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Tissue microenvironment partially

removes signatures of developmental
origin in a 3D in vitro model of cardiac

endothelial cell differentiation

Endothelial cells (ECs) are ubiquitous across di�erent organs of the body. They line the surface
of di�erent types of vessels, forming a tight barrier between a liquid and the surrounding tissue,
and carry out various crucial functions. Dysfunction of ECs can therefore lead to a wide range of
diseases. Importantly, the functions of ECs are highly organ-speci�c. For example, cardiac ECs
line the blood vessels in the heart and have an essential role in nutrient transport. It is currently
unknown, how ECs obtain their organ-speci�c characteristics. Developmental origin and tissue
microenvironment are two possible determining factors, but their relative importance is unclear.
This study uses human-induced pluripotent stem cells to derive ECs from two developmental
origins: paraxial and cardiac mesoderm. We compare their characteristics and further integrate
them into a cardiac microtissue, containing cardiomyocytes and �broblasts, to investigate the
in�uence of the surrounding cells on EC identity. Upon integration into the microtissue, the
developmental origin is partially removed, and ECs from both developmental origins acquire
an intramyocardial signature.

This chapter is based on Xu Cao*, Maria Mircea*, Francijna E. van den Hil, Hailiang Mei, Konstantinos Anastas-

siadis, Christine L. Mummery, Stefan Semrau and Valeria V. Orlova. Tissue microenvironment partially removes

signatures of developmental origin in a 3D in vitro model of cardiac endothelial cell di�erentiation. Manuscript

to be submitted. (*contributed equally)
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4.1 Introduction

All organs of the body rely on highly specialized cells to carry out their particular functions.

Yet, there are cells with similar characteristics that appear across many di�erent organs.

A prime example are endothelial cells (ECs). ECs line the interior surfaces of vessels

and form a tight barrier between a liquid, such as lymph or blood, and the surrounding

tissue [1–6]. Due to their ubiquity, EC dysfunction is associated with a wide range of

disease states, including atherosclerosis, diabetes, heart failure, hypertension and ischemia

[7]. Despite the similarity in function, ECs from di�erent vessels (artery, capillary, vein,

lymphatic) show signi�cant di�erences, re�ecting the speci�c requirements of a particular

environment. It is currently not well understood, how ECs (or other ubiquitous cell types)

acquire their organ-speci�c characteristics. Developmental origin likely plays a role but

cues from the microenvironment could be equally important. Using cardiac ECs as a model,

this study explores the factors that lead to organ-speci�c molecular pro�les.

In the adult heart, ECs constitute > 60% of nonmyocytes [8] and can be divided into

two subtypes: endocardial ECs (eEC) and intramyocardial ECs (iECs). eECs form the

innermost layer and serve as a barrier between blood and myocardium. iECs constitute

the coronary vessels, which transport oxygen and nutrients to the heart. In the mouse

heart, eECs and iECs are distinguished by speci�c expressions of the eEC markers Nfatc1,

Npr3, Tmem100, Cdh11, Hapln1 [9–12], and the iEC markers Apln, Fabp4, Cd36 [9, 13–15].

Equivalent EC subtypes have also been identi�ed in the human heart, by single-cell RNA

sequencing (scRNA-seq)[16–18]. Some of the eEC and iEC markers identi�ed in the mouse

are conserved in humans, such as CDH11, NPR3 in eECs, and CD36, FABP4 in iECs [17].

Unlike eECs, which have a sole origin, iECs have been shown to have multiple origins.

The �rst established origin is the proepicardium on the venous pole of the heart, which

later migrates onto the heart and gives rise to the epicardium and a small number of

iECs [13, 19, 20]. More recently, sinus venosus [13, 16] and endocardium [10, 15] were

revealed as two additional, major sources of iECs, by lineage tracing in mice. Postnatally,

the endocardium continues to give rise to iECs that generate the majority of coronary

vessels in the myocardium closest to the endocardium [21].

In addition to distinct developmental origins, the cardiac microenvironment could also

endow eECs and iECs with tissue speci�c signatures. eECs are formed initially in the heart

tube and exposed to blood �ow, while iECs are developed �rst as a vascular plexus in the

myocardium and are surrounded by other cell types like cardiomyocytes and �broblasts.

Cardiomyocytes are known to produce a vast amount of vascular endothelial growth factor-

A (VEGF-A) [22] and other factors like Angiopoetin-1 [23], nitric oxide (NO), endothelin-1

(ET-1), �broblast growth factor (FGF)-2, urocortin, haemoxygenase and adenosine [24]

, which are all key regulators of the EC phenotype. Other cardiac cell types, including

�broblast, vascular smooth muscle cells (VSMCs) and macrophages, also a�ect heart EC

functions through either direct cell-cell contact or paracrine factors [25].

Most of what we know about EC development has been established in the mouse. Human

in vitro systems provide a convenient, easily manipulated model to study human EC

development. Human induced pluripotent stem cells (hiPSCs) provide an unlimited source

of ECs [26, 27], which can be di�erentiated through di�erent mesodermal origins including

lateral plate mesoderm and paraxial mesoderm (PM) [28]. Several studies derived organ-
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speci�c ECs from hiPSCs. Two groups claimed to have obtained brain microvascular ECs

from hiPSCs through either co-di�erentiation or co-culture with neuronal cells [29, 30].

Our group previously developed a method to co-di�erentiate cardiomyocytes and ECs from

hiPSCs through cardiac mesoderm (CM). These hiPSC-derived ECs expressed a number

of cardiac speci�c genes like MEOX2, GATA4, GATA6 and ISL136, while tissue speci�c

identities (of eEC or iEC) were still absent.

In vitro systems also allow probing the in�uence of the microenvironment, because di�erent

cell types can be easily combined. Recently our group established heart microtissues (MTs),

a 3D cell culture model composed of ECs, cardiomyocytes and �broblasts, all derived from

hiPSCs [31, 32]. This model provides an ideal tool to investigate the in�uence of both

the developmental origin and the cardiac speci�c microenvironment on the acquisition

of a tissue speci�c EC identity. In this study, we derived ECs from hiPSCs through two

mesodermal origins (CM and PM), using our established protocol [31] and an adapted

protocol from the literature [28]. MTs were then generated using these two sources of ECs

respectively. Interestingly, although newly di�erentiated ECs from two origins showed

distinct identities, they became more similar after extended culture in MTs. Furthermore,

based on eEC- and iEC-speci�c signatures extracted from a published single-cell RNA

sequencing (scRNA-seq) dataset of human fetal heart [18], we observed an iEC rather than

an eEC identity for both developmental origins after MT culture. In summary, this study

shows that, although certain characteristics are inherited from progenitors, ECs e�ciently

adapt to the microenvironment and acquire new tissue-speci�c signatures. Our results

provide new insights into the acquisition of organ/tissue-speci�c cell identities, which will

inform the preparation of hiPSC-derived, organ speci�c ECs for disease modeling and drug

development.
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A

B

Figure 4.1: Single-cell RNA sequencing analysis of endothelial cells di�erentiated from cardiac and
paraxial mesoderm(A-B) Schematic overview of CMEC (A) and PMEC (B) di�erentiation protocols until day 6.

Cells were collected for scRNAseq on day 6. ACTA: activin-A. CHIR: CHIR99021. APS/PPS: anterior/posterior

primitive streak. LPM: lateral plate mesoderm.

4.2 Results
4.2.1 Derivation of endothelial cells from different meso-

dermal origins
We set out to derive ECs from hiPSCs via two di�erent mesodermal intermediates. To

obtain cardiac mesoderm-derived ECs (CMECs), we used a protocol that was established

previously in our group [31] (Figure 4.1A). Brie�y, BMP4, Activin A (ACTA) and CHIR99021

(CHIR) were used to induce anterior primitive streak (APS) on day 3. Then, CMECs and

early cardiomyocytes were induced on day 6 in the presence of XAV-939 (XAV) and VEGF.

To obtain paraxial mesoderm-derived ECs (PMECs), we developed a new protocol (Figure

4.1B) based on a published approach [28]. Brie�y, posterior primitive streak was derived

through induction by CHIR for two days and subsequently XAV for one day. Next, PMECs

and a mixed lateral plate mesoderm/sclerotome population were derived by exposure to

CHIR for two days and VEGF for one day.

To facilitate the characterization of the newly developed PMEC protocol, we generated an

hiPSC line harboring �uorescent reporters for PAX3 and MSGN1 (PAX3Venus MSGN 1mCℎerry )

using CRISPR/Cas9 and the piggyBac transposon system. More than 70% of the cells ex-

pressed MSGN 1mCℎerry on day 2 of PMEC di�erentiation (Figure 4.2 A, B). MSGN1 expres-

sion persisted in 50% of the cells until day 8. However, MSGN1 mRNA was only detectable

on day 2 (Figure 4.2E). On day 5, around half of the cells started to express PAX3Venus
(Figure 4.2A,C). Most of these cells also expressed MSGN 1mCℎerry . Both PAX3Venus and

PAX3 mRNA were highly expressed from day 5 to day 8 (Figure 4.2A, C-E). On day 2,

pan-mesoderm markers TBXT and MIXL1 were expressed in both the CMEC and the

PMEC di�erentiation protocol. While cardiac genes (MESP1, GATA4 and NKX2-5) were

exclusively expressed in CMEC di�erentiation, paraxial mesoderm related genes (MSGN1,

TBX6, PAX3) were speci�cally expressed during PMEC di�erentiation (Figure 4.2E). Taken

together, mRNA measurements and assessment of reporter �uorescence suggested that

our new protocol produces ECs with paraxial mesoderm characteristics.
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Figure 4.2: Characterization of PMEC di�erentiation using MSGN 1mCℎerry PAX3Venus dual reporter
line(A) FACS analysis of PAX3Venus and MSGN 1mCℎerry expression at day 2, 3, 5, 6 and 8 of PMEC di�erentiation.

(B-C) Quanti�cation of percentages of mCherry+ (B) and Venus+ (C) cells in the total population by �ow

cytometry on day 2, 3, 5, 6 and 8. (D) Representative �uorescence image of PAX3Venus expression on day 5

of PMEC di�erentiation. Scale bar represents 200 �m. (E) Quanti�cation of TBXT, MIXL1, MESP1, GATA4,

NKX2-5, MSGN1, TBX6 and PAX3 expression by qPCR on day 0, 2, 5 and 8 of CMEC (green) and PMEC (purple)

di�erentiation.
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4.2.2 Transcriptomic profiling of CMECs and PMECs

To compare CMECs and PMECs more broadly, cells expressing the EC marker VEC were

sorted on day 6 and day 8 of both protocols and characterized by bulk RNA sequencing

(RNA-seq) (Figure 4.3A). Principle component analysis (PCA) showed that CMECs and

PMECs clustered separately along PC1, and day 6 and day 8 were separated along PC2

(Figure 4.2B). On day 6, 3307 and 2592 genes were signi�cantly di�erentially upregulated

(padjusted ≤ 0.05, fold-change ≥ 2) in CMECs and PMECs respectively (Table S1). Gene

ontology (GO) analysis showed that cardiac related genes were speci�cally upregulated

in day 6 CMECs (CMEC_D6), while genes related to skeletal system development and

function were speci�cally upregulated in day 6 PMECs (PMEC_D6) (Figure 4.2C, Table S2).

Genes involved in heart development, like GATA4, GATA5, TBX3, ISL1 and MYH6, were

highly expressed in day 6 and day 8 CMECs. TBX3, ISL1 and MYH6 were upregulated from

day 6 to day 8 in CMECs. Essential genes for skeletal muscle development like PAX3, TBX1,

FOXC1, EYA1 and MEOX1 were majorly expressed in day 6 and day 8 PMECs. FOXC1 and

EYA1 were upregulated from day 6 to day 8, while TBX1 and MEOX1 were downregulated

(Figure 4.2D). In summary, unbiased expression analysis by bulk RNA-seq con�rmed the

respective mesodermal origins of the two derived EC cultures.
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Figure 4.3: Characterization of hiPSC-ECs di�erentiated using CMEC and PMEC protocols(A)

Schematic overview of CMEC and PMEC di�erentiation protocols from day -1 to day 8. VEC+ cells were

sorted on day 6 and 8 from both protocols for bulk RNAseq. (B) PCA analysis of hiPSC-ECs sorted on day 6 and 8

of CMEC and PMEC protocol. (C) GO enrichment analysis for di�erentially expressed genes between CMECs

and PMECs on day 6 of di�erentiation. The Complete list of GO terms can be found in Table S2. Color represents

the enrichment p-value adjusted for multiple hypothesis testing and dot size represents the number of genes

mapped to the GO term. (D) Normalized gene expression levels (RPKM) of cardiac and skeletal-related genes in

CMECs and PMECs on day 6 and 8. Error bars indicate standard deviation.



4.2 Results

4

111

4.2.3 Characterization of CMEC and PMEC differentiation
by single-cell RNA-seq
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Figure 4.4: Quality control of scRNAseq datasets (A-B) Distribution of number of detected genes (A) and

total expression (B) in each cell of the scRNAseq datasets. Dotted blue line indicates quality control threshold for

datasets. Two di�erent batches are labelled with di�erent colors. (C) Two di�erent batches of cells collected for

each scRNAseq dataset are visualised using force-directed graph layout. (D) scRNAseq data of CMECs on day 6

is visualized using PAGA. Five cell clusters were identi�ed and labelled with di�erent colors. (E) Expression of

pluripotency genes POU5F1 and NANOG in theCMEC dataset on day 6 is shown in PAGA plot. Color represents

log transformed expression value. (F-G) scRNAseq data of CM_MTs (F) and PM_MTs (G) are visualized using

PAGA. Four cell clusters were identi�ed. Cluster labelled with “Other” was excluded in the downstream analysis

in both datasets. (H) Boxplot of G2M phase-score in individual clusters of each dataset.

To reconstruct the di�erentiation trajectories of ECs, single-cell RNAseq (scRNA-seq) was

performed on day 6 of CMEC and PMEC di�erentiation for two independent biological

replicates (Figure 4.1, A-B, Figure 4.4). The replicates appeared highly similar in a low-

dimensional representation (Figure 4.4C) and were therefore combined for further analysis.

Undi�erentiated hiPSCs remaining in the culture were excluded from further analysis (Fig-

ure 4.4D-E). In the CMEC di�erentiation data set, cells were grouped in 3 clusters, which

we identi�ed as cardiac mesoderm, cardiomyocytes and CMECs by marker gene analysis

(Figure 4.5A, Table S3). The cardiac mesoderm cluster was characterized by mesoderm

and early cardiac genes, such as MESP1, SMARCD3, ABLIM1, TMEM88, ISL1, MYL5, as
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well as the cell cycle-related genes CDK6 and NEK2. The CMEC cluster was characterized

by EC markers (CDH5, CD34, KDR, HEY2, TEK, TIE1, ACVRL1, SOX17, ENG, ICAM2,

PECAM1). Cardiomyocytes were identi�ed by expression of cardiomyocyte-speci�c genes,

including MYL4, TNNI1, MYL7, ACTA2, TNNT2, HAND2 and NKX2-5 (Figure 4.5B, 4.6A-B).

Pseudo-time analysis showed that both CMECs and cardiomyocytes di�erentiated from

cardiac mesoderm, and CMECs progressed further compared to cardiomyocytes (Figure

4.5C).

In the PMEC di�erentiation data set, all cells were divided into 3 clusters, which were inter-

preted as paraxial mesoderm, PMECs and mixed lateral plate mesoderm (LPM)/sclerotome

(Figure 4.5D, Table S2) using marker gene analysis (Table S3). The paraxial mesoderm

cluster was characterized by posterior primitive streak and dermomyotome genes, such as

MEOX1, PDGFRB, SIX1, CRABP2, NR2F1, EYA1, FOXC1 and PAX3. PMECs were charac-

terized by EC markers, like ETV2, CDH5, CD34, KDR, ENG, SOX17, PLVAP, APLN, NRP1.

The mixed LPM/sclerotome cluster was characterized by LPM and sclerotome speci�c

genes, such as TMEM88, HAND1, TNNI1, PRRX1, ACTA2, DES, FOXH1, LEF1 and JAG1

(Figure 4.5E, 4.6C-D). Pseudo-time analysis showed that both PMECs and LPM/Sclerotome

developed from paraxial mesoderm (Figure 4.5F). All in all, clustering and marker gene

analysis of the scRNA-seq data con�rmed the bulk RNA-seq results and revealed high

similarity in developmental dynamics between the two di�erentiation protocols.
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visualized using FGL. Three clusters of cells were identi�ed. (E) FGL plots show expression (log transformed)
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Figure 4.6: Single-cell RNA-sequencing analysis of CMEC and PMEC datasets on day 6 (Caption on
the next page.)
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4.2.4 hiPSC-ECs acqired organ-specific signatures in a car-
diac microenvironment

Being able to produce ECs with properties corresponding to their mesodermal origins

�nally enabled us to test in how far the cellular microenvironment can either reinforce or

reverse this speci�cation. Speci�cally, we set out to mimic the cardiac microenvironment

in vitro using a protocol for creating cardiac microtissues (MTs), which was published

previously by our group [32]. Brie�y, CD34+ CMECs or PMECs were sorted on day 6 and

combined with hiPSC-derived cardiomyocytes (hiPSC-CMs) and hiPSC-derived �broblasts

(hiPSC-CFs) at a ratio of 3:14:3 to form MTs. MTs made from CMECs (CM_MTs) and PMECs

(PM_MTs) were collected after 21 days for scRNA-seq (Figure 4.7A). Two independent

biological replicates were deemed highly similar (Figure 4.4C) and were therefore combined

for further analysis. Both CM_MTs and PM_MTs datasets were divided into three clusters

that correspond to hiPSC-CFs, hiPSC-CMs and hiPSC-ECs (Figure 4.7B). Marker genes

identi�ed for each cluster, con�rmed the cluster identities (Table S6).

In both cases, a fourth cluster of cells with an uninterpretable signature was ignored

(Figure 4.4F-G). Next, we compared the CMECs from monoculture di�erentiation on day

6 (CMEC_day 6) with the CMECs in MTs (CMECs_MT). Most intramyocardial makers

including CLDN5, GMFG, APLNR, CD36, NOTCH4, OIT3, IGFBP3, ARHGAP18, A2M

and BCAM and several endocardial markers (TFPI2, EDN1, ECE1, FOXP1, FOXC1) were

upregulated in CMEC_MT (Figure 4.7C-D, 4.8A, Table S7). However, the di�erences in

endocardial marker expression were smaller compared to intramyocardial markers (Figure

4.7C-D, 4.8A, Table S7). Then, we compared PMECs from monoculture di�erentiation on

day 6 (PMECs_day 6) to PMECs in MTs (PMECs_MT). Most intra-myocardial markers,

including CLDN5, GMFG, NOTCH4, IGFBP3, ARHGAP18, A2M and BCAM, and some

endocardium markers (TFPI2, EDN1, TEK, ECE1, FOXP1, ALDH2, FZD6) were upregulated

in PMEC_MT (Figure 4.7C, 4.8B, Table S7).

Compared to PMECs_MT, CMECs_MT expressed higher levels of intra-myocardial markers,

especially APLNR, CD36, OIT3, ARHGAP18, A2M, BCAM which were barely expressed

in the majority of PMECs_MT cells (Figure 4.7F, Table S8). Although most endocardium

markers were also higher in CMECs_MT than in PMECs_MT, their average expression

levels were lower in general compared to intra-myocardial markers (Figure 4.8C, Table S8).

Notably, most endocardial makers (including CDH11, FOXC1, FZD6, TMEM100 and NPR3)

were barely expressed in both CMECs_MT and PMECs_MT, (Figure 4.8C). Overall, heart

tissue-speci�c genes, especially intramyocardial markers, were upregulated in hiPSC-ECs

upon extended culture in the cardiac microenvironment of the MT.

Figure 4.6: scRNAseq analysis of CMEC and PMEC datasets on day 6 (Figure on previous page.) (A)

Volcano plots showing fold changes and adjusted p-values for di�erential gene expression between a speci�c

cluster in the CMEC dataset and all other cells in that dataset. Representative, signi�cantly up-regulated genes

(Padjusted ≤ 0.05 & fold change ≥ 1.2) are labelled in red. (B) MESP1, SMARCD3, KDR, CDH5, MYL4 and NKX2-5

expression (log transformed) in three clusters of CMEC dataset on day 6. (C) Volcano plots showing fold changes

and p-values for di�erential gene expression between a speci�c cluster in the CMEC dataset and all other cells in

that dataset. Representative signi�cantly up-regulated genes (Padjusted ≤ 0.05 & fold change ≥ 1.2) are labelled

in red. (D) PAX3, MEOX1, CD34, CDH5, LEF1 and PRRX1 expression (log transformed) in three clusters of the

PMEC dataset on day 6.
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Figure 4.7: hiPSC-ECs acquired organ-speci�c signatures in a cardiac microenvironment (A) Schematic

overview; generation of cardiac microtissues (MTs) from hiPSC-CMs, hiPSC-CFs and hiPSC-ECs. CMECs and

PMECs were used for CM_MTs and PM_MTs, respectively. MTs were collected after 21 days for scRNAseq. (B)

scRNAseq data of CM_MTs (left) and PM_MTs (right) were visualized using force-directed graph layout. Three

clusters of cells were identi�ed in both datasets. (C) Volcano plot shows fold changes and p values of all genes

tested between two selected clusters: CMECs_day 6, CMECs_MTs (left), and PMECs_day 6, PMECs_MTs (right).

Representative intra-myocardial and endocardial markers that are di�erentially expressed (Padjusted ≤ 0.05) are

labelled in red and green respectively. (D-F) Di�erential expression tests between CMECs_day 6 and CMECs_MT

(D), PMECs_day 6 and PMECs_MT (E), CMECs_MT and PMECs_MT (F) for representative intra-myocardial EC

markers. ns: p ≥ 0.05; * p ≤ 0.05; ** p ≤ 1e-10; *** p ≤ 1e-100; **** p ≤ 1e-200. Clusters with higher expression value

were indicated with stars. ne: not expressed (0 counts) in ≥ 85% of cells in both groups.
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Figure 4.8: Characterization of endocardial signatures of hiPSC-ECs on day 6 and in MTs (A-C) Di�er-

ential expression tests between cluster CMECs_day 6 and CMECs_MT (C), PMECs_ day 6 and PMECs_MT (D),

CMECs_MT and PMECs_MT (E) for representative endocardial EC markers. ns: p ≥ 0.05; * p ≤ 0.05; ** p ≤ 1e-10;

*** p ≤ 1e-100; **** p ≤ 1e-200. Clusters with higher expression value were indicated with stars. ne: not expressed

(0 counts) in ≥ 85% of cells in both groups.

4.2.5 Extraction of organ-specific signatures of human fetal
heart ECs from a published scRNA-seq dataset

To assess how closely ECs in MTs assume an organ-speci�c identity, we sought to compare

them to primary heart ECs. To that end, we re-analyzed a published scRNA-seq dataset of

the fetal human heart (EGAS0000100399) [18] and identi�ed the expression signature of

heart ECs. The whole cell population was divided into 14 clusters. Our interpretation of

these cluster deviated from the published annotation in two cases (Figure 4.9A): 1. The origi-

nal endothelium/pericytes/adventia cluster (cluster 10) was reannotated as intramyocardial

ECs, based on di�erentially expressed markers such as A2M, CD36, APLNR, ARHGAP18,

IGFBP3, CLDN5, FABP4 and FABP5. 2. The cluster annotated as capillary endothelium in

the original publication (cluster 0) was reannotated as endocardium, due to the presence

of di�erentially expressed markers like NPR3, ALDH2, CDH11, ECE1, TMEM100, FOXC1

and EDN1 (Figure 4.9B, Table S5). Supporting the di�erential expression test, UMAP vi-

sualization of representative intra-myocardial and endocardial markers showed speci�c

expression in the respective clusters (Figure 4.9C-D). In conclusion, our clustering and

di�erential expression analysis revealed distinct endothelial tissues in the fetal human

heart.
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Figure 4.9: Re-analysis of a published scRNAseq dataset to identify organ speci�c signatures of human
fetal heart ECs (A) Dimensionality reduction of scRNAseq data of human fetal heart using Uniform MAnifold

Approximation and Projection (UMAP). 14 cell clusters were identi�ed and named based on their identities

according to the original publication except for two EC clusters: intra-myocardial ECs and endocardium. (B)

Volcano plot showing fold changes and adjusted p-values for di�erential gene expression between intra-myocardial

ECs and endocardium. Representative di�erentially expressed genes (Padjusted ≤ 0.05) that are known to be intra-

myocardial or endocardial markers are labelled in red and green, respectively. (C-D) Expression (log transformed)

of representative intra-myocardial EC markers (C) and endocardium markers (D) in individual cells (UMAPs).

4.2.6 BothCMECs and PMECs acqired intra-myocardial iden-
tity in MT culture

To obtain a clear view of the similarities between ECs in MTs and primary fetal heart

ECs, we combined the CM_MT or PM_MT dataset with the published in vivo data (Fig-

ure 4.10A-B). In both cases, hiPSC-CFs in MTs (CF_MT) cluster together with fetal heart

�broblast-like cells; hiPSC-CMs in MTs (CM_MT) cluster together with fetal heart ventric-

ular cardiomyocytes. Notably, both CMECs_MT and PMECs_MT cluster together with

fetal heart intra-myocardial ECs rather than endocardium (Figure 4.10A-D).
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Figure 4.10: Both CMECs and PMECs acquired intra-myocardial identity in a cardiac microenviron-
ment (A-B) The published human fetal heart scRNAseq dataset (EGAS0000100399) was combined with the

CM_MTs (A) or PM_MTs (B) dataset and visualized using Uniform Manifold Approximation and Projection

(UMAP). EC clusters are marked with dashed boxes. (C-D) Zoom-ins of EC clusters marked in (A-B), showing

overlap of CMECs_MT (C) and PMECs_MT (D) with intramyocardial ECs of the fetal heart dataset. Cell clusters

are labeled with di�erent colors. Cells in the fetal heart dataset are represented with dots and cells in MT datasets

are represented with contour lines. (E) The nearest clusters to the published dataset were identi�ed for each

cell of CM_MTs and PM_MTs. The result of knn-assignment is visualized in the bar plot. Cells from CM_MTs

and PM_MTs are labelled in dark and light colors respectively. Identities of each cell clusters of the published

dataset are shown with di�erent colors. (F) Jaccard similarity to the amrker genes of intra-myocardial ECs from

the published fetal heart dataset was calculated for each group of genes. CMEC markers (in MTs): speci�c

markers of CMECs within CM_MT dataset; PMEC markers (in MTs): speci�c markers of PMECs within PM_MT

dataset; CMECs (MTs ≥ day 6): di�erentially expressed genes (DEGs) that are higher in CMECs_MT compared to

CMECs_day 6; PMECs (MTs ≥ day 6): DEGs that are higher in PMECs_MT compared to PMECs_day 6; CMECs

(P2 ≥ day 6): DEGs that are higher in passage two CMECs compared to CMECs_day 6. (G) Venn diagram showing

numbers and overlap of DEGs (Padjusted ≤ 0.05 and foldchange ≥ 1.5) between CMECs and PMECs from day 6

(in red) and MTs (in blue). (H) PCA of di�erent EC populations in scRNAseq (triangle and diamond) and bulk

RNAseq (circle) datasets using the marker genes of the intra-myocardial ECs from the in vivo data set. Average

expression values of all cells in the cluster were used for the scRNAseq data.

To quantify our observation, we calculated the distances (in expression space) between

each cell in MTs and the fetal heart dataset. This calculation showed that CF_MT cells are

closest to �broblast-like cells in vivo (related to cardiac skeleton connective tissue); CM_MT

cells are closest to ventricular cardiomyocytes; and CMECs_MT as well as PMECs_MT

are closest to intra-myocardial ECs in vivo. Annotating the in vitro cells based on the

closest in vivo neighbors revealed that cell type identities were very similar in CM_MTs

and PM_MTs (Figure 4.10E). Correspondingly, the set of markers of the CMECs_MT and
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the PMECs_MT cluster showed a high overlap (Jaccard similarity) with the markers of

intra-myocardial ECs we extracted from the in vivo data set. The gene set upregulated in

CMECs_MT (compared to CMECs_day 6) had a higher overlap with intra-myocardial EC

markers than the set of genes upregulated in PMECs_MTs (compared to PMECs_day 6).

Genes that were upregulated in passage two CMECs compared to CMECs_day 6 overlapped

the least with intra-myocardial EC markers (Figure 4.10F). CMECs_MT and PMECs_MT

thus both resembled intra-myocardial ECs but a di�erence between the two di�erentiation

systems remained. To quantify this di�erence directly, we used di�erential gene expression

analysis. On day 6 of di�erentiation, 1446 genes were di�erentially expressed between

CMECs and PMECs (Table S9), while only 332 genes were di�erentially expressed between

CMECs_MT and PMECs_MT (Table S8). 81 genes were shared between the two sets (Figure

4.10G).

Next, all EC clusters from bulk and single cell RNA-seq datasets were combined and vi-

sualized using principal component analysis (PCA) (Figure 4.10H). CMECs_day 6 and

PMECs_day 6 cluster far part, while CMECs_MT and PMECs_MT clustered closely to-

gether. Bulk and single cell RNA-seq samples clustered together for both CMECs and

PMECs. CMECs_MT and PMECs_MT were found close to fetal heart intra-myocardial

ECs and fetal heart ECs sequenced in our previous study ([32](Figure 4.10H). All in all, the

integrated analysis of the in vitro and in vivo data sets revealed that the cardiac microenvi-

ronment, mimicked by cardiac MT, partially removed expression di�erences due to distinct

mesodermal origins.

4.3 Discussion
In this study we set out to delineate the possible factors that can confer organ-speci�c

characteristics to cardiac ECs. In principle, those characteristics could be inherited from

developmental precursors or induced by the tissue microenvironment. We investigated the

contributions from both factors using hiPSC-derived ECs and cardiac MTs as tools.

To model di�erent developmental origins, CMECs and PMECs were derived through CM

and PM respectively. CMECs obtained a clear cardiac phenotype but no tissue-speci�c (eEC

or iEC) identity. PMECs expressed a number of limb/skeletal muscle speci�c genes. Both

protocols thus resulted in early or immature organ-speci�c identities. However, we cannot

conclude that these identities were conferred by the respective mesoderm precursors in

an entirely cell-autonomous manner, since other cell types were co-di�erentiated in both

protocols and could have in�uenced the ECs. To exclude the contribution from other cells

in the culture, early EC progenitors would have to be puri�ed and further di�erentiated to

establish whether organ-speci�c identities are present.

To model the in�uence of cell-extrinsic factors, we took advantage of our cardiac MT

model which mimics the heart-speci�c microenvironment better than other in vitro models

[3]. Both CMECs and PMECs acquired an iEC identity after incorporation into MTs and

continued culture. This result supports that high plasticity [5, 6] allows ECs to adapt

e�ciently to signals from the microenvironment.

Notably, the iEC identity was more pronounced in CMECs_MT than in PMECs_MT, as it

might take extra steps and therefore more time for PMECs to adopt a cardiac fate, compared

to CMECs. Importantly, extended monoculture of CMECs did not result in an iEC identity,



4

120 4 Tissue microenvironment partially removes signatures of developmental origin

suggesting that the heart-speci�c microenvironment, modeled by cardiac MTs, caused

the speci�cation. Some of the genes upregulated during MT culture are essential for EC

function. For example, CLDN5 and NOTCH4 were among the most highly upregulated

genes in both protocols. CLDN5 is critical for the tight junction and barrier functions of

endothelium [8], while NOTCH signaling plays key roles in both vascular morphogenesis

and adult endothelium homeostasis [9]. These results might indicate that ECs also mature

functionally in MTs.

ECs have been incorporated into hPSC-derived organoids of liver [10, 11], intestine [12],

brain [13–15], pancreas [16] and kidney [17, 18] by either codi�erentiation or aggregation.

In most studies, organ/tissue-speci�c identities were barely investigated. Camp et al. [33]

used an approach similar to our MTs, combining hepatic, stromal, and endothelial cells

to make liver organoids [11]. Interestingly, that study reported transcriptomic changes in

ECs upon coculture in liver organoids, suggesting further maturation. Similarly, coculture

with neuronal cells was found to endow hPSC-derived ECs with a brain microvascular

identity [34]. Together with these previous studies, our results support the notion that the

microenvironment plays an essential role in developing an organ/tissue-speci�c identity

of ECs. More work is needed to investigate the molecular mechanisms underlying the

in�uence of the microenvironment, which likely include direct cell-cell contact, secretion

of paracrine factors and modulation of the extracellular matrix.

We hope that our �ndings will guide the derivation of organ-speci�c ECs in the future and

lay the foundation for various biomedical applications.
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4.4 Materials and Methods
4.4.1 Experimental Methods
hiPSC culture
The NCRM1 hiPSC line (NIH) was used for all experiments in this study. The cells were

cultured in TeSR-E8 on Vitronectin XF and was routinely passaged once a week using

Gentle Cell Dissociation Reagent (all from Stem Cell Technologies). Prior to targeting, were

grown on feeders in maintenance medium. RevitaCell (Life Technologies) was added to

the medium (1:200) after every passage to enhance viability after single cell passaging with

TrypLE (Life technologies).

Generation of PAX3VenusMSGN 1mCℎerry hiPSC dual reporter line
The PAX3Venus reporter was introduced �rst by CRISPR/Cas9 as follows: NCRM1 hiPSCs

were passaged using split ratios of 1:2 or 1:3. The cells were transfected in 60 mm dishes

after reaching 60-70% con�uency. For transfection, 20 �l lipofectamine (Invitrogen), 8 �g

repair template and 8 �g sgRNA/Cas9 plasmid were diluted in 600 �l Opti-MEM and added

to each 60 mm dish. After 18 ho the medium was changed to maintenace medium. After

another 6 h G-418 (50 �g/ml) selection was started and kept for 1 week. Surviving cells

were cultured in maintenance medium and grown in 6-well plates for the transfection with

a Flp recombinase expression vector to remove the neomycin cassette. 300 �l Opti-MEM

containing 10 �l lipofectamine and 4 �g CAGGs-Flpo-IRES-puro plasmid was added per

well for 18 h. Puromycin (0,5 �g/ml) selection was started 24 h post transfection and lasted

for 2 days. Once recovered, individual clones were expanded by limiting dilution in 96-well

plates. Targeted clones were identi�ed by PCR and Sanger sequencing (BaseClear).

Next, the MSGN 1mCℎerry reporter was integrated into the genome of the PAX3Venus
reporter line using a piggyBac transposon system created by Katrin Neumann, Konstantinos

Anastassiadis (Biotechnology Center TU Dresden).

Endothelial cell differentiation from hiPSCs
Endothelial cells with a cardiac mesoderm origin were induced from hiPSCs in a monolayer

using the CMEC protocol as described previously [31]. Brie�y hiPSCs were split at a 1:12

ratio and seeded in 6-well plates coated with 75 �g/mL growth factor reduced Matrigel

(Corning) on day -1. On day 0, cardiac mesoderm was induced by changing from TeSR-E8

medium to BPEL medium [35], supplemented with 20 ng/mL BMP4 (R&D Systems), 20

ng/mL ACTIVIN A (Miltenyi Biotec) and 1.5 �M CHIR99021 (Axon Medchem). From day 3,

the cells were grown in BPEL medium supplemented 5 �M XAV939 (Tocris Bioscience) and

50 ng/ml VEGF (R&D Systems), with or without 100 �M retinoic acid (MERCK) and the

medium was refreshed every 3 days.

To derive endothelial cells with paraxial mesoderm origin, hiPSCs were split at a 1:12 ratio

and seeded in 6-well plates coated with 75 �g/mL growth factor reduced Matrigel on day

-1. On day 0, paraxial mesoderm was induced by changing from TeSR-E8 to BPEL medium,

supplemented with 8 �M CHIR99021. On day 2, the medium was exchanged with BPEL

medium supplemented with 5 �M XAV939. On day 3, the medium was exchanged with

BPEL medium supplemented with 4 �M CHIR99021. From day 5 onwards, cells were grown

in BPEL medium supplemented with 50 ng/ml VEGF and the medium was refreshed every

3 days.
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Fluorescence-activated cell sorting
Cells were dissociated with TrypLE on day 6 and 8 of the CMEC or PMEC protocol and

stained with a VE-Cadherin (VEC) antibody conjugated with PE (R&D Systems). Then

VEC-positive cells were puri�ed using a FACSAria III cell sorter. Total RNA was extracted

right after sorting using the NucleoSpin®RNA kit (Macherey-Nagel).

Generation of 3D Cardiac Microtissues (MTs)
Cardiac MTs were generated from hiPSC-derived ECs (hiPSC-ECs), hiPSC-derived cardiac

�broblasts (hiPSC-CFs) and hiPSC-derived cardiomyocytes (hiPSC-CMs) as previously de-

scribed [32]. Brie�y, on day 6 of CMEC or PMEC di�erentiation, CD34-positive hiPSC-ECs

were isolated using a Human cord blood CD34 Positive selection kit II (StemCell Tech-

nologies) following the manufacturer’s instructions. On the day of MT formation, freshly

isolated hiPSC-ECs and cultured hiPSCs-CFs and hiPSC-CMs were combined together (70%

hiPSC-CMs, 15% hiPSC-ECs and 15% hiPSCs-CFs) at a concentration of 5000 cells per 50�l

in BPEL medium supplemented with VEGF (50 ngml) and FGF2 (5 ngml). Cell suspensions

were seeded in V-bottom 96-well microplates (Greiner bio-one) and centrifuged for 10 min

at 1100 rpm. MTs were incubated at 37
◦
C, 5% CO2 for 21 days. The medium was refreshed

every 3 to 4 days. single-cell RNA-sequencing analysis of MTs was performed after 21 days.

Flow cytometry analysis
Cells were dissociated with TrypLE, washed once with �ow cytometry bu�er (PBS con-

taining 0.5% BSA and 2 mM EDTA) and analyzed on a MACSQuant VYB (Miltenyi Biotech)

equipped with a violet (405 nm), blue (488 nm) and yellow (561 nm) laser. The results were

analyzed using Flowjo v10 (FlowJo, LLC).

�antitative Real-Time Polymerase Chain Reaction (qPCR)
Total RNA was extracted using the NucleoSpin®RNA kit according to the manufacturer’s

protocol. cDNA was synthesized using an iScript-cDNA Synthesis kit (Bio-Rad). iTaq

Universal SYBR Green Supermixes (Bio-Rad) and Bio-Rad CFX384 real-time system were

used for the PCR reaction and detection. Relative gene expression was determined according

to the standard ΔCT calculation and normalized to housekeeping gene RPL37A.

4.4.2 Bulk RNA seqencing (RNA-seq) and analysis
Bulk RNAseq of passage two CMECs (CMECs P2) and human fetal heart ECs from week

12.5 (W12.5), W15 and W21 of gestation were performed in our previous study [32] and

obtained from GEO (accession number GSE116464).

Bulk RNAseq of day 6 and 8 of CMEC and PMEC di�erentiation were performed by BGI

(Shenzhen, China) using the Illumina Hiseq4000 sequencer (100bp paired end reads). Raw

data was processed using the LUMC BIOPET Gentrap pipeline (h�ps://github.com/biopet/
biopet), which comprises FASTQ preprocessing, alignment and read quanti�cation. Sickle

(v1.2) was used to trim low-quality read ends (h�ps://github.com/najoshi/sickle). Cutadapt

(v1.1) was used for adapter clipping [36]. Reads were aligned to the human reference

genome GRCh38 using GSNAP (gmap-2014-12-23) [37, 38] and htseq-count (v0.6.1p1) was

for quanti�cation using the Ensembl v87 annotation [39]. Biases related to gene length

and GC content were corrected by conditional quantile normalization using the R package

https://github.com/biopet/biopet
https://github.com/biopet/biopet
https://github.com/najoshi/sickle
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cqn (v1.28.1) [40]. Genes were excluded if read count was below 5 in ≥90% of the samples.

Di�erentially expressed genes were identi�ed using a generalized linear model as imple-

mented in edgeR (3.24.3) [41]. P-values were adjusted for multiple hypothesis testing using

the Benjamini-Hochberg procedure and q-values of ≤ 0.05 were considered signi�cant.

Analyses were performed using R (version 3.5.2). The Principal Component Analysis (PCA)

plot was generated with the built-in R functions ’prcomp’. Spearman correlation between

samples was calculated using the ’cor’ function and the correlation heatmap was generated

with a heatmap function from the NMF package. Gene ontology term enrichment was

performed using the compareCluster function of the clusterPro�ler package (v3.10.1) [42]

and q-values ≤ 0.05 were considered signi�cant.

4.4.3 Single-cell RNA seqencing and analysis
Library preparation and seqencing
Cells were dissociated into single cells di�erentiation and loaded into the 10X Chromium

Controller for library construction using the Single-Cell 3’ Library Kit, Version 2 Chemistry

(10x Genomics) according to the manufacturer’s protocol. Next, indexed cDNA libraries

were sequenced on the HiSeq4000 platform. Single-cell expression was quanti�ed using

unique molecular identi�ers (UMIs) by 10x Genomics’ “Cell Ranger” software.

Mean reads per cell for all eight data sets:

CMEC (R1): 28,499; CMEC (R2): 29,388; PMEC (R1): 31,860; PMEC (R2): 38,415; CM_MT

(R1): 39,319; CM_MT (R2): 29,741; PM_MT (R1): 36,726; PM_MT (R2): 26,421.

Single-cell RNA-seqencing data pruning and normalization
For data pruning and normalization, the two replicates of each of the 4 conditions (CMEC,

PMEC, CM_MT and PM_MT) were combined without batch correction. Cells with a number

of genes per cell below a certain threshold (1200 (CMEC), 1200 (PMEC), 900 (CM_MT), 750

(PM_MT), see Figure 4.4) were removed. Genes expressed in less than 2 of the remaining

cells with a count of at most 1 were excluded from further analysis. Each combined data set

was normalized using the R package scran (V 1.14.6) [43]. Highly variable genes (HVGs)

were calculated (using ’improvedCV2’ from the scran package) for each replicate of the

combined data sets after excluding ribosomal genes, stress markers [44] and mitochondrial

genes. For downstream analysis the top 5% HVGs were used after excluding proliferation

[45] and cell cycle [46] related genes.

Cell cycle analysis and batch correction
For each combined data set, cell cycle analysis was performed with the scran package

using the ’cyclone’ function [47] on normalized counts (Figure 4.4H). Cells with a G2/M

score higher than 0.2 were considered to be in G2/M phase. Otherwise, they were classi�ed

as G1/S. Using this binary classi�er as predictor, we regressed out cell cycle e�ects with

the R package limma (V 3.42.2) [48] applied to log-transformed normalized counts. Then,

for each combined data set, the two replicates were batch corrected with the fast mutual

nearest neighbors correction method (MNN) [49] on the cell cycle corrected counts, using

the 30 �rst principal components and 20 nearest-neighbors (Figure 4.4C).
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Clustering
For each combined data set, batch-corrected counts were standardized per gene and then

used to create a shared nearest neighbour (SNN) graph with the scran R package (d = 30, k

= 2). Louvain clustering was applied to the SNN graph using the igraph python package

(V 0.7.1) with these resolution parameters: 0.4 (CMEC), 0.4 (CM_MT), 0.3 (PMEC), 0.1

(PM_MT). For the CMEC data set, this resulted in 5 clusters (Figure 4.4D). Two of these

5 clusters were excluded from further analysis based on the expression of pluripotency

markers (Figure 4.4E). For CM_MT and PM_MT, clustering resulted in 4 clusters (Figure

4.4F and 4.4G), where one cluster was excluded from further analysis, because it was mainly

present in one of the two replicates. Additionally, the attempt to map this cluster to in

vivo data resulted in mostly unassigned cell types (plot not shown). For PMEC, clustering

resulted in 3 clusters.

Dimensionality reduction and pseudotime
Dimensionality reduction was performed using the python scanpy pipeline (V 1.4.6). For

both data sets (CMEC and PMEC) a 20 nearest-neighbors (knn, k=20) graph was created

from di�usion components of the batch corrected data sets. Di�usion components are the

eigenvectors of the di�usion operator which is calculated from Euclidean distances and

a Gaussian kernel. The aim is to �nd a lower dimensional embedding which considers

the dynamics of di�erentiation. Both graphs were projected into two dimensions using a

force-directed graph layout and starting positions obtained from the partition-based graph

abstraction (PAGA) output [50]. PAGA estimates connectivities between partitions and

performs an improved version of di�usion pseudotime. Di�usion pseudotime [50, 51] was

calculated on these graphs with root cells selected from the “Cardiac Mesoderm” cluster in

CMEC, and the “Paraxial Mesoderm” cluster in PMEC.

For CM_MT and PM_MT, the knn graphs (k=50 for PM_MT, k=100 for CM_MT) were

created from the �rst 30 principal components of the batch-corrected data sets. These

graphs were projected into two dimensions with a force-directed graph layout and starting

positions from the PAGA output.

In vivo data analysis and mapping
The in vivo data set, downloaded from

h�ps://www.spatialresearch.org/resources-published-datasets/doi-10-1016-j-cell-2019-11-025/,
contains a 6.5 PCW (postcoitum weeks) human fetal cardiac tissue sample. The clusters

and cluster annotations were obtained from the original publication [18]. The data set

was normalized with the scran R package and HVGs were calculated as described above.

Dimensionality reduction was performed with the R package umap (V 0.2.5.0) using 20

nearest-neighbors, min_dist = 0.7 and Euclidean distances.

Differential expression analysis
All di�erential expression tests were performed with edgeR (V 3.28.1) [41] using a negative

binomial regression and raw counts. The predictors in the regression were: cluster and

replicate (both discrete variables), as well as the total number of counts per cell.

For marker gene analysis (Figures 4.6A and 4.6C), p-values were obtained for a contrast

between the cluster of interest and all other clusters using regression coe�cients averaged

over the replicates. For tests between di�erent data sets (Figure 4.7C), the corresponding

https://www.spatialresearch.org/resources-published-datasets/doi-10-1016-j-cell-2019-11-025/
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endothelial cell cluster was extracted from each data set. Then, a contrast between MT

and day 6 was calculated by averaging over the predictors of both replicates. For the in

vivo test (Figure 4.9B), intra-myocardial EC and endocardium clusters were extracted from

the data set to calculate the contrast between them. P-values were adjusted for multiple

hypothesis testing with the Benjamini-Hochberg procedure.

Comparison to the in vivo data set
CM_MT and PM_MT data sets were mapped on the in vivo data set using the MNN method

(d = 30 principal components, k = 100 nearest neighbors). First, in vitro replicates were

mapped to each other, then the in vivo data was mapped on the combined in vitro data,

using normalized, log- transformed counts and the 10% top HVGs of the in vivo data set.

Dimensionality reduction was performed with the R package umap using 100 nearest-

neighbors, min_dist = 0.3 and Euclidean distance.

K-nearest-neighbour (KNN) assignment was performed in the batch corrected, principal

component space (30 PCs). The 100 nearest-neighbors in the in vivo data set based on

Euclidean distances were calculated for each in vitro cell. The in vitro cell was ascribed the

cell type most abundant among the 100 in vivo neighbors. Each such assignment received

a con�dence score, which is the number of in vivo neighbors with that cell type divided by

the number of all nearest neighbors (=100). A cell was not ascribed a cell type if either the

average distance to its nearest neighbour exceeded a certain threshold (determined by the

long tail of the histogram of average distances: 0.35), or the assignment had a con�dence

score smaller than 0.5. In addition, clusters containing less than 10 cells were not ascribed

a cell type.

For the Jaccard similarity measure, marker genes of each di�erential expression test were

selected with adjusted p-value ≤ 0.05. The remaining genes were ranked by log2 fold-

change and the �rst 478 genes were selected for analysis. Then, the Jaccard distances were

calculated between the marker genes of intra-myocardial endothelial cells and each of the

other gene sets. For principal component analysis (Figure 4.10H), human fetal bulk samples

[32] and in vitro bulk samples were combined with the single cell data sets. For each

single-cell data set, the endothelial cells were extracted and the sum per gene over all cells

was calculated. Then, bulk and single cell samples were log-transformed and combined

into one data set. Principal component analysis was applied on the gene-wise standardized

data set, using marker genes of the intra-myocardial endothelial cells from the in vivo data

set.

4.4.4 Data availability
The accession numbers for the bulk and single-cell RNA-sequencing datasets reported in

this paper are h�ps://www.ncbi.nlm.nih.gov/geo/. Supplementary tables are available at

h�ps://doi.org/10.5061/dryad.9p8cz8wkg.

Funding This project received funding from the European Union’s Horizon 2020 Frame-

work Programme (668724); European Research Council (ERCAdG 323182 STEMCARDIO-

VASC); Netherlands Organ-on-Chip Initiative, an NWO Gravitation project funded by

the Ministry of Education, Culture and Science of the government of the Netherlands

(024.003.001). M. M. and S.S. were supported by the Netherlands Organisation for Scienti�c

https://www.ncbi.nlm.nih. gov/geo/
https://doi.org/10.5061/dryad.9p8cz8wkg


4

126 4 Tissue microenvironment partially removes signatures of developmental origin

Research (NWO/OCW,www.nwo.nl), as part of the Frontiers of Nanoscience (NanoFront)

program. The computational work was carried out on the Dutch national e-infrastructure

with the support of SURF Cooperative.

Disclosure of potential con�ict of interest The authors indicated no potential con-

�icts of interest.

NWO/OCW, www.nwo.nl


References

4

127

References
[1] J. Kalucka et al. Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell,

180(4):764–779.e20, feb 2020.

[2] A. Jambusaria et al. Endothelial heterogeneity across distinct vascular beds during

homeostasis and in�ammation. eLife, 9, jan 2020.

[3] R. Marcu et al. Human Organ-Speci�c Endothelial Cell Heterogeneity. iScience, 4:20,

jun 2018.

[4] D. J. Nolan et al. Molecular Signatures of Tissue-Speci�c Microvascular Endothelial

Cell Heterogeneity in Organ Maintenance and Regeneration. Developmental Cell,
26(2):204–219, jul 2013.

[5] M. Potente and T. Mäkinen. Vascular heterogeneity and specialization in development

and disease. Nature Reviews Molecular Cell Biology 2017 18:8, 18(8):477–494, may 2017.

[6] D. T. Paik et al. Single-Cell RNA Sequencing Unveils Unique Transcriptomic Signatures

of Organ-Speci�c Endothelial Cells. Circulation, 142(19):1848–1862, nov 2020.

[7] R. J. Esper et al. Endothelial dysfunction: a comprehensive appraisal. Cardiovascular
Diabetology, 5:4, feb 2006.

[8] A. R. Pinto et al. Revisiting cardiac cellular composition. Circulation Research,

118(3):400–409, 2016.

[9] H. Zhang et al. Endocardium Minimally Contributes to Coronary Endothelium in the

Embryonic Ventricular Free Walls. Circulation Research, 118(12):1880–1893, jun 2016.

[10] B. Wu et al. Endocardial Cells Form the Coronary Arteries by Angiogenesis through

Myocardial-Endocardial VEGF Signaling. Cell, 151(5):1083–1096, nov 2012.

[11] S. Somekawa et al. Tmem100, an ALK1 receptor signaling-dependent gene essential

for arterial endothelium di�erentiation and vascular morphogenesis. Proceedings of
the National Academy of Sciences of the United States of America, 109(30):12064–12069,

jul 2012.

[12] M. C. Puri, J. Partanen, J. Rossant, and A. Bernstein. Interaction of the TEK and

TIE receptor tyrosine kinases during cardiovascular development. Development,
126(20):4569–4580, oct 1999.

[13] H. I. Chen et al. The sinus venosus contributes to coronary vasculature through

VEGFC-stimulated angiogenesis. Development (Cambridge), 141(23):4500–4512, dec

2014.

[14] X. Tian et al. Subepicardial endothelial cells invade the embryonic ventricle wall to

form coronary arteries. Cell Research 2013 23:9, 23(9):1075–1090, jun 2013.



4

128 4 Tissue microenvironment partially removes signatures of developmental origin

[15] K. Red-Horse, H. Ueno, I. L. Weissman, and M. A. Krasnow. Coronary arteries form by

developmental reprogramming of venous cells. Nature 2010 464:7288, 464(7288):549–

553, mar 2010.

[16] H. Suryawanshi et al. Cell atlas of the foetal human heart and implications for

autoimmune-mediated congenital heart block. Cardiovascular Research, 116(8):1446–

1457, jul 2020.

[17] Y. Cui et al. Single-Cell Transcriptome Analysis Maps the Developmental Track of

the Human Heart. Cell Reports, 26(7):1934–1950.e5, feb 2019.

[18] M. Asp et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the

Developing Human Heart. Cell, 179(7):1647–1660.e19, dec 2019.

[19] R. E. Poelmann et al. Development of the cardiac coronary vascular endothelium, stud-

ied with antiendothelial antibodies, in chicken-quail chimeras. Circulation Research,

73(3):559–568, 1993.

[20] T. C. Katz et al. Distinct Compartments of the Proepicardial Organ Give Rise to

Coronary Vascular Endothelial Cells. Developmental Cell, 22(3):639–650, mar 2012.

[21] X. Tian et al. Vessel formation. De novo formation of a distinct coronary vascular

population in neonatal heart. Science (New York, N.Y.), 345(6192):90–94, jul 2014.

[22] F. J. Giordano et al. A cardiac myocyte vascular endothelial growth factor paracrine

pathway is required to maintain cardiac function. Proceedings of the National Academy
of Sciences of the United States of America, 98(10):5780–5785, may 2001.

[23] N. L. Ward et al. Angiopoietin 1 expression levels in the myocardium direct coronary

vessel development. Developmental Dynamics, 229(3):500–509, mar 2004.

[24] D. Tirziu, F. J. Giordano, and M. Simons. Cell Communications in the Heart. Circulation,

122(9):928–937, aug 2010.

[25] F. Perbellini, S. A. Watson, I. Bardi, and C. M. Terracciano. Heterocellularity and

Cellular Cross-Talk in the Cardiovascular System. Frontiers in Cardiovascular Medicine,
5:143, nov 2018.

[26] V. V. Orlova et al. Functionality of endothelial cells and pericytes from human pluripo-

tent stem cells demonstrated in cultured vascular plexus and zebra�sh xenografts.

Arteriosclerosis, Thrombosis, and Vascular Biology, 34(1):177–186, jan 2014.

[27] V. V. Orlova et al. Generation, expansion and functional analysis of endothelial cells

and pericytes derived from human pluripotent stem cells. Nature Protocols 2014 9:6,

9(6):1514–1531, may 2014.

[28] K. M. Loh et al. Mapping the pairwise choices leading from pluripotency to human

bone, heart and other mesoderm cell-types. Cell, 166(2):451, jul 2016.



References

4

129

[29] H. Minami et al. Generation of Brain Microvascular Endothelial-Like Cells from

Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells. PLOS
ONE, 10(6):e0128890, jun 2015.

[30] E. S. Lippmann et al. Derivation of blood-brain barrier endothelial cells from human

pluripotent stem cells. Nature Biotechnology 2012 30:8, 30(8):783–791, jun 2012.

[31] E. Giacomelli et al. Three-dimensional cardiac microtissues composed of cardiomy-

ocytes and endothelial cells co-di�erentiated from human pluripotent stem cells.

Development (Cambridge), 144(6):1008–1017, mar 2017.

[32] E. Giacomelli et al. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation

in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart

Disease. Cell Stem Cell, 26(6), 2020.

[33] J. G. Camp et al. Multilineage communication regulates human liver bud development

from pluripotency. Nature 2017 546:7659, 546(7659):533–538, jun 2017.

[34] M. Buckingham, S. Meilhac, and S. Za�ran. Building the mammalian heart from two

sources of myocardial cells. Nature Reviews Genetics 2005 6:11, 6(11):826–835, nov

2005.

[35] E. S. Ng, R. Davis, E. G. Stanley, and A. G. Elefanty. A protocol describing the use

of a recombinant protein-based, animal product-free medium (APEL) for human

embryonic stem cell di�erentiation as spin embryoid bodies. Nature Protocols 2008
3:5, 3(5):768–776, apr 2008.

[36] M. Martin. Cutadapt removes adapter sequences from high-throughput sequencing

reads. EMBnet.journal, 17(1):10–12, may 2011.

[37] T. D. Wu and C. K. Watanabe. GMAP: a genomic mapping and alignment program

for mRNA and EST sequences. Bioinformatics, 21(9):1859–1875, may 2005.

[38] T. D. Wu and S. Nacu. Fast and SNP-tolerant detection of complex variants and

splicing in short reads. Bioinformatics, 26(7):873–881, apr 2010.

[39] A. Yates et al. Ensembl 2016. Nucleic Acids Research, 44(D1):D710–D716, jan 2016.

[40] K. D. Hansen, R. A. Irizarry, and Z. Wu. Removing technical variability in RNA-seq

data using conditional quantile normalization. Biostatistics, 13(2):204–216, apr 2012.

[41] M. D. Robinson, D. McCarthy, Y. Chen, and G. K. Smyth. edgeR: di�erential expression

analysis of digital gene expression data User’s Guide. Bioinformatics, 26(October

2018):1–75, 2013.

[42] G. Yu, L. G. Wang, Y. Han, and Q. Y. He. clusterPro�ler: an R package for comparing

biological themes among gene clusters. Omics : a journal of integrative biology,

16(5):284–287, may 2012.

[43] A. T. Lun, K. Bach, and J. C. Marioni. Pooling across cells to normalize single-cell

RNA sequencing data with many zero counts. Genome Biology, 17(1):1–14, apr 2016.



4

130 4 Tissue microenvironment partially removes signatures of developmental origin

[44] S. C. van den Brink et al. Single-cell sequencing reveals dissociation-induced gene

expression in tissue subpopulations. Nature Methods, 14(10):935–936, 2017.

[45] M. L. Whit�eld, L. K. George, G. D. Grant, and C. M. Perou. Common markers of

proliferation. Nature Reviews Cancer 2006 6:2, 6(2):99–106, feb 2006.

[46] B. Giotti, A. Joshi, and T. C. Freeman. Meta-analysis reveals conserved cell cycle

transcriptional network across multiple human cell types. BMC Genomics, 18(1):1–12,

jan 2017.

[47] A. Scialdone et al. Computational assignment of cell-cycle stage from single-cell

transcriptome data. Methods, 85:54–61, sep 2015.

[48] M. E. Ritchie et al. limma powers di�erential expression analyses for RNA-sequencing

and microarray studies. Nucleic Acids Research, 43(7):e47–e47, apr 2015.

[49] L. Haghverdi, A. T. Lun, M. D. Morgan, and J. C. Marioni. Batch e�ects in single-cell

RNA-sequencing data are corrected by matching mutual nearest neighbors. Nature
Biotechnology, 36(5):421–427, 2018.

[50] F. A. Wolf et al. PAGA: graph abstraction reconciles clustering with trajectory infer-

ence through a topology preserving map of single cells. Genome Biology, 20(1):1–9,

mar 2019.

[51] L. Haghverdi et al. Di�usion pseudotime robustly reconstructs lineage branching.

Nature Methods 2016 13:10, 13(10):845–848, aug 2016.


