5. Machine Learning Pipeline

8.5.1 Time-Series Feature Extraction

The pipeline aims at being comprehensible, computationally efficient, and applicable to different

time-series problems. To ensure this, our pipeline uses features computed from the time-series.

Such features are computationally efficient to use and relatively easy to interpret.

In this work, we propose to extract an excessive number of features from the time-series and

subsequently select the most significant ones for the problem at hand, based on some pre-defined

feature selection criterion. Since those numerous features cover a broad range of time-series

characteristics, this procedure allows the application of this pipeline to various problems with

very different relevant features.

In this study, the feature extraction F uses the EMG recordings of each patient and muscle of

each side (see Section 8.4) as input and constructs a k-dimensional (k is the number of features)

real-valued feature vector, F : RN → Rk:

∀(p,m, s), S(p,m,s) 
→ F (
S(p,m,s)

)
.

Thus, each tuple (p,m, s) results in a feature vector which can be denoted as F (p,m,s). This

feature vector represents the input for the feature selection procedure.

For this task, we used the tsfresh package (introduced under Feature Extraction in Sec-

tion 4.4.2). For the importance of feature extraction, in general, we refer the reader to Sec-

tion 4.3.3. In this work, tsfresh has been applied with its default settings. In the next step,

from this generated feature space the most significant features are selected.

8.5.2 Feature Selection

The feature selection phase describes the selection of relevant features from the massive number

of extracted features (in this case from tsfresh) for the classification task. For each tuple

(p,m, s) of patient and muscle, we use F (p,m,s)
sel ∈ Rk′ to represent the vector resulting from

feature selection (sel stands for “selected” and k′ is the number of selected features). Numerous

feature selection methods have been proposed, like the forward or backward selection [36]. To

distinguish between relevant and non-relevant features, the so-called feature importance can be

used as a measure. Feature importance describes the mean decrease of accuracy or the mean

decrease of impurity when modeling with random forests. In a forward selection, features are

added iteratively until the feature importance stagnates or deteriorates. Backward elimination

uses all features in the beginning and gradually removes less important features. For the

importance of feature selection, in general, and other feature selection methods, we refer the

reader to Section 4.3.4.

In our pipeline, another feature selection algorithm called boruta [129] is used since it has

shown better performances when compared to other methods [123]. The boruta algorithm
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Chapter 8. AI and EMG

includes a random forest model, which is built on real features and shadow features. Shadow

features are generated by randomly shuffling the values of each real feature vector. As soon as

a real feature exposes a higher feature importance than the maximal feature importance overall

shadow features, it is considered for selection. This procedure is repeated to guarantee that

the selected features have a statistically significant meaning.

8.5.3 Modeling

In the modeling phase, a random forest model is trained with the selected features of the

previous phase. We have implemented a random forest model due to its simplicity and its

efficiency. Furthermore, random forests are known to achieve good performances in different

domains. However, any other classifier can be implemented here. A random forest is an

ensemble learning method. It is the conglomeration of several decision trees, with the resulting

decision being the average outcome of all those decision trees [85] in the case of regression or

by taking the majority vote in case of classification.

In this EMG study, we can summarize the input to the random forest model as {(F (p,m,s)
sel , T (p))},

where p ∈ {1, . . . , 65}, m ∈ {1, . . . , 65}, s ∈ {Left,Right}.
We have 380 intramuscular EMG recordings, of which 258 belong to patients with a neuro-

muscular disorder and the remaining 122 to healthy individuals. Evidently, this dataset is not

balanced. Thus, we also performed a balanced approach in addition to the previous model-

ing approach. In detail, we used a combination of over-sampling the minority class (healthy)

and under-sampling the majority class (disease) by allowing the two classes to “meet” halfway

(rounded down). In other words, if the difference is 20 data points (EMG recordings), we

under-sample the majority class by 10 and over-sample the minority class by another 10. The

under-sampling of the majority class happens randomly, whereas the oversampling of the mi-

nority class takes place using the well-known Synthetic Minority Over-Sampling Technique

(SMOTE) [39]. The two modeling approaches will be called henceforth Approach 1 and Approach

2. Table 8.1 shows an overview of the modeling approaches.

Since the classification task takes place on the EMG recordings of the muscles, it shall be known

henceforth as muscle-level. Approach 1 and Approach 2 are the two variants of the muscle-level

approach.

8.5.4 Hyperparameter Optimization

The optimization of hyperparameters enhances the performance of a machine learning algo-

rithm. Table 8.2 shows the search space of the hyperparameter optimization (HPO) conducted

in this study. Notably, the search space contains not only integer variables but also categorical

ones. As discussed already in Section 5.3.5, there are various methods available for HPO like
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8.5. Machine Learning Pipeline

Table 8.1: Overview of the approaches for automated EMG assessments with Machine Learning.

Approach 1 2

Description
DISEASE vs. CTRL
muscle level

DISEASE vs. CTRL
over- and under-sampling
muscle level

EMG
# cases

380 time-series (EMG) 380 time-series (EMG)

Length ≤ 24000 data points ≤ 24000 data points
Class 0
(CTRL)

122 time-series (EMG) 258 time-series (EMG)

Class 1
(DISEASE)

122 time-series (EMG) 258 time-series (EMG)

grid search, evolutionary algorithms, and Bayesian optimization [78]. In this study, the (single-

objective) Mixed-integer Parallel Efficient Global Optimization (MIP-EGO) [231] is chosen (see

also Section 5.3.5). MIP-EGO is a state-of-the-art Bayesian optimization algorithm, and is chosen

due to its efficiency in optimizing expensive problems. It can efficiently handle mixed-integer

categorical variables (such as the ones we have in this work). MIP-EGO suggests in each iteration

a candidate hyperparameter setting that is evaluated by measuring the model’s performance

on a test dataset.

To optimize the hyperparameters of the random forest, MIP-EGO optimized the F1-macro score

of a 10-fold cross-validation (CV). In a CV, the dataset is randomly split into K folds (here

K = 10), trained on K − 1 folds, and tested on the remaining Kth fold. This process is

repeated until each fold has served as a test set. The average performance scores from all

K folds represents the final score. We executed MIP-EGO for 200 iterations, and we used the

F1-score macro as our optimization criterion to take into account the class imbalance during

training.

Table 8.2: Hyperparameter search space for optimizing the random forest classifier.

Parameter Range

Max depth of each tree {None, 2, 4, 6, . . . , 100}
Number of trees {1, 2, . . . , 100}
Max number of features when splitting a node {auto, sqrt, log2}
Min number of samples required to split a node {2, 3, . . . , 20}
Min number of samples required in the leaf node {1, 2, . . . , 10}
Use bootstrap training samples? {True, False}
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8.6 Patient-level Approach

As we already pointed out, the pipeline we have proposed so far operates on the level of muscles,

meaning it predicts, for each muscle EMG recording (constructed from the same patient and

the same side), the probability of this muscle falling into the disease class. In addition, we

would like to give a prediction on the level of patients to approach the classification in a more

holistic view. This approach takes all prediction probabilities on the muscles from the same

patient and then aggregates them to make an overall predictive decision for this patient. We

will call this approach the patient-level approach.

Four different aggregation methods are proposed for the patient-level prediction, which utilize

prediction probabilities of the recorded muscles of all the patients:

1. Majority method: classify the patient as being in the disease class if more than half

of his examined muscles have a score greater than 0.5. Otherwise, classify him as being

healthy.

2. Median method: classify the patient as being in the disease class if the median of

the scores of his examined muscles is greater than 0.5. Otherwise, classify him as being

healthy.

3. Two-muscles method: classify the patient as being in the disease class if at least two

of his examined muscles have a score larger than 0.5. Otherwise, classify him as being

healthy. The reason for using more than one muscle in this approach is that by using two

muscles we reduce the impact of a potential outlier.

4. Two-muscles average method: classify the patient as being in the disease class if

the average of two of his examined muscles with the highest score is larger than 0.5.

Otherwise, classify him as being healthy.

The difference between methods 3 and 4 above can be made clear with an example. If a patient

has 0.80 and 0.49 as the two highest scores, then the two-muscles method would classify him

as healthy, whereas the two-muscles-average method would classify him as being in the disease

class. Thus, this seems like a necessary and interesting alternative method to examine.

8.7 Performance Evaluation

As previously mentioned, the dataset used in this chapter contains data from 40 patients

with neuromuscular disorders and 25 healthy patients. In detail, we have 380 intramuscular

EMG recordings, of which 258 have a neuromuscular disorder, and the other 122 are healthy.

Evidently, this dataset is not balanced, and thus classification accuracy is not an appropriate

performance measure, as it will overestimate the performance. We report it for Approach 2, as

the dataset is balanced there, and for completeness, we also report it for Approach 1. In this

view, we have also included some other commonly employed performance measures, namely,
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8.7. Performance Evaluation

precision, recall, F1-score, sensitivity, specificity, ROC (Receiver operating characteristic) curve,

and the area under the ROC (AUC). We explain these performance measures briefly as follows:

• accuracy: the number of correct classifications divided by the number of data points.

• positive class: DISEASE (i.e., the disease class).

• negative class: CTRL (i.e., the healthy class).

• true positive: correct classifications to class DISEASE.

• false positive: incorrect classifications to class DISEASE.

• precision: the number of true positive classifications divided by the total number of

positive classifications.

• recall/sensitivity: the number of true positive classifications divided by the total num-

ber of true positives (i.e., true positive rate).

• Specificity: the number of true negative classifications divided by the total number of

true negatives (i.e., true negative rate).

• F1 = 2× precision× recall/(precision + recall).

• The ROC curve describes the trade-off between true positive rate and false positive rate

while the area under the curve (AUC) quantifies such a trade-off.

We calculate the F1-score, the recall, and precision with two schemes, namely, macro and

weighted. The former calculates metrics for each label (DISEASE, CTRL) and finds their

unweighted mean. This does not take label imbalance into account. The latter calculates

metrics for each label (DISEASE, CTRL) and finds their average weighted by the class’s support

(the number of true instances for each label). This alters macro to account for label imbalance.

Furthermore, confusion matrices or visualization methods such as ROC can provide deeper

performance insights. A confusion matrix describes the frequency of cases that are correctly

or incorrectly classified [90] and is considered a useful illustration of the classification quality.

Depending on the data, the ROC additionally helps understanding the performance of the

model [78].

We clarify the two types of results presented in Section 8.8: the ones obtained from the muscle-

level approach and the patient-level approach. The former means that the results underline

the performance of the pipeline on the EMG recordings classification task (introduced in Sec-

tion 8.5.3). Approach 1 and Approach 2 (introduced in Section 8.5.3) are the two variants of

the muscle-level approach. The latter quantifies the performance of the post-processing task,

which aims to classify the patients using the output of the muscle-level pipeline (introduced in

Section 8.6).

8.7.1 Muscle-Level Performance Evaluation

Due to the small number of EMG recordings (380 samples), we decided to validate the entire

muscle-level pipeline using a 10-fold CV. We should note here that the (nested) CV of the
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hyperparameter optimization process (see Section 8.5.4) was executed on the training-fold of

each split of this, overall, 10-fold CV process. This allows the hyperparameter optimization

task to be unbiased, as it does not take into account the test set of the overall 10-fold CV

process. Moreover, the balancing of modeling Approach 2 (see Section 8.5.3) is applied only to

the training set in each fold of the 10-fold CV.

We would also like to emphasize here that during the CV in the pipeline, the folds are gener-

ated in a patient level way (not to be confused with the patient-level approach introduced in

Section 8.6). This means that the EMG recordings belonging to one patient are all included in

the training or testing fold and are never separated between the training data and test data.

This is important in order to prevent data leakage, as two different EMG recordings of one

patient carry similar information about the underlying process that generated them (i.e., same

pathophysiology). Each resulting performance score represents the average of 5 independent

runs of the described pipeline.

8.7.2 Patient-Level Performance Evaluation

The resulting performance scores for the patient-level are based on the post-processing of the

scores returned by the automatic machine learning pipeline (muscle-level). For the patient-

level approach, we follow the procedure explained in detail in Section 8.6. Each resulting

performance score of the patient-level approach represents the average of the post-processing

of the 5 independent runs of the automatic machine learning pipeline.

8.8 Results

In this section, the results of the muscle-level and patient-level classification tasks are presented.

8.8.1 Muscle-level results

The muscle-level approach aims at classifying intramuscular EMG recordings as either being

in the DISEASE class (ALS/IBM) or the CTRL class (healthy). In Table 8.3, we present the

results for Approach 1 and Approach 2 of the muscle-level. For clarity, Approach 1 refers to the

unbalanced muscle-level pipeline and Approach 2 refers to the balanced muscle-level pipeline

(see also Table 8.1 and Section 8.5.3). Furthermore, Figures 8.1 and 8.2 show the confusion

matrices of both modeling approaches 1 and 2 for the training and the test set, respectively.

First of all, the achieved results indicate that machine learning techniques can carry out a

task like this. Comparing between Approaches 1 and 2, Table 8.3 shows that Approach 1

(AUC = 0.817) is generally better suited for this task than Approach 2 (AUC = 0.795),

although the difference between the two is minimal. Here, we take the AUC as the major

139



585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 148PDF page: 148PDF page: 148PDF page: 148
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performance value since it quantifies the best potential performance for both approaches, while

the other scores only compare them with a fixed decision threshold (0.5 in this chapter). From

Figures 8.1 and 8.2 we can see that the sensitivity of Approach 1 is greater than that of

Approach 2, however the specificity of Approach 2 is greater than that of Approach 1. This

can also be backed-up from Table 8.3 where the sensitivity of Approach 1 and 2 is 0.896 and

0.816, respectively, whereas the specificities are 0.546 for Approach 1 and 0.604 for Approach 2.

A reason for this behavior could be partially due to the fact that for Approach 2, we reduce in

every fold the training data of our positive class and increase the training data of our negative

class in order to balance the data points between the two labels.

Finally, in Table 8.4 we can see the common features5 selected in every fold of the 10-fold

CV and in every single of the 5 independent runs. We show their aggregated impurity-based

importance values (averaged over a 10-fold CV and then averaged over all 5 repeated runs of the

10-fold CV) and the standard deviation of the means over the 5 runs. The standard deviation

shows that the average importance of these features has been consistent throughout the runs,

and that their ranking is quite reliable. These features should be further investigated for their

predictive power, clinical relevance, and interpretability.

Table 8.3: Performance scores for the muscle-level Approach 1 and Approach 2. The scores
are calculated on the test set and averaged over a 10-fold cross validation. The mean and
standard deviation are calculated from 5 repeated runs of the 10-fold CV.

Score Approach 1 Approach 2

Accuracy 0.778±0.021 0.747±0.009
F1 (macro) 0.708±0.027 0.692±0.012
F1 (weighted) 0.759±0.021 0.740±0.008
Precision (macro) 0.767±0.032 0.723±0.013
Recall (macro) 0.721±0.025 0.710±0.011
Precision (weighted) 0.792±0.029 0.773±0.005
Recall (weighted) 0.778±0.021 0.747±0.009
Sensitivity 0.896±0.015 0.816±0.006
Specificity 0.546±0.037 0.604±0.025
AUC 0.817±0.023 0.795±0.031

8.8.2 Patient-level results

The patient-level approach aims at classifying patients as either being in the DISEASE class

(ALS/IBM) or the CTRL class (healthy), based on the post-processing of the prediction scores

5Please see https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
6Counting starts from 0.
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Predicted
CTRL DIS

A
ct
u
al CTRL 85.15 24.65

DIS 2.19 230.01

Predicted
CTRL DIS

A
ct
u
al CTRL 6.52 5.69

DIS 2.79 23.01

Figure 8.1: Confusion matrix of modeling Approach 1 for the training data (left) and test
data (right). CTRL is the CTRL class, referring to healthy recordings and DIS is the DISEASE
class, referring to the disease recordings. The scores are calculated and averaged over all folds
of the 10-fold cross validation. The values are averaged over 5 repetitions of the 10-fold CV.

Predicted
CTRL DIS

A
ct
u
al CTRL 169.41 1.84

DIS 0.2 171.062

Predicted
CTRL DIS

A
ct
u
al CTRL 7.38 4.82

DIS 5.1 20.75

Figure 8.2: Confusion matrix of modeling Approach 2 for the training data (left) and test
data (right). CTRL is the CTRL class, referring to healthy recordings and DIS is the DISEASE
class, referring to the disease recordings. The scores are calculated and averaged over all folds
of the 10-fold cross validation. The values are averaged over 5 repetitions of the 10-fold CV.

of their intramuscular EMG recordings, from Approach 1 and Approach 2 of the muscle-level. In

Table 8.6 we show the performance scores of all the methods of the patient-level post-processing

on Approach 1 and Approach 2.

The results indicate again that machine learning techniques can carry out a task like this.

Comparing the methods and approaches within Table 8.6, we see that the patient-level post-

processing of Approach 1 has a higher diagnostic yield than the patient-level post-processing of

Approach 2. This is also backed up when comparing the AUC between the two approaches. In

more details, we see that the AUC of the median and two-muscles average of the patient-level

post-processing of Approach 1 is 0.815 and 0.798, respectively, compared to 0.786 and 0.777 of

patient-level post-processing of Approach 2. A closer look at Table 8.6 suggests that generally,

for the patient-level post-processing of Approach 1, the majority method allows for the best

results in terms of the F1 score (for both “macro” and “weighted” averages), with the two-

muscles coming in the second rank, then the median method for the “macro” average and the

two-muscles average for the “weighted” average. The two-muscles average method comes last

in the “macro” average, and the median method for the “weighted” average. For the patient-

level post-processing of Approach 2, the two-muscles come first, then the two-muscles average,

then the majority method, and last the median method. Note that the AUC score is not

used to compare all methods since it is not defined for the majority and two-muscles methods.

Figure 8.4 show the ROCs curves from all 5 repetitions of the median and two-muscles average

methods of the patient-level post-processing of Approach 1. Figure 8.3 shows the confusion

matrices of all the methods of the patient-level post-processing of Approach 1. From Figure 8.3
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8.8. Results

Table 8.4: Impurity-based importance scores for Approach 1 of the muscle-level. These are
the common features selected by Boruta in every fold of the 10-fold CV and in every repetition
of the 10-fold CV. The importance scores are calculated and averaged over all folds of the 10-
fold CV. The mean and standard deviation are calculated from 5 repeated runs of the 10-fold
CV.

Feature Importance Score

Percentage of values that are present
in the time-series more than once.
(percentage of reoccurring values to all values)

4.6± 0.12

Absolute value of the 35th fourier
coefficient6 of the 1D discrete FFT
of a real input.
(fft coefficient coeff 34 attr ”abs”)

4.43± 0.1

Absolute value of the 32nd fourier
coefficient of the 1D discrete FFT
of a real input.
(fft coefficient coeff 31 attr ”abs”)

3.53± 0.13

Factor which is 1 if all values in
the time-series occur only once,
and below one if this is not the case.
(ratio value number to time series length’)

3.48± 0.06

Absolute value of the 41st fourier
coefficient of the 1D discrete FFT
of a real input.
(fft coefficient coeff 40 attr ”abs”)

3.46± 0.12

Percentage of non-unique data points.
(percentage of reoccurring datapoints to all datapoints)

2.91± 0.05

and Table 8.6 we see that the method with the highest sensitivity in the patient-level post-

processing of Approach 1 is the two-muscles average method. The reason for this might lie in

the fact that ALS and IBM are “patchy” diseases, meaning that only a proportion of muscles

may be affected at the time of the EMG recording. Therefore, the two-muscles average method

is more sensitive, as we also explain in Section 8.6.

Finally, in order to see whether using hyperparameter optimization (HPO) on the model’s hy-

perparameters can indeed improve the performance of the developed methodology, in Table 8.5

we calculated the average percentage of improvement for each patient-level method when us-

ing HPO versus not using HPO in both approaches 1 and 2. We averaged the percentages of

improvement overall the performance metrics of each method. The last row shows the overall

average improvement of these methods. From Table 8.5 we can see an average improvement

of 2.94% on the patient-level post-processing of Approach 1 when using HPO on Approach 1,

compared to using the default values of the random forest algorithm7 (no HPO) and 0.75%

7See here for the default values https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
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Chapter 8. AI and EMG

Table 8.5: Percentage of Improvement of the patient-level post-processing of Approach 1 and
Approach 2, using hyperparameter optimization vs no hyperparameter optimization. Each row
shows the average improvement for that patient-level’s method performance metrics. The last
row shows the average improvement overall these methods.

Patient-level method Approach 1 Approach 2

Majority 4.73% 0.14%

Median 1.87% −1.13%
Two Muscles 2.55% 2.59%

Two Muscles Average 2.61% 1.41%

Average Improvement 2.94% 0.75%

for the patient-level post-processing of Approach 2 when using HPO on Approach 2. From

Table 8.5 we see that HPO can have a positive or negative impact based on the experimental

setup (e.g., median method for patient-level post-processing of Approach 1 vs median method

for patient-level post-processing of Approach 2). However, we can see that the usage of HPO

can, in general, lead to improved performance, even though the improvement can be marginal

in some cases (e.g., in patient-level post-processing of Approach 2).

(a) Predicted
CTRL DIS

A
ct
u
al CTRL 12.6 12.4

DIS 3.4 36.6

(b) Predicted
CTRL DIS

A
ct
u
al CTRL 14.4 10.6

DIS 3.6 36.4

(c) Predicted
CTRL DIS

A
ct
u
al CTRL 12.6 12.4

DIS 2.6 37.4

(d) Predicted
CTRL DIS

A
ct
u
al CTRL 11.2 13.8

DIS 1.4 38.6

Figure 8.3: Confusion matrices of all the methods of the patient-level post-processing of
modeling Approach 1. CTRL is the CTRL class, referring to the healthy controls and DIS is
the DISEASE class, referring to the disease patients. (a) Median method, (b) Majority method,
(c) Two-muscles method, (d) Two-muscles-average method. The entries are averaged over all
5 repetitions.

8.9 Discussions and Conclusions

This chapter presents an automated method for classifying electromyography (EMG) data on

a muscle-level and a patient-level method for classifying patients. Both tasks aim at classifying

between healthy and not healthy. Our dataset contains 65 patients and 65 muscles. As multiple
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8.9. Discussions and Conclusions

muscles were examined per patient, we have the EMG of 122 muscles of healthy subjects and

258 muscles of ALS/IBM patients. The data were collected from routine clinical practice rather

than in an artificial research setting.

Our method extracts and selects the most significant features from the time-series, trains a

random forest model, and optimizes its hyperparameters in an automated approach for the

muscle-level classification task. We develop two approaches for this classification task: one

where the data labels are kept imbalanced (Approach 1) and one where we balance the labels

(Approach 2). The results indicate that machine learning techniques can carry out the task of

distinguishing between normal and abnormal EMGs. Comparing Approach 1 and Approach 2

shows that Approach 1 (AUC = 0.817) is generally better suited for this task than Approach 2

(AUC = 0.795), although the difference between the two is minimal. Taking into consideration

Figure 8.1 for Approach 1, we see that the test error is slightly higher than the training error.

The reason for this can be attributed to the small sample size used in this study. For Approach 2

(see Figure 8.2), we argue that the testing result can not be compared directly to that on the

train set since the class-balancing procedure is only applied on the training set. We also see that

in both approaches, sensitivity outweighs specificity. As a screening algorithm, high sensitivity

is preferable to limit the number of false-negatives. From a clinical point of view, sensitivity is

the more important metric in this algorithm. We should also emphasize that the automatically

computed features allow for a high diagnostic yield. Since EMG classification is routinely

performed qualitatively, this method allows for identifying new EMG biomarkers.

For the patient-level classification task, the achieved results indicate again that we can automate

this process using machine learning techniques. We see that the patient-level post-processing of

Approach 1 has a higher diagnostic yield than the patient-level post-processing of Approach 2.

This is also backed up when comparing the AUC between the two approaches. In more detail,

we see that the AUC of the median and two-muscles average of the patient-level post-processing

of Approach 1 is 0.815 and 0.798, respectively, compared to 0.786 and 0.777 of the patient-level

post-processing of Approach 2. The results further show that the majority method yields the

best results in terms of the F1 score (for both “macro” and “weighted” averages), with the

two-muscles coming in the second rank, then the median method for the “macro” average and

the two-muscles average for the “weighted” average. The two-muscles average method comes

last in the “macro” average and the median method for the “weighted” average. Similarly,

for the patient-level post-processing of Approach 2, the two-muscles come first, then the two-

muscles average, then the majority method, and last the median method. Finally, we saw an

average improvement of 2.94% on the patient-level post-processing of Approach 1 when using

hyperparameter optimization (HPO) on Approach 1, compared to using the default values of the

random forest algorithm (no HPO) and 0.75% for the patient-level post-processing of Approach

2 when using HPO on Approach 2. These results validate the application of HPO to both

approaches. The results further indicate that HPO can have a positive or negative impact based
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Chapter 8. AI and EMG

on the experimental setup (e.g., median method for patient-level post-processing of Approach

1 vs median method for patient-level post-processing of Approach 2). This, however, is still to

be investigated further.

To conclude, we see that the algorithms presented can assist clinicians in diagnosing if a patient

has a neuropathy/myopathy or is healthy. In fact, the EMG in ALS patients is likely to show

neurogenic changes (e.g., increased MUP amplitudes compared to healthy subjects), whereas

the EMG of IBM patients is more likely to show myopathic changes (e.g., decreased MUP

amplitudes). The fact that our proposed method reaches a relatively high performance despite

the heterogeneity of the “diseased” group shows its potential. Indeed, performance may be

higher when a similar approach is used to distinguish healthy controls from ALS- or IBM-

patients as separate groups. In addition, both ALS and IBM can be “patchy” diseases, meaning

that only a proportion of muscles may be affected at the time of the EMG recording. As the

EMG signal of non-affected other muscles is expected to be similar to that of healthy controls,

at least when using the current qualitative assessment, it is remarkable that the performance

of the muscle-level approach was relatively high. This suggests that the EMG signal of these,

apparently normal, muscles may contain information that is used by the ML-based approach

but not during routine clinical assessment.

A major limitation of this study lies in the relatively small dataset. This is unavoidable given

the rarity of IBM in particular, which has a current population of less than 100 patients in the

Netherlands [17]. We specifically investigated IBM and ALS patients because of the well-known

clinical difficulties in interpreting the EMG of these diseases. Whether our approach works

equally well for other myopathies/neuropathies remains to be established. However, as these

are usually easier to classify using current clinical assessment, we would expect the performance

of our ML approach to be higher, rather than lower, as well. An additional limitation of the

current approach is the random selection of each muscle’s final 5-second EMG segment. This

selection was based on the absence of artifacts without using any information on the level of

muscle activation. However, we aimed to use the last 5 seconds available, assuming that this

segment was more likely to contain information of the muscle at (near-) maximal contraction.

Longer recordings, in which the clinical level of muscle activation is clearly marked, may lead

to further improvements in performance, as muscle activity at rest is different in both IBM and

ALS patients compared to healthy subjects.

Future research should emphasize a more detailed analysis of the nature of the selected features

that could point towards useful biomarkers for disease progression. Furthermore, future work

should investigate a patient-level pipeline to classify patients into a class directly.
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Table 8.6: Performance scores of all the methods of the patient-level post-processing on mod-
eling approaches 1 and 2, tested in this chapter. The scores are calculated on the test set and
averaged in a 10-fold cross validation. The mean and standard deviation are calculated from
5 repeated runs of the 10-fold CV. Note that for the majority and two-muscle methods the
AUC scores are not applicable. The reason behind that is that we decided to use a fixed score
threshold.

Approach Method Accuracy F1 F1 Precision Recall

macro weighted macro macro

Approach 1

Majority 0.782±0.028 0.753±0.032 0.772±0.029 0.789±0.035 0.743±0.03

Median 0.757±0.033 0.718±0.04 0.742±0.036 0.768±0.041 0.710±0.037

Two-Muscles 0.769±0.022 0.73±0.024 0.753±0.022 0.794±0.038 0.72±0.022

Two-Muscles Average 0.766±0.02 0.716±0.021 0.743±0.019 0.815±0.044 0.707±0.018

Approach 2

Majority 0.72±0.02 0.701±0.024 0.718±0.021 0.705±0.021 0.701±0.025

Median 0.717±0.018 0.696±0.023 0.714±0.02 0.7±0.019 0.694±0.025

Two-Muscles 0.738±0.022 0.707±0.021 0.729±0.021 0.732±0.03 0.701±0.019

Two-Muscles Average 0.742±0.013 0.704±0.018 0.728±0.015 0.742±0.015 0.697±0.016

Approach Method Precision Recall Sensitivity Specificity AUC

weighted weighted

Approach 1

Majority 0.786±0.031 0.782±0.028 0.91±0.034 0.576±0.054 —

Median 0.763±0.037 0.757±0.033 0.915±0.03 0.504±0.061 0.815±0.008

Two-Muscles 0.784±0.031 0.769±0.022 0.935±0.038 0.504±0.046 —

Two-Muscles Average 0.797±0.036 0.766±0.02 0.965±0.029 0.448±0.018 0.798±0.01

Approach 2

Majority 0.719±0.021 0.72±0.02 0.785±0.034 0.616±0.061 —

Median 0.714±0.021 0.717±0.018 0.795±0.011 0.592±0.059 0.786±0.021

Two-Muscles 0.736±0.025 0.738±0.022 0.865±0.034 0.536±0.022 —

Two-Muscles Average 0.742±0.013 0.742±0.013 0.890±0.014 0.504±0.036 0.777±0.02
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Chapter 8. AI and EMG

(a)

(b)

Figure 8.4: (a): ROC curves of all 5 repetitions of the median method on the patient-level
post-processing of modeling Approach 1. (b): ROC curves of all 5 repetitions of the two-
muscles average method on the patient-level post-processing of modeling Approach 1.
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Chapter 9

Conclusions and Outlook

In this chapter, we conclude the work done in this thesis, by presenting the research questions

and their answers and discussing future research opportunities.

9.1 Conclusions

“Prediction is very difficult, especially if it’s about the future!” We started this dissertation

with these words from Nobel laureate in physics Niels Bohr, and we are ending it with the same

quote. However, we state that, with this thesis, prediction is now a little bit easier.

This thesis discussed the importance of predictive maintenance (PdM) and the significance of

prognostics and health management (PHM) in industry and society. We, specifically, investi-

gated AI-based techniques for data-driven PdM and the remaining useful life (RUL) estimation -

a key concept in this thesis - presented time-series applications, and discussed future directions.

Next, we will refer back to our research questions and present their answers.

RQ1: What are the advancements, drawbacks, and opportunities in PHM and

specifically of data-driven PdM in the aerospace industry? This research question

was covered in Chapter 3. There has been significant work done in developing data-driven

techniques for prognostics in the past decade. Our research showed that methods other than tra-

ditional time-series analysis are gaining popularity in the data-driven prognostics in aerospace,

such as neural networks (NNs). Data-driven methods are emerging as they propel data-driven

solutions by not requiring (a lot of) engineering knowledge making them, thus, available to

a broader audience due to their domain-agnostic nature. Despite, however, the recent overall

data-driven success in prognostics, in general, but also in aerospace there are still challenges

and practical issues that need to be addressed, such as securely obtaining more data, real-time

prognostics and prognostics on the edge (edge computing), explainability and interpretability

of the methods and uncertainty management of the prognostics developed.
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9.1. Conclusions

RQ2: Can automated machine learning (AutoML) methods be applied for the

estimation of the RUL in data-driven PdM? This research question was covered in

Chapter 4. The gathered results show that AutoML using classic machine learning algorithms

can be effectively applied for the estimation of the RUL after the data has been appropriately

pre-processed. We addressed this research question by estimating the RUL of the test instances

from the widely used C-MAPSS dataset [198] using a specific AutoML method (TPOT [169])

and comparing the performance to that of state-of-the-art methods. Since the learning algo-

rithms in the AutoML search space are classic machine learning methods, the time-series data

of C-MAPSS need to be pre-processed and transformed into a regression problem. The data is

pre-processed by extracting statistical features from expanding windows of the time-series to

uncover the degradation that has been accumulating from the system’s early life or after an

overhaul. The experimental results indicate that such an approach can outperform or achieve

comparable results compared to classic machine learning techniques for the estimation of the

RUL. However, when compared to deep learning (DL) approaches, the performance is compa-

rable or lower, suggesting that classic ML might not be able to uncover the highly non-linear

relationship between the RUL and the observed data.

RQ3: Can we propose an automated framework for configuring RUL prediction

models which are highly accurate and have less estimation uncertainty? This re-

search question was covered in Chapter 5. The work of this chapter shows that this is indeed

possible. In detail, we addressed this research question by developing an end-to-end pipeline for

the RUL estimation using a recurrent neural network and task-specific pre-processing that are

both optimized through a bi-objective hyperparameter optimization (HPO) method that jointly

minimizes the pointwise RMSE and the uncertainty. This pipeline is an automated framework

as it takes as input the raw data and returns RUL estimation models with low prediction error

and prediction uncertainty. The method was validated on two subsets from the widely used

C-MAPSS dataset [198] and was compared against a single-objective HPO variant.

RQ4: Can explainable AI facilitate the understanding of the data generating pro-

cess of industrial processes? This research question was covered in Chapter 6. The re-

search shows that explainable AI can add to the understanding of the data generating process

and lend itself to PdM. We addressed this research question with the use of symbolic regression

(SR) by means of genetic programming (GP) on real aircraft operational data with the aim of

uncovering meaningful relationships between the exhaust gas temperature (EGT) - a standard

industrial indicator of the health of an aircraft engine - and the rest of the monitored engine

parameters, in the form of mathematical formulas. The experimental results show, apart from

good model accuracy, explainability, and consistency from a physics/engineering perspective,

which field experts validated. This indicated that the proposed method could uncover mean-
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ingful relationships in the data that the end-user can interpret. The resulting formulas, in turn,

can assist in PdM by, e.g., asset monitoring through comparing the predicted values from the

formulas to that of the observed measurements, as well as being used to create simulated data

that can be used towards the development of (data-driven) PdM solutions.

RQ5: Can tabu search (TS) support the solution of the multi-objective flexible job-

shop scheduling problem (FJSSP)? This research question was covered in Chapter 7.

The research we performed shows that TS can assist in the solution of the multi-objective

FJSSP. In detail, we addressed this research question by developing a memetic algorithm that

uses TS as the local search method and a mutation operator to solve the multi-objective FJSSP.

The three objectives to be minimized are the makespan, the total workload, and the maximum

workload. The method is compared against the state-of-the-art algorithms by Yuan et al. [251]

on the widely used Brandimarte datasets [32]. The experimental results show that the proposed

method can dominate solutions from the baselines, identify new Pareto front solutions, and

approximate the extended reference set created from the baseline and our solutions.

RQ6: Can time-series techniques from industry lend themselves to applications

in the medical domain? This research question was covered in Chapter 8. The gath-

ered results show that this is indeed possible. We addressed this research question using a

case study from the field of Neurology, with the task being to distinguish between normal and

abnormal electromyography (EMG) recordings from patients with neuromuscular disease. We

attended to this by developing further a time-series classification pipeline, originally designed

for the automotive industry, that extracts and learns statistical features from the EMG record-

ings to classify muscles and patients as either healthy or not. The experimental results show

relatively high performance, indicating that the approach might uncover information from the

EMG recordings that is not used in routine clinical assessment, which, in turn, could lead to

the identification of new EMG biomarkers. Furthermore, the method can assist clinicians in

diagnosing if a patient has a neuromuscular disease.

9.2 Outlook

Although considerable progress has been made in the context of this thesis, there is still work to

be done in the field of data-driven prognostics. In the following, we briefly discuss recommended

future work based on the work of this thesis and we will close this chapter with some general

outlook and recommendations for data-driven prognostics.

Neural Architecture Search (NAS) and RUL In Chapter 4 we used AutoML with

classic machine learning algorithms to estimate the RUL. There, the experimental results in-
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dicate that such an approach might not be able to uncover the highly non-linear relationship

between the RUL and the observed data, as well as deep learning methods. Therefore, it would

be beneficial for future work to include neural network architectures as well, by means of NAS,

a challenging topic of AutoML [97]. NAS might be able to uncover architectures that can

improve the state-of-the-art deep learning methods in prognostics while reducing the manual

labor of tuning them.

Effective Time-Series Representations In Chapter 4 and in Chapter 8 we used meth-

ods that extract and learn from statistical features for a regression and a classification task,

respectively. Even though this is a successful approach, it would be favorable to research effec-

tive time-series representations that are able to retain the necessary degradation information

(e.g., for RUL estimation) and/or can capture the subtle patterns that allow for differential

diagnosis of disease (e.g., in fields such as Neurology). Furthermore, these representations can

reveal potential biomarkers for medical applications, as we saw in the work done in Chapter 8.

In this view, we highly recommend further research on the discriminatory features discussed in

the work of Chapter 8, as they could be of clinical significance in electrodiagnostic medicine.

RUL-target Label Creation In Chapter 4 and in Chapter 5 we used methods from lit-

erature to create the RUL-target labels in order to tackle the RUL estimation problem as a

supervised regression problem. These methods include a linear and a piece-wise linear model

to map to each time-step of the training data a real number that represents the RUL at that

specific time-step. The decision regarding which of the two methods to use stems from the

nature of the degradation. This means that for systems that can sustain high material stress,

we will use the piece-wise linear method, whereas, for systems where degradation is more or less

evident immediately, we will use the linear method. We encourage further research towards al-

ternative RUL-target label creation models (e.g., quadratic curves) as this will broaden the tools

researchers and end-users have to effectively pre-process the data by accurately representing

different degradation profiles.

Multi-objective Hyperparameter Optimization (HPO) In Chapter 5 we designed an

end-to-end pipeline for RUL estimation using a bi-objective HPO that jointly minimizes the

prediction error and uncertainty. The reasoning behind this is that there can be conflicts

between these two objectives in specific tasks. Future work should invest in multi-objective (or

many-objective in the case of more than 2 objectives) HPO, as it is not the case that a single

objective method can always capture the conflicting interests that exist in real-world problems.

Uncertainty Quantification (UQ) in Data-driven Prognostics A critical research topic

that has received some attention in the DL community in recent years is that of uncertainty
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quantification (UQ). Uncertainties arise from various sources, such as modeling and input data

uncertainties. Quantifying uncertainty is crucial for any prognostic estimate, as discussed in

Chapter 5, otherwise, it is of limited use and cannot be incorporated into safety-critical or

operations-critical applications. By accounting for the uncertainties, the researcher or end-

user can determine if, for example, the training data is not representative of the task or are

too noisy (i.e., measurement uncertainties, operating environment uncertainties, future load

uncertainties, input data uncertainties) or if the selected model is poorly selected (i.e., under-

parameterized NN). Especially when it comes to NNs, UQ is a rising topic of interest, given

that NNs are being industrially employed. Although, in recent years, there has been work done

on UQ in DL and some on UQ in data-driven PdM, the field is still young, with no consensus

on how to measure and use uncertainty in data-driven PdM. Furthermore, while the majority

of model-based prognostic methods quantify the associated uncertainty through, for example,

modeling the process and observation noise (e.g., Kalman filters), only a few studies in the

data-driven domain address this matter, despite its importance [26]. Therefore, we recommend

this as an essential and exciting direction for further research in data-driven PdM.

Next, we will briefly outline future research that will generally be useful for PHM and data-

driven PdM.

General Recommendations for Future Research in Data-driven PdM As discussed

in Chapter 3, the field of PHM requires methods, systems, and protocols to obtain more data

securely. This means that future work should emphasize not only algorithmic performance but

also data quality and the drawing up of certain conventions per industrial field that govern data

quality. In this view, as suggested already in Chapter 3, there are opportunities in directions

such as federated learning (FL) [6] which allows for data augmentation, as data is gathered

from various parties securely, as well as data protection by training on the data of each data

holder involved before aggregating and updating the parameters of the global model.

Additionally, there are opportunities for research in real-time prognostics for field applications.

One promising direction to this, as suggested already in Chapter 3, is edge computing which

allows for low latency since the data are processed closer to their source, thus, allowing accel-

erated insights compared to traditional offline methods. A natural extension to the previous is

how we can perform data-intensive calculations on edge, where the hardware conditions are not

as robust and computationally powerful as in the cloud or other data centers. For example, this

would be extremely beneficial for vessels that operate in open seas for weeks at a time, without

the ease of transmitting their massive operational data and that need real-time prognostics.

Furthermore, as we saw and discussed in the context Chapter 3 and Chapter 6, PdM methods

have evolved to include neural networks (NNs) and similar deep learning (DL) tools in their

arsenal. As we know, however, these tools are considered “black box”. This means that these

models do not explain their predictions/outputs in a way that humans understand. As a result,
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9.2. Outlook

this lack of transparency and accountability can have severe consequences [191], especially in

operations-critical or safety-critical systems, like in aerospace. Therefore, future work must

emphasize interpretability of the results and explainability of the model workings to assist

decision-makers in asserting the feasibility of the model logic, as well as in the troubleshooting

of the developed methods, thus putting confidence in the overall prognostics process.

Finally, even though data-driven methods do not require a lot of domain knowledge, if that

knowledge exists, it is beneficial to incorporate it into the learning process. The knowledge can

be incorporated, for example, in the form of a specific loss function or a specific architecture.

Knowledge-infused learning, as the process is called, is a promising future direction for research

in data-driven PdM as it constrains the available options in the context of the specific problem

and adds domain information that can better assist the learning process.
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Appendix A

Appendix

A.1 Introduction

This Appendix serves as supplemental material to Chapter 61. It holds in detail all the results

from the experiments performed together with plots and explanations. We should note that the

engineering validity of the symbolic expression model 6.9 in Chapter 6 was confirmed, while the

work presented in this Appendix was meant to be presented as an example of the process and

the possible factors associated with the prediction of the EGT. Future work can address the

validity of some of these additional expressions, especially if interesting correlations between

some engine parameters and EGT are identified.

The rest of this Appendix is organized as follows. In Sections A.2, A.3, A.4 we describe in

detail the performed experiments described in Chapter 6, we present the experimental results,

the generated formulas, and we show figures comparing the predicted to the ground truth EGT

values of the test set.

A.2 Experiment 1 Results

For this experiment, a correlation analysis is performed upon the input variables, so that

those which are highly correlated are discarded. The threshold used is 0.90. Those above

this threshold have been dropped, only keeping the first representative from a set of highly

correlated variables. After these variables are deleted, 114 remain to be used as final input

variables in addition to the EGT. The training, validation, and test2 error metrics results are

1Contents of this Appendix are based on the Appendix of [113]; Marios Kefalas, Juan de Santiago Rojo,
Asteris Apostolidis, Dirk van den Herik, Bas van Stein, and Thomas Bäck. Explainable Artificial Intelligence for
Exhaust Gas Temperature of Turbofan Engines. Journal of Aerospace Information Systems, pages 1–8, 2022.
Publisher: American Institute of Aeronautics and Astronautics eprint: https://doi.org/10.2514/1.I011058;
reprinted with permission of the American Institute of Aeronautics and Astronautics, Inc.

2Please note that the terminology here is different from the original publication [113]. In this Appendix and
its corresponding main chapter, we note as validation set (test set) what we noted as test set (validation set)
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A.2. Experiment 1 Results

displayed in Tables A.1, A.2, and A.3, respectively, for all ten models resulting from the ten

independent runs. The Equations A.1 - A.10, below, show the generated symbolic regression

models for all ten models resulting from the ten independent runs. In Figures A.1 - A.5 we

show the per model predictions (ten models resulting from the ten independent runs) against

the actual values of the EGT on the test set.

Table A.1: Experiment 1 training error metrics.

Rˆ2 RMSE MAE MSE

0.998102 1.239205 0.763866 1.535629
0.997968 1.281986 0.786991 1.643489
0.997507 1.420041 0.828125 2.016517
0.997964 1.283411 0.786591 1.647145
0.998020 1.265571 0.765595 1.601671
0.998023 1.264679 0.738129 1.599412
0.997745 1.350609 0.754343 1.824146
0.998036 1.260616 0.746105 1.589153
0.998123 1.232339 0.740111 1.518661
0.997676 1.371248 0.791502 1.880321

Table A.2: Experiment 1 validation error metrics.

Rˆ2 RMSE MAE MSE

0.99822 1.20770 0.75207 1.45853
0.99803 1.27203 0.77908 1.61805
0.99767 1.38459 0.82148 1.91708
0.99808 1.25604 0.77368 1.57764
0.99810 1.24747 0.75516 1.55618
0.99813 1.24030 0.72427 1.53834
0.99788 1.32030 0.74576 1.74320
0.99817 1.22514 0.73863 1.50097
0.99814 1.23560 0.73759 1.52672
0.99783 1.33519 0.78411 1.78273

in the original publication. This has been done for consistency of the terminology between the chapters of this
dissertation.
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Appendix A. Appendix

Table A.3: Experiment 1 test error metrics.

Rˆ2 RMSE MAE MSE

0.981343 3.240743 1.357668 10.502417
0.947178 5.452943 2.940967 29.734585
0.808921 10.371179 3.410746 107.561345
0.984409 2.962510 1.224247 8.776463
0.754388 11.758352 3.642960 138.258840
0.805126 10.473665 3.333293 109.697659
0.812055 10.285767 3.238445 105.797008
0.809934 10.343668 3.325208 106.991471
0.855140 9.030162 4.563011 81.543823
0.805914 10.452461 3.109154 109.253937

Y 1
1 = 0.141 · x4 + 0.123 · x5 + 0.8 · x6 + 0.0214 · x12 − 0.123 · x18

+ 0.751 · x21 + 0.0261 · x60 + 0.0405 · x74 − 0.0371 · | log(x39)|
+ 1.32 · 10−4 · e(2·x21) − 0.0428 · |x4| − 0.0261 · e(x21) + 0.00762 · x2

74 + 0.133

(A.1)

Y 2
1 = 0.13 · x4 + 0.668 · x6 + 0.0264 · x12 − 0.0796 · x14 + 0.759 · x21

+ 0.0484 · x43 − 0.00864 · x57 + 0.0219 · x110 − 0.0219 · x113 − 0.0264 · |x4|
+ 0.0219 · |x6| − 0.00702 · |x43 − 2.0 · x46 + 0.2 · x21

3| − 0.00579 · x21
3

− 6.3 · 10−4 · |x14 − 1.0 · x21| · |x21|3 · |x43|+ 0.0119

(A.2)

Y 3
1 = 0.169 · x4 − 0.0168 · x1 + 0.125 · x5 + 0.712 · x6 − 0.0336 · x18 + 0.704 · x21

+ 0.0376 · x43 + 0.0156 · x110 − 0.00778 · e−x12 − 0.0808 · |x4| − 0.0513 · |x8|
− 0.0156 · |x21|+ 0.0432 · |x4|1/2 − 0.00102 · |x21 + |(x21)||3

+ 0.0368(|x74|3)1/2 + 0.0736

(A.3)

Y 4
1 = 0.0758 · x4 + 0.885 · x6 − 0.2 · x13 − 0.156 · x14 + 0.43 · x21 − 0.0244 · x23

− 0.495 · e(−e(e
(x43))) + 0.2 · e(−e(−x4)) + 0.156 · e(−e(−x14)) + 0.00361 · e(x110)

− 0.787 · e(−e(x21)) + 0.00719 · x14
2 + 0.214

(A.4)

Y 5
1 = 0.0887 · x4 + 0.111 · x5 + 0.69 · x6 + 0.0296 · x11 + 0.523 · x21

− 0.0442 · x39 − 0.121 · e(−x39) − 0.499 · e(−e(x21)) + 0.0559 · x4(e
(x5))

1/2

− 0.00493 · x74 · x113 + 0.353

(A.5)

Y 6
1 = 0.204 · x4 + 0.592 · x6 + 0.0242 · x11 + 0.485 · x21 + 0.0698 · x43

+ 0.122 · x59 − 0.642 · e(−e(x21)) − (0.00133 · |x43|)/|x94|2 − 0.0205 · x4
2

+ 0.00106 · x4
3 + 0.365

(A.6)
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A.2. Experiment 1 Results

Y 7
1 = 0.111 · x4 + 0.601 · x6 + 0.0264 · x11 + 0.448 · x21 − 0.0361 · x25

+ 0.0459 · x43 + 0.111 · x59 − 0.0346 · x113 − 0.0553 · e(−x4)

+ 0.02 · e(x113) − 0.774 · e(−e(x21)) + 0.326

(A.7)

Y 8
1 = 0.133 · x4 + 0.649 · x6 + 0.00805 · x12 − 0.101 · x14 + 0.749 · x21

− 0.0178 · x23 + 0.0268 · x24 + 0.0463 · x43 + 0.00805 · x52 + 0.0155 · x74

+ 0.0268 · x110 − 0.0115 · x111 − 0.0178 · x113 − 0.0178 · |x4|
− 0.0178 · |x74|+ 0.00455 · x4 · x6 − 0.0176 · x21 · x74 + 0.0176 · x23 · x74

− 0.0176 · x52 · x74 + 0.0176 · x74|x21| − 0.00228 · x4
2

− 0.00228 · x6
2 − 0.0311 · x21

2 + 0.0271

(A.8)

Y 9
1 = 0.136 · x4 + 0.592 · x6 + 0.701 · x21 + 0.0567 · x43

+ 0.127 · x59 + 0.0291 · x96 − 0.0263 · x113 − 0.00304|(x8 − 5.11)| · |x21|2

+ 0.00248 · x4x59 − 0.0307 · x21 · |x21| − 4.08 · 10−4 · x113
3 + 0.0092

(A.9)

Y 10
1 = 0.17 · x4 − 0.00532 · x3 + 0.121 · x5 + 0.685 · x6 + 0.0105 · x12

+ 0.65 · x21 + 0.0375 · x24 − 0.00532 · x39 + 0.075 · x74 − 0.0079 · x112

− 0.00532 · x43/x94 − 0.0108 · x4
2 + 4.7 · 10−4 · x4

3 − 0.0202 · x21
2

− 0.00258 · x21
3 − 0.00258 · x39

2 + 0.0246

(A.10)
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Appendix A. Appendix

(a) Model 1

(b) Model 2

Figure A.1: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 1 and 2 Experiment 1). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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A.2. Experiment 1 Results

(a) Model 3

(b) Model 4

Figure A.2: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 3 and 4 Experiment 1). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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Appendix A. Appendix

(a) Model 5

(b) Model 6

Figure A.3: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 5 and 6 Experiment 1). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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A.2. Experiment 1 Results

(a) Model 7

(b) Model 8

Figure A.4: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 7 and 8 Experiment 1). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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Appendix A. Appendix

(a) Model 9

(b) Model 10

Figure A.5: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 9 and 10 Experiment 1). x-axis shows the data sample index in consecutive order
according to their sampling over time.

163



585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas585973-L-bw-Kefalas
Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022Processed on: 23-11-2022 PDF page: 172PDF page: 172PDF page: 172PDF page: 172

A.3. Experiment 2 Results

A.3 Experiment 2 Results

Once experiment 1 was completed and results were analyzed, the need for developing a control

model is satisfied by experiment 2. Here, one highly correlated variable, which is not above

the proposed threshold, was dropped from the input variables. This variables is the Average

Temperature at Station 25 (DEG C). Therefore, 113 input variables were used in GPTIPS in

order to model the EGT. The training, validation, and test error metrics results are displayed

in tables A.4, A.5, and A.6, respectively, for all ten models resulting from the ten independent

runs. The Equations A.11 - A.20, below, show the generated symbolic regression models for

all ten models resulting from the ten independent runs. In Figures A.6 - A.10 we show the

per model predictions (ten models resulting from the ten independent runs) against the actual

values of the EGT on the test set.

Table A.4: Experiment 2 training error metrics.

Rˆ2 RMSE MAE MSE

0.99768 1.36893 0.85751 1.87396
0.99756 1.40389 0.88441 1.97090
0.99751 1.41842 0.87606 2.01192
0.99696 1.56913 0.95831 2.46217
0.99743 1.44187 0.87915 2.07899
0.99765 1.37774 0.85544 1.89818
0.99741 1.44669 0.86240 2.09291
0.99756 1.40450 0.87028 1.97263
0.99746 1.43365 0.86886 2.05535
0.99762 1.38674 0.85581 1.92304

Table A.5: Experiment 2 validation error metrics.

Rˆ2 RMSE MAE MSE

0.99781 1.34160 0.84267 1.79988
0.99766 1.38506 0.87861 1.91840
0.99766 1.38600 0.86851 1.92098
0.99701 1.56784 0.95604 2.45812
0.99751 1.42995 0.87120 2.04477
0.99784 1.33301 0.84164 1.77691
0.99748 1.43730 0.85617 2.06582
0.99767 1.38220 0.86608 1.91047
0.99755 1.41698 0.86252 2.00783
0.99777 1.35305 0.84415 1.83074
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Table A.6: Experiment 2 test error metrics.

Rˆ2 RMSE MAE MSE

0.760114 11.62049 3.508928 135.0357
0.796653 10.69894 3.228156 114.4673
0.781762 11.08375 3.578363 122.8495
0.879283 8.243387 3.037525 67.95342
0.805173 10.4724 3.198549 109.6712
0.794995 10.74246 3.204305 115.4005
0.78722 10.94429 3.307758 119.7775
0.809058 10.36747 3.247515 107.4844
0.79427 10.76145 3.539824 115.8089
0.891921 7.799965 2.70033 60.83946

Y 1
2 = 0.0789 · x4 + 0.143 · x5 + 0.0207 · x10 + 0.799 · x17 − 0.524 · x19

+ 0.575 · x20 − 0.0789 · e(−e(−x20)) − 0.441 · e(−e(−e(−x4))) − e(−e(−e(−x20)))

− ((0.0186 · |x38|)/|x98|) + ((0.0092 · x38)/x51) + 1.13

(A.11)

Y 2
2 = 0.13 · x4 + 0.0229 · x11 + 0.694 · x17 − 0.394 · x19 + 0.723 · x20

+ 0.0604 · x42 + 0.107 · x58 − 0.0261 · |x19| · |x20|+ 0.0168 · x42 · x112

− 0.033 · x20 · |x20| − 0.0162 · x42 · |x20| − 0.013 · x112 · |x19|+ 0.0126

(A.12)

Y 3
2 = 0.123 · x4 + 0.0305 · x10 + 0.713 · x17 − 0.327 · x19 + 0.628 · x20

+ 0.0582 · x42 + 0.0949 · x58 + 0.0263 · x73 − 0.0303 · x112

− 0.0119 · x20
2 · x42 + 0.00167

(A.13)

Y 4
2 = 0.1 · x4 + 0.671 · x17 − 0.389 · x19 + 0.506 · x20 − 0.0408 · x38

+ 0.138 · x58 − 0.108 · e(−x38) + 0.929 · e(−e(−e(−e(−x4)))) − 0.0472 · |x7|
− 0.633 · e(−e(x20)) − 0.0392

(A.14)

Y 5
2 = 0.11 · x4 + 0.662 · x17 − 0.39 · x19 + 0.526 · x20 + 0.0537 · x42 + 0.141 · x58

+ 0.0269 · x95 − 0.0609 · e(−x4) − 0.00223 · e(x20) − 0.587 · e(−1.1e(x20))

− 0.00143 · x23 · x112
2 − 0.00143 · x23

2 · x112 − 4.76 · 104 · x23
3

− 4.76 · 104 · x112
3 + 0.276

(A.15)

Y 6
2 = 0.647 · x17 − 0.412 · x19 + 0.549 · x20 + 0.0505 · x42 + 0.157 · x58

+ 0.0243 · x95 − 0.826 · e(−e(−e(−x20))) − 1.59 · e(−e(−e(−x4)
1/2

))

+ 0.00578 · x4
2 − 7.58 · 105 · x51

4 + 1.69

(A.16)
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A.3. Experiment 2 Results

Y 7
2 = 0.0925 · x4 + 0.113 · x5 + 0.0195 · x11 + 0.797 · x17 − 0.427 · x19

+ 0.518 · x20 − 0.0181 · x112 − 0.452 · e(−x38) − 1.13 · e(−e(−x38))

− 0.45 · e(−e(−e(−x4))) − 0.847 · e(−e(−e(−x20))) + 1.89

(A.17)

Y 8
2 = 0.158 · x4 + 0.131 · x5 + 0.8 · x17 − 0.46 · x19 + 0.53 · x20 − 0.0231 · x22

− 0.0231 · e(−x4) − 0.0826 · e(−x38) − 0.0826 · e(−2·e(−x20))

− 0.928 · e(−e(−e(−x20))) − 0.00491 · x4
2 − 0.00827 · x38

2 + 0.811

(A.18)

Y 9
2 = 0.172 · x4 + 0.0239 · x10 + 0.667 · x17 − 0.403 · x19 + 0.593 · x20

+ 0.0475 · x42 + 0.133 · x58 + 0.0481 · x73 − 0.0481 · e(0.567·x20)

− 0.623 · e(−e0.73·x20 ) − 0.0647 · |x4|+ 0.316

(A.19)

Y 10
2 = 0.129 · x4 + 0.69 · x17 − 0.373 · x19 + 0.455 · x20 − 0.0382 · x24

+ 0.121 · x58 − 0.0303 · x112 + 0.509 · e(−e(−e(−e(−x42)))) + 0.0771 · e(−2·x7
2)

− 0.707 · e(−ex20 ) − 0.0137

(A.20)
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Appendix A. Appendix

(a) Model 1

(b) Model 2

Figure A.6: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 1 and 2 Experiment 2). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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A.3. Experiment 2 Results

(a) Model 3

(b) Model 4

Figure A.7: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 3 and 4 Experiment 2). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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Appendix A. Appendix

(a) Model 5

(b) Model 6

Figure A.8: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 5 and 6 Experiment 2). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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A.3. Experiment 2 Results

(a) Model 7

(b) Model 8

Figure A.9: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 7 and 8 Experiment 2). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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Appendix A. Appendix

(a) Model 9

(b) Model 10

Figure A.10: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 9 and 10 Experiment 2). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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A.4. Experiment 3 Results

A.4 Experiment 3 Results

A correlation analysis between the input variables and the output variable, EGT, is performed,

dropping those variables whose correlation with EGT is higher than 0.90. After doing so, 186

input variables remained. Once this was done, and following experiment’s 1 logic, a correlation

analysis upon the remaining input variables is done. Again, those above the proposed threshold

are deleted, only keeping the first representative from a set of highly correlated variables. Once

this step was done, 112 input variables remained, plus the output variable, EGT. The training,

validation, and test error metrics results are displayed in tables A.7, A.8, and A.9, respectively,

for all ten models resulting from the ten independent runs. In Figures A.11 - A.15 we show the

per model predictions (ten models resulting from the ten independent runs) against the actual

values of the EGT on the test set.

Table A.7: Experiment 3 training error metrics.

Rˆ2 RMSE MAE MSE

0.99800 1.27580 0.74480 1.62768
0.99812 1.23542 0.75659 1.52627
0.99807 1.25291 0.76230 1.56978
0.99822 1.20218 0.75237 1.44524
0.99809 1.24816 0.73935 1.55789
0.99832 1.16893 0.75271 1.36640
0.99801 1.27283 0.78877 1.62009
0.99818 1.21660 0.73428 1.48011
0.99820 1.21099 0.72872 1.46649
0.99835 1.16035 0.71518 1.34641

Table A.8: Experiment 3 validation error metrics.

Rˆ2 RMSE MAE MSE

0.99792 1.29194 0.74879 1.66910
0.99799 1.26866 0.76180 1.60950
0.99801 1.26294 0.75916 1.59503
0.99810 1.23463 0.75536 1.52432
0.99802 1.26004 0.74229 1.58769
0.99823 1.19080 0.75385 1.41801
0.99793 1.28963 0.78988 1.66315
0.99812 1.22731 0.73710 1.50629
0.99813 1.22366 0.73682 1.49735
0.998197 1.202644 0.720882 1.446352
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Table A.9: Experiment 3 test error metrics.

Rˆ2 RMSE MAE MSE

0.788536 10.91038 3.23724 119.03647
0.834811 9.64300 2.97148 92.98735
0.985225 2.88393 1.18922 8.31704
0.985034 2.90254 1.31293 8.42474
0.800509 10.59703 3.35942 112.29699
0.819613 10.07684 3.18990 101.54277
0.802258 10.55046 3.35021 111.31211
0.933994 6.09554 2.08652 37.15565
0.794766 10.74848 4.10824 115.52974
0.822608 9.99285 3.21731 99.85703

Y 1
3 = 0.114 · x5 + 0.771 · x6 + 0.0249 · x11 − 0.0763 · x13 + 0.395 · x19

+ 1.62 · log(x4 + e(−x23) + 8.9) + 0.233 · e(−x23) − 0.0534 · e(−x41)

− 1.36 · 10−5e(−x103) − 1.14 · e(−e(−e(−x19))) − 3.11

(A.21)

Y 2
3 = 0.0789 · x4 + 0.123 · x5 + 0.696 · x6 + 0.0219 · x11 + 0.68 · x19

+ 0.156 · x72 + 0.357 · e(−e(−x4)) + 0.29 · e(−e(−x37)) + 0.54 · e(−x19
4·x72

2)

+ 0.393 · e(−x37
2) − 0.996

(A.22)

Y 3
3 = 0.0765 · x4 + 0.683 · x6 − 0.114 · x14 + 0.683 · x19 − 0.0189 · x21

− 0.0228 · x40 + 0.0371 · x41 + 0.159 · x72 − 0.585 · e(−e(−e(−x4)))

+ 0.0371 · e(−e(−e(−x26))) − 0.136 · |x19 − 1.23|+ 0.114 · e(−Re(e(−x26)))

− 0.699 · e(−real(e(−x72))) + 0.766

(A.23)

Y 4
3 = 0.139 · x4 + 0.107 · x5 + 0.698 · x6 + 0.438 · x19 − 0.039 · x23

+ 0.0508 · x41 − 0.0265 · x111 − 0.145 · e(−e(−e(−x11))) − 0.825 · e(−e(x19))

− 2.66 · 10−4 · x4
3 + 0.411

(A.24)
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A.4. Experiment 3 Results

Y 5
3 = 0.0906 · x4 + 0.642 · x6 + 0.028 · x11 + 0.562 · x19 + 0.0752 · x37

+ 0.0171 · x67 + 0.0338 · x74 − 0.791 · e(−Re(e(−e(−x19)))) − 0.115 · |x37|
+ (0.208 · 0.657x14 · 0.657x74)/0.657x108 + 0.417

(A.25)

Y 6
3 = 0.101 · x4 + 0.136 · x5 + 0.654 · x6 + 0.448 · x19 − 0.0226 · x21

+ 0.0426 · x26 + 0.0484 · x41 − 0.0602 · x74 + 0.082 · x108

− 0.605 · e(−e(x19)) + 0.224

(A.26)

Y 7
3 = 0.0831 · x4 + 0.117 · x5 + 0.695 · x6 + 0.0233 · x11 + 0.461 · x19

− 0.0436 · x23 + 0.0436 · x41 + 0.0544 · x72 − 0.729 · e(e(−e(x19)))

+ 0.81 · e(−e(e
(x19))) + 0.368 · e(−e(−x4)) + 0.883

(A.27)

Y 8
3 = 0.0596 · x4 + 0.118 · x5 + 0.671 · x6 + 0.474 · x19 + 0.0446 · x41

+ 0.0298 · x108 − 0.014 · x111 − 0.735 · e−e(x19) + 0.753 · e(−e(−x4)
1/2

)
1/2

− 3.52 · 10−6 · x111
3 · x4 + x5 + x21

3 − 0.175 · e(−e(−x21))
1/2

− 0.0498

(A.28)

Y 9
3 = 0.106 · x4 + 0.125 · x5 + 0.689 · x6 + 0.0261 · x11 + 0.45 · x19

+ 0.0515 · x41 + 0.00826 · x58 − 0.744 · e(−e(x19))

+ 2.08 · 10−7e(2·x97) · |x111|2 + 0.00826 · x5 · x6 − 0.00826 · x5 · x28

− 0.00511 · x4 · x74 + 0.00826 · x38 · x74 + 0.00511 · x4
2e(−x4)

− 0.176 · e(−x4)
1/2

+ 0.467

(A.29)

Y 10
3 = 0.0825 · x4 + 0.134 · x5 + 0.688 · x6 + 0.0174 · x12 + 0.47 · x19

+ 0.0304 · x26 + 0.0409 · x41 − 0.523 · e(−e(−e(−x4))) − 0.703 · e(−e(x19))

+ 2.93 · 10−4 · x72
3e(−x1) + 0.635

(A.30)
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Appendix A. Appendix

(a) Model 1

(b) Model 2

Figure A.11: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 1 and 2 Experiment 3). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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A.4. Experiment 3 Results

(a) Model 3

(b) Model 4

Figure A.12: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 3 and 4 Experiment 3). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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Appendix A. Appendix

(a) Model 5

(b) Model 6

Figure A.13: Scaled EGT pre dictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 5 and 6 Experiment 3). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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A.4. Experiment 3 Results

(a) Model 7

(b) Model 8

Figure A.14: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 7 and 8 Experiment 3). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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Appendix A. Appendix

(a) Model 9

(b) Model 10

Figure A.15: Scaled EGT predictions (red) (y-axis) on the test set vs. observed (blue) values
(Models 9 and 10 Experiment 3). x-axis shows the data sample index in consecutive order
according to their sampling over time.
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A.4. Experiment 3 Results
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English Summary

Prognostics and health management (PHM) systems play a significant role in Industry 4.0.

PHM aims to maximize the operational availability of assets, reduce maintenance costs and

improve reliability and safety by monitoring and predicting (prognostics) the future state of

the asset. As such, PHM functions as a decision support tool aiming to make timely and better-

informed maintenance decisions. This allows a shift from traditional maintenance strategies,

such as reactive maintenance (RM) and preventive maintenance (PM), to what is known as pre-

dictive maintenance (PdM). PdM estimates when maintenance should occur and thus, increases

safety and maximizes usability by avoiding premature maintenance.

An essential task in PHM and, thus, PdM is failure prognostics and specifically the estimation

of an asset’s remaining useful life (RUL). As its name suggests, the estimation of the RUL allows

for managing pending equipment failure and grants sufficient lead-time so that the necessary

decisions, logistics, personnel, equipment, and spare parts can be organized and deployed, thus

minimizing both equipment downtime and repair costs. In general, there are three major

classes of approaches that deal with the RUL estimation. Namely, model-based, data-driven,

and hybrid methods. Model-based methods (or physics-based methods) rely on established

mathematical/physical models of the asset and consequently require a thorough understanding

of the asset’s physics and processes. This can sometimes be prohibitively costly, in terms of

time and money, especially for very complex systems. On the other hand, data-driven methods

are relatively easier to develop as they do not call for (a lot of) expert or domain knowledge to

develop the model, rendering them domain-agnostic and easily transferable between domains

and because of the plethora of tools that have been and are being developed. However, they

require large amounts of (maintenance) data, a prerequisite that is not always possible due to

the nature of certain applications. Machine learning (ML) and deep learning (DL) commonly

belong to this category. Lastly, hybrid (or fusion) methods attempt to leverage the advantages

of the two previous methods while minimizing their limitations by combining (or fusing) model-

based approaches and augmenting them with data-driven methods and vice versa.

The relative ease of data-driven methods has, in a sense, democratized the RUL estimation

(and PdM thereof) due to their (mostly) domain-agnostic nature and broad applicability. Nev-

ertheless, there are various challenges to consider in the data-driven domain. The sufficient

pre-processing of the (raw) data, the selection of the learning algorithm, and the optimization
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English Summary

of their hyperparameters are some non-trivial questions that researchers and end-users need to

address. In this view, we investigate the usage of automated machine learning (AutoML) for

RUL estimation and, further, propose an automated framework for configuring, in an end-to-

end fashion, RUL prediction models.

The estimation of the RUL (and any other prognostics measure for that matter) lies at the

heart of PHM and PdM. However, determining the RUL is only part of the overall promise

of PdM (albeit a pivotal one). As its name suggests, PdM uses prognostics for maintenance

planning. Therefore, in principle, having the estimated RUL values, one can plan the mainte-

nance of the assets through scheduling. Optimizing the maintenance schedule, however, is a

further challenge that needs to be dealt with. We illustrate this through the flexible job-shop

scheduling problem (FJSSP), as it resembles more closely dynamic, real-world environments

where operations can be processed on different sets of machines, and we show how heuristics

can support the optimization process.

Understanding the data generating process is another important topic in data-driven PdM.

Uncovering the relationship between features in the data allows one, for example, to create

models that imitate the actual process and monitor the deviation between the predicted and

the observed data. In turn, this can be used as an early-warning tool for a fault or failure.

We show how explainable AI can facilitate the understanding of the data-generating process

through a case study from the aviation industry.

Finally, we show how a method originally developed for PdM in the automotive industry can

lend itself to the medical domain, exhibiting the significance of knowledge transfer and how it

can impact research between different scientific fields. We investigate this through a case study

from the field of Neurology.
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Prognose en Gezondheid Beheer (PHM) systemen spelen een significante rol in industrie 4.0.

PHM richt zich op het maximaliseren van de operationele beschikbaarheid van bedrijfsmiddelen,

het reduceren van onderhoudskosten en het verbeteren van de betrouwbaarheid en veiligheid

door middel van monitoring en voorspellen (prognose) van de toekomstige staat van de bedri-

jfsmiddelen. Op deze manier functioneert PHM als een beslissingsondersteunende tool die er

op gericht is om tijdige en beter gëınformeerde onderhoudsbeslissingen te kunnen maken. Dit

maakt een verschuiving mogelijk van traditionele onderhoudsstrategieën zoals reactief onder-

houd (RM) en preventief onderhoud (PM) naar voorspellend onderhoud (PdM). PdM schat

in wanneer onderhoud plaats zou moeten vinden en dus verhoogt het de veiligheid, en maxi-

maliseert het de bruikbaarheid door het voorkomen van te vroege onderhoudswerkzaamheden.

Een essentiële taak van PHM en dus PdM is storing prognose en het inschatten van de

resterende nuttige levensduur (RUL) van een bedrijfsmiddel. Zoals de naam al suggereert,

kan het schatten en beheren van de RUL er voor zorgen dat er voldoende doorlooptijd is voor

het maken van beslissingen, verzamelen van reserveonderdelen en benodigde apparatuur, het

inzetten van personeel en het organiseren van de logistiek. PdM minimaliseert dus stilstand

van bedrijfsmiddelen en reparatiekosten. In het algemeen zijn er drie belangrijke methoden

voor het inschatten van de RUL. Namelijk, model gedreven, data gedreven en hybride meth-

oden. Model gedreven methoden (ook wel fysica gebaseerde methoden genoemd) bouwen op

bestaande wiskundige/fysische modellen van het bedrijfsmiddel en vereisen daarom diepgaande

kennis van de fysica en de processen van het bedrijfsmiddel. Dit kan in sommige gevallen te

kostbaar zijn in termen van tijd en geld, vooral voor zeer complexe systemen. Data gedreven

methoden daarentegen zijn relatief makkelijker op te zetten omdat er geen (of weinig) expertise

of domein kennis nodig is om deze te ontwikkelen. Bovendien zijn data gedreven methoden vaak

domein onafhankelijk, makkelijk overdraagbaar tussen domeinen, en in overvloede beschikbaar.

Ze vereisen echter wel grote hoeveelheden (onderhouds) data, die door de aard van sommige

toepassingen niet altijd beschikbaar is. Machine learning (ML) en deep learning (DL) vallen

in de data gedreven categorie. Tenslotte proberen hybride (of fusie) methoden de voordelen

van beide eerder genoemde methoden te benutten, terwijl de nadelen gelimiteerd worden door

model gedreven aanpakken te combineren (of fuseren), en aan te vullen met data gedreven

methoden en vice versa.
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Door het relatieve gemak, de (overwegend) domein onafhankelijkheid, en brede toepasbaarheid

van de data gedreven methoden is het schatten van RUL (en PdM op basis ervan) beschikbaar

geworden voor iedereen. Desondanks zijn er verschillende uitdagingen die in acht genomen

moeten worden met de data gedreven methoden. Het voldoende voorbewerken van de (ruwe)

data, de selectie van een lerend algoritme en de optimalisatie van diens hyperparameters zijn

niet-triviale vragen die onderzoekers en eindgebruikers moeten adresseren. Daarom onderzoeken

we het gebruik van geautomatiseerde machine learning (AutoML) voor RUL inschattingen.

Verder stellen we een raamwerk voor die automatisch van begin tot het einde RUL voorspellende

modellen kan configureren.

De inschatting van de RUL (en andere prognose metrieken) ligt nauw aan het hart van PHM en

PdM. Echter is het bepalen van de RUL maar een onderdeel van de belofte van PdM (wel een

cruciale). Zoals de naam al suggereert maakt PdM gebruik van voorspellingen voor onderhoud

planningen. In principe zou gegeven de geschatte RUL waardes een onderhoudsplanning voor

de bedrijfsmiddelen gemaakt kunnen worden. Het optimaliseren van de onderhoudsplanning is

de volgende uitdaging waar mee omgegaan moet worden. Wij illustreren dit door middel van

het flexibele job-shop planning probleem (FJSSP), omdat het erg veel lijkt op de dynamische

omgeving uit de echte wereld waar taken op verschillende machines gedaan kunnen worden.

Bovendien laten we zien hoe heuristieken het optimalisatieprocess kunnen ondersteunen.

Het begrijpen van het proces dat data genereert is een ander belangrijk onderwerp in data

gedreven PdM. Het blootleggen van de relaties tussen verschillende attributen van de data

stelt iemand in staat om bijvoorbeeld modellen te maken die daadwerkelijke processen naboot-

sen zodat de verschillen tussen de voorspelde en geobserveerde data gemonitord kan worden.

Vervolgens kan dit weer gebruikt worden als tool om vroegtijdige fouten of storingen op te

sporen. We laten met behulp van een voorbeeld uit de luchtvaartindustrie zien dat uitlegbare

kunstmatige intelligentie gebruikt kan worden om meer inzicht te krijgen in het data genereer

proces.

Tot slot laten we zien hoe een methode die origineel ontwikkeld is voor PdM in de auto-

industrie zich kan lenen voor het medisch domein. Dit laat zien hoe waardevol interdisciplinaire

kennisoverdracht is en wat de invloed daarvan kan zijn in verschillende andere wetenschappelijke

onderzoek velden. We onderzoeken dit door middel van een voorbeeld uit de neurologie.
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