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Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in 
Alzheimer's disease (AD), associated with elevated circulating glucocorticoids (GC) 
and glucocorticoid receptors (GR) signaling impairment. However, the precise role 
of GR in the pathophysiology of AD remains unclear. Using an acute model of AD 
induced by the intracerebroventricular injection of amyloid-β oligomers (oAβ), we 
analyzed cellular and behavioral hallmarks of AD, GR signaling pathways, process-
ing of amyloid precursor protein, and enzymes involved in Tau phosphorylation. 
We focused on the prefrontal cortex (PFC), particularly rich in GR, early altered in 
AD and involved in HPA axis control and cognitive functions. We found that oAβ 
impaired cognitive and emotional behaviors, increased plasma GC levels, synap-
tic deficits, apoptosis and neuroinflammatory processes. Moreover, oAβ potentiated 
the amyloidogenic pathway and enzymes involved both in Tau hyperphosphoryla-
tion and GR activation. Treatment with a selective GR modulator (sGRm) normal-
ized plasma GC levels and all behavioral and biochemical parameters analyzed. GR 
seems to occupy a central position in the pathophysiology of AD. Deregulation of 
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1  |   INTRODUCTION

Alzheimer's disease (AD), the most common cause of de-
mentia in the elderly, is characterized by a progressive im-
pairment of cognitive functions and the presence of senile 
plaques and neurofibrillary tangles (NFT) throughout the 
brain, including areas particularly involved in memory for-
mation and emotional regulation. Plaques are composed of 
insoluble extracellular aggregates consisting mainly of am-
yloid-β (Aβ) peptides, while NFT result from hyper- and 
abnormal phosphorylation of the microtubule-stabilizing 
protein Tau.1 There are several forms of AD. Familial forms 
with known mutations of specific genes represent less than 
5% of cases, whereas 95% of patients develop sporadic forms, 
with unknown mechanisms, but with identified risk factors. 
The principal risk factor for sporadic AD is aging. But, there 
is also growing evidence that stressful lifetime events may 
increase the probability of developing AD.2 This view is par-
ticularly supported by the fact that in AD patients, cognitive 
and psychological symptoms are associated with an early de-
regulation of the hypothalamic-pituitary-adrenal (HPA) axis, 
as well as elevated levels of glucocorticoids (GC) in plasma 
and CSF.3,4

The HPA axis, highly involved in the stress response, trig-
gers the adrenal cortex to release GC. These steroid hormones 
readily cross the BBB and bind to low-affinity glucocorticoid 
receptors (GR) and high-affinity mineralocorticoid receptors 
(MR).5 GC are necessary for normal cellular activity and 
fundamental for many CNS functions, including learning 
and memory.6 While MR are localized mainly in the hippo-
campus, GR are more ubiquitous and are particularly found 
in several structures of the limbic system (prefrontal cortex 
[PFC], hippocampus, and amygdala), which are strongly in-
volved in cognitive and psychological functions but also are 
important components of the neural circuitry modulating 
HPA axis activity.7

GC act synergistically with excitatory amino acids 
(like glutamate) in neurotoxicity. Hence, a deregulation of 
the HPA axis activity or a modification of GR function-
ing could be extremely toxic, especially in limbic struc-
tures,8 and thus could contribute to the cognitive decline 
and psychological symptoms that occur in AD. In chronic 
animal models of AD (transgenic mice), stress and GC 

administration affect the course of the pathology. Chronic 
stress accelerates the onset of cognitive deficits, triggers 
amyloid precursor protein (APP) misprocessing, enhances 
plaque pathology, reduces Aβ clearance, increases Aβ 
levels, and stimulates Tau hyperphosphorylation and its 
neuronal accumulation.9,10 In the same line of evidence, a 
recent study showed that early life stress in APP/PS1 mice 
induced elevated corticosterone levels, associated with en-
hanced hippocampal Aβ1-40/42 and BACE1 levels.11 In an 
acute pathomimetic model of AD obtained after a single 
intracerebroventricular (icv) injection of an oligomeric 
solution of Aβ (oAβ25-35),12-14 we demonstrated a strong, 
long-lasting activation of the HPA axis, associated with a 
modification of GR and MR expression in brain regions 
involved in the control of GC secretion (hippocampus, 
amygdala, and hypothalamus),15 supporting its involve-
ment in the etiology of AD.9,16-19 We also observed that 
an antagonist and selective modulators of the GR could 
potently counteract the effects of oAβ25-35 injection in the 
hippocampus, arguing strongly for a therapeutic potential 
of modulating GR activity.14

In the present preclinical study, we focused our attention 
on the PFC for several reasons. (a) It is a cerebral region 
highly involved in the control of the HPA axis. Indeed, the 
PFC is involved in both driving the stress-induced activation 
of the HPA axis, and in mediating negative feedback regu-
lation in times of stress.20 (b) The different subdivisions of 
the PFC are particularly involved in cognitive and emotional 
processing.21 (c) In AD, the PFC is rapidly affected.22 (d) 
GR levels in the PFC are fivefold higher than MR levels,23 
suggesting that the PFC could be particularly sensitive to a 
dysregulation of the HPA axis activity.

Thus, on the basis of our previous findings,12-14 we took 
advantage of specific properties of a new selective GR mod-
ulator (sGRm) CORT113176 to decipher the role of GR in 
AD. CORT113176 is representative of a series of novel, se-
lective non-steroidal GR ligands (1H-pyrazolo(3,4-g)hexa-
hydro-isoquinoline sulfonamides) developed by Corcept 
Therapeutics (Figure 1B). It exhibits excellent affinity for GR 
with no measurable affinity for the other nuclear hormone 
receptors (progesterone, androgen, mineralocorticoid, and 
estrogen).14,24-26 CORT113176 demonstrated only partial an-
tagonism and also some agonism in reaction to a viral protein 

the HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the 
etiology of AD, in perturbing Aβ and Tau homeostasis. These results also reinforce 
the therapeutic potential of sGRm in AD.

K E Y W O R D S

Cdk5, GSK-3β, PDK1, ROCK, selective GR modulator
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1152  |      CANET et al.

in rat hepatocytes.14 Hence, we refer to it as a sGRm, with 
the implication of the advantages linked to selective receptor 
modulation that we previously reported in detail.14 In fact, 
this family of molecules has the potential to more selectively 
abrogate pathogenic GR-dependent processes in the brain (as 
antagonist), while retaining beneficial aspects of GR signal-
ing (as agonist).14,27-30

2  |   MATERIALS AND METHODS

2.1  |  Animals

Adult male Sprague-Dawley rats (Janvier Lab., Le Genest-
Saint-Isle, France) weighing 260-280 g (8 weeks), at the 
beginning of the experiments, were housed 1 week before 
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      |  1153CANET et al.

experiments in a standard animal facility (12H/12H light/
dark cycle with lights on at 07H00; 21  ±  1°C, food and 
water ad libitum). All experiments, including sacrifices, 
were performed in conscious rats between 09H00 and 
14H00, during the diurnal trough of the HPA axis circa-
dian rhythm.

2.2  |  Ethical considerations

Animal procedures were conducted in strict adherence to 
the European Union Directive of 2010 (2010/63/EU). The 
National French Animal Welfare Committee and the local 
committee at the University of Montpellier approved all pro-
tocols (authorization: CEEA-LR-12160). All efforts were 
made to minimize the number of animals used, potential pain, 
suffering, and distress.

2.3  |  Amyloid-β peptide

In patients, soluble Aβ oligomers contains mainly the se-
quences Aβ1-40 and Aβ1-42.1 However, they also contain 
peptides with shorter sequences such as Aβ25-35 or Aβ25-

35/40,31-33 identical between human and rodent.34 It can be 
produced in AD patients by enzymatic cleavage of Aβ1-

40.31,32 This Aβ peptide includes extracellular and trans-
membrane residues that have been reported to represent 
a biologically active region of Aβ35-37 and to contain the 
highly hydrophobic region forming stable aggregates.36 
Interest in this undecapeptide, which itself shows a β-sheet 
structure,12,36 has grown over the last decade, mainly be-
cause it induces neurite atrophy, neuronal cell death, 
synaptic loss, as well as synaptic plasticity and memory 

deficits in a similar way to Aβ1-40 and Aβ1-42,37 but with 
better solubility and efficiency.38,39 Aβ25-35 and scrambled 
Aβ25-35 peptides (PolyPeptide, Strasbourg, France) were 
dissolved in sterile water (1 µg/µL) and stored at −20°C. 
Since soluble Aβ oligomers correlate better with the pro-
gression of the disease,40 Aβ25-35 and scrambled peptides 
were aggregated by in vitro incubation at 37°C (4 days) to 
obtain a solution mainly composed (more than 95%) of a 
mixture of soluble oligomer species (oAβ25-35), as previ-
ously characterized.13

2.4  |  Experimental procedures

To evaluate the impact of oAβ25-35 (acute model of AD), 
animals were divided into three groups. One group had no 
surgery (control rats), a second received an icv injection 
of incubated scrambled peptide (10 µg/rat), and a third re-
ceived an icv injection of oAβ25-35 (10 µg/rat). The animals 
were anesthetized with an intraperitoneal (ip) injection of 
1 ml of a mixture of ketamine and xylazine (80 and 10 mg/
kg b.w., respectively). oAβ25-35 was injected directly into 
the lateral ventricles using a David-Kopf stereotaxic appa-
ratus (Phymep, Paris, France), (coordinates: AP −1 mm, L 
±1.5 mm, DV −3.5 mm) (Figure 1A).41 Based on a previ-
ous study14 and to decipher the role of GR in oAβ toxic-
ity, treatment with sGRm was conducted 1 week after the 
icv injection of oAβ25-35. CORT113176 (10  mg/kg b.w. 
per injection) (Corcept Therapeutics, Menlo Park, CA, 
USA) (Figure 1B) was injected ip twice a day (09H00 and 
18H00) for 1  week. The short-term memory or anxiety 
state of different groups of rats were tested (day 14) in a 
T-maze or in an elevated plus maze test (EPM), respec-
tively. The following day (day 15) and 30  minutes after 

F I G U R E  1   Effects of selective GR modulator on, anxious behavior, spatial short-term memory deficits and high levels of corticosterone 
induced by the icv injection of oAβ25-35. A, Experimental protocol—At T0, adult male rats (Sprague Dawley) were injected directly into the lateral 
ventricles using a stereotaxic apparatus (coordinates: AP −1 mm, L ±1.5 mm, DV −3.5 mm). One group has not undergone surgery (control rats, 
white column), a second group received an icv injection of scrambled Aβ25-35 peptide (negative control—10 µg/rat—orange column) and a third 
group received an icv injection of oAβ25-35 peptide (Aβ—0 µg/rat—red column). Animals were weighted daily and one week after the icv injection 
(at Week 1), animals were treated with vehicle or CORT113176 (10 mg/kg per injection) through two intraperitoneal (ip) injections per day during 
7 days. At day 14 (Week 2), the anxious behavior or the spatial short-term memory of each rat were tested in an elevated plus maze (EPM) or in a 
T-maze, respectively. The following day (day 15), 30 minutes after the last ip injection, the animals were sacrificed, blood samples and PFC were 
rapidly collected for corticosterone assay and Western blot analysis, respectively. B, Chemical structure of the selective GR modulator tested in 
this study, CORT113176 (reproduction with the permission of Corcept Therapeutics). C, Anxious behavior was determined in the EPM paradigm. 
Each animal was placed at the center of the EPM and allowed to freely explore for 10 minutes. Data were expressed as time spent in the open 
arms (OA) in % of total time. Two-way ANOVA: F2,59 = 7.90 for group, P < .001, F2,59 = 1.54 for treatment, ns; and F4,59 = 2.95 for interaction, 
P < .05. D, Spatial short-term memory performance was determined in a T-maze test and was expressed as the ratio of the time spent in the initially 
closed arm (B) over the time spent in the previous arm (A). Two-way ANOVA: F2,48 = 9.10 for group, P < .001; F2,48 = 8.51 for treatment, 
P < .001; and F4,48 = 2.36 for interaction, ns. E, Plasma concentrations of corticosterone (CORT) were determined by Elisa and expressed as 
ng/ml. Two-way ANOVA: F2,45 = 39.0 for group, P < .0001; F2,45 = 15.3 for treatment, P < .0001; and F4,45 = 10.8 for interaction, P < .0001. 
*P < .05 and **P < .01 vs respective control (C) group. +P < .05 and ++P < .01 vs respective scrambled (S) group. xP < .05 and xxP < .01 vs 
respective naive rat in each group (C, S or oAβ). The number of animals in each group is indicated within the columns 

 15306860, 2020, 1, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.201900723R

R
R

 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [18/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1154  |      CANET et al.

the last ip injection, the unanesthetized animals were sac-
rificed by decapitation. Blood samples and the PFC were 
rapidly collected for corticosterone assay and WB analysis. 
Naive rats received no treatment but were manipulated in 
the same manner as treated rats. Vehicle rats received only 
ip injections of sesame oil and served as negative controls 
for pharmacological treatments.

2.5  |  Spatial short-term memory

T-maze test was used to rapidly assess the delayed alternation 
of rats. This memory behavioral test was used as a non-invasive 
recurrent readout that we usually perform to make sure we have 
an appropriate toxicity.12-15 The T-maze consisted of two short 
arms (A and B), extending from a longer alley and enclosed 
with high walls. The test involved two trials separated by 1 hour. 
During the training session, one short arm (B) was closed. Rats 
were placed at the end of the long alley, allowed to visit the maze 
for 10 minutes and then returned into their home cage. During 
the test session, animals were placed in the maze for 2 minutes, 
with free access to all arms. The number of visits and time spent 
in each arm were measured. The results were expressed as ratio 
of the time spent in the initially closed novel arm, over the time 
spent in the previous arm and as a ratio of the number of en-
tries into the novel arm over the familiar one. The apparatus was 
cleaned with diluted ethanol (50%) between animals.

2.6  |  Anxiety behavior

The anxiety state of rats was measured using their ability 
to explore open and enclosed arms of an EPM, as previ-
ously described.15 The clear plexiglass apparatus consisted 
of two open arms (50  ×  10  cm) and two enclosed arms 
(50 × 10 × 45 cm high), extending from a central platform 
and placed 60 cm above the floor. Each rat was placed at the 
center of the plus-maze facing the closed arm and its explora-
tion behavior was recorded for 10 minutes. The results were 
expressed as total time spent in the open arms and the total 
number of entries was counted to verify general motor activ-
ity. An entry into an arm was recorded if the animal crossed 
the line that connected that arm with the central platform with 
all four legs. The apparatus was cleaned with diluted ethanol 
(50%) between animals.

2.7  |  Corticosterone assay

Blood samples were collected at the time of sacrifice (day 15), 
on 1 mg/mL EDTA (Sigma-Aldrich, Saint Quentin Fallavier, 
France), centrifuged at 4°C, and plasma stored at −20°C 
until assayed for corticosterone.14 Plasma corticosterone 

concentrations were assayed using a conventional ELISA 
kit (Enzo-Life Sciences, Farmingdale, NY, USA) in a 10-µL 
plasma sample diluted (1:40) with the assay buffer. The assay 
sensitivity was 27 pg/mL. The intra- and inter-assay coeffi-
cients were 6.6% and 7.8%, respectively.

2.7.1  |  Aβ1-42 assay

Rats were sacrificed by decapitation 15 days after oAβ25–35 
injection and brains were rapidly removed, PFC dissected 
out, weighted, frozen in liquid nitrogen, and stored at −80°C 
until assayed. After thawing, PFC were sonicated (VibraCell; 
Sonics & Materials, Newtown, CT, USA) for 20 seconds in a 
lysis buffer.42 After centrifugation (14 000 rpm for 25 min-
utes, 4°C), supernatants were used for Aβ1-42 ELISA assay 
(Anaspec, Fremont, CA, USA), according to the manufac-
turer's instructions. Absorbance was read at 450 nm (Tecan 
i-control, ThermoFisher Scientific, Illkirch, France) and 
sample concentration was calculated using the standard curve 
(Figure S3A). Results were then expressed in pg of Aβ1-42/g 
of tissue. The assay sensitivity was 3.91 pg/mL. The intra- and 
inter-assay coefficients were 4.3% and 6.4%, respectively.

2.8  |  WB analysis

WB were performed as previously described14 in the whole 
PFC. All antibodies used are detailed in the Table 1. Briefly, 
after sacrifice, the PFC was micro-dissected, weighed, im-
mediately frozen on liquid nitrogen and stored at −20°C. 
Tissues were sonicated (VibraCell; Sonics & Materials, 
Newtown, CT, USA) in a lysis buffer12 and centrifuged (4°C). 
Supernatants were collected and the protein concentration was 
measured using a BCA kit (ThermoFisher Scientific, Illkirch, 
France). In all, 60 µg from each sample was taken for WB 
analysis. Samples were separated in SDS-polyacrylamide 
gel (12%) and transferred to a PVDF membrane (Merck-
Millipore, Dachstein, France). The membrane was incubated 
overnight (4°C) with the primary antibody, rinsed and then 
incubated for 2 hours with the appropriate horseradish per-
oxidase-conjugated secondary antibody. Peroxidase activity 
was revealed using enhanced-chemiluminescence (ECL) rea-
gents (Luminata-Crescendo, Merck-Millipore). The intensity 
of peroxidase activity was quantified using Image-J software 
(NIH, Bethesda, MA, USA). β-tubulin (β-Tub) was used as a 
loading control for all immunoblotting experiments.

2.9  |  Statistical analysis

Data are presented as mean ± SEM and analyzed using two-
way ANOVA followed by a Tukey's multiple comparison 

 15306860, 2020, 1, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.201900723R

R
R

 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [18/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  1155CANET et al.

test (GraphPad-Prism 5.0). P < .05 was considered signifi-
cant. The number of animals in each group is indicated within 
the columns. Before each analysis of variance, the Gaussian 
distribution was evaluated and validated by a Kolmogorov-
Smirnov test (GraphPad-Prism 5.0).

3  |   RESULTS

To characterize the impact of oAβ25-35, we previously tested 
over time (after 1 and 2 weeks) two different doses (5 and 

10 µg/rat) on several parameters previously characterized in 
this acute model of AD12 (Figure S1A). While the scrambled 
peptide induced no modification in comparison with control 
naive rats, the dose of 10 µg of oAβ25-35 was more efficient 
than the dose of 5 µg. Indeed, after 10 µg short-term memory 
deficit (T-maze) was observed up to 2 weeks post-injection 
(Figure S1B) and plasma levels of corticosterone were in-
creased from 1 to 2 weeks (Figure S1C).

We next evaluated (in the PFC) the role of GR in the oAβ 
toxicity using a sGRm (CORT113176). Animals were treated 
1 week after the icv injection of oAβ25-35 with CORT113176 

T A B L E  1   Antibodies used in Western blot experiments

Protein Mol. weight Antibody Dilution Ref. Supplier

Primary antibodies

ADAM1085 72 kDa Rabbit anti-ADAM10 1/1000 AB19026 Merck-Millipore, France

APP/C9914 125/13 kDa Rabbit anti-APP/C99 1/750 PA1-84165 Thermo-Fisher Scientific, France

BACE114 70 kDa Rabbit anti-BACE 1/1000 #5606 Cell Signaling/Ozyme,, St Cyr-l’Ecole, France

Calpain 186 80 kDa Rabbit anti-calpain 1 large 
subunit (µ-type)

1/1000 #2556 Cell Signaling/Ozyme, France

Caspase 314 19 kDa Rabbit anti-caspase 3 1/500 #9665 Cell Signaling/Ozyme, France

Cdk587 30 kDa Rabbit anti-Cdk5 1/500 #2506 Cell Signaling/Ozyme, France

Fyn88 59 kDa Rabbit anti-Fyn 1/500 #4023 Cell Signaling/Ozyme, France

GFAP14 55 kDa Mouse anti-GFAP 1/2000 G3893 Sigma-Aldrich, France

GR15 95 kDa Rabbit anti-GR 1/1000 #3660 Cell Signaling/Ozyme, France

GSK-3β39 46 kDa Mouse anti-GSK-3β 1/2000 610202 BD-Biosciences, Rungis, France

HSP7034 70 kDa Rabbit anti-HSP70 1/500 #4872 Cell Signaling/Ozyme, France

HSP9034 90 kDa Rabbit anti-HSP90 1/1000 #4877 Cell Signaling/Ozyme, France

Iba114 17 kDa Rabbit anti-Iba1 1/750 013-19741 Wako Chem, Osaka, Japan

IDE14 110 kDa Rabbit anti-IDE 1/3000 AB9210 Merck-Millipore, France

MR15 100 kDa Rabbit anti-MR 1/100 SC11-412 SantaCruz Biotech., Dallas, TX, USA

p[Ser9]
GSK-3β39

46 kDa Mouse anti-p[Ser9]GSK-3β 1/1000 #9336 Cell Signaling/Ozyme, France

p[Tyr211]
GSK-3β39

46 kDa Mouse anti-p[Tyr216]
GSK-3β

1/2000 612313 BD-Biosciences, France

p35/p2587 35/25 kDa Rabbit anti-p35/p25 1/500 #2680 Cell Signaling/Ozyme, France

PDK158 56-68 kDa Rabbit anti-PDK1 1/1000 #5662 Cell Signaling/Ozyme, France

pGR89 95 kDa Rabbit anti-p[Ser211]GR 1/1000 #4161 Cell Signaling/Ozyme, France

PS190 22 kDa Rabbit anti-PS1 1/1000 #5643 Cell Signaling/Ozyme, France

PSD9514 95 kDa Rabbit anti-PSD95 1/2000 #3450 Cell Signaling/Ozyme, France

ROCK158 160 kDa Rabbit anti-ROCK1 1/500 #4035 Cell Signaling/Ozyme, France

ROCK2 58 160 kDa Rabbit anti-ROCK2 1/500 #8236 Cell Signaling/Ozyme, France

sAPPα58 100 kDa Mouse anti-sAPPα 1/50 11098 IBL, Hamburg, Germany

SYN14 65 kDa Mouse anti-synaptotagmine 1/1000 MAB5200 Merck-Millipore, France

β-Tub 50 kDa Mouse anti-β-Tubulin 1/7500 T4026 Sigma-Aldrich, France

Secondary antibodies

IgG Goat anti-rabbit IgG peroxidase conjugate 1/2000 A61-54 Sigma-Aldrich, France

IgG Goat anti-mouse IgG peroxidase conjugate 1/2000 A67-82 Sigma-Aldrich, France
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1156  |      CANET et al.

according to a protocol and a dose established in a previous 
study.14 Control scrambled peptide and vehicle treatment in-
duced no changes in any of the readouts relative to untreated 
animals (Figures 1-6). All blots of control conditions were 
presented in a supplementary document (Figure S2) to im-
prove the clarity of figures and to highlight key effects. Two 
weeks after oAβ25-35, animals presented anxious behavior 
(Figure 1C), short-term memory deficits (Figure 1D), and 
high plasma concentrations of corticosterone (Figure 1E). 
Treatment with CORT113176 reversed all of these parame-
ters (Figure 1).

Behavioral deficits, observed 2 weeks after oAβ25-35, were 
associated with pre- (SYN) and post-synaptic (PSD95) defi-
cits, increased apoptotic marker expression (Figure 2A-D) 
and a marked neuroinflammation characterized by the acti-
vation of astrocytes (GFAP) (Figure 2A,E) and microglial 
cells (Iba1) (Figure 2A,F). Treatment with the sGRm nor-
malized Caspase 3 expression, the pre- and post-synaptic 
deficits (Figure 2A,C,D) and blocked the neuroinflammatory 
processes (Figure 2A,F), as previously reported at the hippo-
campus level14 or at the spinal cord level in an experimental 
model of amyotrophic lateral sclerosis.30

To determine in the PFC the effects of oAβ25-35 (and of 
CORT113176) on glucocorticoid receptor signaling, as part 
of a potential feed-forward or feedback process, animals were 
treated as previously detailed (Figure 1A). The icv injection 
of oAβ25-35 increased the expression of MR and GR (Figure 
3A-C). These effects were associated with an over-activation 
of GR, as characterized by an increase in the phosphorylated 
form of GR (Ser211) (Figure 3A,D). There were opposite 
changes in the expression of HSP90 and HSP70, the two 
main chaperones involved in the activity of GR,43 but also 
involved in the control of Aβ and Tau aggregation.44-46 The 
HSP90/HSP70 ratio (which reflects GR activation)43 accord-
ingly was substantially increased (Figure 3A,E). Treatment 
with CORT113176 reversed the increase in GR and MR, 
decreased the phosphorylation of GR and normalized the 
HSP90/HSP70 ratio (Figure 3).

The GR phosphorylation status47 may constitute an im-
portant link between AD and GC. Indeed, GR can be phos-
phorylated on several serine and threonine residues. Thus, we 
characterized the impact of oAβ25-35 on GSK-3β and Cdk5, 
the two main enzymes involved in both the phosphorylation 
of GR48 and the hyperphosphorylation of Tau.49,50 We first 
confirmed changed expression ratios of p(Ser9)GSK-3β/
GSK-3β and p(Tyr216)GSK-3β/GSK-3β51 (Figure 4A-C), 
reflecting an increase in GSK-3β activation. Second, we ob-
served increased levels of Cdk5 (Figure 4A,D), in association 
with those of p35 and p25, which are involved in Cdk5 ac-
tivation52 (Figure 4A,E). We also measured increased levels 
of Calpain 1, a member of cysteine proteases family regu-
lated by intracellular calcium and showing aberrant activity 
in AD.53 Calpain 1 is particularly involved in the activation 

of GSK-3β,54 and in the maturation of p35 in p2555 (Figure 
4A,F). Lastly, we observed increases in the levels of Fyn 
(Figure 4A,G), a Src kinase associated with non-genomic 
effects of GR,56 involved in the activation of GSK-3β and 
the phosphorylation of Tau.49,57 This family of enzymes is 
bound to the inactive form of GR as chaperone, and released 
when GC bind to their receptors.56 Under physiological con-
ditions, GC inhibit Fyn activity and phosphorylation,58 but 
under chronic stress, with high levels of GC, Fyn is upregu-
lated especially in the hippocampus of adult rats.59 To sum-
marize, the icv injection of oAβ25-35 activated both GSK-3β 
and Cdk5 pathways. This activation was associated with an 
increase in p25, Calpain 1, and Fyn levels in the PFC (Figure 
4). Treatment with CORT113176 inhibited the activation of 
GSK-3β and Cdk5, the maturation of p35 into p25 and the 
increase in Calpain 1 and Fyn (Figure 4).

In the next part of this study, we characterized the dif-
ferent pathways of APP maturation, through the assessment 
of the different cellular elements involved in the mutu-
ally exclusive processing pathways of APP, the amyloi-
dogenic and non-amyloidogenic pathways (Figures 5 and 
6). APP processing and induction of the amyloidogenic 
pathway (Figure 5) were evaluated by measuring PFC 
levels of full-length APP (precursor of amyloid proteins) 
(Figure 5A,B), C99 (precursor of Aβ peptides) (Figure 
5A,C), BACE1 (β-APP cleaving enzyme) (Figure 5A,D), 
PS1 (presenilin-1, a subunit of the γ-secretase) (Figure 
5A,E), and IDE (insulin-degrading enzyme, involved in 
the clearance of Aβ) (Figure 5A,F). Two weeks after the 
injection of oAβ25-35, APP levels were increased and am-
yloidogenic processing was enhanced. This activation was 
associated with an increased formation (BACE1 and PS1), 
and a decreased clearance (IDE). One week of treatment 
with CORT113176 inhibited the activation of the amy-
loidogenic pathway. The increase in levels of APP, C99, 
PS1, and BACE1 and also the IDE downregulation were 
fully reversed (Figure 5). To characterize the non-amy-
loidogenic pathway in the PFC, we evaluated by Western 
blot the levels of the α-secretase-cleaved soluble APP ecto-
domain (sAPPα) and ADAM10 (A disintegrin and metallo-
proteinase Domain-containing protein 10, a component of 
α-secretase) (Figure 6A-C). Two weeks after the injection 
of oAβ25-35, sAPPα and ADAM10 were decreased. This in-
hibition of the non-amyloidogenic processing of APP was 
totally reversed by 1 week of treatment with CORT113176 
(Figure 6A-C). Finally, to confirm the induction of the am-
yloidogenic pathway, we assayed the endogenous levels of 
Aβ1-42 in the PFC (Figure S3). As expected, 2 weeks after 
the icv injection of oAβ25-35, Aβ1-42 levels were increased 
by 18% in the PFC. This upregulation was totally reversed 
by the treatment with CORT113176 (Figure S3B). Even if 
the levels of Aβ1-42 assayed in the PFC were relatively low, 
they are consistent with some previous studies in rats.60,61
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      |  1157CANET et al.

F I G U R E  2   The effects in the PFC of selective GR modulator on the different cellular markers. A, modified by the icv injection of oAβ25-35, 
were evaluated by Western blot. Variations of apoptosis (caspase-3, 19 kDa) (A,B), post-synaptic marker (PSD95, 95 kDa) (A,C), pre-synaptic 
marker synaptotagmine (SYN, 65 kDa) (A,D), neuroinflammatory markers GFAP (55 kDa, astrocyte cells) (A,E), and Iba1 (17 kDa, microglial 
cells) (A,F) were evaluated in control (C—white column) and in icv injected rats with 10 µg/rat of scrambled peptide (S—orange column) or 
oAβ25-35 (Aβ—red column), treated or not with vehicle (sesame oil) or selective GR modulator, CORT113176 (10 mg/kg per ip injection). 
For experimental protocol, see Figure 1A. The variations of Caspase-3, PSD95, SYN, Iba1, and GFAP in the PFC were normalized with the 
variations of β-tubulin (β-tub, 50 kDa) and compared with non-injected rats (control group: C). Two-way ANOVA: Caspase-3: F2,59 = 6.75 for 
group, P < .01; F2,59 = 3.08 for treatment, P < .05; and F4,59 = 1.73 for interaction, ns; PSD95: F2,67 = 4.08 for group, P < .05; F2,67 = 0.50 for 
treatment, ns; and F4,67 = 3.15 for interaction, P < .05; SYN: F2,66 = 5.97 for group, P < .01; F2,66 = 2.36 for treatment, ns; and F4,66 = 3.87 for 
interaction, P < .05; GFAP: F2,66 = 31.04 for group, P < .0001; F2,66 = 8.52 for treatment, P < .001; and F4,66 = 3.49 for interaction, P < .05; 
Iba1: F2,59 = 10.1 for group, P < .001; F2,59 = 4.28 for treatment, P < .05; and F4,59 = 2.08 for interaction, ns. The variations are expressed as 
means ± SEM in % of control values. *P < .05 and **P < .01 vs respective control (C) group. +P < .05 and ++P < .01 vs respective scrambled (S) 
group. xP < .05 and xxP < .01 vs respective naive rat in each group (C, S or Aβ) 
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1158  |      CANET et al.

F I G U R E  3   The effects in the PFC of CORT113176 on the activation of GR induced by the icv injection of oAβ25-35 were evaluated by 
Western blot. Variations of the expression of MR (100 kDa) (A,B) and GR (95 kDa) (A,C), the phosphorylation of GR (p[Ser211]GR, 95 kDA) 
(A,D), and the expression ratio of HSP90/HSP70 (90/70 kDa) (A,E) were evaluated in control (C—white column) and in icv injected rats with 
10 µg/rat of scrambled peptide (S—orange column) or oAβ25-35 (Aβ—red column), treated or not with vehicle (sesame oil) or the selective GR 
modulator CORT113176 (10 mg/kg per ip injection). For experimental protocol, see Figure 1A. The variations of all proteins in the PFC were 
normalized with the variations of β-tubulin (β-tub, 50 kDa) and compared with non-injected rats (control group: C). Two-way ANOVA: MR: 
F2,54 = 11.0 for group, P < .0001; F2,54 = 2.96 for treatment, P < .05; and F4,54 = 3.06 for interaction, P < .05; GR: F2,51 = 22.1 for group, 
P < .0001; F2,51 = 8.45 for treatment, P < .001; and F4,51 = 5.97 for interaction, P < .001; pGR: F2,52 = 2.99 for group, P < .05; F2,52 = 2.56 for 
treatment, ns; and F4,52 = 4.05 for interaction, P < .01; HSP90/HSP70: F2,50 = 29.9 for group, P < .0001; F2,50 = 6.00 for treatment, P < .01; and 
F4,50 = 6.55 for interaction, P < .001. The variations are expressed as means ± SEM in % of control values. *P < .05 and **P < .01 vs respective 
control (C) group. +P < .05 and ++P < .01 vs respective scrambled (S) group. xP < .05 and xxP < .01 vs respective naive rat in each group (C, S or 
Aβ) 
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      |  1159CANET et al.

To understand by which mechanisms non-amyloi-
dogenic pathways could be inhibited, we evaluated the 
involvement of the Rho-kinases system. These Ser/Thr 
kinases are involved in cell motility, cell proliferation, 
autophagy, and apoptosis.62-64 They have been suggested 

as potential therapeutic targets for neurodegenerative dis-
eases, including AD.66-68 This effect seems to be mediated 
by Rho-associated coiled-coil kinases (ROCK)-induced 
overactivation of the 3-phosphoinositide-dependent kinase 
1 (PDK1) activity.65,68 In fact, exacerbated ROCK activity 
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1160  |      CANET et al.

seems to increase the pool of PDK1 molecules physically 
interacting with and phosphorylated by ROCK.65,68 The 
overactivation of this system inhibits the non-amyloi-
dogenic pathway 65,68 and affects Tau phosphorylation.69,70 
They seem particularly involved in the inhibition of sAPPα 
synthesis68 and in the phosphorylation of Tau.69,71 Their 
activity is modulated by GC72 via GR activation.73 To 
characterize the Rho-kinase system, we measured the PFC 
levels of Rho-associated coiled-coil kinases (ROCK1 & 
ROCK2) (Figure 6A,D,E) and the 3-phosphoinositide-de-
pendent kinase (PDK1) (Figure 6A,F). Here, 2 weeks after 
injection of oAβ25-35, we observed in the PFC an increase 
in ROCK1, ROCK2, and PDK1, which was normalized by 
1 week of treatment with the sGRm (Figure 6A,D-F).

4  |   DISCUSSION

In previous studies, we provided evidence for a vicious 
cycle between AD and the HPA axis. We showed that the 
pathology, and especially the amyloid toxicity, rapidly in-
creases GC secretion that, in turn, modulates APP process-
ing.14,15 This dysregulation seems to be under the control of 
GR, since treatment with a new class of selective GR ligands 
blocks the installation of this cycle in the hippocampus and 
re-establishes all parameters analyzed and disturbed by the 
amyloid toxicity (memory and synaptic deficits, neuroin-
flammation, apoptosis, APP processing, and high levels of 
GC).14 This recent study14 allowed us to design and validate 
the experimental protocol of treatment with sGRm. Briefly, 
we determined treatment timing and duration, doses and spe-
cificities of the two sGRm (CORT108297 & CORT113167) 
tested, in comparison to the non-selective antagonist of ref-
erence, Mifepristone. It appeared that 1  week of treatment 
(two ip injection per day) with CORT113176 (10 mg/kg per 
injection) displayed the most effective therapeutic potential 
against toxicity induced by oAβ25-35. Owing to its efficacy 

and selectivity, this sGRm was selected in the present mecha-
nistic study.

Here, on the basis of our precedent finding,14 we aimed 
to decipher the role of GR in AD and to characterize as-
sociated underlying mechanisms. For this purpose, we 
evaluated the impact of oAβ25-35 on several intracellular 
pathways involved in the activation of GR but also in the 
pathophysiology of AD. We show the establishment of 
several intracellular vicious cycles involving GC and GR, 
providing mechanistic insight to a central role of these re-
ceptors in the etiology of AD (Figure 7). The notion of a 
vicious cycle between GC signaling and pathogenesis is 
reinforced by the fact that modulation of GR activity with 
CORT113176 normalized all changes induced by the am-
yloid toxicity.

In the first part of our study, to validate our protocols in 
comparison with the previous study,14 we confirmed that 
1 week of treatment with a sGRm (CORT113176) at the dose 
of 10 mg/kg is sufficient to reverse short-term memory defi-
cits and to re-establish plasma concentrations of corticoste-
rone disrupted by the icv injection of oAβ25-35. In addition, 
and for the first time, we show that treatment with sGRm is 
able to reverse anxious behavior induced by the amyloid tox-
icity.15 We equally demonstrate that sGRm treatment is able 
to reverse synaptic deficits, neuroinflammation, and apopto-
sis processes induced by oAβ25-35 in the PFC, as previously 
observed in the hippocampus.14

Then, we showed that the icv injection of oAβ25-35 in-
creased GR phosphorylation on Ser211, a site involved in 
the activation of GR in rats.48 This activation was asso-
ciated with an increase and activation of GSK-3β and 
Cdk5, with a substantial increase in the HSP90/HSP70 
ratio (important for GR activity43), but also, importantly, 
in the control of Aβ and Tau aggregation.44-46 The activa-
tion of GSK-3β and Cdk5 is under the control of several 
enzymes,49,50,54,55,57 including Fyn and Calpain 1 that are 
regulated by GC,58,59 induced by the amyloid toxicity, and 

F I G U R E  4   The effects in the PFC of CORT113176 on the activation of GSK-3β and Cdk5 pathways induced by the icv injection of 
oAβ25-35 were evaluated by Western blot. The activation of GSK-3β (ratio of p[Tyr216]GSK-3β/GSK-3β total & ratio of p[Ser9]GSK-3β/GSK-
3β total, 46kDa each) (A-C) and Cdk5 (30 kDa) (A,D) pathways, the expression ratio of p25/p35 (25 & 35 kDa) (A,E), Calpain 1 (80 kDa) (A,F) 
and FYN (59 kDa) (A,G) were evaluated in control (C—white column) and in icv injected rats with 10 µg/rat of scrambled peptide (S—orange 
column) or oAβ25-35 (Aβ—red column), treated or not with vehicle (sesame oil) or the selective GR modulator CORT113176 (10 mg/kg per ip 
injection). For experimental protocol, see Figure 1A. The variations of all proteins in the PFC were normalized with the variations of β-tubulin 
(β-tub, 50 kDa) and compared with non-injected rats (control group: C). Two-way ANOVA: p[Tyr216]GSK-3β/GSK-3β: F2,51 = 17.0 for group, 
P < .0001; F2,51 = 6.07 for treatment, P < .01; and F4,51 = 2.49 for interaction, P < .05; p[Ser9]GSK-3β/GSK-3β: F2,51 = 11.9 for group, P < .0001; 
F2,51 = 6.99 for treatment, P < .01; and F4,51 = 2.81 for interaction, P < .05; Cdk5: F2,48 = 12.1 for group, P < .0001; F2,48 = 0.87 for treatment, 
ns; and F4,48 = 3.73 for interaction, P < .01; p25/p35: F2,47 = 13. 2 for group, P < .0001; F2,47 = 12.1 for treatment, P < .0001; and F4,47 = 16.5 for 
interaction, P < .0001; Calpain 1: F2,49 = 15.5 for group, P < .0001; F2,49 = 5.54 for treatment, P < .01; and F4,49 = 4.10 for interaction, P < .01; 
Fyn: F2,50 = 16.1 for group, P < .0001; F2,50 = 2.82 for treatment, P < .05; and F4,50 = 4.70 for interaction, P < .01. The variations are expressed 
as means ± SEM in % of control values. *P < .05 and **P < .01 vs respective control (C) group. +P < .05 and ++P < .01 vs respective scrambled 
(S) group. xP < .05 and xxP < .01 vs respective naive rat in each group (C, S or Aβ). The number of animals in each group is indicated within the 
columns 
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      |  1161CANET et al.

F I G U R E  5   The effects in the PFC of selective GR modulator on the APP processing and the induction of the amyloidogenic pathway (A) 
induced by the icv injection of oAβ25-35 were evaluated by Western blot. Variations of full-length APP (precursor of amyloid peptides, 125 kDa) 
(A,B), C99 (precursor of amyloid-β peptides, 13 kDa) (A,C), β-APP cleaving enzyme (BACE1, 70 kDa) (A,D), Presenilin 1 (PS1, 20 kDa) 
(A,E), and insulin-degrading enzyme (IDE, 110 kDa) (A,F) were evaluated in control (C—white column) and in icv injected rats with 10 µg/
rat of scrambled peptide (S—orange column), or oAβ25-35 (Aβ—red column), treated or not with vehicle (sesame oil) or selective GR modulator, 
CORT113176 (10 mg/kg per ip injection). For experimental protocol, see Figure 1A. The variations of APP, C99, BACE1, PS1, and IDE in 
the PFC were normalized with the variations of β-tubulin (β-tub, 50 kDa) and compared with non-injected rats (control group: C). Two-way 
ANOVA: APP: F2,66 = 7.76 for group, P < .001; F2,66 = 3.20 for treatment, P < .05; and F4,66 = 4.60 for interaction, P < .01; C99: F2,56 = 21.1 
for group, P < .0001; F2,56 = 11.5 for treatment, P < .0001; and F4,56 = 7.12 for interaction, P < .001; BACE1: F2,58 = 5.59 for group, P < .01; 
F2,58 = 3.99 for treatment, P < .05; and F4,58 = 2.92 for interaction, P < .05; PS1: F2,51 = 29.4 for group, P < .0001; F2,51 = 1.61 for treatment, ns; 
and F4,51 = 4.89 for interaction, P < .01; IDE: F2,56 = 6.47 for group, P < .01; F2,56 = 4.06 for treatment, P < .05; and F4,56 = 1.99 for interaction, 
ns. The variations are expressed as means ± SEM in % of control values. *P < .05 and **P < .01 vs respective control (C) group. +P < .05 and 
++P < .01 vs respective scrambled (S) group. xP < .05 and xxP < .01 vs respective naive rat in each group (C, S or Aβ) 
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increased in AD patients.74 Our data show that the over- 
activation of GR induced by oAβ25-35 coincided with an 
increase in these two enzymes (Figure 7).

We also observed that oAβ25-35 induced a strong increase 
in Calpain 1. This augmentation could be the reflection of 

its proteolytic activity, given that it was concomitant with an 
activation of two of its substrates, GSK-3β and an increase in 
p25/p35 ratio. These effects were reversed by treatment with 
the sGRm (CORT113176), providing evidence of an intracel-
lular loop by which pathology increases the activation of GR 
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(directly via GSK-3β and Cdk5 and indirectly via Fyn and 
Calpain 1), which in turn increases the activation of these 
key enzymes and the HSP90/HSP70 ratio, worsening the AD 
pathogenesis44-46 (Figure 7).

Our current data show that the seeding and the accu-
mulation of endogenous Aβ induced by the icv injection 
of oAβ25-35

43 (Figure S3B), not only results from the acti-
vation of amyloid pathways but also from the inhibition of 
non-amyloid pathways. Indeed, the icv injection of oAβ25-

35 provoked the activation of the amyloidogenic pathway in 
the PFC, through an increase in Aβ synthesis (APP/C99, 
Aβ1-42, BACE1, and PS1 upregulation) and a decrease in Aβ 
clearance (IDE downregulation), as previously reported for 
the hippocampus.14 Besides, Aβ oligomers also inhibit the 
non-amyloidogenic pathway (sAPPα and ADAM 10 down-
regulation) and that this effect could be controlled by the 
activation of ROCK1 and ROCK2 (Figure 7). We showed 
that the oAβ25-35 injection-induced inhibition of sAPPα and 
ADAM10 is associated with an activation of ROCK/PDK1 
pathways. These results are consistent with several stud-
ies showing that ROCKs modulate the shedding of sAPPα 
through an inhibition of tumor necrosis factor-α-converting 
enzyme (TACE or ADAM) activity, and that ROCKs deple-
tion reduces Aβ levels.68,75,76 ROCK activity seems to be di-
rectly upregulated by GC,72,73,77 and ROCK/PDK1 activation 
after oAβ25-35 is reversed by treatment with CORT113176, 
again constituting a vicious cycle based on feed-forward ef-
fects on GR signaling (Figure 7).

ROCK also affect Tau hyperphosphorylation.69,70 They 
activate the two principal enzymes involved in Tau phosphor-
ylation, Cdk5 and GSK-3β.71,78 In addition, ROCK/PDK1 in-
hibition of sAPPα may affect Tau, since it was shown that 
sAPPα reduces GSK-3β-mediated Tau phosphorylation.79 
These two mechanisms again link GR and GC to the patho-
physiology of AD (Figure 7). Likewise, Tau phosphorylation 
may also be directly impacted by the other GR-related en-
zymes we described. Indeed, Fyn can directly phosphorylate 
Tau on tyrosine residues.80 Fyn can also directly activate 
GSK-3β to rapidly induce Tau phosphorylation in human 

neuroblastoma cells.57 In the same line of evidence, it ap-
pears that Fyn controls the activity of PDK1 through an up-
regulation of ROCK,81,82 and thus could also participate in 
the inhibition of the non-amyloidogenic pathway. Calpain 1 
also activates GSK-3β and Cdk5, promoting Tau phosphor-
ylation and Tau-associated neurodegeneration.49,50 Calpain 1 
can cleave the neuron-specific Cdk5 activator p35 to produce 
p25, which accumulates in the brains of AD patients.52 In 
fact, it was shown that induction of p25 by Calpain 1 causes 
prolonged activation and mislocalization of Cdk5 and that the 
p25/Cdk5 kinase hyperphosphorylates Tau, disrupts the cy-
toskeleton and promotes the apoptotic death of primary cor-
tical neurons.55 Thus, Fyn and Calpain 1 upregulations may 
be involved in both the increased Tau phosphorylation after 
oAβ25-35 injection,13 and in the activity of GSK-3β, Cdk5, and 
the processing of APP. This highlights the potential link that 
GR activation could play between Aβ and Tau (Figure 7).

The mechanisms by which GR affects the multiple en-
zymes identified here is unclear. GR are nuclear receptors 
that directly interact with specific genes via binding to glu-
cocorticoid response element (GRE), interactions with other 
transcription factors, or via non-genomic mechanisms, such 
as epigenetic modifications.5,82,83 A GRE has been described 
in the promoter regions of APP and BACE1.84-86 For the 
other proteins, no mechanism of transcriptional regulation 
via GR has been identified. A recent study on hippocampal 
slices pre-treated with an inhibitor of transcription activity 
showed a non-genomic activation of GSK-3β by GC.87 The 
efficacy of the sGRm suggests that it is able to antagonize 
also non-genomic GR signaling. Of note, involvement of 
membrane-localized GR was linked to AD not only for the 
regulation of GSK-3β88 but also—surprisingly—in the reg-
ulation of BACE1.89 For the other proteins, further investi-
gations will be needed to decipher which mechanisms are 
involved in GR regulatory activity. There is also the potential 
for more indirect mechanisms, since membrane-localized GR 
can facilitate glutamatergic transmission,90-92 affect some of 
the factors that we identified here via stimulation of excito-
toxicity pathways.8

F I G U R E  6   The effects in the PFC of selective GR modulator on the non-amyloidogenic pathways (A) modulated by the icv injection of 
oAβ25-35 were evaluated by Western blot. Variations of sAPPα (100 kDa) (A,B), ADAM10 (α-secretase, 70 kDa) (A,C), Rho-associated coiled-
coil kinases (ROCK1 & ROCK2, 160 kDa) (A,D,E), and 3-phosphoinositide-dependent kinase (PDK1, 60 kDa) (A,F) were evaluated in control 
(C—white column) and in icv injected rats with 10 µg/rat of scrambled peptide (S—orange column) or oAβ25-35 (Aβ—red column), treated or 
not with vehicle (sesame oil) or selective GR modulator, CORT113176 (10 mg/kg per ip injection). For experimental protocol, see Figure 1A. 
The variations of sAPPα, ADAM10, ROCK1, ROCK2, and PDK1 in the PFC were normalized with the variations of β-tubulin (β-tub, 50 kDa) 
and compared with non-injected rats (control group: C). Two-way ANOVA: sAPPα: F2,49 = 8.65 for group, P < .001; F2,49 = 3.92 for treatment, 
P < .05; and F4,49 = 4.25 for interaction, P < .01; ADAM10: F2,48 = 6.56 for group, P < .01; F2,48 = 7.07 for treatment, P < .01; and F4,48 = 7.08 
for interaction, P < .001; ROCK1: F2,31 = 16.1 for group, P < .0001; F2,31 = 4.11 for treatment, P < .05; and F4,31 = 3.30 for interaction, P < .05; 
ROCK2: F2,51 = 10.5 for group, P < .001; F2,51 = 7.23 for treatment, P < .01; and F4,51 = 3.77 for interaction, P < .01; PDK1: F2,50 = 15.9 for 
group, P < .0001; F2,50 = 1.55 for treatment, ns; and F4,50 = 4.76 for interaction, P < .01. The variations are expressed as means ± SEM in % of 
control values. *P < .05 and **P < .01 vs respective control (C) group. +P < .05 and ++P < .01 vs respective scrambled (S) group. xP < .05 and 
xxP < .01 vs respective naive rat in each group (C, S or Aβ) 
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This new study provides new arguments supporting 
the development of a vicious cycle based on GR activa-
tion in AD, here based on analysis of changes in the PFC. 

In this preclinical study, the new sGRm (CORT113176) 
blocked this cycle and normalized all AD processes ana-
lyzed, including extracellular (ADAM10, BACE1 and IDE), 

F I G U R E  7   Schematic figure recapitulating the central role of GR and the therapeutic potential of selective GR modulators in AD. The icv 
injection of Aβ oligomers increases APP, C99 PS1, and BACE-1 contents, concomitantly with a decrease in IDE, evidencing the induction of 
the amyloidogenic pathway and, as previously observed, Aβ1-42 production42 and Tau hyperphosphorylation.13 In parallel, the icv injection of Aβ 
oligomers inhibits sAPPα and ADAM10, evidencing the inhibition of non-amyloidogenic pathway. Aβ oligomers induce, in addition to an excess of 
circulating GC, an overactivation of GR, which is associated with an increase in the two main chaperones (HSP90 & HSP70) particularly involved 
in the activity of GR43 but also in the control of Aβ and Tau aggregation.44-46 Thus, active GR translocate to the nucleus where they exert their 
genomic effects through GRE, inducing APP and BACE-1 gene transcription, and potentiating Aβ oligomers production. Therefore, it evidences 
a first intracellular vicious cycle by which pathology increases circulating GC, which, in turn, increase pathology. Aβ oligomers also enhance 
contents and activity of key enzymes involved directly (Cdk5 and GSK-3β) or indirectly (Calpain 1 and Fyn) in the activation of GR but also in 
the hyperphosphorylation of Tau. Enzyme inductions which are regulated by GR, as evidenced after treatment with the selective GR modulator 
(CORT113176), demonstrate non-genomic effects of GR and thus a second intracellular vicious cycle. Indeed, pathology increases the activation 
of GR via several keys enzymes (Cdk5, GSK-3β, Calpain 1, and Fyn), which, in turn, increase the activation of these enzymes involved in the 
pathophysiology of AD. Finally, it appears that amyloid toxicity inhibits also the non-amyloidogenic pathways, reinforcing the displacement of the 
equilibrium in favor of endogenous amyloid seeding and evidencing another intracellular loop by which pathology increases the activation of GR, 
which, in turn, increases the activation of ROCKs/PDK1 pathways, as evidenced after treatment with the selective GR modulator (CORT113176). 
This activation accentuates the pathology through the inhibition of α-secretase (ADAM10) and sAPPα synthesis, as previously reported79 but also 
by increasing the phosphorylation of Tau.69-71,78 Red arrow: showed in this study. Purple arrow: showed in our previous studies.13,65 Black arrow: 
known in the literature (See discussion for references). Blue arrow: hypothesis to assess. Red cross: Schematic effects of sGRm. AD, Alzheimer's 
disease; ADAM10, a disintegrin and metalloproteinase domain-containing protein 10 (α-secretase); APP, amyloid precursor protein; Aβ, amyloid-β 
peptide; BACE-1, β-APP cleaving enzyme (β-secretase); Cdk5, cyclin-dependent kinase-5; GC, glucocorticoids; GR, glucocorticoid receptors; 
GRE, glucocorticoid responsive element; GSK-3β, glycogen synthase kinase 3-β; HSP, heat-shock protein; IDE, insulin-degrading enzyme; PDK1, 
3-phosphoinositide-dependent kinase; PS1, presenilin 1 (γ-secretase); ROCKs, Rho-associated coiled-coil kinases; sGRm, selective GR modulator 
(CORT113176) 
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intramembrane (PS1), and intracellular enzymes (Cdk5/p25, 
GSK-3β, Fyn, Calpain 1, ROCKs, and PDK1). In addition, 
we cannot exclude, as previously mentioned in the hippo-
campus,14 the involvement of MR in the effects observed 
after sGRm treatment. Indeed, several studies suggested a 
neuroprotective role of these receptors in a context of GR 
blockade.93-95 Thus, further investigations are needed to de-
cipher the precise role of MR in the pathophysiology of AD. 
We moreover demonstrated that the accumulation of endog-
enous Aβ, induced by the amyloid toxicity and the concom-
itant dysregulation of HPA axis, resulted from the activation 
of amyloidogenic and the inhibition of the non-amyloi-
dogenic pathways (Figure 7). All of these data place HPA 
axis dysregulation and GR in a central and crucial position 
in the pathophysiology of AD, linking amyloid toxicity and 
Tau deregulation. This work also highlights the therapeutic 
potential of sGRm to counteract negative effects induced by 
the amyloid toxicity and to re-establish the functionality of 
GR and a fortiori to re-establish the primal role of GC in the 
maintenance of homeostasis.
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