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In this article, we design and construct gradient coils for a Halbach permanent-magnet array magnetic resonance (MR) scanner.
The target field method, which is widely applied for the case of axial static magnetic fields, has been developed for a transverse
static magnetic field as produced by a Halbach permanent-magnet array. Using this method, current densities for three gradient
directions are obtained and subsequently verified using a commercial magneto-static solver. Stream functions are used to turn the
surface current densities into wire patterns for constructing the gradient coils. The measured fields are in good agreement with
simulations and their prescribed target fields. 3-D images have been acquired using the constructed gradient coils with a very low
degree of geometric distortion.

Index Terms— Gradient coils, Halbach arrays, low field, magnetic resonance imaging (MRI), target field method.

I. INTRODUCTION

GRADIENT coils are an integral part of magnetic res-
onance imaging (MRI) systems. Ideally, such coils

produce linear magnetic fields that are used to spa-
tially encode an object or body part: linearity allows
simple image reconstruction via an inverse 2-D or 3-D
Fourier transform [1]. Numerous methods for the design and
optimization of gradient coils have been proposed over the
years (see [2], [3]), but most of these approaches are for
conventional MRI scanners with the static magnetic field (B0)
aligned axially along the bore of the system.

Interest in MRI in a low-resource setting is increasing [4].
Conventional MRI hardware cannot be used under such
circumstances, since it is expensive and generally difficult
to maintain. Superconducting magnets, for example, are
financially out of reach, and high-power and fast-switching
requirements for gradient and radiofrequency hardware
simply cannot be met. Moreover, conventional scanners are
typically immobile and therefore cannot be easily transported
to different locations.

To address the difficulties that are encountered in a low-
resource setting, new magnetic resonance (MR) systems are
being proposed such as MR scanners based on the resistive
magnets [5], [6] or systems that utilize a Halbach permanent-
magnet array [7], [8]. For a resistive magnet, gradient coil
design runs along similar lines as for conventional MRI sys-
tems, albeit typically for smaller bore sizes and lower power
requirements. On the contrary, for a Halbach array, the back-
ground magnetic field is transverse to the bore as opposed
to along the bore, and this provides additional challenges for
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the design of the gradient coils [9]. In a previous publication,
we described a 27 cm clear bore Halbach array designed ulti-
mately for pediatric neuroimaging, operating at 2.15 MHz [7].
For this system, simple non-optimized gradient coils were
constructed, but the linear range was quite limited.

In this article, the target field method, as originally proposed
by Turner [10], is applied to design transverse-oriented gradi-
ent fields. Specifically, a transverse gradient field is prescribed
on an inner cylinder that is concentric to the Halbach array,
and the target field method is applied to find surface current
densities on an outer cylinder that generates magnetic fields,
which approximate this prescribed target field. Since this
is an inverse source problem, regularization is required to
obtain physically acceptable surface current densities. To this
end, we follow the standard target field method and include
regularization through apodization using a parametric spectral-
domain Gaussian filter. By following this approach, x-, y-, and
z-gradient coils are designed and realized. Furthermore, field
simulations and measurements of these are presented to show
that the produced gradients are in good agreement with simu-
lation, thereby verifying that the modified target field method
can indeed be used to realize gradient coils in case the back-
ground field is transverse to the axis of the bore of a Halbach
MR scanner. Finally, the gradient coils are incorporated in
an experimental low-field Halbach MR scanner [7], thereby
enabling us to use Fourier imaging techniques to acquire
3-D low-field MR images. Initial imaging results obtained with
this scanner are presented as well.

II. TARGET FIELD METHOD

To design gradient coils for a Halbach scanner with a trans-
verse B0 field, consider the cylindrical configuration illustrated
in Fig. 1 consisting of two cylinders that extend to infinity
in the positive and negative z-directions. The outer cylinder
has a radius a and the domains inside (r < a) and outside
(r > a) the cylinder are filled with air. This cylinder supports
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Fig. 1. Geometry and coordinate system for the target field method. The
outer cylinder with radius a supports a surface current J, and the x-component
of the magnetic field is prescribed on the inner cylinder with radius b < a.
Both cylinders are of infinite length in the z-direction.

a surface current density denoted by J and our objective
is to find a surface current that approximates a prescribed
magnetic field B on the inner cylinder with radius b. Given
the cylindrical structure of our configuration, we will mainly
work in cylindrical coordinates.

As a first step, we specify the target fields. Specifically, for a
background field aligned in the x-direction, one of the follow-
ing three linear x-directed gradient fields must be designed:

Bx(b, φ, z) =

⎧⎪⎨
⎪⎩

�tr(z)b cos(φ)gx

�tr(z)b sin(φ)gy

�ln(z)gz

(1)

on an inner cylinder with radius b < a to derive surface
currents (and ultimately the position of surface copper wires)
that generate fields which approximate these target fields.
In the above expressions, gx,y,z > 0 are constants and �tr(z)
and �ln(z) are the transverse and longitudinal gradient shape
functions given by

�tr(z) = 1

1 + ( z
d

)n and �ln(z) = z

1 + ( z
d

)n (2)

respectively, where d and n (n being an even integer) are
tuning parameters that determine the length and decay rate
of the gradient field in the z-direction. Note that �tr(z) is
an even function of z, while �ln(z) is an odd function of z.
Fig. 2 illustrates the two gradient shape functions as a
function of z/d for various choices of the order n.

To find a surface current density that approximately pro-
duces the prescribed target fields, we apply a 2-D Fourier
transform with respect to the spatial coordinate z and the
angle φ. For a generic field quantity �(r, φ, z), this Fourier
transform is given by

�̃ [m](r, k) =
∫ ∞

z=−∞

∫ π

φ=−π
�(r, φ, z)e−jmφe−jkzdφdz (3)

and the corresponding inverse Fourier transform is

�(r, φ, z) = 1

4π2

∫ ∞

k=−∞

∞∑
m=−∞

�̃ [m](r, k)ejmφejkzdk. (4)

In Appendix A, it is shown that the Fourier transform of the
target field Bx(b, φ, z) is related to the Fourier transform of

Fig. 2. Gradient shape functions �tr (top) and �ln (bottom) as a function
of z/d for different values of the order n of the gradient profile functions.

the φ-component of the surface current by

B̃[m]
x (b, k)

= j

2

[
P̃[m−1](b, k) − Q̃[m−1](b, k)

]
J̃ [m−1]
φ (k)

+ j

2

[
P̃[m+1](b, k) + Q̃[m+1](b, k)

]
J̃ [m+1]
φ (k) (5)

where P̃[m](b, k) and Q̃[m](b, k) are given by

P̃[m](b, k) = aμ0k I ′
m(|k|b)K ′

m(|k|a) (6)

and

Q̃[m](b, k) = m
aμ0

b

|k|
k

Im(|k|b)K ′
m(|k|a) (7)

with μ0 the permeability of vacuum; Im and Km are modified
Bessel functions of the first and second kinds, respectively; and
the prime indicates differentiation with respect to the argument
of the Bessel functions. Note that P̃[−m](b, k) = P̃[m](b, k)
and Q̃[−m](b, k) = −Q̃[m](b, k) for m ∈ Z.

Since the target fields are known, (5) can be formally
solved for the φ-component of a spectral surface current
density. However, similar to the standard target field method,
such a current becomes unbounded as |k| → ∞, which is
not surprising, since we are attempting to directly solve an
(ill-posed) inverse source problem. Therefore, regularization is
applied in the form of the so-called apodization function T̃ (k),
which serves as a low-pass filter that prevents exponential
growth of the spectral domain current densities. Usually,
the Gaussian function T̃ (k) = e−2(kh)2

is used for apodization
(with h a regularization parameter) and we use this Gaussian
in our approach as well.
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Having found a solution to (5) and filtering out high spatial
frequencies through multiplication by T̃ (k), the φ-component
of the surface current is obtained by substituting the filtered
spectral solution into the inverse Fourier transform. Denoting
the resulting spatial currents by J x

φ , J y
φ , and J z

φ for the
φ-component of the surface current in the case of an x-,
y-, or z-gradient target field, we obtain the surface current
densities

J x
φ (φ, z) = −jb

gx

π
cos(2φ)

∫ ∞

k=−∞
�̃tr(k)T̃ (k)

P̃[2] + Q̃[2] ejkzdk (8)

J y
φ (φ, z) = −jb

gy

π
sin(2φ)

∫ ∞

k=−∞
�̃tr(k)T̃ (k)

P̃[2] + Q̃[2] ejkzdk (9)

and

J z
φ(φ, z) = −j

gz

π
cos(φ)

∫ ∞

k=−∞
�̃ln(k)T̃ (k)

P̃[1] + Q̃[1] ejkzdk. (10)

The corresponding z-components of the surface current follow
directly from the continuity equation. Further details can be
found in Appendix B.

Finally, from the computed current densities, it is straight-
forward to extract the wire or current paths using stream
functions as described in [10]. These stream functions can
then be used to realize the gradient coils.

To verify our design method, we first compute the surface
current densities given by (8)–(10) and use stream functions
to convert these current densities into wire patterns. These
patterns are then used in a magnetostatic field solver to verify
that currents flowing through the conductors of the gradient
coils indeed produce the prescribed target fields. Subsequently,
the three gradient coils were constructed and a magnetic field
map of the z-gradient coil measured. Finally, the three gradient
coils were incorporated into the low-field MRI Halbach-based
scanner described previously. 3-D imaging results obtained
with this scanner are presented.

III. RESULTS

A. Simulation Results

The surface current densities of (8)–(10) were computed
using MATLAB.1 The regularization parameter was chosen
as h = 0.05 and the order n of the target fields was taken as
n = 16 for the z-gradient coil and n = 30 for the x- and
y-gradient coils. These values were chosen in order for the
physical length of the coils to correspond to the system
requirements (the length of the magnet is 50 cm, and the
gradients are constrained to a length of 37 cm inside the
magnet). The design of the y-gradient coil is equivalent to
the design of the x-gradient coil, since J y

φ (φ, z) = gyg−1
x

J x
φ (φ−π/4, z), that is, J y

φ (φ, z) is a scaled and rotated version
of J x

φ .
Subsequently, the computed surface current densities were

turned into discrete current paths using stream functions [10].
These current paths then served as input for a magnetostatic

1MATLAB 2018b, The MathWorks, Inc., Massachussets, USA.

Fig. 3. x-gradient shape function along the bore of the coil (at radius b and
φ = 0) compared with the target field shape used to generate the gradient
coil.

Fig. 4. z-gradient shape function along the bore of the coil (at radius b and
φ = 0) compared with the target field shape used to generate the gradient
coil.

field simulation using CST.2 The simulations provided a mag-
netic field, which could then be compared with the prescribed
target field (1).

This comparison can be found in Figs. 3 and 4, where the
prescribed target field profile functions are shown along with
the simulated and normalized field along the bore of the coil
at φ = 0 and r = b, since the target field is prescribed at
this radius. As can be seen from the figures, the simulated
fields closely follow the prescribed target profile functions.
The difference is primarily caused by the apodization func-
tion. This function effectively smoothens the fields along the
z-direction.

To study the effects of the coil parameters on the per-
formance of the gradient coils, let us first consider the coil
efficiency η, which is defined as the gradient strength produced
by a unit current (T/m/A). We found that the order n of the

2Computer Simulation Technology, 2019, 3DS SIMULIA, Johnston,
RI, USA.
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target field profile function essentially does not influence the
coil efficiencies of the x- and y-gradient coils. As n increases,
the distance between adjacent turns decreases, which will
increase the inductance and shorten the physical coil length in
the z-direction. The coil efficiency, however, remains essen-
tially the same. On the other hand, n does influence the effi-
ciency of the z-gradient. For example, if we increase the order
of the profile function from n = 6 to n = 26, the efficiency
drops by approximately 20%. Larger orders may be necessary
for z-gradient coils, however, since otherwise the coil length
in the z-direction may become longer than the length of the
Halbach array. We note that special care must be taken when
increasing n in gradient coil design, since numerically the
wires can be placed arbitrarily close together but in reality
this is limited by the construction method. Close inspection
of the current paths with respect to the construction method
is needed to find the respective limits for this parameter.

The linear uniformity of the gradient influences the region
which can be imaged without distortions. This is quantified
using the difference between the linear varying (prescribed)
field and the field actually generated. In this case, the simulated
fields along the center line of the corresponding gradient are
used as opposed to the prescribed fields. For the x-gradient,
this center line is across the bore in the x-direction (red line
in Fig. 5, top), for the z-gradient, which is along the axis
of the bore (cross in Fig. 5, bottom). For the simulated field
values Bx , this error is computed as

�{tr,ln}(x, y) =
∣∣Bx(x, y) − B{tr,ln}

x
∣∣∣∣B{tr,ln}

x
∣∣ (11)

where the references B{tr,ln}
x are defined as B tr

x = Bx(x, 0, 0),
and B ln

x = Bx(0, 0, z). These errors are displayed in Fig. 5
from which it is immediately clear that the x-gradient field
is linear over a much larger area in the xy-plane than the
z-gradient field.

The uniformity of the gradient fields can also be described
in terms of the linear spherical volume. Within this volume,
the deviation of the simulated field from a target field is less
than 5%. For the transverse x- and y-gradients the linear
spherical volume is approximately 70% of the diameter of
the outer cylinder. In other words, a sphere centered at the
origin and having a radius of 0.7a completely encloses a
region where the realized field deviates less than 5% from
the prescribed field. For the longitudinal z-gradient field,
however, the linear volume is only 20% of the diameter of
the outer cylinder. Clearly, the linear region of the z-gradient
coil is smaller than the linear region of the x- and y-gradient
coils, which is due to the geometry of the z-gradient coil.
In commercial scanners, similar nonuniformity issues arise for
these types of gradient fields, and their effects in 3-D imaging
are usually corrected in post-processing.

To summarize, we have found that the coil efficiency η
of the x- and y-gradient coils does not significantly vary for
moderate changes in the order n of the target field function.
The coil efficiency of the z-gradient coil, however, is strongly
dependent on n. Larger values of this parameter lead to
z-gradient coils with a smaller spatial extent in the longitudinal

Fig. 5. Linear uniformity error �{tr,ln} with respect to the field at the center
of the bore. The error �tr for the x-gradient coil is shown at the top, while
the error �ln for the z-gradient coil is shown at the bottom. The red line and
cross indicate the reference field line.

z-direction, but decrease the coil efficiency. Moreover, for all
coils, the winding separation decreases as n increases, which
puts a restriction on the magnitude of the order n of the profile
function since, in practice, wires cannot be placed arbitrarily
close to each other.

B. Gradient Construction

To fixate and accurately position the wires, a 3-D printable
mold was created where the current paths were designed as
slots. These slots facilitate easy and accurate placement of
the wires. A single layer of 1.5 mm diameter copper wire
was used to minimize the resistance and to reduce power
dissipation. For the z-gradient coil, the order of the target field
profile function n = 16 is chosen, which leads to a gradient
coil with a longitudinal length that is acceptable. For x- and
y-gradient coils an order of n = 30 was chosen. This was the
maximum n for which the adjacent wires (diameter 1.5 mm)
do not overlap. It must be noted that all three gradients have a
slightly different radius as they are placed on top of each other.
Denoting the radii of the x-, y-, and z-gradient coils by ax , ay ,
and az , respectively, the coils were placed on top of each other
such that az < ay < ax . In other words, the y-gradient coil
is positioned on top of the z-gradient coil and the x-gradient
coil on top of the y-gradient coil. This order of stacking was
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TABLE I

DESIGN PARAMETERS OF THE GRADIENT COILS. THE POWER IS COMPUTED FOR A GRADIENT STRENGTH OF 10 mT/m

Fig. 6. Prototype z-gradient coil (top), where the 3-D printed mold is clearly
visible, and the gradient coil assembly after attaching the y-gradient (bottom).

Fig. 7. Simulated and measured x-components of the gradient field in a
longitudinal slice through the center of x- and y-gradient coils. The fields
have been normalized for ease of comparison, and the measured efficiency η
can be used to find the relation between current and field strength.

chosen because the z-gradient has the lowest efficiency and
the x-gradient naturally has the highest performance due to
the background field being x-directed.

The resistance and inductance of the coils were measured
using a Keysight U1733C RCL meter and a table of the
coil design parameters and electrical properties can be found

Fig. 8. Simulated and measured x-components of the gradient field in a
longitudinal slice through the center of a z-gradient coil. The fields have been
normalized for ease of comparison, and the measured efficiency η can be used
to find the relation between current and field strength.

Fig. 9. 3-D rendering of the wire paths of the x- (left), y- (middle), and
z- (right) gradients. The color indicates the direction of the current: red for
clockwise and black for counterclockwise currents.

in Table I. Renderings of the wire paths of the coils are shown
in Fig. 9, where currents run in a clockwise mode through the
red wires and in a counterclockwise manner through the black
wires. Finally, photographs of the finished assembly and the
3-D molds can be found in Fig. 6.

C. Measurements Results

The field generated by the gradient coils is measured using
a multipurpose 3-axis measuring robot [11]. The robot holds
an AlphaLab, Inc. Gauss meter model GM2 which measures
the field at a resolution of 10 mm isotropic. In Figs. 7 and 8,
the x-component of the measured gradient field is shown as
measured along the linear axis of the gradient at the center
of the coil (Bx(x, 0, 0) for the x-gradient, Bx(0, y, 0) for the
y-gradient and Bx(0, 0, z) for the z-gradient). The measured
and simulated fields are in good agreement with each other.
Finally, for completeness, we mention that the resistance and
inductance of the coils were also measured using a Keysight
U1733C RCL meter. These can be found in Table I together
with the efficiency of the coils computed from the field
measurements.
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Fig. 10. Coronal (left), sagital (middle), and transverse (right) images of a melon obtained with the low-field scanner of the LUMC that incorporates
the gradient coils described in this article. A 3-D-TSE sequence was used with TE/TR = 30/2000 ms. Echo train length was 32, with a field of view
of 192 × 192 × 192 mm. The data matrix consisted of 128 × 128 × 128 complex points. Total acquisition time was 17 min 4 s.

The constructed coils were incorporated in an experimental
low-field Halbach MR scanner that is currently under devel-
opment at the Leiden University Medical Center (LUMC) [7].
The gradient coils were tested and used to acquire 3-D images
of different types of objects. Fig. 10 provides an example
of such an image, in which coronal, sagital, and transverse
slices through a melon are depicted. Minimal distortion can
be observed, which is most likely due to B0 inhomogeneities
and not due to any nonlinearities in the gradient fields.

IV. DISCUSSION AND CONCLUSION

We have applied the target field method to design gradient
coils for an MR scanner with a transverse magnetic back-
ground field. It is then relatively straightforward to turn these
current paths into a constructed gradient coil using simple
3-D printing techniques and wire winding. Field measurements
confirmed that the proposed design procedure indeed leads to
gradient coils that produce the required gradient fields.

Transverse x- and y-gradient coils are generally more
efficient, and therefore, easier to design with respect to field
requirements than the longitudinal z-gradient coils. The coil
efficiency of the transverse coils is typically less sensitive to
the order of the target field profile function and the magnitude
of the order is basically limited by the spacing allowed
between the wires. The region of uniform linearity is also
much larger for transverse gradient coils than for z-gradient
coils as indicated by the uniformity error that we introduced
and the linear spherical volume. On the contrary, the coil
efficiency of a z-gradient coil strongly depends on the order
of the profile function and decreases as the order increases.
This indicates that a relatively small order should be chosen
to realize an effective z-gradient coil, but selecting a small
order leads to a very long gradient coil which may be longer
than the magnet itself. Careful tuning is, therefore, necessary
to obtain a realizable z-gradient coil with a sufficiently large
linear region and coil efficiency. Given the cylindrical geom-
etry of our Halbach configuration, it can also be expected
that the realization of a z-gradient coil in a scanner with a
transverse background field is more difficult than realizing

transverse gradient coils, since the magnitude of a linearly
varying transverse field along the bore of the magnet naturally
increases as we move in a radial direction toward the coil.

Possible extensions of this article include incorporating gra-
dient power minimization as it relates to the Halbach config-
uration, since this would simplify power supply requirements,
which is of importance in a low-resource setting. In addition,
using conductive sheets for the construction of a gradient coil
may be a feasible large-scale production method.

To summarize, with the proposed design methodology, it is
possible to design effective x-, y-, and z-gradient coils in case
of transverse background fields as encountered in a Halbach
permanent magnet scanner. The method is very efficient and
allows for parametric coil design, thereby providing insight
into the tradeoffs of gradient coil construction.

APPENDIX A
DETAILS OF THE MODIFIED TARGET FIELD METHOD

We denote the domain inside the cylinder Region I, while
the domain outside the cylinder is called Region II. Field
quantities having their support in these domains carry a
corresponding superscript.

The magnetic field in both domains is governed by the field
equations ∇ · B = 0 and ∇ × B = 0. The latter equation
is satisfied if we write B = −∇�, where � is the scalar
magnetic potential. Substitution in the first field equation gives
∇2� = 0. In other words, the potential satisfies Laplace’s
equation inside and outside the cylinder. Writing this equation
in cylindrical coordinates, we have

∂2�I,II

∂r2 + 1

r

∂�I,II

∂r
+ 1

r2

∂2�I,II

∂φ2 + ∂2�I,II

∂z2 = 0. (12)

Furthermore, at the current-carrying surface r = a, we have
the boundary conditions

lim
r↑a

∂�I

∂r
= lim

r↓a

∂�II

∂r
(13)

lim
r↑a

1

r

∂�I

∂φ
− lim

r↓a

1

r

∂�II

∂φ
= μ0 Jz (14)

Authorized licensed use limited to: Universiteit Leiden. Downloaded on January 18,2023 at 16:00:20 UTC from IEEE Xplore.  Restrictions apply. 



de VOS et al.: GRADIENT COIL DESIGN AND REALIZATION FOR A HALBACH-BASED MRI SYSTEM 5100208

and

lim
r↓a

∂�II

∂z
− lim

r↑a

∂�I

∂z
= μ0 Jφ (15)

and, finally, the surface current must satisfy the continuity
equation

∂ Jz

∂z
+ 1

a

∂ Jφ

∂φ
= 0. (16)

Applying the Fourier transform (3) to Laplace’s equa-
tion, the boundary conditions, and the continuity equation,
we obtain the spectral domain equations

r2 ∂2�̃[m]

∂r2 + r
∂�̃[m]

∂r
− (m2 + k2r2)�̃[m] = 0 (17)

lim
r↑a

∂�̃I;[m]

∂r
= lim

r↓a

∂�̃II;[m]

∂r
(18)

jm

(
lim
r↑a

1

r
�̃I;[m] − lim

r↓a

1

r
�̃II;[m]

)
= μ0 J̃ [m]

z (19)

and

jk
(

lim
r↓a

�̃II;[m] − lim
r↑a

�̃I;[m]) = μ0 J̃ [m]
φ (20)

and

ka J̃ [m]
z + m J̃ [m]

φ = 0. (21)

As is well known [12], the solution of (17) in Region I
that is bounded at the origin is given by �̃I;[m](r, k) =
αm(k)Im(|k|r), where the coefficient αm(k) is independent
of r , while the solution in Region II that remains bounded
as r → ∞ is given by �̃II;[m](r, k) = βm(k)Km(|k|r) with
βm(k) independent of r . Substituting these solutions in the
boundary conditions, the coefficients are found as

αm(k) = −jaμ0
|k|
k

K ′
m(|k|a) J̃ [m]

φ (22)

and

βm(k) = −jaμ0
|k|
k

I ′
m(|k|a) J̃ [m]

φ . (23)

Having the spectral domain potential at our disposal, the cor-
responding spectral domain magnetic field can be determined.
Of particular interest is the magnetic field inside the cylinder
(Region I), since the target field is prescribed in this region.
Explicitly, for the magnetic field in Region I, we have

B̃I;[m]
r = −∂�̃I;[m]

∂r
= jaμ0k I ′

m(|k|r)K ′
m(|k|a) J̃ [m]

φ (24)

B̃I;[m]
φ = − jm

r
�̃I;[m]

= −aμ0

r
m

|k|
k

Im(|k|r)K ′
m(|k|a) J̃ [m]

φ (25)

and

B̃I;[m]
z = −jk�̃I;[m]

= −aμ0|k|Im(|k|r)K ′
m(|k|a) J̃ [m]

φ . (26)

Now the target field is in the x-direction and is prescribed on
the inner cylinder r = b . Writing this field in terms of its
cylindrical components, we have

Bx(b, φ, z) = BI
r (b, φ, z) cos(φ) − BI

φ(b, φ, z) sin(φ) (27)

and applying the Fourier transform to the above equation gives

B̃[m]
x (b, k) = 1

2

[
B̃I;[m−1]

r (b, k) + B̃I;[m+1]
r (b, k)

]

− 1

2j

[
B̃I;[m−1]

φ (b, k) − B̃I;[m+1]
φ (b, k)

]
. (28)

Substituting (24) and (25) in the above expression, we arrive
at (5).

APPENDIX B
SURFACE CURRENT DENSITY FOR A z-GRADIENT COIL

We show how we obtain the surface current from the
prescribed target field for the design of a z-gradient coil. The
analysis for an x- or y-gradient coil runs along similar lines.

For a z-gradient coil, the Fourier transform of the target
field is given by B̃[m]

x (b, k) = 2πgz�̃ln(k)δm,0, where the delta
symbol denotes the Kronecker delta and

�̃ln(k) =
∫ ∞

z=−∞
�ln(z)e

−jkz dz. (29)

Note that �̃ln(k) is imaginary and an odd function of k.
Substitution of the Fourier transform of the target field in (5)

gives

2πgz�̃ln(k)δm,0

= j

2

[
P̃[m−1](b, k) − Q̃[m−1](b, k)

]
J̃ [m−1]
φ (k)

+ j

2

[
P̃[m+1](b, k) + Q̃[m+1](b, k)

]
J̃ [m+1]
φ (k). (30)

Since the left-hand side of this equation vanishes for m odd,
we take a surface current for which all even-numbered angular
modes of its φ-component vanish, that is, we take J̃ [m]

φ (k) = 0
for m even and k ∈ R. Furthermore, for m = 0, we obtain

2πgz�̃ln(k) = j

2

[
P̃[1](b, k)+ Q̃[1](b, k)

][
J̃ [−1]
φ (k)+ J̃ [1]

φ (k)
]

where we have taken the symmetry of P̃[m] and Q̃[m] with
respect to m into account. For the surface current we now
take J̃ [−1]

φ (k) = J̃ [1]
φ (k) and we obtain

J̃ [1]
φ (k) = −j

2πgz�̃ln(k)

P̃[1](b, k) + Q̃[1](b, k)
= J̃ [−1]

φ (k). (31)

Similarly, for m even and not equal to zero (m = 2n, n =
±1,±2, . . .), the left-hand side vanishes, and if we take a
surface current for which all odd numbered angular modes
are even with respect to m, that is

J̃ [−2n+1]
φ (k) = J̃ [2n−1]

φ (k), n = 1, 2, . . . (32)

then we satisfy (30) if

J̃ [2n+1]
φ (k) = − P̃[2n−1](b, k)− Q̃[2n−1](b, k)

P̃[2n+1](b, k)+ Q̃[2n+1](b, k)
J̃ [2n−1]
φ (k) (33)
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for n = 1, 2, . . . . In other words, all odd-numbered higher-
order modes can be determined recursively starting from
J̃ [1]
φ (k) as given by (31).
To obtain the φ-component of the surface current in the spa-

tial domain, we substitute the modes in the Fourier inversion
formula and include apodization to obtain

J z
φ(φ, z) = 1

4π2

∫ ∞

k=−∞

∞∑
m=−∞

J̃ [m]
φ (k)T̃ (k)ejmφejkzdk

= 1

2π2

∞∑
m=1
m odd

cos(mφ)

∫ ∞

k=−∞
J̃ [m]
φ (k)T̃ (k)ejkzdk.

(34)

The current consists of an infinite summation of odd-numbered
angular modes. Each term in this series represents the
φ-component of a surface current that produces its own
magnetic field. The total magnetic field consists of a super-
position of these individual fields due to the linearity of the
field equations. Since we want to realize a z-gradient coil
in practice, we have to truncate the series and to keep the
construction of the coil as simple as possible, we keep the
first current term in the series only. Our final expression for
the φ-component of the surface current becomes

J z
φ(φ, z) = 1

2π2 cos(φ)

∫ ∞

k=−∞
J̃ [1]
φ (k)T̃ (k)ejkz dk

= −j
gz

π
cos(φ)

∫ ∞

k=−∞
�̃ln(k)T̃ (k)

P̃[1](b, k)+ Q̃[1](b, k)
ejkzdk.

(35)

The z-component of the surface current that corresponds
to (35) follows from the continuity equation for the surface
current.
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