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Abstract

Differences of Sex Development (DSD) comprise a variety of congenital conditions characterized by atypical 
chromosomal, gonadal, or anatomical sex. Diagnosis and monitoring of treatment of patients suspected of DSD 
conditions include clinical examination, measurement of peptide and steroid hormones, and genetic analysis. This 
position paper on peptide hormone analyses in the diagnosis and control of patients with DSD was jointly prepared 
by specialists in the field of DSD and/or peptide hormone analysis from the European Cooperation in Science and 
Technology (COST) Action DSDnet (BM1303) and the European Reference Network on rare Endocrine Conditions 
(Endo-ERN). The goal of this position paper on peptide hormone analysis was to establish laboratory guidelines that 
may contribute to improve optimal diagnosis and treatment control of DSD. The essential peptide hormones used in 
the management of patients with DSD conditions are follicle-stimulating hormone, luteinising hormone, anti-Müllerian 
hormone, and Inhibin B. In this context, the following position statements have been proposed: serum and plasma 
are the preferred matrices; the peptide hormones can all be measured by immunoassay, while use of LC-MS/MS 
technology has yet to be implemented in a diagnostic setting; sex- and age-related reference values are mandatory in 
the evaluation of these hormones; and except for Inhibin B, external quality assurance programs are widely available.

Correspondence 
should be addressed 
to T H Johannsen 
Email 
trine.holm.johannsen@
regionh.dk

-19-0831

Consensus 
Statement

182
6

European Journal of 
Endocrinology  
(2020) 182, P1–P15

Downloaded from Bioscientifica.com at 01/16/2023 01:13:55PM
via free access

https://eje.bioscientifica.com
https://doi.org/10.1530/EJE-19-0831
mailto:trine.holm.johannsen@regionh.dk
mailto:trine.holm.johannsen@regionh.dk


Eu
ro

pe
an

 Jo
ur

na
l o

f E
nd

oc
ri

no
lo

gy
182:6 P2Consensus Statement T H Johannsen and others Peptide hormones and DSD

https://eje.bioscientifica.com

Introduction

Differences of Sex Development (DSD) comprise a 
variety of congenital conditions characterized by atypical 
chromosomal, gonadal, or anatomical sex (1). DSD 
are medical conditions that are classified according to 
karyotype: (1.) 46,XX DSD, (2.) 46,XY DSD, and (3.) sex 
chromosome DSD, all with a wide phenotypic spectrum. 
Due to the complexity of these conditions, laboratory 
analyses with high sensitivity and specificity as well as 
age-adjusted sex-specific reference values are therefore 
crucial to optimize diagnosis and treatment monitoring.

Development of recommendations on laboratory 
assessment for DSD was one of the tasks of the European 
Cooperation in Science and Technology (COST) Action 
DSDnet (BM1303) (http://www.dsdnet.eu), which was 
active between 2013 and 2018. This task was performed 
in collaboration with the European Reference Network 
on rare endocrine conditions (Endo-ERN; http://www.
endo-ern.eu), formed in 2017. DSDnet was a network 
of all people interested in DSD, from leading scientists 
to clinicians, as well as people with DSD, while Endo-
ERN is a network composed of health care providers and 
patient organizations. A recent large, international survey 
reported that the diagnostics of a newborn suspected 
of having DSD is influenced by appropriate access to 
specialists, thereby resulting in a substantial variation 
in the initial evaluation of the child (2). This underlines 
the necessity of networks consisting of highly specialized 
laboratories with knowledge of DSD. The laboratory 
assessment of patients with known or suspected DSD 
requires biochemical and genetic assessment.

Biochemical hormone analysis comprises two 
distinct groups: peptide and non-peptide hormones, 
predominantly steroid hormones. DSDnet recently 
published two position papers, one on steroid hormone 
analysis in diagnosis and treatment of DSD (3) and one 
addressing diagnostic genetic approaches in DSD (4). There 
is currently no position paper addressing peptide hormones 
in relation to DSD. Working Group 3 (Harmonisation of 
Laboratory Assessment) in DSDnet and Work Package 5 in 
Endo-ERN (Diagnostics and Laboratory Analysis) therefore 
present a position paper on the quantification of peptide 
hormones in patients suspected of DSD conditions. In 
this paper, we discuss the aspects that underlie the quality 
assurance of peptide hormone assays used for the diagnosis 
and monitoring of patients with DSD. The importance of 
the quality of peptide hormone analyses in the diagnosis 
and management of these specific and rare endocrine 
conditions is illustrated herein.

Clinical application of peptide hormones

Analysis of peptide hormones is important in first-line 
testing and during monitoring of DSD conditions and 
include the gonadotropins follicle-stimulating hormone 
(FSH), luteinizing hormone (LH), anti-Müllerian hormone 
(AMH), and Inhibin B. FSH and LH are synthesized in the 
anterior pituitary gland and are glycoproteins consisting 
of a common α-subunit and a unique β-subunit binding 
to the FSH-receptor and LH-receptor, respectively. 
Postnatally, LH stimulates testosterone production in the 
testicular Leydig cells and in the ovarian theca interna 
cells. FSH stimulates AMH and Inhibin B production 
in both the testicular Sertoli cells and the ovarian  
granulosa cells.

During infancy, boys have higher concentrations of 
LH and lower concentrations of FSH than girls. This sex 
dimorphism in gonadotropin concentrations has been 
reported for children during the first hours of life (5), during 
the first month of life (6), and during the first years of life 
(7). Thus, especially in mini-puberty – the period in which 
a transient, postnatal activation of the hypothalamic-
pituitary-gonadal (HPG) axis in infancy occurs – the ratio 
of LH divided by FSH is an excellent classifier in separating 
the sexes (8). At this point in time, the LH/FSH ratio is high 
in boys and low in girls (Fig. 1). Mini-puberty therefore 
reflects an early window of opportunity in which to study 
reproductive function. Additionally, gonadotropins are 
of diagnostic value both when their concentrations are 
high, as seen in primary hypogonadism (e.g. 45,X (9), 
45,X/46,XY (10), 47,XXY (11)), and when low, as seen in 
congenital hypogonadotropic hypogonadism (CHH) (12). 
A newborn with a 46,XY karyotype and CHH may present 
with micropenis and bilateral cryptorchidism at birth, 
which resemble DSD conditions.

AMH is a homodimeric disulphide-linked glycoprotein 
and a member of the transforming growth factor b family 
β (TGFβ). In male fetuses, AMH is synthesized soon after 
testicular differentiation and is essential for regression of 
the Müllerian ducts, whereas AMH production in female 
fetuses first is initiated in the 36th week of gestation (13). 
In females, in the absence of AMH, the Fallopian tubes, 
uterus, and the upper part of the vagina are developed. 
Inhibin B is a dimeric disulphide-linked glycoprotein 
consisting of two subunits (α and β) and is, like AMH, 
a part of the TGFβ protein family. The main role of 
Inhibin B is the downregulation of FSH synthesis. There 
is a well-known difference in concentrations of AMH 
and Inhibin B between sexes (Figs 1, 2 and 3). Thus, 
plasma concentrations of AMH and Inhibin B in boys 
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have been reported to be, respectively, up to 100 times 
(14) and 10 times higher (15) than in girls. During 
mini-puberty, the Inhibin B concentrations in boys are 
higher than the concentrations seen in men (15). AMH 
and Inhibin B therefore represent important biomarkers 
in the evaluation of gonadal type and function in DSD 
conditions, as low concentrations are markers for the 
absence of functioning testicular tissue (16, 17). AMH 
and Inhibin B concentrations are viable biomarkers 
reflecting ovarian function and follicle reserve in girls 
and may, together with the gonadotropins, be used in the 

diagnostics of, for example, primary or premature ovarian 
failure. Additionally, as AMH production reflects Sertoli 
cell function, while testosterone production reflects Leydig 
cell function, a human choriogonadotropin (hCG) test can 
offer further information on gonadal function. As hCG 
stimulates Leydig cells directly to produce testosterone, 
the test is useful to test the HPG axis after infancy and 
until puberty, where the gonadotropin concentrations are 
low. The test evaluates the testosterone response to hCG 
administration, but the interpretation of the testosterone 
response should be done cautiously as described in detail 
by Ahmed et al. (18). In a recent, large study of hCG testing, 
a normal AMH concentration before hCG administration 

Figure 1
Serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), the LH/FSH-ratio, Inhibin B, and anti-
Müllerian hormone (AMH) in 1041 healthy males (blue) and 799 healthy females (red) during mini-puberty. The concentrations are 
shown on a log10-transformed y-axis (dotted lines: limit of detection). Modified from (8).

Figure 2
Serum concentrations of AMH in 1027 healthy males (blue) 
and 926 healthy females (red) throughout life. Longitudinal 
values during infancy are connected via black lines. Blue and 
red lines mark male and female reference ranges (mean, 
±2s.d.). The concentrations are shown on a log10-transformed 
y-axis. AMH was measured using a double antibody enzyme-
immunometric assay (Immunotech, Beckman Coulter Ltd., 
Marseilles, France). Modified from (24) and (25).

Figure 3
Serum concentrations of Inhibin B in 1161 healthy males (blue) 
and 1344 healthy females (red) throughout life. Blue and red 
lines mark male and female reference ranges (mean, ±2s.d.). 
The concentrations are shown on a log10-transformed y-axis. 
Inhibin B was measured using a double antibody enzyme-
immunometric assay (Oxford Bio-Innovation, Oxfordshire, UK; 
later named Serotec, Oxford, UK (73)).
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was correlated to a normal hCG response. However, a 
subnormal AMH concentration did not always predict 
a subnormal testosterone response (19). Thus, the AMH 
concentration provides important additional information 
on the testicular function, although it cannot replace the 
hCG test (18).

In summary, the combination of measuring 
gonadotropins, AMH, and/or Inhibin B therefore provides 
a rapid and powerful tool to differentiate between 
primary and secondary failure in the HPG axis in the 
initial evaluation of the patient with DSD. The analyses 
of peptide hormones mostly need to be supplemented by 
measurements of steroid hormones and genetic tests.

Position 1: Peptide hormones of interest for the diagnosis 
of patients with DSD include FSH, LH, AMH, and Inhibin 
B. The request for these peptide hormones should be 
based on clinical examination and supplemented with 
relevant steroid hormones and genetic analyses.

Impact of matrices

Blood (serum and plasma) is the most commonly used 
matrix for peptide hormone analyses, while urinary 
gonadotropins have proven valuable in preliminary 
research settings. It is recommended that clinicians be 
aware of the laboratories’ recommendations regarding 
correct patient preparation and pre-analytical handling 
of the samples. In addition to an appropriate sampling 
technique (including knowledge of type of collection 
device), the necessary knowledge of the timely processing 
from collection to freezing or measuring is important 
for sample integrity. Such knowledge includes storage 
and durability of the sample as well as the correct way 
to transport. The package insert and/or the analytical 
method standard operating procedure therefore should be 
consulted for the preferred matrix and stability for each 
of these hormones. Plasma and serum are the matrices 
of choice for AMH and Inhibin B. The use of plasma 
facilitates both stability and the speed of processing 
(i.e. eliminating the waiting time for clotting prior 
to centrifugation). FSH and LH can also be measured 
in plasma, but as these gonadotropins are relatively 
stable and frequently analyzed by laboratories, serum is 
acceptable. Additionally, in first morning voided urine, an 
increase in LH concentrations occurs before the clinical 
signs of puberty (20) and is correlated with basal and 
gonadotropin releasing hormone (GnRH)-stimulated LH 
concentrations in serum. Thus, urinary LH concentration 
has recently been suggested by several groups as a novel 

non-invasive method to evaluate pubertal progress (21, 
22). Furthermore, the use of umbilical blood has proved 
useful for peptide hormone measurements, for example, 
in reference ranges for gonadotropins in extreme 
prematurity (23) and for AMH in healthy newborns (24, 
25). The use of saliva for FSH and LH determination has 
been reported (26), but there is little validation evidence 
available in this case.

Position 2: Serum or plasma is the preferred matrix 
for the determination of FSH, LH, AMH, and Inhibin B. 
Furthermore, LH can be measured in urine in experimental 
settings.

Analytical methods

The Endo-ERN recently conducted a questionnaire-
based survey among its associated 71 Reference Centers 
on their use of biochemical analyses. In development of 
this position statement, the 33 replies from 13 countries 
reporting a platform/method within the topic Sex 
Development & Maturation were included. FSH and LH 
resulted in 29 replies, AMH in 26 replies, and Inhibin B in 
14 replies (Fig. 4 and Supplementary Table 1, see section on 
supplementary materials given at the end of this article). 
All laboratories reported the use of immunoassays.

In immunoassays, the analytes are typically measured 
using, for example, chemiluminescent, enzymatic, or 
fluorescent-labelled ligands. The benefits immunoassays 

Figure 4
Reported analytical platforms for follicle-stimulating hormone 
(FSH, n = 29), luteinizing hormone (LH, n = 29), anti-Müllerian 
hormone (AMH, n = 26), and Inhibin B (n = 14) within the theme 
Sex Development & Maturation of the European Reference 
Network on Rare Endocrine Conditions (Endo-ERN). The replies 
are from a questionnaire survey among Reference Centers 
within Endo-ERN. A full description of methods and 
laboratories is provided in Supplementary Table 1.
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offer include the extensive experience that has been 
gained with them and their availability to all laboratories. 
For some of the analytes, for example, gonadotropins (27), 
AMH (28), and Inhibin B (29), highly sensitive methods 
exist. However, immunoassays may be subject to cross-
reactivity and/or matrix effects and, thus, low specificity 
(or higher detection limit). Additionally, in immunoassays 
only one analyte is measured at a time.

Peptide hormones can exist in many molecular forms, 
so metrological traceability to a ‘true’ value is an ongoing 
challenge. Within this limitation, the World Health 
Organization (WHO) provides an invaluable service of 
developing peptide hormone reference preparations (RPs), 
which are endorsed through the WHO Expert Committee 
on Biological Standardization. These preparations provide 
the basis for manufacturers’ peptide hormone assay kit 
calibration, and their package inserts routinely provide 
the reference information (e.g. WHO International 
Standard Follicle Stimulating Hormone, Pituitary NIBSC 
code: 83/575, https://www.nibsc.org/documents/ifu/83-
575.pdf). Examples have arisen in which change to a 
peptide hormone RP can cause a dramatic change in the 
calibration slope and therefore the reference values and 
decision points will need adjusting (30). Hence, as part 
of characterizing reference values and decision points in 
guidelines and publications, it is important to include the 
relative RP to which this applies to.

The lower limit of quantitation or functional 
sensitivity is usually a function of the lowest calibrator 
or the point at which the level of imprecision is found 
to reach 20%. However, guidelines to calculate the lower 
limit of an assay differ. In Table 1 and Supplementary 
Table 1, the listed ‘lower values’ may correspond to the 
analytical sensitivity, the limit of detection, the limit of 
quantification, or something else, and thus they may not be 
entirely comparable. Nevertheless, they give an indication 
of the sensitivity of these methods. In the Endo-ERN 
survey, the ‘lower value’ that was reported varied between 
laboratories, even when the same manufacturer’s kit was 
used. The ‘lower value’ reported from the survey ranged 
from 0.02 to 0.5 IU/L for FSH, from 0.05 to 0.5 IU/L for LH, 
from 0.07 to 2.5 pmol/L for AMH, and from 1 to 10 pg/mL  
for Inhibin B (Supplementary Table 1). Furthermore, 
guidelines differ on how to calculate the lower limit of an 
assay, so this may differ between manufacturers as well.

The specificity of immunoassays creates challenges 
for interpretation, which have led to the move by some 
laboratories toward liquid chromatography-tandem 
mass-spectrometry (LC-MS/MS) methods to allow for 
improvements in specificity and the simultaneous 

determination of multiple analytes (31). MS-based 
techniques have now been successfully introduced for 
the quantification of small, well-defined molecules such 
as steroids. However, within the field of protein analysis, 
while there is an increasing interest in the use of LC-MS/
MS, clinical applications are still lacking. Considerations 
for peptide analysis include defining the peptide 
molecular weight(s) to include in quantitation, whether 
relevant standards and internal standards are available, 
and the choice of using a bottom-up or a top-down 
approach for analysis. In addition, the large dynamic 
concentration range of proteins in plasma may hinder 
the detection of less abundant components by LC-MS/MS 
analysis (32), thereby resulting in detection limits that are 
above the needed range for the diagnostic peptides. With 
the LC-MS/MS techniques for peptide quantification, 
the future challenges lie within the validation for the  
clinical application.

Position 3: As LC-MS/MS technology for the 
measurement of FSH, LH, AMH, and Inhibin B has yet to 
be implementated in a diagnostic setting, measurement by 
immunoassay is the current and recommended method.

Reference values

An important basis in the clinical evaluation of the 
measured concentrations of any biomarker is the 
availability of reference data from healthy volunteers. 
Sex- and age-related reference values are of paramount 
importance, especially for reproductive hormones due 
to the sex dimorphism and physiological fluctuations in 
concentrations according to age and developmental stage. 
This is illustrated with AMH and Inhibin B in Figs 2 and 
3, respectively. Reference ranges for FSH, LH, AMH, and 
Inhibin B are previously reported (e.g. (24, 25, 33, 34)). In 
addition to the reference data for hormones individually, 
reference data with cut-off values for ratios of hormones 
may add in the evaluation of DSD; for example, in healthy 
infants, the LH/FSH-ratio has been shown to separate 
healthy boys and girls, and in infants with complete AIS, 
the LH/FSH-ratio has been reported to lie within male 
range (8). However, the recruitment of healthy volunteers 
for the establishment of sex- and age-related reference 
values is often a challenge, especially in young children 
and adolescents. Furthermore, the aim of getting the 
value of a compound within the corresponding reference 
limits may not in all cases serve as optimal disease 
monitoring, as exemplified in acceptably treated CAH, 
in which 17-hydroxyprogesterone and androstenedione 
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concentrations generally are high-normal to elevated 
despite adequate clinical control (35). Thus, instead of 
using absolute concentration values, the transformation 

of absolute values into s.d.-scores may improve patient 
management in the future. For example, in the long-
term monitoring of Turner syndrome patients, for which 

Table 1 Lowest and highest measurement ranges without dilution of follicle-stimulating hormone (FSH), luteinizing hormone 
(LH), anti-Müllerian hormone (AMH), and Inhibin B and numbers of instruments according to analytical platforms.

Measurement range Number of instruments (%)
Low High Bio-Rad Labquality 

FSH, IU/L
 n 1600 96
 Roche Elecsys & Cobas e411* 0.10 200 269 (17) 5 (5)
 Roche Modular E & Cobas e601-e801 0.1 (e801: 0.3) 200 19 (1) 35 (36)
 Roche Cobas 6000 & Cobas 8000 0.1 200 291 (18) NA
 Siemens Advia Centaur 0.3 200 300 (19) 17 (18)
 Siemens Immulite 0.1 170 53 (3) 11 (11)
 Siemens Dimension Vista 0.2 200 5 (0.3) 7 (7)
 Abbott Architect 0.05 150 305 (19) 15 (16)
 Beckman Coulter Access & Unicel DxI 0.2 200 168 (11) 1 (1)
 bioMérieux Vidas Group 0.1 110 80 (5) 2 (2)
 Vitros Systems 0.66 200 49 (3) 1 (1)
 Tosoh 0.1 250 27 (2) NA
 DiaSorin Liaison 0.25 400 15 (1) 1 (1)
 Perkin Elmer AutoDelfia 0.05 256 1 (0.1) 1 (1)
LH, IU/L
 n 1601 94
 Roche Elecsys & Cobas e411* 0.10 200 260 (16) 5 (5)
 Roche Modular E & Cobas e601-e801 0.1 (e801: 0.3) 200 18 (1) 35 (37)
 Roche Cobas 6000 & Cobas 8000 0.10 200 301 (19) NA
 Siemens Advia Centaur 0.1 200 304 (19) 16 (17)
 Siemens Immulite 0.05 200 52 (3) 12 (13)
 Siemens Dimension & Vista 0.2 150 6 (0.4) 7 (7)
 Abbott Architect 0.09 250 299 (19) 14 (15)
 Beckman Coulter Access & Unicel DxI 0.2 250 167 (10) 1 (1)
 bioMérieux Vidas Group 0.1 100 81 (5) 1 (1)
 Vitros Systems 0.216 200 50 (3) 1 (1)
 Tosoh 0.1 250 26 (2) NA
 DiaSorin Liaison 0.2 250 14 (1) 1 (1)
 Perkin Elmer AutoDelfia 0.05 250 1 (0.1) 1 (1)
AMH, pmol/L
 n 99† 18
 Roche Elecsys/Cobas 0.071 164.2 44 (44) 16 (89)
 Beckman Coulter Access 0.14 171 28 (28) NA
 Beckman Coulter AMH Gen II 0.57 160.7 24 (24) 2 (11)
INHIBIN B, pg/mL
 Beckman Coulter Inhibin Gen II ELISA 7 1000
 DSL** 7 1000
 Serotec** 15 1000
 Oxford Bio-Innovation Ltd.** 15 1000
 ANSH LABS Inhibin B ELISA AL-107 (RUO) 1.6 1390

For FSH, LH and AMH, the platform groups that constituted at least 1% of the total number of platforms signed up to at least one of the external quality 
assurance programs (Bio-Rad, Labquality, and UK-NEQAS) are listed with numbers of participants (percentages in brackets). No widely available 
EQA-programs currently exist for Inhibin B. For Inhibin B is shown the most commonly used Inhibin B-assays found by an internet search at PubMed.
†Instruments for AMH signed up to UK NEQAS; **No longer commercially available; ‡measurement range is provided in pg/mL; *Range for Roche Elecsys, 
but data on number of Roche Elecsys and Roche Cobas e411 are added from LabQuality; Permission to publish this information has been given from the 
EQA organizers
Bio-Rad: Immunoassay (Monthly) Program (Distribution no.: Cycle 14. Dec 2016–Dec 2017, Sample No. 8); High, Highest reportable value without dilution 
(exact value may depend on the kit), whatever present; Labquality (AMH): Tumour Markers (Distribution no.: 2017/02); Labquality (FSH and LH): Hormone 
Determinations B (Distribution no.: 2017/03); Low, Lowest reportable value; i.e. ananlytical sensitivity, limit of detection, limit of quantification, lowest 
calibrator value (except the 0-calibrator), whatever present; RUO, Research use-only analysis; UK NEQAS, United Kingdom National External Quality 
Assessment Service for Peptide Hormones (Distribution no.: 445, February 21, 2017).
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measurements of gonadotropins and AMH are suggested 
as predictive tools for ovarian function (9, 36) as well as 
for deciding the time and dose of estrogen replacement 
therapy using gonadotropins (9), the use of s.d.-scores 
would simplify and advance clinical management.

Evaluation of central precocious puberty includes a 
standard GnRH test with gonadotropin measurements 
before and after GnRH. A basal LH of at least 0.3 IU/L 
(37) or a maximal GnRH-stimulated LH above 5 IU/L 
(37, 38) is considered a sign of central HPG activation. 
However, caution should be considered when evaluating 
GnRH test results in girls aged 1 to 3 years in whom LH 
may increase to 10 IU/L in healthy prepubertal girls (39). 
A GnRH test additionally may have some diagnostic 
value in separating constitutional delay of puberty from 
permanent hypogonadotropic hypogonadism, although 
controversy surrounding this issue exists. Furthermore, it 
may be useful even in the evaluation of patients presenting 
with AIS in mid-childhood, as an exaggerated LH response 
up to six times the basal levels has been reported (40). 
With the alignment of laboratory tests, systematic 
differences between laboratories can be minimized; that 
is, common reference values can be developed and used 
across laboratories. This will present the opportunity for 
comparable evaluation of measurements from different 
laboratories (41).

Position 4: Due to sex dimorphism and physiological 
fluctuations in concentrations with age and developmental 
stage, sex- and age-related reference values are mandatory 
in the evaluation of the peptide hormones FSH, LH, AMH, 
and Inhibin B. Publications containing reference values 
and decision limits should include information related to 
the analytical method.

Harmonization of laboratory tests

The comparability of results across laboratories can be 
attained by establishing metrological traceability; that 
is, the process by which it is ensured that measurement 
procedures measure the same quantity and that the 
calibration of these procedures are traceable to a shared 
reference system comprising reference methods and 
reference materials (42). The two approaches to reach 
metrological traceability are (1.) standardization, in which 
traceability is ensured to the International System of Units 
(SI) and ‘trueness’ is reached by a top-down approach (e.g. 
as applied to serum testosterone) and (2.) harmonization, 
in which traceability is ensured to a reference system that 

is not traceable to SI, but instead decided by agreement 
via a bottom-up approach (e.g. inter-method comparison 
among routine measurement procedures).

With both harmonization and standardization, 
external quality assurance programs play a central role 
in supporting agreement (43). DSD are rare conditions, 
so international collaboration is necessary to improve 
diagnostics and treatment follow-up of these conditions, 
and therefore agreement in laboratory medicine is crucial. 
The individual laboratory must use analytical validation, 
for which at least parameters like accuracy, including 
determination of both systematic (bias) and random 
(imprecision) errors, and sex- and age-specific reference 
values have been established.

For many peptides (including FSH, LH, AMH, and 
Inhibin B), true absolute values cannot be determined, 
as reference methods are not defined and no reference 
laboratories perform reference measurements for these 
peptides. Instead, laboratory comparisons are achieved 
using reference materials (e.g. WHO International 
Standards) that are untraceable to SI. A prerequisite 
for a reference material is commutability, which is two 
measurement procedures’ closeness of agreement between 
the relation observed for a reference material and the 
relation observed for clinical samples (42). However, due 
to, for example, matrix effects in the reference material, 
non-commutability (i.e. that the reference material 
does not mimic the clinical samples) may challenge 
method comparison also for these peptide hormones. 
International standards exist for FSH, LH, and Inhibin 
B, while no international standard currently exists for 
the measurement of AMH. Thus, the introduction of 
routine measurements of AMH has been complicated and 
confusing due to the implementation of different assays 
based on various antibody combinations and various 
calibrations (44). However, recently it was shown that 
two widely available automated assays (Roche Elecsys 
and Beckman Coulter Access 2) yielded high degrees of 
consistency over a wide range of concentrations (44). This 
was because Roche standardized against the Beckman 
Coulter AMH Gen II ELISA assay.

Participation in external quality assurance 
(EQA) programs should be a prerequisite to achieve 
comparability in the results across laboratories. Table 1 
depicts an example of four representative EQA programs 
(used in Copenhagen, DK), for FSH, LH, and AMH: the 
Bio-Rad Immunoassay (Monthly) Program (FSH and 
LH) (Bio-Rad Laboratories, CA, USA), the Labquality 
programs Hormone Determinations B (FSH and LH) and 
Tumour Markers (AMH) (Labquality, Helsinki, Finland), 
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respectively, and the United Kingdom National External 
Quality Assessment Service for Peptide Hormones (AMH; 
UK NEQAS, Edinburgh, UK). Table 1 lists the platform 
groups that constituted at least 1% of the total number 
of platforms participating in the Bio-Rad, the Labquality, 
or the UK-NEQAS program. Importantly, other EQA 
programs exist for peptide hormones, for example, 
Stichting Kwaliteitsbewaking Medische Laboratoria 
(SKML, the Netherlands) for FSH and LH. To the best of 
our knowledge, only two EQA programs for Inhibin B 
exist currently (ProBioQual, France, and Qualimedlab, 
Italy), and there is no program for urine LH (Table 1).

With the aim of obtaining an overview of the most 
commonly used Inhibin B-assays, we performed a search 
on PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) 
with the following criteria: (1.) Inhibin B and human and 
serum and 2016 and (2.) Inhibin B and human and serum 
and 2017. The most commonly used assays reported were 
the ones listed in Table 1. However, three of the listed 
assays are former versions of the Beckman Coulter Inhibin 
Gen II ELISA and therefore are no longer commercially 
available. Furthermore, several research use-only versions 
exist, of which the assay by Ansh Labs is listed. Thus, to 
achieve agreement across laboratories, an EQA program 
for Inhibin B is recommended.

Position 5: Except for Inhibin B, external quality 
assurance (EQA) programs are widely available for these 
relevant peptide hormones in blood. Laboratories should 
aim to participate in EQA programs, when available. 
When EQA programs are unavailable, laboratories should 
aim to participate in activities of peer comparison, such as 
sample exchange for Inhibin B.

Peptide hormone analysis in relation 
to DSD

The use of peptide hormones as markers for DSD can 
be viewed from the classification of DSD (1). The 
corresponding peptide hormone concentration levels 
within each condition are shown in Table 2.

Sex-chromosome DSD conditions

Turner syndrome

Turner syndrome is one of the most common 
chromosomal abnormalities, occurring in approximately 
1 in 2000 live-born female infants (45). The classical 

X-monosomic Turner variant is mostly associated 
with a prenatal degeneration of ovarian follicles and 
development of streak gonads (46), while spontaneous 
pubertal development is more frequent in patients 
with mosaic (45,X/46,XX) Turner syndrome. In mini-
puberty, gonadotropin levels have been reported to be 
above female reference range, but with LH/FSH ratios 
within normal female range (8). As in healthy children 
and adolescents, girls with Turner syndrome exhibit a 
biphasic pattern with increased gonadotropin secretion 
in early childhood and from puberty onward (9, 47). 
The gonadotropin concentrations overlap with reference 
values from childhood through adolescence (9), with the 
largest overlap in mid-childhood. However, as a group, 
Turner syndrome patients exhibit higher gonadotropin 
levels in early childhood and during puberty than 
observed in healthy controls, maybe as a consequence 
of gonadal failure. During mini-puberty, undetectable 
to low-level concentrations of AMH and Inhibin B have 
been reported (8). Furthermore, an AMH concentration of 
≤3 pmol/L has been reported as a predictor of imminent 
premature ovarian failure (36).

45,X/46,XY mosaicism

While patients with a 45,X/46,XY constitution have a 
‘Turner’-cell line, these may present as phenotypically 
predominantly male or female, or with ambiguous 
genitalia. Females with Y-chromosome material are 
considered to have Turner syndrome (see previous 
section). Males with this karyotype vary greatly in terms of 
gonadal function and androgenization, which is reflected 
in the gonadotropins, AMH, and Inhibin B that all vary 
from normal to levels indicative of gonadal failure (i.e. 
high LH and FSH, low AMH and Inhibin B) (10, 48, 49).

Klinefelter syndrome

Klinefelter syndrome is the most common chromosomal 
abnormality, with an estimated frequency of 1:1000 
to 1:1500 in male newborns (50). The classical form of 
Klinefelter syndrome, which is defined by the 47,XXY 
karyotype and results from the aneuploidy of the sex 
chromosomes, constitutes 80–90% of the cases, while 
10–20% of Klinefelter cases are caused by higher-grade 
aneuploidies, structurally abnormal X chromosomes, 
or mosaicims (51). The cardinal stigmata include small 
testes, hypergonadotropic hypogonadism, gynecomastia, 
infertility, and variable degrees of learning difficulties. 
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Most often, the gonadotropins are increased due to an 
abnormal Leydig cell function, while AMH is decreased 
due to an abnormal Sertoli cell function (24). In mini-
puberty, concentrations of gonadotropin, AMH, Inhibin 
B, and the LH/FSH-ratio have been reported within 
male reference ranges (8), although higher-than-normal 
gonadotropin concentrations are also described (11). 
However, the likelihood of abnormal biochemistry may 
depend on the extent of testicular abnormality, which 
again depends on the age of the boy.

46,XX DSD conditions

Disorders of gonadal (ovarian) development

46,XX ovotesticular DSD

In the very rare ovotesticular DSD, the gonads may 
contain both ovarian and testicular tissue (ovotestis) 
or there may be a combination of an ovary on one side 
and a testis or an ovotestis on the other side. In 46,XX 

DSD, the genital development depends on the extent of 
testosterone and AMH secretion and thus the stimulation 
and/or regression of Wolffian and Müllerian structures. 
Therefore, phenotypical presentation varies. Although 
AMH and Inhibin B measurements cannot contribute 
information on the gonads separately, the peptides may 
provide an overview of gonadal function.

46,XX gonadal dysgenesis

46,XX gonadal dysgenesis (46,XX GD) is a genetically 
heterogenous group of phenotypical females characterized 
by streak gonads that lead to primary ovarian failure. 
Different causative mutations in genes have been reported, 
for example, in FSHR (52). The phenotype includes delayed 
or absent puberty, primary amenorrhea, hypoplasia 
of the uterus, and hypergonadotropic hypogonadism. 
Thus, concentrations of gonadotropins are commonly 
elevated, while AMH and Inhibin B concentrations are  
commonly low.

Table 2 Concentration levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH), and 
Inhibin B in Differences of Sex Development (DSD).

LH FSH AMH Inhibin B

Sex-chromosome DSD conditions
 Turner syndrome Elevated for F Elevated for F Decreased for F Decreased for F
 45,X/46,XY mosaicism Variable Variable Variable Variable
 Klinefelter syndrome Elevated for M Elevated for M Decreased for M Decreased for M
46,XX DSD conditions
 46,XX ovotesticular DSD Variable Variable Variable Variable
 46,XX gonadal dysgenesis Elevated for F Elevated for F Decreased for F Decreased for F
 21-hydroxylase deficiency Normal for sex Normal for sex Normal for sex Normal for sex
46,XY DSD conditions
 46,XY gonadal dysgenesis (complete) Elevated for F Elevated for F Decreased for F Decreased for F
 46,XY gonadal dysgenesis (partial) Variable Variable Variable Variable
 StAR, CYP11A1, CYP17A1, HSD3B2 

and HSD17B3*
Elevated for sex Elevated for sex Normal for sex Normal for sex

 5α-reductase deficiency Normal for M Normal for M Decreased to normal 
for M

Decreased to normal 
for M

 Complete AIS Elevated for F Normal to Elevated 
for F

Elevated for F Elevated for F

 Partial AIS Elevated for M Normal for M Normal for M Normal for M
 Leydig-cell hypoplasia Elevated for M Normal to Elevated 

for M
Normal for M Normal for M

 PMDS (impaired AMH production) Normal for M Elevated for M Decreased for M Normal for M
 PMDS (AMH resistance) Normal for M Elevated for M Elevated for M Normal for M
 PMDS (testicular dysgenesis) Elevated for M Elevated for M Decreased for M Decreased for M
Other
 Congenital hypogonadotropic 

hypogonadism 
Decreased for sex Decreased for sex Decreased for sex Decreased for sex

As DSD covers patients with a wide spectrum of phenotypes including ambiguous genitalia, patients may be evaluated based on the most predominant 
phenotypical features, regardless of chromosomal constitution.
AIS, androgen insensitivity syndrome; F, female; M, male; PMDS, persistent Müllerian duct syndrome. *genetic mutations resulting in the following 
androgen biosynthesis deficiencies, steroid acute regulatory protein deficiency (StAR), StAR, P450 side chain cleavage enzyme deficiency (CYP11A1), 
17-hydroxylase deficiency (CYP17A1), 3β-hydroxysteroid dehydrogenase deficiency (HSD3B2), and 17β-hydroxysteroid dehydrogenase (HSD17B3);
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Androgen excess

21-hydroxylase deficiency

Congenital adrenal hyperplasia (CAH) due to 
21-hydroxylase deficiency is the most common cause of  
DSD in 46,XX individuals (53). Because of the 
overproduction of androgens, the majority of 
46,XX individuals typically present with ambiguous 
genitalia without palpable gonads in infancy. Elevated 
17-hydroxyprogesterone, 21-deoxycortisol, and 
Δ4-androstenedione are indicative of 21-hydroxylase 
deficiency in the first-line testing. Furthermore, although 
literature is scarce, gonadotropin levels in CAH females 
during infancy before and after onset of treatment have 
been reported to resemble those in healthy boys (high 
LH, low FSH), albeit both gonadotropins were lower 
prior to treatment (54). This resemblance supports 
the notion that the gonadotropin secretion pattern 
seen in CAH neonates is due to prenatal programming 
by the excessive androgen exposure in utero. Thus, 
before CAH is genetically confirmed, FSH LH, AMH, 
and Inhibin B provide important information when 
distinguishing between 46,XX and 46,XY individuals, 
thereby excluding other forms of DSD in newborns 
with ambiguous genitalia. However, patients may also 
present in childhood (precocious puberty, pseudo-, or 
central) or adulthood (menstrual disorders, benign testis 
tumor). Patients with pseudo-precocious puberty may 
not display an initial elevation of gonadotropins, while 
they may occasionally be high at presentation or upon 
the start of treatment in patients with central precocious  
puberty. AMH and Inhibin B are most often normal for 
sex and age.

46,XY DSD conditions

Disorders of gonadal (testicular) development

46,XY gonadal dysgenesis

46,XY gonadal dysgenesis (46,XY GD) is a genetically 
heterogeneous group characterized by deficient gonadal 
development (55). The primary etiology is unknown, 
but mutations in a list of genes (e.g. SRY, WT1, SF1 and 
SOX9) are associated with 46,XY GD (56). In complete 
46,XY GD, there is no testis development, while testis 
development, although abnormal, is present in partial 
46,XY GD (57). The resulting phenotype depends on 
the timing and amount of sex hormones produced by 
the gonads. Thus, the hormonal pattern in complete 
46,XY GD includes hypergonadotropic hypogonadism 

which has been reported from puberty onward (58) and 
undetectable levels of AMH is reported from infancy (59), 
while patients with partial 46,XY GD who may exhibit 
hypergonadotropic hypogonadism and decreased AMH 
levels have also been reported from puberty onwards (58).

Androgen biosynthesis defects

Steroid acute regulatory protein (StAR) deficiency, P450 side 
chain cleavage enzyme (CYP11A1) deficiency, 17-hydroxylase 
deficiency (CYP17A1), 3β-hydroxysteroid dehydrogenase 
deficiency (HSD3B2), and 17β-hydroxysteroid dehydrogenase 
(HSD17B3) deficiency

These are autosomal recessive conditions caused by 
enzymatic defects resulting in impaired androgen 
synthesis. 46,XY individuals have testes, thus no 
Müllerian structures are present because of AMH 
production, while Wolffian derivatives are present in 
varying degrees dependent on the testosterone synthesis, 
resulting in variable masculinization. Patients typically 
have hypergonadotropic hypogonadism and AMH and 
Inhibin B concentrations within the normal range for 
46,XY individuals. However, in the first months of life, 
AMH is high within or above the normal male range 
(60). In androgen biosynthesis defects, the discrepancy 
between steroid hormones and peptide hormones may 
contribute to the diagnostics; that is, testosterone levels 
are low, whereas AMH levels are normal to high.

5α-reductase deficiency

5α-reductase type 2 deficiency is an autosomal recessive 
condition due to mutations in SRD5A2. In 5α-reductase type 
2 deficiency, there is an inability to convert testosterone 
to the more potent dihydrotestosterone that is required 
to masculinize external genitalia in genetic males during 
embryogenesis. The phenotype therefore ranges from varying 
degrees of under-virilization to complete feminization. 
The hormonal pattern is characterized by gonadotropin 
concentrations within the reference range, while AMH and 
Inhibin concentrations are low to normal (60, 61).

Defects in androgen action

Androgen insensitivity syndrome

Androgen insensitivity syndrome (AIS) is characterized 
by normal androgen production and metabolism in 
46,XY individuals with complete (CAIS) or partial 
(PAIS) resistance of the androgen receptor to circulating 
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androgens. Thus, despite a male chromosomal 
constitution, the phenotype varies from male to female. 
AIS is reported to have a prevalence of 4.1 per 100 000 
females (62). In CAIS, the phenotype is female due to the 
lack of masculinization of the Wolffian ducts and external 
genitalia, but internal female genitalia fail to develop 
due to regression of the Müllerian ducts. Caused by 
some residual binding affinity of the androgen receptor 
in PAIS, this phenotype ranges from a predominantly 
female phenotype with mild clitoromegaly and sparse 
labial fusion to a predominantly male phenotype 
with cryptorchidism, micropenis, hypospadias, and 
gynecomastia (63). During the first months of life, LH 
levels are low in CAIS infants, but high in PAIS infants 
(64). From puberty onward, AIS is characterized by 
elevated LH concentrations due to androgen resistance 
at the hypothalamic-pituitary level (65), and an LHRH 
stimulation test can further serve to highlight these 
elevated LH concentrations (40). Adults with testes in 
situ have normal to high concentrations of FSH (66). 
As the Sertoli cell function is intact, AMH and Inhibin 
B concentrations in general are within the male range 
(60, 67). In the first year of life, AMH levels are within or 
above male range in CAIS infants and above male range 
in PAIS infants (60).

LH-receptor defects

Leydig-cell hypoplasia

Leydig cell hypoplasia can be the result of inactivating 
mutations in the gene encoding the Leydig cell receptor, 
that is, the luteinizing hormone-chorionic gonadotropin 
receptor (LHCGR) gene. In 46,XY DSD due to Leydig cell 
hypoplasia, there is a failure in pre- and post-natal virilization 
due to the scarcity of Leydig cells and consequently a lack 
of testosterone (68). The resulting phenotype depends on 
the degree of inactivation and varies therefore from male 
hypogonadism over genital ambiguity to female external 
genitalia. LH levels are typically increased, FSH levels are 
within or above male range, and AMH and Inhibin B levels 
are within male range. Particularly, in the first year of life, 
AMH is within or above male reference range (59).

Disorders of AMH and AMH receptor

Persistent Müllerian duct syndrome

Persistent Müllerian duct syndrome (PMDS) is the 
result of mutations in the AMH gene or the AMH 

receptor type 2 gene, resulting in AMH deficiency or 
AMH-receptor resistance, respectively, or the result 
of testicular dysgenesis. The genetic abnormalities 
only interfere with the regression of the Müllerian 
structures, so the Fallopian tubes and uterus are 
present, while external virilization is normal. Patients 
with PMDS due to mutations thus have normal male 
external phenotypes. In testicular dysgenesis, typically 
both Sertoli and Leydig cells are affected, resulting in 
external genital ambiguity (69). In PMDS, the normal 
concentration of Inhibin B indicates AMH deficiency 
when accompanied by low AMH concentrations and 
AMH-receptor resistance when accompanied by high 
AMH concentrations. As testosterone production is not 
affected, LH concentrations are normal. In testicular 
dysgenesis, the AMH- and Inhibin B concentrations are 
both lower than normal and dependent on the degree of 
testicular impairment.

Other

Congenital hypogonadotropic hypogonadism

In some cases of congenital hypogonadotropic 
hypogonadism (CHH), the external genitalia may be 
under-virilized and thereby qualify as a DSD phenotype. In 
CHH, the postnatal gonadotropic surge provides a useful 
window of opportunity to explore the gonadotropic axis, 
as gonadotropin concentrations are low in CHH. Due to 
the lack of stimulation of the testis, low concentrations 
of AMH and Inhibin B have been reported at this time of 
life (12).

Future directions

In the near future, it is expected that also peptide 
hormones may be analyzed using LC-MS/MS-technique 
because of its potentially higher specificity and lower 
detection limit than obtained by immunoassays. As this 
technique, as mentioned, also allows for simultaneous 
determination of multiple analytes, the challenges lie 
within the requirements for clinical application. An 
example of a LC-MS/MS analysis that recently has been 
developed for clinical application is quantification of 
the peptide hormone Insulin-like factor 3 (Insl-3) (70). 
This peptide is mainly produced in gonadal tissues in 
males and females and is thus expected to be a candidate 
within routine DSD diagnostics. Insl-3 is the major factor 
controlling the gubernacular growth and differentiation, 
it mediates the intra-abdominal testicular descent, and it is 
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involved in the transinguinal and inguinoscrotal descent 
(71). In animals, mutations in the gene encoding Insl-3 
may lead to cryptorchidism, but such mutations are rarely 
the cause of cryptorchidism in humans. Insl-3 is thought 
to be a marker of functional Leydig cells and will, thus, be 
undetectable with the absence of Leydig cells.

Furthermore, targeted proteomics seems attractive 
with respect to future peptide analyses, as it allows for 
simultaneous analysis of several peptides at one time 
and as this method is compatible with existing mass-
spectrometry platforms (72).

Conclusions

One of the aims of Endo-ERN is to establish a network 
of highly specialized endocrine reference laboratories 
with expertise in DSD. Differences of Sex Development 
constitute a heterogenous group of rare conditions. In 
a diagnostic setting, both a clinical and a biochemical 
approach is mandatory and knowledge of peptide 
hormone physiology and structure is essential. Five 
position statements have been developed to support 
the alignment of peptide hormone analysis in patients 
suspected of DSD conditions. This paper will support the 
establishment of common sex- and age-related references 
for normative data to optimize diagnostics and treatment. 
Comparability between laboratories requires participation 
in EQA.
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