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Abstract
Insights into individual differences in gene expression and its heritability (h2) can help in understanding pathways from DNA
to phenotype. We estimated the heritability of gene expression of 52,844 genes measured in whole blood in the largest twin
RNA-Seq sample to date (1497 individuals including 459 monozygotic twin pairs and 150 dizygotic twin pairs) from
classical twin modeling and identity-by-state-based approaches. We estimated for each gene h2total, composed of cis-
heritability (h2cis, the variance explained by single nucleotide polymorphisms in the cis-window of the gene), and trans-
heritability (h2res, the residual variance explained by all other genome-wide variants). Mean h2total was 0.26, which was
significantly higher than heritability estimates earlier found in a microarray-based study using largely overlapping (>60%)
RNA samples (mean h2= 0.14, p= 6.15 × 10−258). Mean h2cis was 0.06 and strongly correlated with beta of the top cis
expression quantitative loci (eQTL, ρ= 0.76, p < 10−308) and with estimates from earlier RNA-Seq-based studies. Mean h2res
was 0.20 and correlated with the beta of the corresponding trans-eQTL (ρ= 0.04, p < 1.89 × 10−3) and was significantly
higher for genes involved in cytokine-cytokine interactions (p= 4.22 × 10−15), many other immune system pathways, and
genes identified in genome-wide association studies for various traits including behavioral disorders and cancer. This study
provides a thorough characterization of cis- and trans-h2 estimates of gene expression, which is of value for interpretation of
GWAS and gene expression studies.

Introduction

Individual differences in RNA expression may result from
variation in environmental exposures, stochastic variation,
age, sex and genotype differences [1] and thereby may also
be involved in the widely observed contribution of DNA,
age and sex to the etiology of complex diseases [2–5].
Quantifying human transcriptomic heritability (h2) is of
interest for transcriptomic and genomic studies. For

example, one possible reason for the association of gene
expression with a certain phenotype is that DNA variants
influence the amount of gene expression through expression
quantitative trait loci (eQTLs). Gene expression can have
substantial h2 not explained by eQTLs [6], and therefore the
h2 of gene expression and corresponding eQTL findings can
be considered complementary to transcriptomic and geno-
mic studies.

The h2 of whole blood gene expression has been estab-
lished previously for genome-wide transcriptomic data
generated by microarray technology and by RNA-Seq. For
array technology, Wright et al. [7] found a mean gene
expression h2 of 0.10 (SD= 0.14, N= 2752, 18,392 genes)
from modeling data assessed in mono- and dizygotic twin
pairs. Local identity-by-descent (IBD) analyses, which
provide an estimate of variance of gene expression
explained by genetic relatedness, resulted in a mean local h2

of 0.03, explaining 23% of the total heritability. A
population-based study (N= 2765) by Lloyd-Jones et al. [6]
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found mean estimates of h2 of microarray-based gene
expression of 0.19 with a local h2 of 0.06, resulting in a
mean proportion of genetic variance explained by all eQTLs
of 31%. Viñuela et al. [8] estimated a mean of blood-
derived h2 of 0.23 in a twin-based sample (N= 855) for
RNA-Seq-based data.

Here, we analyzed RNA-Seq (Illumina Hiseq2000) data
from 459 MZ twin pairs, 150 DZ twin pairs, 24 relatives of
twin pairs, and 255 unrelated participants, leading to a total
dataset with genotype and expression data of 1497 adult
participants (998 females) from the Netherlands Twin
Register [9–11] (Supplementary Table 1). Our RNA-Seq
dataset contained a large (>60%) sample overlap with the
microarray-based dataset from Wright et al. [7], allowing a
reliable comparison between microarray and RNA-Seq-
based h2 estimates. We first estimated twin-based h2 of gene
expression by making use of the classical twin design [12].
Next, we simultaneously estimated the variance explained
by a genetic relationship matrix (GRM)-containing SNPs in
a 250 kilobase (kb) cis-window of the gene (h2cis), and the
variance explained by a second GRM including only closely
related individuals (h2res) using GCTA [13]. Together, h2cis
and h2res constitute the total heritability (h2total). We per-
formed cis- and trans-eQTL analyses of the same samples
and compared h2 and eQTL findings to test for consistency.

Methods

Participants

RNA samples were obtained from 1497 participants from
the Netherlands Twin Registry (NTR) and included 459
complete MZ twin pairs and 150 complete DZ twin pairs,
24 relatives of twin pairs, and 255 unrelated participants.
NTR is a longitudinal cohort study of twins and their
families [10, 14]. The age of the participants ranged from
17.6 to 79.6 years old (mean= 36.7, SD= 14.0), 67% of
the sample was female. The data used for this study largely
overlap (60%) with those used in an earlier study [7]. See
Supplementary Table 1 for a description of the samples.

RNA extraction and sequencing

Venous samples were drawn in the morning after an over-
night fast. Heparinized whole blood samples were trans-
ferred within 20 min of sampling into PAXgene Blood
RNA tubes (Qiagen, Valencia, CA, USA) and stored at
−20 °C. Total RNA from whole blood was depleted of
globin transcripts using the Ambion GLOBINclear kit and
subsequently processed for sequencing using the Illumina
TruSeq version 2 library preparation kit. Paired-end
sequencing of 2 × 50-bp reads was performed using the

Illumina HiSeq 2000 platform, pooling ten samples per lane
and aiming for >15 million read pairs per sample. Adapters
were identified and clipped, and low-quality read ends were
trimmed (min length 25, min quality 20 Read alignment
was performed using STAR 2.3.0e against the Genome of
the Netherlands (GoNL) reference panel [15]. Expression
was using Ensembl v.71 annotation (which corresponds to
GENCODE v.16). Overlapping exons (on either of the two
strands) were merged into meta-exons, and expression was
quantified for the whole meta-exon, resulting in base counts
per exon or meta-exon. Gene expression, as base count per
gene, was calculated as the sum of the expression values for
all exons of each gene (excluding meta-exons). This pipe-
line is explained in detail in Zhernakova et al. [16].

Gene expression values per gene were ranked and
mapped to a normal distribution with mean 0 and SD 1,
after which values were corrected for sex, age, and cell
counts: monocyte, lymphocyte, eosinophil, basophil, neu-
trophil and red blood cell counts, and 27 measurement
batches. We then performed a principal-component analy-
sis, and values were corrected on only the first principal
component, which was not heritable based on comparison
of goodness of fit between different twin-based structural
equation models (p= 0.74). This PC explained 16.5% of
the variance in the data (see Supplementary Figs. 1 and 2).
Finally, expression values were centered and subsequently
scaled by dividing these values by their respective standard
deviations. Analyses of both classical twin modeling-based
and identity-by-state (IBS)-based h2 were based on this final
dataset.

Genotype data

Within the NTR, genotype information is available for
15,111 individuals for four different genotyping arrays
(Affymetrix 6.0 (N= 11,781), Affymetrix Perlegen 5.0
(N= 1265), Illumina 660 (N= 1439) and Illumina Omni
Express 1 M (N= 257), as well as sequence data from the
Netherlands reference genome project GONL (BGI full
sequence at 12 × (N= 368; [17]). Samples were removed if
they had a genotype call rate below 90%, heterozygosity fell
outside the range of −0.075 to 0.075, gender and IBS status
mismatch occurred, or if the Mendelian error rate was larger
than 5 standard deviations from the mean of all samples and
for samples measured on Affymetrix 6.0 when the contrast
quality control value was smaller than 0.40. Quality control
of the SNPs was done for each platform separately, with
SNPs being removed when they could only be aligned to
the forward strand of the reference panel, the allele fre-
quencies differed more than 10% with the reference allele,
minor allele frequency (MAF) was below 0.005,
Hardy–Weinberg equilibrium (HWE) test p < 10−12, and a
genotype call rate of <0.95. The data of the different
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genotyping methods, except GONL sequence individuals,
were subsequently merged into a single dataset. The miss-
ing SNP genotypes between each platform were imputed to
the GONL reference data. Filtering of the imputed dataset
included the removal of SNPs which were significantly
associated with a single genotyping platform, if the allele
frequency difference differed more than 10% with the
GONL reference set, HWE p < 10−5, Mendelian error rate
>mean+ 5 SD and if the imputation quality (R2) was below
0.90. After filtering the GONL samples were readded to a
cross-platform imputed dataset that includes 1,261,818
SNPs. We did not perform additional genotype quality
control after subsetting the individuals with RNAseq.

Statistical methods

We employed two methods for estimating total heritability,
a classical twin modeling-based approach, and an IBS-
based approach. The classical twin modeling approach
requires information on relatedness between subjects, while
the IBS-based approach quantifies the genetic relatedness
between subjects based on their genome-wide genetic data.
For both methods, only autosomal genes were considered.

Classical twin modeling

Based on the resemblance of MZ and DZ twin pairs, the
variance of the expression of each gene can be decomposed
into additive genetic, common (or shared) environmental
and unique environmental variance. Classical twin-based
modeling was done in the structural equation modeling
(SEM) R-package OpenMx [18, 19]. Models were fitted to
decompose the variance of gene expression due to additive
genetic (A), shared environmental (C), and unique envir-
onmental (E) effects. Additive genetic effects combine all
the effects of genetic variants influencing gene expression.
Shared environmental variance represents the proportion of
variance explained by effects are shared by both members
of a twin pair. Unique environmental variance results from
environmental effects that are not shared by twins. We used
a standard ACE model assuming dizygotic twins have an
average IBD sharing of 0.5 across the genome, and
monozygotic twins share an IBD of 1. Parameters were
estimated by maximum likelihood (ML). We restricted the
estimates to be positive. The results of these analyses pro-
vide the ML estimates of variance components. The com-
parison of ACE and CE models gave an estimate for the
significance of the A-component.

IBS-based analysis

Techniques to quantify genetic similarity of ‘unrelated’
individuals who are genotyped for a large number of

SNPs across the entire genome have been developed to
estimate h2 due to SNPs. In software packages such as
GCTA [13] the relatedness among individuals based on
measured SNPs can be combined with known genetic
relatedness in relatives in a two-variance component lin-
ear mixed model [20], in which simultaneous estimation
of SNP heritability and total h2 is feasible. We used NTR
genotype information for the 1497 individuals for whom
both expression- and genotype data were available. A
GRM was created for each cis-window of a gene, defined
by the coordinates of a gene with 250 kb flanking area on
each side. This GRM is referred to as the cis-GRM and
represents the variance explained by all measured SNPs
(and SNPs tagged by these measured SNPs) in a cis-
window around the gene of 250 kb. Variance explained by
this cis-GRM is referred to as cis-h2 (h2cis). The mean
number of SNPs in cis-GRMs was 223.2 (SD= 119.9)
(see Supplementary Fig. 3). A second GRM including
closely-related individuals (that is, a genetic correlation >
0.05) was created for the autosomes. This GRM is referred
to as the residual GRM. This GRM had all off-diagonal
elements below 0.05 set to 0, to remove distant related-
ness from the matrix. Variance explained by this residual
GRM is referred to as residual h2 (h2res). The sum of h2cis
and h2res is h

2
total (h

2
total= h2cis+ h2res). As the cis-GRM is

based on a limited number of SNPs there is substantial
power to detect the genetic effects in cis [21], the second
GRM will absorb all genetic variance not explained by the
SNPs in the cis-window, or in high LD with SNPs in the
cis-window. Note that due to the presence of a large
number of related individuals this GWAS will capture
genetic variance tagged by substantial IBD sharing and
thus the sum of the two effects will be approximately
equal to the heritability estimated in a twin study.

cov expressionð Þn�n¼ GRMIBS
n�nΘσ

2
cis�SNPs þ GRMIBS>0:05

n�n Θσ2SNPs þ In�nΘσ2e

A total of 52,844 genes were analyzed, and subsequently
filtered for being protein coding, having read counts above
zero in at least 85% samples in each zygosity group (e.g.
expressed in in at least 780 MZ twins and 255 DZ twins), a
median expression count above 10, and more than 20 SNPs
in the cis-window, resulting in an analysis of 11,353 genes
(Supplementary Table 2).

Annotation and enrichment

We employed multiple annotation steps to interpret h2

estimates. We tested whether h2 was correlated with gene
expression level, gene length, GC content or several loss-
of-function scores obtained from Lek et al. [22] using
linear regression. Gene locations and lengths were
downloaded on 2017-12-28 using the Biomart community
portal [23] using data from Ensembl [24]. We investigated
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genes for which the expression correlates highly (>0.8)
with other genes.

In addition, we tested whether heritable genes are over-
represented in the canonical gene pathways from the
molecular signature database (MSIGDB):: KEGG, REAC-
TOME, BIOCARTA pathways downloaded from http://
software.broadinstitute.org/gsea/downloads.jsp (c2.cp.v6.1)
and genes identified in GWAS for immune diseases, mental
or behavioral disorders, cardiovascular diseases, or cancer
(extracted from the GWAS catalog [25] (as of September
2018) with the search terms: ‘immune system disease’,
‘mental or behavioral disorder’, ‘cardiovascular disease’
or ‘cancer’, respectively). For each pathway/gene group, a
Wilcoxon test was performed between the median herit-
ability of the genes in the pathway and the median herit-
ability of the genes outside the pathway. Comparisons were
made with previous analyses of h2 of gene expression from
a recent whole blood-based RNA-Seq study by Battle et al.
[26] and the GTEx project [27], which published heritability
estimates for gene expression in adipose tissue (sub-
cutaneous), tibial artery, heart (left ventricle), lung, muscle
(skeletal), tibial nerve, skin (sun-exposed), thyroid, and
whole blood.

eQTL analysis

The 1497 gene-level RNA samples with the same pre-
processing as described above which were also used for
heritability analysis, were also used for cis- and trans-eQTL
analysis. For this analysis, the same cross-platform imputed
dataset that includes 1,261,818 SNPs as described above,
was filtered at MAF >0.01 and HWE <1 × 10−3, resulting in
1,239,670 SNPs.

For cis-eQTL analysis all associations between DNA
variants and genes at distance <250 kb were computed,
for trans-eQTL analysis all SNP - gene pairs at distance
>250 kb. eQTL effects were detected with a mixed linear
model approach using fastGWA a implemented in
GCTA (https://cnsgenomics.com/software/gcta/#fastGWA,
https://www.biorxiv.org/content/10.1101/598110v1).

For fastGWA, first a GRM is built using the –make-grm
option in GCTA. Then, a sparse GRM is built using the
option –make-bK-sparse 0.05. fastGWA is then run using
this sparse GRM, with expression level as the dependent
variable and SNP genotype values as independent variable.
Correction for multiple testing was done using FDR, for cis-
and trans-eQTL analysis separately, resulting in a P-value
threshold of 1 × 10−5 for cis-eQTLs, and 1.5 × 10−7 for
trans-eQTLs. We are aware that FDR used like this may
result in more false positives than 5%, however, we are
merely interested in the overlap between heritability and
eQTL analysis and do not draw any conclusions on the
amount of identified eQTLs.

Simulation

To gain insight in the performance of our models, we
simulated twin-based phenotype data with prespecified
heritabilities and tested whether our estimations were in
accordance. We ran OpenMX and GCTA models using
simulated phenotypes and real genotype data, with different
values for variance components (see Supplementary Figs. 6
and 7).

Results

The gene-level whole blood RNA-Seq data from 1497
participants, including 459 MZ twin pairs and 150 DZ twin
pairs, originally contained 52,844 genes (Supplementary
Table 2). After filtering (see “Methods”), 11,409 protein
coding genes that were expressed in at least 85% of the
samples were left for analysis. In these genes, twin-based h2

for each gene was estimated based on the classical twin
design (see Methods). Next, IBS-based methods were
applied to compute SNP heritability.

For the twin-based analyses, a genetic structural equation
model [28] that included additive genetic, common, and
unique environmental factors was fitted to the expression
data from each gene. The mean h2 (the standardized esti-
mate of the contribution of additive genetic factors) was
estimated at .20, the standardized mean contribution of
shared environment at 0.05, and the standardized mean
unshared environment at 0.74. There was a considerable
spread in estimates, with estimates ranging between 0 and 1,
except for the common environment component which had
a maximum of 0.51 (Fig. 1 and Table 1).

Since estimates for the contribution of common envir-
onment on average were low, we proceeded with an IBS-
based approach that did not take into account common
environment. Gene expression is controlled by both local
(cis) eQTLs and non-local (trans) eQTLs. Therefore, when
studying the genetic component of expression in terms of
heritability, we also make a distinction between the genetic
component that is close to the gene (h2cis), and the genetic
component that is not close to the gene (h2res). h

2
cis con-

sisted of the variance explained by SNPs in a 250-kb cis-
window of the gene and h2res the variance explained by
genome-wide close relatedness. From the IBS approach we
obtained heritability estimates for 11,353 out of
11,409 genes. The correlation between IBS-based total
h2 (h2cis+ h2res) and classical twin modeling-based h2 was
0.98 (p < 10−308, Supplementary Fig. 4). The IBS-based
approach resulted in a mean h2res of 0.20 and a mean h2cis of
.06 (Fig. 1 and Table 1), summing up to a h2total of 0.26. We
found 721 genes to have a Bonferroni-corrected significant
h2cis (p < 4.40 × 10−6), all of which had a h2cis larger than
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0.16. We found 5636 genes to have a Bonferroni-corrected
significant h2res (p < 4.40 × 10−6), all of which had a h2res
larger than 0.01 (Supplementary Table 3, Supplementary
Fig. 5). The mean contribution of h2cis to the total h2 (mean
h2cis/(mean h2cis+mean h2res)) was 20%, with a range from
0 to 100%. The correlation between h2res and h2cis was 0.06
(p= 6.36 × 10−10). We found good performance of our
models, slightly underestimating local heritability (see
Supplementary Figs. 6 and 7).

Correlation of gene expression h2 between tissues

A whole blood-based RNA-Seq study by Battle et al. [26]
published heritability estimates due to regulatory genetic

variation (N= 922). Estimates of heritability due to local
genetic variation from this study correlated 0.81 with h2cis
from our study (p < 10−308, Spearman correlation, Supple-
mentary Fig. 8). eQTL studies have shown that gene
expression in different tissues is regulated by DNA by
partially overlapping, and partially unique QTLs (https://
science.sciencemag.org/content/348/6235/648). To study
the extent to which the total local genetic component of
gene expression is similar between tissues, we looked at h2

estimates of gene expression in The Genotype-Tissue
Expression (GTEx). The GTEx consortium, (N= 422) [29]
reported h2 estimates for gene expression from RNA-Seq in
adipose tissue (subcutaneous), tibial artery, heart (left
ventricle), lung, muscle (skeletal), tibial nerve, skin (sun-
exposed), thyroid, and whole blood, estimating local h2

both unique for a tissue (tissue specific) and heritability
shared between tissues (tissue wide). Our estimates of h2cis
showed significant correlations with local h2 in every
measured tissue, in both tissue-wide (ρ > 0.12) and tissue-
specific heritability (ρ > 0.03) estimates. The strongest
correlation was found between h2cis and tissue-wide herit-
ability of whole blood-derived gene expression (ρ= 0.24,
p= 1.99 × 10−144, Fig. 2, Supplementary Table 4). Herit-
ability estimates reported in the GTEx study correlated
<.44 between tissues in tissue-wide estimates and <0.19 in
tissue-specific estimates.

Correcting h2cis for median read count only showed
marginal effects on correlations. There were 614 genes that
were highly expressed in all tissues in GTEx (above the
8th decile). These genes showed decreased h2cis (p= 5.58 ×
10−12, mean= 0.04, median= 0.02) and increased h2res (p
= 7.77 × 10−14, mean= 0.23, median= 0.22) compared to
the full set of tested genes.

Table 1 Estimates for classical twin modeling-based and IBS-based
heritability of gene expression

Variance component Min Median Mean Max

A 0 0.1793 0.2042 0.8988

C 0 0 0.0532 0.5125

E 0.0800 0.7702 0.7426 1

h2cis 0.0001 0.0212 0.0638 0.9666

h2res 0.0001 0.1848 0.1980 0.8655

h2total 0.0001 0.2338 0.2618 0.9874

Genes were filtered for being protein coding, having less than 50 DZ
twins with zero expression counts, a median expression count above
10, and more than 20 SNPs in the cis-window, resulting in a total of
11,353 genes tested. Classical twin-based modeling was done in the
structural equation modeling (SEM) R-package OpenMx [18, 19].
Models were fitted to decompose the variance of gene expression due
to additive genetic (A), shared environmental (C), and unique
environmental (E) effects. h2cis is the variance explained by measured
SNPs in a cis-window around the gene of 250 kb. h2res is the variance
explained by genome-wide closely related individuals

Fig. 1 Histograms of estimates of heritability of gene expression.
a Classical twin modeling-based estimates of each gene. Based on the
resemblance of MZ and DZ twin pairs, the variance of the expression
of each gene was decomposed into additive genetic, common (or
shared) environmental, and unique environmental variance. A standard
ACE model was used, assuming dizygotic twins have an average IBD
sharing of 0.5 across the genome, and monozygotic twins share an

IBD of 1. Parameters were estimated by maximum likelihood (ML).
b IBS-based h2cis estimates of each gene, i.e. variance explained by a
GRM created for each cis-window of a gene, defined by the coordi-
nates of a gene with 250 kilobase (kb) flanking area on each side.
c IBS-based h2res estimates of each gene, i.e. variance explained by a
GRM including closely related individuals for the autosomes with all
off-diagonal elements below 0.05 set to 0
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Pathway analyses

To annotate gene expression heritability, we studied if
certain gene pathways have higher average heritability than
expected. In order to so we tested for enrichment of h2res
and h2cis in canonical gene pathways covering a broad range
of biological pathways that are well curated (KEGG,
REACTOME, BIOCARTA). The expression of genes
identified in GWAS is likely to be under genetic control: to
test if this is the case for gene expression in blood, we also
tested if h2res and h2cis is enriched in genes identified in
genome-wide association studies (GWAS) for immune
diseases, mental and behavioral disorders, cardiovascular
diseases, or cancer (extracted from the GWAS catalog [25])
to cover GWAS findings for a broad range of diseases.
Enrichment analysis were performed before and after cor-
recting h2 for median gene expression per gene.

We observed significantly higher h2res (false discovery rate
(FDR) <0.05) in 343 canonical pathways (top hit: KEGG
cytokine-cytokine interaction, p= 4.22 × 10−15), and in genes
identified in GWAS for immune diseases (p= 4.99 × 10−13),
mental disorders (p= 1.79 × 10−7), cancer (p= 5.53 × 10−5)
and cardiovascular diseases (p= 1.06 × 10−9). After correc-
tion for mean gene expression, h2res was significantly higher
in 125 canonical pathways (top hit: KEGG cytokine-cytokine
interaction, p= 6.66 × 10−15) and in genes identified in
GWAS for immune diseases (p= 2.33 × 10−10), mental dis-
orders (p= 3.63 × 10−10), cancer (p= 7.10 × 10−6) and car-
diovascular diseases (p= 9.69 × 10−10).

We found significantly higher h2cis (FDR <0.05) in 6
canonical pathways (top hit: KEGG lysosome, p= 1.41 ×
10−7), and in genes identified in GWAS for immune dis-
eases (p= 6.71 × 10−4), mental disorders (p= 7.13 × 10−4),
cancer (p= 1.09 × 10−7) and cardiovascular diseases (p=
3.24 × 10−5). After correction for mean gene expression,

h2res was significantly higher in 10 canonical pathways (top
hit: KEGG lysosome, p= 5.79 × 10−9) and in genes iden-
tified in GWAS for immune diseases (p= 9.13 × 10−5), for
mental disorders (p= 2.36 × 10−3), cancer (p= 3.15 × 10−7)
and cardiovascular diseases (p= 1.16 × 10−5) (see Table 2
and Supplementary Table 5).

Gene expression h2 correlations

In order to identify physiological gene properties that are
correlated with gene expression heritability, we evaluated the
correlation between heritability and gene expression level,
gene length, GC content and several loss-of-function scores,
see Table 3). We found a significant association of h2res and
h2cis with median read count (P= 6.81 × 10−276,
P= 2.15 × 10−2, respectively) and GC content of a gene
(P < 1.80 × 10−115, P= 4.02 × 10−26, respectively). After
correcting for median read count, GC content was still sig-
nificantly correlated with h2res and h2cis (P= 2.27 × 10−3,
P= 6.11 × 10−28, respectively). The length of a gene was
significantly correlated with h2res, with longer genes having a
slightly higher h2res (P= 4.94 × 10-8). Gene length did not
influence h2cis (P= .50). A high intolerance to LoF or high
probability of loss-of-function (pLI) did not significantly
influence h2 estimates.

Relation of h2cis with strength of cis-eQTLs

Gene expression can have substantial h2 not explained by
eQTLs [6]. In order to study the overlap between herit-
ability and eQTL results, we performed eQTL analysis in
the same sample (see Methods) and found 5249 genes with
a significant cis-eQTL (p-value threshold 1.5 × 10−7 for a
FDR of 5%). In addition, we found a significant association
between h2cis and the beta of the corresponding top cis-

Fig. 2 Spearman correlations between h2cis and estimates of GTEx per-tissue heritabilities [27]. a Tissue-specific heritabilities. b Tissue-wide
heritabilities
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eQTLs (ρ= 0.7644, p < 10−308). We also tested the corre-
lation between h2cis and the presence of cis-eQTLs in results
from Zhernakova et al. [16], who performed RNA-Seq-
based eQTL analysis in an independent sample (N= 2116
unrelated adults). There was a strong correlation between
h2cis and the Z-score of the strongest eQTL
(ρ= 0.75, p < 10−308) (Supplementary Fig. 9).

Relation of h2res with strength of trans-eQTLs

We performed eQTL analysis in the same sample for SNPs
outside a cis-window of 250 kb around each gene, resulted in

2433 genes with a significant trans-eQTL (p-value threshold
1.5 × 10−7 for a FDR of 5%). Estimates of h2res correlated
with the beta of the corresponding top trans-eQTLs (ρ= .04,
p= 1.89 × 10−3). The mean p-value of trans-eQTL of genes
with h2res > 0.4 was 5.51 × 10−9 (median= 1.44 × 10−9).

Comparing RNA-Seq and micro-arrays: relation of
mean expression levels with heritability

The difference in heritability estimates between RNAseq and
array data results, especially with gene expression intensity
as a factor, is a valuable comparison to distinguish noise or

Table 3 Predictors of h2
h2res h2cis

Predictor Estimate P-value r-squared Estimate P-value r-squared

Median Read count 5.21 × 10−2 6.81 × 10−276 1.16 × 10−1 −3.76 × 10−3 2.15 × 10−2 8.16 × 10−4

NA NA NA NA NA NA

GC content 3.10 × 10−3 1.80 × 10−115 4.81 × 10−2 1.58 × 10−3 4.02 × 10−26 8.85 × 10−3

GC contenta 2.27 × 10−3 1.07 × 10−69 2.83 × 10−2 1.64 × 10−3 6.11 × 10−28 9.85 × 10−3

LOF score 7.24 × 10−3 8.16 × 10−18 3.14 × 10−2 −3.19 × 10−3 8.52 × 10−5 2.55 × 10−3

LOF scorea −1.65 × 10−4 8.04 × 10−1 3.95 × 10−6 6.10 × 10−4 4.08 × 10−1 6.18 × 10−5

pLI score 3.54 × 10−2 7.09 × 10−19 2.47 × 10−2 −2.37 × 10−2 1.27 × 10−9 7.41 × 10−3

pLI scorea −1.73 × 10−3 5.98 × 10−1 1.50 × 10−5 −3.00 × 10−3 4.13 × 10−1 1.29 × 10−4

pNull −4.59 × 10−2 2.86 × 10−17 2.54 × 10−2 1.72 × 10−2 6.30 × 10−4 1.90 × 10−3

pNulla −4.31 × 10−3 2.99 × 10−1 7.50 × 10−5 −3.54 × 10−3 4.45 × 10−1 7.75 × 10−5

pRec −1.30 × 10−2 3.25 × 10−3 1.43 × 10−3 1.58 × 10−2 1.96 × 10−4 3.34 × 10−3

pReca −1.64 × 10−3 6.50 × 10−1 5.74 × 10−5 7.37 × 10−3 6.62 × 10−2 4.33 × 10−4

Gene length 1.80 × 10−8 8.10 × 10−2 2.12 × 10−4 9.54 × 10−9 3.86 × 10−1 2.30 × 10−4

Gene lengtha 4.94 × 10−8 4.13 × 10−7 2.26 × 10−3 7.48 × 10−9 4.96 × 10−1 1.59 × 10−4

We tested whether h2 could be predicted by gene expression level, gene length, GC content or several loss-
of-function scores obtained from Lek et al. [22]

LOF loss-of-function, PLI probability of loss-of-function, pNull completely tolerant of loss-of-function,
pRec intolerant of two loss-of-function variants
ah2 corrected for median read count

Table 2 Gene pathway
enrichment of heritable genes in
certain gene pathways (KEGG,
REACTOME, BIOCARTA) and
genes identified in GWAS for
immune diseases, mental or
behavioral disorders,
cardiovascular diseases, or
cancer (extracted from the
GWAS catalog [25])

h2res enrichment
p-value

h2cis enrichment
p-value

All immune-related GWAS genes 4.99 × 10−13 6.71 × 10−4

All immune-related GWAS genesa 2.33 × 10−10 9.13 × 10−5

All psychiatric-related GWAS genes 1.79 × 10−7 7.13 × 10−4

All psychiatric-related GWAS genesa 3.63 × 10−10 2.36 × 10−3

All cancer-related GWAS genes 5.53 × 10−5 1.09 × 10−7

All cancer-related GWAS genesa 7.10 × 10−6 3.15 × 10−7

All cardiovascular GWAS genes 1.06 × 10−9 3.24 × 10−5

All cardiovascular GWAS genesa 9.69 × 10−10 1.16 × 10−5

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 4.22 × 10−15

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTIONa 6.66 × 10−15

KEGG_LYSOSOME 1.41 × 10−7

KEGG_LYSOSOMEa 5.79 × 10−9

ah2 corrected for median read count. See also Supplementary Table 5.
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bias that is inherent to a specific technique. As RNAseq is a
more expensive method, it is informative to know if and in
which situations this technique offers advantages to answer a
particular research question. From our original results on
52,844 genes, we selected the 12,070 genes that were
measured both with Affymetrix expression arrays in the
study by Wright et al. [7] and with RNA-Seq with read
counts above zero in at least 85% of samples in each zyg-
osity group. In contrast to previous analyses, we did not
apply any additional filtering (i.e. minimum median read
count per gene, protein coding genes only, minimum of
SNPs per GRM to allow for an unbiased comparison. In the
RNA-Seq data, the Spearman correlation of mean expression
with h2total was −0.13 after correcting for covariates (see
Methods) (p= 7.49 × 10−45). In the array-based results from
Wright et al. [7] the Spearman correlation between mean
expression and h2 was 0.28 (p= 2.08 × 10−219) after cor-
recting for covariates.

Using this selection of 12,070 genes, mean h2res, h2cis,
h2total, and h

2
total results from Wright et al. [7] were 0.19, 0.06,

0.25, and 0.14, respectively. When we partitioned mean
expression levels into 10 deciles for both microarray and
RNA-Seq data, we saw that h2res estimates were also higher in
RNA-Seq data for almost all deciles (see Fig. 3 and Supple-
mentary Table 6), with the difference being largest in the
lowest deciles (p= 1.06 × 10−72). In the highest decile of
expression, the h2 of array-based expression was higher

(p= 2.00 × 10−6). This suggests that the resolution of RNA-
Seq is better able to capture variation in low to moderately
expressed genes. Genes measured by both array and RNA-
Seq were mostly in the same or nearest decile (see Supple-
mentary Fig. 10). Estimates of h2cis showed a slight negative
correlation with median expression level in the RNA-Seq data
eQTLs (ρ=−0.04, p < 5.79 × 10−5).

Discussion

The present study estimated the h2 of gene expression in
RNA-Seq-based expression data by making use of the dif-
ferent genetic relatedness of mono- and dizygotic twins and
an IBS approach. The mean of total gene expression h2

(0.26) was substantially higher than found with the
microarray-based study by Wright et al. with largely over-
lapping RNA samples. This was also the case with a direct
comparison of 12,070 genes that were measured both with
Affymetrix expression arrays in the study by Wright et al.
[7] and with RNA-Seq, where mean RNA-Seq-based
h2total was 0.25 and mean microarray-based h2total was
0.14 (p < 10−308). Heritability estimates in RNA-Seq did not
increase with gene expression level, as opposed to the
results from microarray data. This suggests RNA-Seq
measurements are less noisy, in particular in genes with
low expression, as compared to microarrays measures.

Fig. 3 Heritability estimates for genes divided into groups based on gene expression levels per decile. a Total heritability estimates from Wright
et al. [7] b IBS-based h2total estimates. c IBS-based h2cis estimates. d IBS-based h2res estimates
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We estimated h2 of gene expression at 0.20 for mean
h2res, and at 0.06 for mean h2cis. This resulted in a relative
contribution of h2cis to h2total of 20%. This is in line with
earlier findings by Wright et al. [7] (relative contribution
of local IBS-driven h2 of 23%) and Lloyd-Jones et al. [6]
(proportion of h2 explained by cis-eQTL of 0.31). Since
local variants in the cis-window of a gene only explain
20% on average of the total h2, and the number of genes
for which the majority of heritability stems from genetic
relatedness in the cis-window is very low, our findings
indicate that loci outside the cis-window of a gene or rare
local variants explain a significant proportion of total h2 of
gene expression. This is strengthened by our finding that
the strength of a trans-eQTL is correlated with h2res.

The h2cis estimates correlated strongly with estimates
from an independent sample (ρ= 0.81, whole blood, N=
922) [26], but much less so in the smaller GTEx dataset [27]
(ρ= 0.24, whole blood, N= 449). This shows that reason-
ably large sample sizes are needed for accurate h2 estima-
tion. However, even with the small sample size used in
GTEx we found significant correlations between h2cis in
whole blood and h2cis in the other tissues, which is in line
with the finding that cis-eQTLs are partially shared between
tissues [29].

We found a significantly higher h2res in 125 canonical
pathways, with the strongest enrichment for genes in the
KEGG cytokine-cytokine interaction pathway, and many
other immune system pathways (including KEGG Innate
Immune system (p= 8 × 10−12), REACTOME interferon
signaling (p= 2 × 10−8) and KEGG natural killer cell
cytotoxicity (p= 2 × 10−7)) [30].

Both h2cis and h2res were higher in all genes identified in
GWAS for immune diseases, mental disorders, and cardi-
ovascular diseases, although interestingly the enrichment
was much stronger for h2res. This indicates that for genes
associated with a disease through GWAS, expression in
blood is not only locally regulated but also enriched with
genome-wide SNP signal as reflected in the high average
h2res, suggesting that SNPs found in GWAS are influencing
expression of genes outside the cis-window of the gene. A
high intolerance to loss-of-function (LoF) or high prob-
ability of loss-of-function (pLI) did not significantly influ-
ence h2 estimates, suggesting that increased mutational load
in a gene increases the genetic variation as much as it
influences variation in gene expression and therefore does
not influence h2.

The comparison of mean h2 of genes across different
RNA measurement techniques can be viewed as a proxy for
the comparison of the measurement error between techni-
ques. An increase in measurement error always implies a
decrease in h2 (because measurement error introduces ran-
dom divergence within twin pairs). Consider for example
the h2 of probes conditioned on the median expression level.

When comparing the h2res estimates obtained based on
RNA-Seq with those obtained based on Affymetrix
expression arrays [7], it becomes apparent that micro-array-
based estimates of gene expression heritability are asso-
ciated with gene expression levels. The fact that differential
measurement error conditional on expression level plays
less of a role for RNA-Seq data ensures that variation across
genes reflects biological signal. The slight negative corre-
lation we found of h2cis with median expression level in the
RNA-Seq data eQTLs (ρ=−0.04, p < 5.79 × 10−5) is
counterintuitive, difficult to interpret and presumably not
meaningful.

If, or when, researchers eventually examine the h2 of
RNA expression levels in single cells, or nuclei, an
inspection of the relationship between median expression
levels and h2 can be used to detect this source of differential
measurement error.

In summary, this study shows possible advantages of
h2res-informed trans-eQTL discovery, reproducibility of
h2cis, and the benefits of using RNA-Seq for estimating
heritability of low-expressed genes.
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