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An Efficient Method for Multi-Parameter
Mapping in Quantitative MRI Using

B-Spline Interpolation
Willem van Valenberg , Stefan Klein , Frans M. Vos , Kirsten Koolstra ,

Lucas J. van Vliet , and Dirk H. J. Poot

Abstract— Quantitative MRI methods that estimate mul-
tiple physical parameters simultaneously often require the
fitting of a computational complex signal model defined
through the Bloch equations. Repeated Bloch simulations
can be avoided by matching the measured signal with
a precomputed signal dictionary on a discrete parame-
ter grid (i.e. lookup table) as used in MR Fingerprinting.
However, accurate estimation requires discretizing each
parameter with a high resolution and consequently high
computational and memory costs for dictionary genera-
tion, storage, and matching. Here, we reduce the required
parameter resolution by approximating the signal between
grid points through B-spline interpolation. The interpolant
and its gradient are evaluated efficiently which enables a
least-squares fitting method for parameter mapping. The
resolution of each parameter was minimized while obtain-
ing a user-specified interpolation accuracy. The method
was evaluated by phantom and in-vivo experiments using
fully-sampled and undersampled unbalanced (FISP) MR
fingerprinting acquisitions. Bloch simulations incorporated
relaxation effects (T1, T2), proton density (PD), receiver
phase (ϕ0), transmit field inhomogeneity (B+

1 ), and slice
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profile. Parameter maps were compared with those obtained
from dictionary matching, where the parameter resolution
was chosen to obtain similar signal (interpolation)accuracy.
For both the phantom and the in-vivo acquisition, the pro-
posed method approximated the parameter maps obtained
through dictionary matching while reducing the parameter
resolution in each dimension (T1, T2, B+

1 ) by – on average –
an order of magnitude. In effect, the applied dictionary was
reduced from 1.47GB to 464KB. Furthermore, the proposed
method was equally robust against undersampling arti-
facts as dictionary matching. Dictionary fitting with B-spline
interpolation reduces the computational and memory costs
of dictionary-based methods and is therefore a promising
method for multi-parametric mapping.

Index Terms— B-spline interpolation, dimensionality
reduction, least-squares minimization, magnetic resonance
fingerprinting, singular value decomposition, quantitative
magnetic resonance imaging.

I. INTRODUCTION

QUANTITATIVE MRI (qMRI) methods measure the mag-
netic properties of tissues, described by parameters such

as relaxation times (T1, T2, T ∗
2 ) and proton density (P D).

Many of these methods require knowledge of inhomogeneities
in the static (�B0) and/or transmit (B+

1 ) magnetic field in
order to obtain accurate parameter maps. Changes in the
magnetic properties of tissues have been linked to various
pathologies [1].

Magnetic resonance fingerprinting (MRF) is a recently
introduced paradigm to acquire multiple parameters within
a short scan time [2]. MRF methods use a pulse sequence
with varying flip angles and repetition times to acquire images
with many different contrasts. In each voxel, the signal’s time
course is assumed to be specific to the parameter combination
representing the underlying tissue. Usually, each contrast is
undersampled, but by varying the k-space trajectory among the
contrasts, undersampling artifacts are assumed separable from
the true signal of a voxel. Parameter estimation is done by
matching the acquired signal course in a voxel to a dictionary
that contains the simulated signals, or atoms, for a grid
of parameter combinations (e.g. T1, T2, T ∗

2 ,�B0, B+
1 ). This

matching avoids the fitting of an explicit signal model, which
in MRF would require repeatedly solving Bloch equations,
which is computationally expensive. Before MRF, dictionary
matching was also applied in other qMRI methods in order to

0278-0062 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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improve T1 estimation [3], [4], T2 estimation [5], and water/fat
separation [6], [7].

The original MRF paper obtained T1, T2,�B0, and P D
parameter maps with a pseudorandom 2D inversion-recovery
balanced steady state free-precession (IR-bSSFP) sequence
with variable-density-spiral readout [2]. Subsequently, a mod-
ification to the original scheme was proposed by applying
the fast-imaging with steady-state precession (FISP) sequence,
which includes unbalanced gradients [8]. This reduced the
influence of static field inhomogeneities at the cost of a
lower signal-to-noise ratio (SNR). In recent years, these MRF
methods have been extended to measure other properties of
interest such as diffusion [9], perfusion [10], and chemical
exchange [11]. Furthermore, including transmit field inho-
mogeneity (B+

1 ) and slice profile in the fitting has been
shown to increase the accuracy of the resulting relaxometry
maps [12], [13].

However, dictionary matching becomes problematic when
the number of estimated parameters is increased. The number
of atoms increases exponentially with the number of parame-
ters, and consequently also the computational and memory
costs of generating, storing, and matching to the dictionary.
This is especially prohibitive if the required precision for each
parameter is high since this requires many steps along each
dimension of the dictionary.

Several clever strategies were introduced to reduce the
computational and memory demands of large dictionaries.
Smarter search strategies can significantly reduce the match-
ing time [14], but the size of the dictionary is limited by
the available memory. The atoms can be compressed with
a singular value decomposition (SVD) to lower the com-
putational and memory costs for matching and storing the
dictionary [15]. However, using too few singular vectors
degrades the results. More recent work proposed interpolating
the signal with a polynomial hyperplane fitted on a sparsely
sampled dictionary [16]. However, this method was applied to
a two-parameter case only (T1 and T2) and the accuracy of
the parameter maps remained limited to an a priori defined
refinement factor.

We propose parameter estimation by fitting the acquired
MR signal with a continuous signal model defined through
B-spline interpolation of a sparse dictionary. The interpolation
targets to maintain the estimation accuracy while reducing
the resolution of each parameter and consequently the com-
putational and memory costs of the dictionary. This would
enable the estimation of an increased number of parameters
simultaneously. B-spline interpolation is commonly used in
image interpolation because it is a flexible and efficient
technique that has minimal support for a desired interpolation
error [17], [18]. In particular, the derivative of the interpolant
can be calculated efficiently [18] which allows a gradient-
based optimization technique for fitting a measured signal to
the dictionary. Additionally, we introduce a method to estimate
the parameter resolution in the dictionary that is required to
achieve a user-specified interpolation accuracy. The proposed
method is evaluated on simulated data and measurements
taken from phantom and in-vivo experiments. The efficiency

of our dictionary fitting framework is compared to matching
with a dictionary of equal accuracy. We hypothesize that the
proposed method accurately estimates a comprehensive set of
parameters based on a significantly smaller dictionary.

II. METHODS

A. Parameter Estimation

A general qMRI method measures the complex-valued
signal m of a voxel at M time points. The signal is assumed
to be a function of P parameters θ = [θ1, . . . , θP ] ∈ � ⊆ R

P ,
contaminated by Gaussian noise:

m = ρs (θ) + σ (1)

The signal model s (θ) ∈ CM is the pulse sequence specific
solution of the Bloch equations, and the scaling factor ρ ∈ C

is dependent on the proton density and the receiver sensitivity.
Note that we assume a single-compartment model in each
voxel, so that ρ is a single complex number. The Gaussian
noise σ ∈ CM is considered identical and uncorrelated
between measurements and receiver channels.

Parameter estimation is often done by least-squares fitting:[
θ̂ , ρ̂

]
= arg min

θ��,ρ�C

�m − ρs (θ)�2
2 (2)

However, the signal model s(θ) is computationally complex
for MRF, since the signal at a given time point depends on
the signal’s history during previous steps. As such, it requires
solving the Bloch equations step-by-step. This makes conven-
tional optimization techniques for solving Eq. 2 expensive.

B. Dictionary Matching

MRF avoids repeated evaluation of s(θ) by matching the
acquired signal to a precomputed dictionary, i.e. signals on a
discrete grid of parameter values [2]. The dictionary atom with
index k ∈ NP corresponds to parameter values θ = f (k),
where the mapping f (v) is defined for continuous grid
position v ∈ RP in order to facilitate interpolation (see below).

The dictionary matching step in MRF finds for a measured
signal m the grid point k̂ and consequently the associated
parameter combination θ̂ = f

(
k̂
)

by

k̂ = arg max
k

mH s ( f (k)) / �s ( f (k))�2 . (3)

The superscript H indicates the Hermitian conjugate. The
complex scaling factor ρ̂ is subsequently determined through
the least-square solution:

ρ̂ =
(

s
(
θ̂
)H

m
)

/

(
s
(
θ̂
)H

s
(
θ̂
))

∈ C (4)

The solution [ f
(

k̂
)

, ρ̂] of Eqs. 3 and 4 is also the solution
of Eq. 2 when cast as a discrete optimization problem over the
parameter values θ = f (k) (see Supplementary Materials A).

The number of dictionary atoms increases linearly with
the number of discretized values (K p) of each parameter
and exponentially with the number of parameters (P). There-
fore, high-precision multi-parameter maps are computationally
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infeasible since the computational and memory cost for dic-
tionary generation, storage, and matching scale linearly with
the number of dictionary atoms. Singular value decomposi-
tion (SVD) can alleviate these effects by projecting both the
measurement data m and the dictionary atoms s ( f (k)) to a
lower dimensional space:

mL = V T
L m ∈ C

L

sL ( f (k)) = V T
L s ( f (k)) ∈ C

L (5)

where V T
L contains the singular vectors corresponding to the L

largest singular values. As a result, the memory costs of storing
the dictionary and the cost of the dictionary-matching step in
Eq. 3 reduces by a factor L/M [14]. However, the results
degrade when using too few singular vectors and multi-
parameter mapping is still computationally demanding since
the SVD only reduces the number of time points and not the
number of atoms.

C. Dictionary Fitting

To enhance the precision of the parameter maps while
limiting the number of grid points, we propose a dictionary
fitting1 framework in which the signal is modelled on the
whole, continuous parameter domain through interpolation
of a sparsely sampled dictionary. We define the B-spline
interpolated signal of order n at grid position v ∈ RP

(without SVD) as [17]:

s̃ (v) =
∑

k∈NP

c (k) βn (v − k) (6)

Here, c (k) ∈ CM indicates the B-spline coefficient for each
dictionary atom and βn (v) is the product of B-spline basis
functions of order n along each dimension:

βn (v) =
P∏

p=1

βn (
v p

)
(7)

For details on B-spline interpolation, including the exact
definition of the B-spline basis functions βn (v) we refer to
a general background paper [17]. Essentially, the nth order
B-spline basis function is a piecewise polynomial of degree
n with width of support n + 1. The coefficients c (k) can
be obtained via a closed-form solution, such that s̃ (k) =
s ( f (k)). In effect, the interpolated function intersects the
dictionary atoms exactly, while there is continuity up to the
nth derivative.

With SVD compression, the B-spline interpolated signal
s̃L (k) ∈ CL and its coefficients cL (k) ∈ CL are defined by
replacing s ( f (k)) ∈ CM with sL ( f (k)) ∈ CL . Through
recursive implementation of the spline interpolation [18],
the computational cost of evaluating both s̃L (v) and its
gradient is only O(Ln P). The incorporation of B-spline inter-
polation and SVD compression in Eq. 2 yields:

[v̂, ρ̂] = arg min
v,ρ̂

�mL − ρs̃L (v)�2 (8)

1We use the term dictionary matching for the discrete optimization in
Eq. 3 and dictionary fitting for the continuous optimization in Eq. 8.

The optimization problem in Eq. 8 is solved using
the fmincon routine from MATLAB (The Mathworks,
Natick, MA) with the trust-region-reflective algo-
rithm. Dictionary matching determines the initial value and the
optimization stops when the error reduction is below 10−5 in
subsequent steps or after 100 iterations. Subsequently, we set
θ̂ = f (v̂), and the proton density (P D) and receiver phase
(ϕ0) are determined by the modulus and phase of the complex
scaling factor ρ̂. The accuracy of the parameter estimates from
Eq. 8 depends on the invertibility of the forward model
s (θ) (i.e the applied acquisition), and on the approximation
errors due to the SVD projection (Eq. 5) and the B-spline
interpolation (Eq. 6) of which the latter is investigated in the
following section.

D. Parameter Resolution

The interpolation error over the range �p of parameter θp

decays as O
((

1
/

K p
)n+1

)
for B-spline order n and number of

discretized values K p [17]. The interpolation error at a specific
position v ∈ R

P is defined by

Eint (v) := �s̃ (v) − s ( f (v))�2 . (9)

To reduce the computation and memory costs of the dic-
tionary, we aim to find for each spline order the smallest
number of atoms such that Eint (v) is below a user-specified
threshold α for all v with f (v) ∈ �. We set the parameter
resolution of the dictionary based on the interpolation error on
the boundary of �, where we assume the error is maximal.
So the parameter resolution of the dictionary is determined
under the assumption that the interpolation error is maximal at
the boundary of �. Consequently, the number of atoms (K p) in
parameter domain �p is estimated based on the interpolation
error along 2P−1 edges where the other parameters obtain
their maximal/minimal value. On each edge, we define s̃ (v)
through interpolation of increasing number of atoms K p =
2 j−1 + 1 uniformly sampled on the grid, starting with j = 1
(i.e. the minimum and maximum of parameter θp) until a user-
specified maximum J . For each iteration j and spline order n,
we determine the overall interpolation error as the maximum
of Eint (v) evaluated at the midpoints between atoms on each
edge. We select the K p for which the overall interpolation
error is below a chosen value α for the given number and all
further refinements. We include values K p �= 2 j + 1 in this
selection by estimating the overall interpolation error between
the J iterations through linear interpolation.

E. Dictionary Design

The dictionary-fitting framework is tested with a FISP
MRF pulse sequence [8]. The generated dictionary contains
the simulated signals as a function of P = 3 parameters:
longitudinal relaxation time T1 ∈ [5, 6000] ms, transversal
relaxation time T2 ∈ [5, 2000] ms, and transmit field inho-
mogeneity B+

1 ∈ [0.5, 1.5]. Thus θ = (
T1, T2, B+

1

) ∈ R3.
We define θ = f (v) = [ f1 (v1) , f2 (v2) , f3 (v3)], where f p

maps [1, K p] to 
p logarithmically for T1 and T2, and linearly
for B+

1 . This choice was made since the signal amplitude has
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a known exponential dependence on T1 and T2. For B-spline
orders n ≥ 2, we avoid interpolation issues near the boundary
by extending the grid with one position outside of � and set
the derivative of the interpolant equal the numerical derivative
as boundary condition.

The pulse sequence was modelled with an event-based
approach with RF pulses, gradient pulses, and signal readout
at specified time points. Adiabatic inversion pulse and gra-
dient pulses were modelled as instantaneous rotations. The
slice profile was modelled through 10, 000 spins that were
uniformly distributed over twice the slice width (FWHM).
To reduce computational complexity, the true excitation pulse
was replaced by a pulse consisting of 7 time steps with
amplitude, phase, and duration of each step optimized to
approximate the true response of a 90 degree pulse without
relaxation. This approximation had a relative error below 1%
(with L2 norm) and reduced the computational complexity by
a factor of 14 compare to applying the full RF pulse. The
simulated signal s (θ) has the maximal amplitude of 1 when
all spins are coherent in the transverse plane.

III. EXPERIMENTS

The proposed approach was evaluated on simulated, phan-
tom, and in-vivo data. In each experiment, we used 1000
flip angles and repetition times as specified in the original
FISP MRF article [8]. Other settings were: inversion time
TI = 40 ms, echo time TE = 2.5 ms, and delay TD = 5000 ms
after each pulse train. Excitation pulses had a duration of 1 ms,
a time-bandwidth product of 3, and a slice width of 5 mm.

The code of the dictionary fitting framework and the
experiments performed is provided for reference purposes
at https://bitbucket.org/bigr_erasmusmc/dictionary_fitting. All
processing was done in MATLAB using a single 2.1 GHz core
(AMD Opteron 6172).

A. Dictionary Design and Generation

The resolution of the parameters in the dictionary was
estimated for each combination of pulse sequence and spline
order as described in Section II.D. We set the interpolation
error threshold to α = 5 · 10−4, which is below the noise
level observed in our practical experiments, and the maximum
number of iterations J = 10, since higher number of atoms
were computationally infeasible. The total dictionary size was
calculated as the product of required number of atoms for each
parameter to pass the target error.

Two dictionaries were generated in order to evaluate the
proposed method. Dictionary fitting (Eq. 8) used a sparse
dictionary based on the parameter resolution prescribed for
second (n = 2) order B-spline interpolation. As a reference,
parameter estimation was done through dictionary matching
(Eq. 3) using a dense dictionary with parameter resolution
prescribed for zeroth (n = 0) order B-spline interpolation
(i.e. nearest neighbor).

B. Dictionary Evaluation

We evaluate if the interpolation error in the interior is
below the prescribed threshold α in the dense and sparse

dictionary with respectively zeroth and second order B-spline
interpolation. The interpolation error was determined by Eq. 9
at a 1000 positions v, sampled uniformly between 1 and K p for
each dimension p, with condition that f2 (v2) = T2 ≤ T1 =
f1 (v1) to ensure physically realistic values. This validation
of the interpolation accuracy was performed without SVD
compression in order to separate different sources of error.

C. Phantom and In-Vivo Experiment

Practically, we evaluated the dictionary-fitting framework
on a 3T Ingenia scanner with a 32-channel head coil (Philips
Healthcare, Best, The Netherlands) on a phantom and a healthy
volunteer. Data sampling was done using a spiral trajectory
that was rotated 7.5 degrees between samples and required
48 interleaves to fully sample a 128 × 128 matrix.

Parameter maps were determined by dictionary fitting
(Eq. 8) and matching (Eq. 3) with respectively the sparse
and dense dictionaries (see Sec. II.D) with SVD compression.
The number of singular values L was set to 30 which is
in accordance with previous work [16]. The effect of the
compression was evaluated on the parameter maps obtained
from the fully-sampled in-vivo experiment.

For the phantom experiment we used the NIST system
phantom that contains contrast spheres with calibrated T1
and T2 values [19]. We reconstructed images based on an
undersampled (1 interleave) and fully sampled (48 interleaves)
acquisition. The total scan time was 18 and 871 seconds for
the undersampled and fully sampled acquisition, respectively.
The accuracy of the methods was determined through the root-
mean squared error (RMSE) in the T1 and T2 estimates with
respect to the calibrated values in each ROI. To quantify the
efficiency of our method, we recorded the computation time
and memory usage for the dictionary calculation, storage and
fitting.

The in-vivo experiment concerned acquiring a 2D slice
of the brain of a healthy volunteer. The study was approved by
the LUMC review board for Medical Ethics and the volunteer
gave an informed consent. Initially, we compare the parameter
maps obtained with dictionary matching and fitting from
reconstructed images of the fully sampled (48 interleaves)
acquisition. Subsequently, we retrospectively undersampled
the k-spaces of the fully sampled acquisition by selecting 1,
2, 4, 6, 12, 24, and 48 interleaves. Image reconstruction based
on the selected interleaves was performed by a non-uniform
Fourier transform with density compensation. For each number
of interleaves, we determined the T1 and T2 maps obtained
through dictionary matching and fitting, and compared those
with the maps from the fully sampled data.

IV. RESULTS

A. Dictionary Design and Generation

Fig. 1 shows the predicted interpolation error as a function
of the number of atoms in each parameter dimension (K p)
for spline orders n = {0, 1, 2, 3}. The interpolation error
was quantified by the maximum value of Eint (v) over the
midpoints between sampled positions. The legend reports the
minimum number of atoms required for Eint (v) < 5 · 10−4
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Fig. 1. Interpolation error on the edge of parameter space as function of number of atoms in each dimension. Dashed line indicates target error
and the legend shows for each parameter the minimum number of atoms required to obtain the target error. The number of atoms in each parameter
dimension reduces approximately an order of magnitude between zeroth and higher order B-spline interpolation.

(which excludes the boundary padding for n ≥ 2). The
method predicts for zeroth order B-spline interpolation that
the target interpolation error is achieved using 7.05 ·106 atoms
(i.e. 454·97·160). With second order spline, the total number of
atoms including the boundary dropped to 2080 (i.e. 13 ·8 ·20),
a factor of 3.38 · 103 reduction.

Dictionaries with both these parameter resolutions were
generated. To do so the average computation time of a single
atom based on the Bloch simulation was 6.20 seconds. SVD
compression to 30 vectors reduced the memory cost of the
dense dictionary from 48.0 GB to 1.47 GB, and of the sparse
dictionary from 14.6 MB to 464 KB.

B. Dictionary Evaluation

Fig. 2 shows the interpolation error Eint (v) of a 1000 posi-
tions in the interior for the dense and sparse dictionaries with
respectively zeroth and second order B-spline interpolation
(without SVD). The interpolation errors are shown as function
of T1, T2, and B+

1 . Note that the constraint T1 ≥ T2 biased
sampled positions to high T1 and low T2 values. The root-
mean-square value of all interpolation errors was 4.1 · 10−4

and 2.8 ·10−4 for respectively the dense and sparse dictionary,
with maxima of 31·10−4 and 16·10−4. The interpolation error
was above the target error for 15.5% of the sampled positions
with dictionary matching, and for 7.0% of the same sampled
positions with dictionary fitting. It can be observed that in
particular the interpolation error with second-order B-splines
was highest for test signals with T1 and T2 values near the
extremes of the parameter range (left and right sides of the
graphs).

A single evaluation of the spline interpolation function and
its gradient took 1.4 ms without SVD compression.

C. Phantom Experiment

Fig. 3 shows that both for the prospective undersampled
and fully sampled acquisitions the parameter maps obtained
with dictionary matching were closely approximated by the
proposed dictionary fitting method. The T2, B+

1 , and P D
maps from the undersampled data have some artefacts that
are predominantly located in the background water.

Fig. 4 shows the mean estimated T1 and T2 values in each
sphere of the phantom as a function of their calibrated values

Fig. 2. Interpolation error at 1000 uniformly sampled positions
in the grid for the dictionary used with matching (left) and fitting (right).
The dashed line indicates the target error applied for dictionary design.
The parameter resolution of both dictionaries is sufficient to obtain the
target error for most grid positions in the interior.

for undersampled and fully sampled acquisitions and both
estimation methods. The relative differences between mean
estimated and calibrated T1 and T2 values were respectively
below 1.0% and 10.2% for the undersampled data, and below
0.7% and 3.1% for the fully sampled data. The root-mean-
square error in the T1 and T2 estimates was similar for
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Fig. 3. Estimated parameter maps in the phantom through dictionary matching and dictionary fitting with both undersampled and fully sampled
data. With both the undersampled data (top rows) as the fully sampled data (bottom rows), the dictionary matching maps are closely approximated
by the proposed dictionary fitting method while only using 0.03% of the atoms.

dictionary fitting and dictionary matching (see Supplementary
Materials B).

The fitting time was 58 minutes for matching with the
densely sampled dictionary while our proposed fitting method
with the sparse dictionary took 6 minutes. These times did not
include the loading of the dictionaries.

D. In-Vivo Experiment

Fig. 5 shows the parameter maps of the in-vivo experiment
obtained from fully sampled data using both dictionary match-
ing and dictionary fitting, as well as the difference between
their maps. The parameter ranges of T1 and T2 are adjusted to
highlight the tissues of interest. Differences between the two
maps are mostly noticeable around the CSF, and both methods
contain some residual structure in the B1 map.

Compared to maps obtained without SVD compression,
dictionary matching had a mean absolute relative error of
0.06% in T1 and 1.32% in T2, while dictionary fitting

had an error of 0.15% in T1 and 2.66% in T2. The error
of dictionary fitting was somewhat higher than dictionary
matching, we hypothesize that the continuous optimization
translates variation in the signal (due to the compression)
directly to variation in the estimated parameters, while the
discrete optimization requires significant variation in the signal
before matching to another element of the dictionary and
consequently another discretized parameter value.

The distribution of the error in the T1 and T2 maps as
function of the number of sampled spirals is shown for both
estimation methods in Fig. 6 (blue and red bars), where
the error in each voxel is relative to the value obtained from
the fully sampled data with the same estimation method. The
proposed method has a smaller spread in error (indicated
by the whiskers) than dictionary matching in most maps
of each parameter except for the T2 maps obtained from
1 and 6 spirals. Note that from 6 spirals onwards the dictio-
nary matching approach selected the same atom as the fully
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Fig. 4. Mean estimated value of T1 (top) and T2 (bottom) in each region-of-interest of the phantom as function of their calibrated value (log-log
scale). Dictionary fitting obtains for both data sets and each parameter equal accuracy as dictionary matching while using 0.03% of the atoms.

Fig. 5. Parameter maps in the brain from the in-vivo experiment, estimated through dictionary matching (top) and dictionary fitting (middle), and
their difference (bottom). Note that the parameter ranges of the difference maps have been adjusted to highlight the differences.

sampled reference in the majority of voxels (boxes have zero
width) and in most others one step in the dictionary away
(whiskers), while the continuous estimate of the proposed

fitting approach has a small but finite width. Furthermore,
it can be noticed that the relative T1 error was below the
relative T2 error.
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Fig. 6. Box-and-whisker plots of relative difference in T1 (left) and T2 (right) parameter values in the brain as function of the number of
spirals/interleaves generated by prospective undersampling k-space. Boxes represent 25-75 percentiles and whiskers indicate the 5-95 percentiles
of the error values of all voxels in the brain. Both estimation methods have a similar error spread in T1 and T2 for each number of sampled spirals.

V. DISCUSSION

This work presented a novel method for quantitative para-
meter estimation based on the least-squares fitting of a signal
model defined by B-spline interpolation of a sparsely sampled
dictionary. The FISP MRF sequence was chosen as the basis
imaging sequence due to its ability to estimate multiple
parameters simultaneously, though the precision of T1 appears
to be superior to that of T2 for this sequence [8]. However,
the proposed dictionary fitting framework is applicable for
general acquisitions and parameters.

The interpolation error was estimated as a function of
the parameter resolution for different B-splines orders. With
second or third order splines, the resolution of each parameter
reduced by approximately an order of magnitude compared to
nearest neighbor interpolation. Consequently, the total number
of atoms in the dictionary could be reduced with three orders
of magnitude, leading to an equal reduction in memory and
computational costs while maintaining equal signal accuracy.

The large reduction of resolution of each parameter makes
it computationally feasible to estimate an increased number
of parameters simultaneously. In Supplementary Materials C,
we demonstrated this by constructing and fitting with a
five-dimensional dictionary; additionally including intra-voxel
dephasing T 	

2 and off-resonance frequency �ω0. This only
increased the dictionary size by a factor 164 and fitting
time by 58.4%. Consequently, the reduced computational
and memory costs of dictionary-based methods enables the
development of acquisition schemes that estimate more para-
meters simultaneously. Furthermore, the accuracy of our model
can be increased by extending the Bloch simulation while
using similar computing resources for the dictionary gener-
ation. Finally, the smaller dictionary sizes benefit methods
that require dictionary generation on-the-fly, e.g. to incor-
porate acquisition details such as movement in the signal
model [20].

The interpolation error of the simulated signals was found
to be slightly higher than the predetermined threshold at
some points near the boundary of the parameter domains.
We performed an additional experiment (not shown) with
interior points that only require one-dimensional interpola-
tion (i.e. restricting the other two dimensions to the grid),
and found that the number of interpolation errors above

the threshold reduced to less than 1%, with a maximum of
6.8 · 10−4. This shows that the error is predominantly caused
by interpolating in multiple dimensions, while our parame-
ter resolution was based on one-dimensional interpolation.
A practical solution would be to set the actually applied
threshold somewhat below the preferred accuracy (a factor two
is appropriate for our three-dimensional dictionary). Further-
more, we assumed that the interpolation error is maximal near
the boundary of the parameter range and Fig. 2 showed that
this was the case for T1 and T2. However, this may not be true
for each pulse sequence and for every parameter. Therefore,
an evaluation of the interpolation error in the interior of the
dictionary is recommended for general application.

The phantom and volunteer experiments showed that the
proposed dictionary fitting method was able to estimate T1
and T2 with similar accuracy as dictionary matching while
reducing the number of atoms three orders of magnitude. The
in-vivo B+

1 maps had residual structure near the CSF, which is
probably due to correlation between the B+

1 and T2 parameters,
which is known for MRF methods [12], [13].

In the presented results, we chose as error threshold
α = 5 · 10−4 and assumed that this was sufficiently accu-
rate for errors in the parameters to be dominated by noise
(and not e.g. by discretization errors). In Supplementary Mate-
rials D, we examined the quality of the in-vivo T1 and T2 maps
when setting α a factor 10 higher and lower. This showed that
the T1 maps were reasonably consistent for different α and
B-spline orders n ∈ {0, 1, 2, 3}. The T2 maps showed large
variation with α = 5 · 10−3, and small differences around
the CSF for α = 5 · 10−5. Thus, small improvements in T2
estimation might be possible by lowering the threshold α.
However, we chose not to do this since the computational
and memory requirements of the reference method would be
too high for our available resources.

The proposed dictionary fitting method reduced the calcu-
lation time of the fit compared to the matching with a dense
dictionary. The calculation time of both estimation techniques
can be further reduced by parallelizing the fitting over mul-
tiple cores. Additionally, the dictionary matching can benefit
from smarter search strategies [14], although application to
higher dimensions is still limited due to the required dictio-
nary size. The proposed dictionary fitting method used the
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trust-region-reflective algorithm since it was recommended
by the MATLAB documentation for constrained optimization
with gradients. While we experienced that convergence was
reasonably fast, often within 20 iterations, further improve-
ments can likely be found when doing an in-depth analysis
of the applied solver. An alternative parameter estimation
method is directly fitting the data to the Bloch equations.
However, this would require a strong simplification of our
signal model as generating only a single atom currently already
took 6.10 seconds.

The proposed dictionary fitting method had similar accuracy
as a dictionary matching strategy applying a dense dictionary,
even when using data with undersampling artifacts. Hence,
dictionary fitting is a beneficial substitute in many cases
where dictionary matching is currently used. It can be directly
inserted in iterative reconstruction methods with undersam-
pled MRF data [20], by replacing the pattern matching with
dictionary fitting. Initialization of the fitting through dictionary
matching with the sparse dictionary likely enhances the proba-
bility of starting the optimization close to the global optimum.

The dictionary fitting framework was presented for a single
MRF pulse sequences and associated model parameters, but
is easily extendable to other qMRI methods as presented
in [3]–[7].

VI. CONCLUSION

The Bloch simulated signal is accurately and efficiently
approximated through B-spline interpolation of a sparsely
sampled dictionary. Therefore, the proposed method enables
estimating parameters by fitting a continuous B-spline signal
model, which obtains the accuracy of dictionary matching
while strongly reducing dictionary size. The required para-
meter resolution is efficiently determined on the boundary of
the parameter range. The proposed methods were applied to a
FISP MRF acquisition in this work, but can be used for any
qMRI acquisition scheme.
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