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Phiclust: A clusterability measure for
single-cell transcriptomics reveals

phenotypic subpopulations

The ability to discover new cell phenotypes by unsupervised clustering of single-cell transcrip-
tomes has revolutionized biology. Currently, there is no principled way to decide whether a
cluster of cells contains meaningful subpopulations that should be further resolved. Here we
present phiclust (�clust ), a clusterability measure derived from random matrix theory, that
can be used to identify cell clusters with non-random substructure, testably leading to the
discovery of previously overlooked phenotypes.

This chapter is based on Mircea, M., Hochane, M., Fan, X., Chuva de Sousa Lopes, S.M., Garlaschelli, D., Semrau

S., Phiclust: a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations. Genome

Biology 23, 18 (2022). https://doi.org/10.1186/s13059-021-02590-x [1]
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2.1 Background

Unsupervised clustering methods [2–5] are integral to most single-cell RNA-sequencing

(scRNA-seq) analysis pipelines [6], as they can reveal distinct cell phenotypes. Importantly,

all existing clustering algorithms have adjustable parameters that have to be chosen care-

fully to reveal the true biological structure of the data. If the data is over-clustered, many

clusters are driven purely by technical noise and do not re�ect distinct biological states.

If the data is under-clustered, subtly distinct phenotypes might be grouped with others

and will thus be overlooked. Furthermore, most analysis pipelines rely on qualitative

assessment of clusters based on prior knowledge, which can hinder the discovery of new

phenotypes. To assess the quality of a clustering quantitatively and help choose optimal

parameters, some measures of clustering quality and clusterability have been proposed [7],

most of which are not directly applicable to scRNA-seq data. For example, some existing

methods rely on multimodality of the expression matrix, which is not always justi�ed for

scRNA-seq data, especially when considering highly dynamic systems. Other methods have

input parameters, such as the optimal number of dimensions for dimensionality reduction,

that cannot be easily determined. Also, general methods do not explicitly account for

uninformative sources of variability, related to cell cycle progression or the stress response,

for example, which can be important confounders. In the context of scRNA-seq, one of

the most widely used measures is the silhouette coe�cient [8]. This measure requires the

choice of a distance metric to compute the similarity between cells. Notwithstanding its

usefulness, it cannot be excluded that a partition of random noise obtains a high silhouette

coe�cient, indicating high clustering quality. Other measures based on distance metrics

or the �t of probability densities su�er from similar issues and often only provide binary

results instead of a quantitative score [9]. A di�erent approach is pursued by ROGUE [10], a

recently developed tool to assess clustering quality speci�cally in scRNA-seq data. ROGUE

applies the concept of entropy on a per-gene basis to quantify the mixing of cell types.

While a clear improvement over existing methods, ROGUE depends on a challenging step

of selecting informative genes to explain the di�erences between cell types. It also assumes

a particular noise distribution and requires the careful choice of an adjustable parameter.

Here we present phiclust, a new clusterability measure for scRNA-seq data that addresses

some of the shortcomings of existing methods. This measure is based on the angle �
between vectors of the noise-free signal and the measured, noisy signal. We consider

clusterability to be the theoretically achievable agreement with the unknown ground truth

clustering, for a given signal-to-noise ratio. (Below, we will describe in detail how we

de�ne “signal” and “noise” in this context.) Importantly, our measure can estimate the

level of achievable agreement without knowledge of the ground truth. High clusterability

(phiclust close to 1) means that multiple phenotypic subpopulations are present and that

clustering algorithms should be able to distinguish them. Low clusterability (phiclust close

to 0) means that the noise is too strong for even the best possible clustering algorithm to

�nd any clusters accurately. If phiclust equals 0, the observed variability within a cluster

is consistent with random noise. Any subclusters of such a cluster still have a phiclust of

0, which prevents over-clustering of random noise. Instead of assuming a certain noise

distribution or relying on a selection of informative genes, our measure can be applied

to arbitrary types of random noise and includes all genes in the analysis. This is made
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possible by certain universal properties of random matrix theory (RMT) [11], which has

been applied successfully in �nance [12], physics [13] and recently also scRNA-seq data

analysis [14].
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Figure 2.1: Concept of phiclust a Scheme illustrating the rationale behind phiclust.

Below we will use results of RMT on the singular value decomposition (SVD) of a single-cell

gene expression matrix, where rows correspond to genes and columns correspond to cells.

To get an intuitive understanding of RMT, it is useful to �rst consider the cell-cell correlation

matrix, calculated from the gene expression pro�les. We start from the null hypothesis

that the data does not contain any structure and is produced by a random process. In the

context of single-cell transcriptomics, “structure” means multiple, distinguishable clusters

of cells, or phenotypes. RMT can predict, what the correlation matrix looks like, if the

entries of the gene expression matrix are samples of random variables that are independent

and identically distributed. Trivially, the diagonal elements of this correlation matrix are

all equal to 1. The o�-diagonal elements are not exactly 0, however, despite the absence of

any meaningful structure in the data. Only in the limit of measuring an in�nite number of

(random) genes would the o�-diagonal elements become identically 0 and the correlation

matrix would become the identity matrix. In that case, the only eigenvalue of the correlation

matrix is 1. RMT describes the properties of a correlation matrix for a �nite ratio of cells
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and genes. These correlation matrices are, in a sense, distributed “around” the identity

matrix, which corresponds to an eigenvalue spectrum distributed around 1. Although

the individual entries of the correlation matrix �uctuate from realization to realization,

RMT shows that the eigenvalue spectrum is robust (a so-called “self-averaging” property)

and an analytical expression for it can be obtained [15]. Likewise, RMT predicts that

the singular value distribution of a purely random matrix is closely approximated by the

Marchenko-Pastur (MP) distribution. This result holds true irrespective of the distribution

of the random variable. This universal property of random matrices allows us to apply

RMT to gene expression matrices obtained by scRNA-seq. Of course, any biologically

interesting scRNA-seq measurement should contain structure, usually in the form of cell

clusters. RMT allows us to regard singular values lying above the MP distribution as

evidence for the rejection of the null hypothesis (i.e., the absence of structure in the data).

The MP distribution is characterized by sharp upper and lower limits for the singular

values of a random matrix, but is strictly valid only in the limit of in�nite numbers of

genes and cells (while keeping the cell-gene ratio �xed). For �nite matrices, the largest and

smallest singular values are distributed around those sharp limits, which is described by the

Tracy-Widom distribution [16]. As explained above, the presence of structure manifests

itself as singular values above the MP distribution (i.e., the prediction for a purely random

matrix). Qualitatively, the magnitude of those outlying singular values corresponds to the

magnitude of the di�erences between clusters. We can understand this relationship, if

we assume that the measured gene expression matrix is the sum of a random matrix (the

“noise”) and a matrix of noise-free gene expression pro�les (the “signal”), see Fig. 2.1. The

bigger the di�erence in gene expression between phenotypes, the larger the magnitude

of the non-zero singular values of the signal matrix. If the number of non-zero singular

values (i.e., the rank of the signal matrix) is small compared to the dimensions of the matrix,

low-rank perturbation theory [17] is applicable. This theory allows us to calculate the

singular values of the measured gene expression matrix from the singular values of the

signal matrix. Remarkably, knowledge of the complete signal matrix is not required for

this calculation. phiclust is meant to help identify non-random (or deterministic) structure.

At the level of a complete data set, for example of a complex tissue, clusters are typically

easily discernible. However, if we zoom in on a single cluster, it is much more di�cult to

decide, whether the variability within that cluster corresponds to meaningful sub-structure

(such as the presence of multiple phenotypes) or is consistent with random noise. Below,

we will precisely de�ne a notion of clusterability, based on the adjusted rand index, and

show that it strongly correlates with phiclust. Furthermore, we will demonstrate that

our measure compares favorably to the silhouette coe�cient and ROGUE on simulated

data and experimental data sets with known ground truth. (See Table S1 for a list of all

used simulated and experimental data sets.) Finally, we will apply phiclust to scRNA-seq

measurements of complex tissues and obtain new biological insights, which we validate

with follow-up measurements.
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2.2 Results
2.2.1 Phiclust is derived from first principles and does not

have free parameters
To derive phiclust, we considered the measured gene expression matrix as a random matrix

perturbed by the unobserved, noise-free gene expression pro�les (Fig. 2.1). This is the exact

opposite of the conventional approach, which considers random noise as a perturbation to

a deterministic signal. Note that, in our approach, the random matrix contains both the

biological variability within a phenotype as well as the technical variability (which is due

to limited RNA capture and conversion e�ciency, for example). Our point of view allows

us to leverage well-established results from RMT [14, 18] and perturbation theory [17].

Figure 2.2 illustrates the basic principles that were applied to derive phiclust. RMT predicts

that the SVD of a random noise matrix results in normal distributed singular vectors and

a distribution of singular values that is closely approximated by the MP distribution, if

the matrix is large enough (Fig. 2.2a, left column). Here, we consider the noise-free gene

expression pro�les of the cells in various phenotypes, as the “signal” that perturbs the

random matrix and thus its singular value distribution. Since biological and technical

variability are lumped into the random matrix, expression pro�les are identical for cells

that belong to the same phenotype. For example, in the case of two distinct phenotypes,

the signal matrix has only one non-zero singular value (Fig. 2.2a, middle column). The

observed (or measured) gene expression matrix is obtained as the sum of the random noise

matrix and the noise-free gene expression pro�les (2.2a, right column). The singular value

distribution of the measured expression matrix has exactly one singular value above the

upper limit that the theory predicts for a purely random matrix, the Tracy-Widom (TW)

threshold. The outlying singular value and its associated singular vector correspond to

the deterministic component of the measured expression matrix. The distribution of the

remaining singular values (the “bulk”) is still closely approximated by the MP distribution.

Importantly, as the perturbation becomes larger, the value of the outlying singular value

also increases (Fig. 2.2b). A larger perturbation means more distinct and therefore more

easily clusterable phenotypes (compare the singular vectors in the middle row of Figs. 2.2a

and b). The basic idea of phiclust is to use the magnitude of the outlying singular values to

quantify clusterability.

Due to the universality of RMT, all described principles are independent of the particular

noise distribution (see Fig. 2.2a-b for normal distributed noise and Fig. 2.2c-d for Poisson

distributed noise). SVD of appropriately preprocessed real data sets therefore leads to

singular value distributions with the same shape as obtained in simulations: a bulk closely

approximated by the MP distribution and one or multiple outlying values. We found that

data preprocessing has to comprise normalization and log-transformation, as well as gene-

wise and cell-wise scaling (Fig. 2.3 a-d). SVD of raw data or log-transformed, normalized

data typically results in a largest outlying singular value that is much larger than all others

(Fig. 2.3 a,b). The corresponding singular vector re�ects a global trend in the data and is

called “market mode” in the context of stock market analysis [12, 19].
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Figure 2.2: Basic principles of random matrix theory and perturbation theory a Top row: heatmaps of a

random matrix drawn from a normal distribution, a rank 1 signal matrix with a singular value � of 2, and the

resulting expression matrix. Middle row: Singular vectors of the corresponding matrices. Bottom row: histograms

of the corresponding singular values. Red line: MP distribution, green line: TW threshold. b Heatmap, singular

vectors and singular values of an expression matrix constructed as in a, except the singular value of the signal

matrix was 5. c,d Matrices, singular vectors and singular values obtained as in a and b, but the random matrix

was drawn from a Poisson distribution.
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Here, we call it “transcriptome mode”, since it corresponds to an expression trend that is

present across all cells, irrespective of cell type (such as, for example, high expression of

particular cytoskeletal genes or essential enzymes and low expression of certain membrane

receptors or transcription factors). The transcriptome mode is obviously not informative

for clustering. Scaling shifts its singular value to 0, which e�ectively removes it from

further analysis (Fig. 2.3c,d).

We tested for all data sets used in this study, whether the bulk of the singular value distri-

bution of each cluster deviates signi�cantly from the MP distribution after the described

preprocessing (Kolmogorov-Smirnov test, Fig. 2.3e). For reasonably large clusters (> 50

cells), we only found one example of a (marginally signi�cant) deviation from the MP

distribution.

We next wanted to con�rm, for real data, that the remaining outlying singular values

re�ect the strength of the signal, i.e., di�erences between the phenotypes. To that end,

we extracted the gene expression pro�les from two clusters in an experimental single-cell

RNA-seq data set and added, as additional signal, a matrix with one non-zero singular

value. As to be expected, SVD of the combined data results in one additional singular value,

which increases with the strength of the perturbation (Fig. 2.3f-g). See Table S2 for a list

of all outlying singular values of experimentally measured expression matrices as well as

the corresponding signal matrices. All in all, these tests show that the basic principles of

random matrix theory and perturbation theory are applicable to real single-cell RNA-seq

data.

So far, we have shown that the values of the outlying singular values are, qualitatively,

related to the di�erences between phenotypes. However, their magnitudes are di�cult to

interpret. Phiclust is derived from the outlying singular values and can be interpreted as a

measure of clusterability, as we will show in the next section. More speci�cally, phiclust

is de�ned as the squared cosine of the angle between the leading singular vector of the

measured gene expression matrix and the corresponding singular vector of the unobserved,

noise-free expression matrix. Low-rank perturbation theory is able to predict this angle

using only the dimensions of the measured gene expression matrix and its singular values,

but without knowledge of the noise-free expression pro�les. See Additional File 2 for a

detailed derivation. If the noise level is low compared to the signal, this angle will be

small, since the measured gene expression matrix is then very similar to the noise-free

signal. This would result in phiclust close to 1. As the level of noise increases, for a �xed

signal, the singular vectors of the measured expression matrix and the noise-free signal

become increasingly orthogonal and phiclust approaches 0. To illustrate the calculation of

phiclust, we simulated data sets with realistic noise structure using the Splatter package

[20] (Fig. 2.4a,b). As to be expected, increasing the number of genes that are di�erentially

expressed between clusters makes the clusters more easily separable and leads to larger

singular values outside of the MP distribution (Fig. 2.4a). By construction, this results in

higher values of phiclust (Fig. 2.4b). Please refer to Table S2 for the numerical values of the

outlying singular values in the simulated expression matrices as well as the corresponding

signal matrix.
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bution Singular value (SV) distributions of the fetal kidney single-cell RNA-seq data set after di�erent preprocess-
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Arrow indicates transcriptome mode. Right: Transcriptome mode was excluded. c Log-transformed, normalized
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expression matrix plus a rank 1 perturbation with increasing magnitudes of the perturbation (singular value

� of the perturbation = 0.5, 1 or 5). The red arrow indicates the singular value that stems from the additional

perturbation. g Histogram of singular values for the UBCD cluster of the fetal kidney data set. Left: original
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We would like to stress at this point that phiclust is derived from universal properties of

perturbed random matrices, which can be considered �rst principles. By contrast, many

other measures are developed based on empirical observations and justi�ed post hoc by

their usefulness. Phiclust is calculated using only the SVD and the dimensions of the

expression matrix. Thus, it does not have any free, adjustable parameters, which would

have to be chosen by the user or learned from the data.
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Figure 2.5: An upper limit to the achievable ARI can be estimated using a Bayes classi�er. a Left:

Histogram of the noise-free singular vector for a scenario with two clusters (or phenotypes) . Only the �rst

singular vector is signi�cant. The dashed line indicates a possible decision boundary. Right: Histogram of the �rst

singular vector in the presence of noise. The color indicates to which simulated (ground truth) cluster the cells

belong. Two normal distributions �tted separately to the singular vector entries belonging to the two clusters are

shown as solid lines. The Bayesian error rate is estimated from the overlap of these two distributions and used to

calculate the theoretical ARI (tARI). The dashed line indicates the optimal decision boundary. b ARI achieved by

various clustering methods compared to the ground truth and tARI for simulated data with two clusters. The

number of di�erentially expressed genes was varied. c ARI achieved by various clustering methods compared

to the ground truth and tARI for simulated data with two clusters. The mean log fold change between clusters

was varied. d tARI versus phiclust for simulated data sets with two clusters and di�erent fractions of DE genes.

Red curves: Values of phiclust for additive perturbation at di�erent cell to gene ratios. Blue curves: Values of

phiclust for multiplicative perturbation at di�erent cell to gene ratios. Dashed grey line indicates diagonal. e ARI

achieved by various clustering methods compared to the ground truth and tARI for PBMC cell type mixtures.

Two synthetic clusters were created by weighted averages of cells from two clusters in the PBMC data set (see

Fig. 1d). The mixture proportions were varied from 0 to 1. b,c,e The numbers in the legend indicate the resolution

parameter used.
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Figure 2.6: An approximate upper limit to the best possible silhouette coe�cient and accordance of
ROGUE with tARI. a Silhouette coe�cient (SIL) achieved by various clustering methods and theoretical SIL

(tSIL) for simulated data with two clusters. The number of di�erentially expressed (DE) genes was varied. b SIL

achieved by various clustering methods and tSIL for simulated data with two clusters. The mean log fold change

between clusters was varied. a,b The numbers in the legend indicate the resolution parameter used. c tSIL versus

phiclust. Red data points: Simulated data sets with two clusters. The number of DE genes was varied, the log fold

change between clusters was �xed. Green data points: Simulated data sets with two clusters. The log fold change

between clusters was varied, the number of DE genes was �xed. Blue data points: Two synthetic clusters were

created by weighted averages of cells from two clusters in the PBMC data set (see Fig. 2.4c). Cluster weights were

varied. The Grey dashed line indicates identity. d tARI versus 1 - [ROGUE] score. Red data points: Simulated

data sets with two clusters. The number of DE genes was varied, the log fold change between clusters was �xed.

Green data points: Simulated data sets with two clusters. The log fold change between clusters was varied, the

number of DE genes was �xed. Blue data points: Two synthetic clusters were created by weighted averages of

cells from two clusters in a PBMC data set (see Fig. 2.4c). Cluster weights were varied. The Grey dashed line

indicates identity.

2.2.2 Phiclust is a proxy for clusterability
To show that phiclust is a proxy for clusterability, we have to make the concept of cluster-

ability more precise and quanti�able. We adopted the Adjusted Rand Index (ARI) [21] as a

well-established measure for the agreement between an empirically obtained clustering and

the ground truth. Next, we will argue that perfect agreement with the ground truth (ARI

= 1) is not achievable in the presence of noise, even with the best conceivable clustering

algorithm.

Take, for instance, the simplest possible case of two cell types, A and B. Without any

noise (technical or biological), expression pro�les within a cell type are identical and the

data can be clustered perfectly. Correspondingly, the singular vector of the expression

matrix has only two di�erent entries Fig. 2.5a, left). Therefore, it is easy to �nd a threshold
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that discriminates between the two cell types. In the presence of noise, however, there

is a chance that the measured expression pro�le of a cell from cell type A looks more

like cell type B and is therefore clustered with other cells from cell type B and vice versa.

Correspondingly, the entries of the singular vector are now spread by the noise and can

overlap (Fig. 2.5a, right). Even if we use the best possible threshold to discriminate between

the two cell types, some cells will be necessarily misclassi�ed, if the distributions overlap.

This type of error is unavoidable (or irreducible) and known as Bayes error rate [22] in

the context of statistical classi�cation. From the overlap of the singular vector entries, we

can calculate the Bayes error rate or, equivalently, a theoretically achievable ARI (tARI,

see also Additional File 2). Of course, this is only possible for data with known ground

truth. We �rst used simulated data to show empirically that commonly used clustering

methods are not able to exceed the tARI (Fig. 2.5b,c). It therefore quanti�es our notion of

clusterability: With increased noise, tARI decreases and it is more challenging even for the

best conceivable clustering algorithm to distinguish the di�erence between phenotypes.

Importantly, phiclust is strongly correlated with the tARI (Fig. 2.4d) and thus allows us to

estimate clusterability without knowing the ground truth.

So far, we have assumed additive noise (i.e., the measured gene expression is the sum of

a random matrix and the noise-free expression matrix). Low-rank perturbation theory

also makes a prediction for multiplicative noise (i.e., the measured gene expression is the

product of a random matrix and the noise-free expression matrix). In that case, phiclust

still scales approximately linearly with the tARI, but its dynamic range depends somewhat

on the cell-to-gene ratio (Fig. 2.5d). To our knowledge, the noise generating mechanisms at

work in scRNA-seq have not been pinpointed comprehensively. Therefore, we will continue

to assume additive noise, noting that our approach can be easily adapted to multiplicative

noise.

To test the relationship between phiclust and the tARI in experimentally measured data, we

used an scRNA-seq data set of peripheral blood mononuclear cells (PBMCs) [23]. We chose

two very distinct cell types and created new clusters as weighted, linear combinations of

expression pro�les from the two cell types. This approach allowed us to precisely control

the di�erence between the newly created clusters, while maintaining the experimentally

observed noise structure (Fig. 2.5e). Also for this data, phiclust strongly correlates with

the tARI (Fig. 2.4d). As an alternative to the tARI, we also calculated the theoretically

achievable silhouette coe�cient [8] (tSIL), which considers the distances between the best

possible clusters (Fig. 2.6 a-c). For a large range of simulation parameters, the tSIL has

a smaller dynamic range than the tARI, which makes it less useful overall for assessing

clusterability. In contrast to phiclust, ROGUE [10] does not show collinearity with the tARI

(Fig. 2.6d). Therefore, ROGUE seems to implement a notion of clusterability that is distinct

from our point of view.

2.2.3 Confounder regression removes unwanted variability
To further characterize the performance of phiclust on experimental data sets with known

ground truth, we used a measurement of puri�ed RNA from 3 cell types, mixed at di�erent

ratios [24] (Fig. 2.4e). We noticed a signi�cant correlation between the amount of input

RNA and the entries of the �rst singular vector of individual clusters (Fig. 2.4f). This might

be explained by lowly expressed genes not being well-represented in the low-input libraries,
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and the resulting di�erences in the expression pro�les. In any case, the amount of input

RNA seemed to be a confounding factor that could lead to high values of phiclust, even in

the absence of meaningful subclusters. Correspondingly, we found a correlation between

the singular vector entries and the number of total counts, despite normalization of the data

(Fig. 2.4g). This is consistent with the �nding that total counts are a confounding factor in

scRNA-seq data that cannot be eliminated by normalization using one single scaling factor

per cell [23, 25]. Di�erent groups of genes scale di�erently with the total counts per cell.

Therefore, a correlation with the total counts remains even after normalization.
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Figure 2.7: Correcting for nuisance parameters and unwanted variability. a Summary of adjusted R2 for

several nuisance parameters in all experimental data sets. b Original (uncorrected) phiclust values vs phiclust

corrected for the in�uence nuisance parameters in the BMNC and fetal kidney data sets. Dashed grey line indicates

diagonal. c Two examples of di�erentiation paths with di�erent numbers of di�erentially expressed genes. Left:

UMAPs of simulated data sets with two di�erentiation paths. Right: Original (uncorrected) values of phiclust and

phiclust values corrected by confounder regression using pseudotime as the only confounder.

More generally, there are various experimental and biological factors that drive artefactual

or irrelevant variability in single-cell RNA-seq data [23, 26]. We therefore introduced a

regression step that removes the in�uence of any nuisance variables, such as the number

of total counts per cell, ribosomal gene expression, mitochondrial gene expression or cell

cycle phase (see also Additional File 2). More speci�cally, we �rst regress the entries of

a singular vector on one or multiple confounders. The fraction of variance explained by

all confounder is then given by the adjusted R2 (coe�cient of determination) of the linear
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regression. Since the squared singular values can also be interpreted as the amount of

variance explained, we correct them by multiplying with 1 – the adjusted R2 found in the

confounder regression. (See Table S2 for a list of the uncorrected and corrected singular

values for both simulated and experimental expression matrices.) The corrected singular

values are then used to calculate phiclust.

Interestingly, the relative in�uence of the confounders considered in this study varied

substantially between data sets (Fig. 2.7 a). For example, cell stress is a relevant confounder

only in the kidney data set. This is likely related to the cell dissociation procedure, which

is necessarily more aggressive for kidney tissue, compared to the other samples: bone

marrow mononuclear cells (BMNCs) and puri�ed RNA, extracted from cell cultures. Total

counts and ribosomal gene expression explain most of the artefactual variance in BMNCs.

This might be explained by high variability in the metabolic state of the cells. In Table S2

we list the R2 values of each considered confounder for each cluster. For real scRNA-seq

data sets, confounder regression can lead to a signi�cant reduction of phiclust (Fig. 2.7b,

see Table S2 for the numerical values.) It is therefore an important part of the method.

Confounder regression can also help to analyze data sets that are not made up of regular

clusters but contain irregularly shaped continua of gene expression. For example, in

developmental and stem cell biology we commonly observe di�erentiation paths, which

are large clusters with gradually changing expression pro�les. Uncorrected phiclust values

are high for such paths, which suggests meaningful subpopulations (2.7c,d). Depending

on the biological question, it might in fact be desirable to cluster di�erentiation paths, for

example, to separate a stem cell state from a di�erentiated cell type. For other applications,

it could be preferable to treat a di�erentiation path as one cluster. In that case we can use

pseudotime approaches [27] to infer a temporal order of the gene expression pro�les and

use the inferred pseudotime in the confounder regression. If all observed variability is

explained by developmental dynamics, phiclust is reduced to 0 and thus no sub-clustering

is suggested (2.7c,d).

2.2.4 Phiclust has high sensitivity for the detection of sub-
structure

After correction for unwanted variability, we compared the performance of phiclust with

other clusterability measures in the RNA mixture data set (Fig. 2.4e). Phiclust successfully

indicated the presence or absence of subclusters for all tested combinations of the 7 original

mixtures (Fig. 2.8). By contrast, ROGUE only indicated the presence of substructure

when the merged clusters were very clearly distinguishable (Fig. 2.8 b,c). The silhouette

coe�cient was qualitatively similar to phiclust but its dynamic range was much smaller

(Fig. 2.8, middle row). This might become critical in the case of highly similar phenotypes,

which is precisely where phiclust might have an advantage. An example for this can be

seen in Fig. 2.8b: the silhouette coe�cients in the pure cluster are very similar to the

merged clusters (which were composed of two original clusters). To compare phiclust

with the silhouette coe�cient in more detail, we carried out additional simulations (Fig.

2.9). First, we simulated 3 clusters and subsequently merged two of them. While phiclust

clearly distinguished the merged cluster from the pure cluster, the silhouette coe�cients

were similar for both. Increasing the fraction of genes that are di�erentially expressed

between the merged cluster increased the di�erence in silhouette coe�cient, but only
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gradually (Additional �le 1: Fig. S7b). By contrast, phiclust jumped to values close to 1 for

the merged cluster for very small fractions of di�erentially expressed genes (around 0.03).

It is therefore the more sensitive measure. The silhouette coe�cient strongly depends on

the number of principal components used in dimensionality reduction (Fig. 2.9c), as well as

the metric for distances between expression pro�les (Fig. 2.9d). Phiclust does not depend

on such user-de�ned parameters.
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Figure 2.8: Phiclust outperforms other measures on experimental data. Clusters of mixtures of RNA

extracted from three di�erent cell lines were merged in di�erent ways to vary the amount of variability in

each merged cluster. Top: �rst two singular vectors of RNA mixture data. Colors indicate di�erent ratios of

contributions from the three cell lines. Middle: The values of phiclust (rose), 1 – silhouette coe�cient [SIL]

(orange), tARI (green) and 1 - [ROGUE] (blue) for each corresponding cluster. For the calculation of the error

bars, see Methods. Bottom: Bar plot of silhouette coe�cients for each cell, sorted by cluster. a Original RNA

mixture. b Merged clusters. Red: 0-1-0 merged with 0.16-0.68-0.16. Blue: 0-0-1 merged with 0.16-0.16-0.68. Green:

1-0-0 merged with 0.68-0.16-0.16. c Violet: merged cluster contains mixtures 0.68-0.16-0.16, 0.16-0.68-0.16 and

0.16-0.16-0.68. Orange: merged cluster contains mixtures 1-0-0, 0-1-0, and 0-0-1.
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Figure 2.9: Phiclust outperforms the silhouette coe�cient on simulated data. a Left: UMAP of 3 simulated

clusters. Two clusters were merged to one, resulting in two clusters in total. Middle: Bar plot of silhouette

coe�cients for each cell, sorted by cluster. Right: phiclust value and average silhouette coe�cient for each

cluster. b Simulation of clusters as shown in a with di�erent fractions of di�erentially expressed genes. Phiclust

(blue) and average silhouette coe�cient (red) for merged cluster and single cluster. c Simulation of clusters as

shown in a. The average silhouette coe�cient per cluster was calculated for Euclidean distances using di�erent

numbers of principal components. Value of phiclust for each cluster is indicated by diamond-shaped data points.

d Simulation of clusters as shown in a. Leftmost graph: Value of phiclust for each cluster. Other graphs: Bar

plot of silhouette coe�cients for each cell, sorted by cluster, calculated with the following distance metrics:

Euclidean distances in principal component space, Euclidean distances in the original space, Pearson correlation

and Spearman correlation. e Simulation of a cluster consistent with random noise. Clustering was performed

with k-means to obtain 2 to 10 clusters. Left: UMAP of simulated data with 0, 2 and 8 clusters. Right: Boxplot of

the values of phiclust and the silhouette coe�cient for each k-means clustering.
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Most importantly, the silhouette coe�cient cannot answer the question, whether an iden-

ti�ed cluster contains meaningful substructure, as it requires partitioning into at least 2

sub-clusters. We simulated a cluster without any substructure and all variability was purely

random (Fig.2.9e). The silhouette coe�cient was maximal for a k-means clustering with

k=2, which might prompt a user to conclude (wrongly) that there are 2 sub-clusters present.

Phiclust, which does not require any further partitioning of the cluster, was 0, indicating

correctly that the observed variability was consistent with random noise. All in all, these

comparisons indicate that phiclust is a sensitive measure, which detects di�erences between

highly similar phenotypes.

2.2.5 Genes responsible for the detected substructure can
be identified

In full analogy to the reasoning outlined so far, our approach can also be used to characterize

variability in gene space, for which we de�ned the conjugate measure g-phiclust (see

Additional File 2 for the derivation). Above, we considered only the right singular vectors,

where each entry corresponds to a cell in the data set. We therefore also call them “cell-

singular vectors”. In the simplest case of well separated clusters, entries in the cell singular

vectors indicate the membership of a cell in a cluster or a group of clusters. For the left

singular vectors, each entry corresponds to a gene. Therefore, we also call them “gene-

singular vector”. The squared cosine of the angle between the leading gene-singular vector

in the measured gene expression matrix and the corresponding gene-singular vector of the

noise-free signal matrix is g-phiclust . As for phiclust, data sets with higher signal-to-noise

ratios are characterized by higher values of g-phiclust (Fig. 2.10a). “Signal” and “noise”

are de�ned exactly as above: “noise” is a random matrix and the “signal” is a low-rank

matrix consisting of noise-free expression pro�les, where the strength of the signal (or

di�erence between the clusters) corresponds to the magnitude of the non-zero singular

values. A g-phiclust close to 0 would indicate that all observed di�erential gene expression

can be explained by random noise. Larger values of g-phiclust indicate less overlap of the

gene expression pro�les between phenotypes. We therefore expect to �nd a bigger number

of signi�cantly di�erentially expressed (DE) genes and/or larger fold changes between

phenotypes. We con�rmed by simulations that genes with larger absolute entries in a

gene-singular vector contribute more to the di�erences between the clusters separated

along the corresponding cell-singular vector (Fig. 2.10b-d): For example, if two clusters (A

and B) are separated along a cell-singular vector and cells in cluster A are characterized by

positive entries, the genes with large positive entries in the corresponding gene-singular

vector will be mostly expressed in cluster A. We call these “variance driving” genes. Our

approach thus not only identi�es relevant substructure in a cell cluster but can also reveal

the genes responsible for it. In contrast to di�erential expression tests, the variance driving

genes can be obtained before clustering and might help the user interpret the observed

variability and make an informed decision on whether it is useful to sub-cluster the data. If

the variance driving genes have enriched biological features (such as being involved in the

same signaling pathway or cellular function), we can take that as additional evidence for

biologically meaningful sub-population.
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Figure 2.10: Variance-driving genes identi�ed in gene singular vectors coincide with di�erentially
expressed genes in a simulated data set. Genes with high absolute values in the gene singular vector contribute

the most to the variability. a Value of the largest singular value versus the squared cosine of the angle between

the gene singular vector of the signal matrix and the gene singular vector of the measured expression matrix

(g-phiclust) in simulated data. Arrows indicate examples shown in Figure 1b. b First two gene-singular vectors.

Di�erentially expressed genes of each cluster are indicated by color. c First two (cell-)singular vectors for the

simulated data set shown in panel b. Dashed grey lines indicate the 0 value on each of the axes. Cell clusters are

indicated by color. d First two singular vectors as in c. Dashed grey lines indicate the 0 value on each of the axes.

The average log-transformed expression of the top 1% genes driving the variance is indicated by color. The 4

panels show, respectively, from left to right: genes corresponding to the highest values in gene singular vector 1,

genes corresponding to the lowest values in gene singular vector 1, genes corresponding to the highest values in

gene singular vector 2, and genes corresponding to the lowest values in gene singular vector 2.

2.2.6 Application of phiclust to a BMNC data set drives the
discovery of biologically meaningful sub-clusters.

The most important application of phiclust, in our opinion, is to prioritize clusters for

further sub-clustering and follow-up studies. For a complex tissue with dozens of clusters, it

is not feasible to sub-cluster all of them and try to validate all resulting subpopulations. This

is particularly ine�cient, if many subclusters are in fact just driven by random noise. High

values of phiclust nominate those clusters that likely have deterministic structure and are

therefore worthwhile to be scrutinized experimentally in more detail. To demonstrate the

application of phiclust and g-phiclust, we analyzed scRNA-seq measurements of complex

tissues. In a data set of bone marrow mononuclear cells (BMNCs) [28] we calculated

phiclust for the clusters reported by the authors (Fig. 2.11a,b).
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Figure 2.11: Application of phiclust to a BMNCdata set drives the discovery of biologicallymeaningful
sub-clusters. a UMAP of BMNC data set. b Phiclust for the BMNC data set. Error bars indicate the uncertainty

obtained by resampling the noise. Inset: UMAP of clusters with low, intermediate, and high values of phiclust.

c Singular value distribution, MP distribution (red line) and TW threshold (green line) of clusters with low,

intermediate, and high values of phiclust. Signi�cant singular values are highlighted with asterisks. In the gdT

cluster, the singular vectors corresponding to the outlying singular values had normal distributed entries and

were thus not signi�cant. d First three graphs: First singular vector of the red blood cell progenitor cluster in the

BMNC data set versus normalized total counts per cell, normalized expression of ribosomal genes, and normalized

expression of mitochondrial genes. Rightmost graph: Second singular vector versus normalized G2M score. The

dashed line indicates the linear regression and the grey area indicates the standard deviation. e Left: UMAP of

the MAIT cell cluster in BMNC data set. The color indicates the normalized total counts per cell. Middle: singular

value distribution, MP distribution (red line) and TW threshold (green line) for the MAIT cell cluster. The only

signi�cant singular value is indicated by an asterisk. Right: Normalized total counts per cell versus the singular

vector associated with the signi�cant singular value (here: �rst singular vector) in the MAIT cluster.
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Figure 2.12: Congruence between variance-driving genes and di�erentially expressed genes between
sub-clusters in a BMNC data set. (Caption on the next page)
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For all clusters, except the red blood cell (RBC) progenitor cluster, the bulk of the singular

value distribution was well-described by the MP distribution. (In the RBC progenitors, we

found several singular values below the lower limit of the MP distribution. These outliers

did not in�uence the further analysis since we are only interested in singular vectors above

the upper limit.) The �rst cell-singular vectors of all clusters were signi�cantly correlated

with several confounding factors (see Fig. 2.11d for RBC progenitors and Fig. 2.11e for

MAIT cells). After correction for these confounding factors, phiclust corresponded well

with a visual inspection of the cluster UMAPs (Fig. 2.11b): Where obvious clusters were

present, phiclust was highest, while homogeneous, structure-less clusters resulted in a

phiclust of 0. Reassuringly, many progenitor cell types received a high phiclust (indicating

possible substructure) in agreement with the known higher variability in these cell types.

Ranking existing clusters by g-phiclust resulted in a very similar order (Fig. 2.12a).

To con�rm the presence of relevant substructure, we subclustered the two original clusters

with the highest phiclust (Fig. 2.12 b-e). In the RBC progenitors, we identi�ed 4 subsets

that correspond to di�erent stages of di�erentiation, ranging from erythroid precursors

to highly di�erentiated RBCs, as identi�ed previously [29]. In the dendritic cell (DC)

progenitor cluster, two subclusters were identi�ed, which correspond to precursors of

classical or plasmacytoid DCs, respectively [30]. For both examples, the variance-driving

genes found in the gene-singular vectors were localized to their corresponding clusters

(Fig. 2.12 c,d) and overlapped strongly with di�erentially expressed genes found after

subclustering (see Table S3).

Figure 2.12: Congruence between variance-driving genes and di�erentially expressed genes between
sub-clusters in a BMNC data set. (Figure on the previous page) a g-phiclust for each cluster in the BMNC

data set. b Singular vectors of the two clusters from the BMNC data set with the highest phiclust. The color

indicates sub-clustering. Dashed grey lines indicate the 0 value on each of the axes. c Singular vectors of clusters

shown in panel a with color indicating the average log-transformed gene expression of genes with the 1% highest

values in the �rst gene singular vector. d Singular vectors of clusters shown in panel a with color indicating the

average log-transformed gene expression of genes with the 1% lowest values in the �rst gene singular vector. e

Genes driving the variance in the two clusters shown in b. These genes have the 20 highest/lowest values in the

�rst gene singular vector respectively. In blue: top 20 upregulated genes based on di�erential expression (DE)

test between the sub-clusters using �ndMarkers (from scran R package).
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2.2.7 Phiclust reveals subpopulations in a fetal human kid-
ney data set that can be confirmed experimentally

As a second example of our approach we analyzed a fetal human kidney data set we

published previously [31]. In our original analysis, we were forced to merge several

clusters, since we were unsure if we the observed variability was just noise. We hence

wanted to use phiclust to �nd previously overlooked subpopulations. As for BMNCs,

phiclust corresponded well with a qualitative assessment of cluster variability (Fig. 2.13

a): Clusters with visible sub-clusters had the highest values of phiclust. Ordering the

clusters by g-phiclust resulted in a similar ranking as phiclust (Fig. 2.15a). Subclustering

of the cluster with the highest phiclust, ureteric bud/collecting duct (UBCD), revealed

a subset of cells with markers of urothelial cells (UPK1A, KRT7) (Fig. 2.13b, Fig. 2.15

b-e). Immunostaining of these two genes, together with a marker of the collecting system

(CDH1), in week 15 fetal human kidney sections con�rmed the presence of the urothelial

subcluster (Fig. 2.14a, Fig. 2.16a).

Another cell type we did not �nd in our original analysis, are the parietal epithelial cells

(PECs). They could now be identi�ed within the SSBpr cluster (S-shaped body proximal

precursor cells) (Fig. 2.13b, Fig. 2.15 b-e).

1

23

4
56

7

89
10

11

12
13

14

15

16

17 18
19

20

21

22

a

0

1

2

3

0

1

2

CnT RVCSBb SSBpr

b UBCD

Force-directed 
graph layout

fetal kidney W16

KRT7UPK1A

um
ap

 2

umap 1

um
ap

 2

CLDN1 CAV2 CLDN11 POSTNSSBpr ICa

NPCa
NPCb

NPCc
NPCd

PTA
RVCSBa

RVCSBb
SSBm/d

SSBpr
SSBpod

CnT
DTLH

ErPrT
Pod

UBCD
IPC

ICa
ICb

Mes
End

Leu
Prolif

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

umap 1

UBCD Urothelial cells Developing PECs

Distal cells (misclassified)

SSBpr Cortical IC

Doublets

Medullary & pelvic IC

Mesangium/pericytes

Stressed IC1

1

Gene 1

G
en

e 
2

0

1 2

3 4 567 8 910

11

12
13

14
15

16 17

18

19

20

21

22

0.00

0.25

0.50

0.75

1.00

CnT
NPCa

NPCb
Mes

Prol
if

End ICb
DTLH Le

u
IPC

RVCSBb
Pod

NPCc

SSBm/d

SSBpo
d

RVCSBa ICa
NPCd

PTA
SSBpr

ErPrT
UBCD

φ
cl

us
t

Figure 2.13: Phiclust reveals subpopulations in a human fetal kidney data a Force-directed graph layout

and phiclust for the fetal kidney data set. Error bars indicate the uncertainty obtained by resampling the noise.

Inset: UMAP of clusters with low, intermediate, and high values of phiclust. b UMAPs of the UBCD, SSBpr, and

ICa clusters. Left: Colors indicate sub-clusters. Right: Colors indicate the log-normalized gene expression of the

two indicated genes. One gene follows the red color spectrum, the other gene the green color spectrum. Absence

of color indicates low expression in both genes, yellow indicates co-expression of both genes.
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To reveal these cells in situ, we stained for AKAP12 and CAV2, which were among the top

di�erentially expressed genes in this subcluster (Table S4), together with CLDN1, a known

marker of PECs, and MAFB, a marker of the neighboring podocytes (Fig. 2.13d, Fig. 2.16b).

Next to the PECs and proximal tubule precursor cells, SSBpr also contained a few cells that

were misclassi�ed in the original analysis, indicating the additional usefulness of phiclust

as a means to identify clustering errors.

Further analysis of a cluster of interstitial cells (ICa) revealed multiple subpopulations

(Fig. 2.13b, Fig. 2.15 b-e). Immunostaining showed that a POSTN-positive population is

found mostly in the cortex, often surrounding blood vessels, whereas a SULT1E1-positive

population is located in the inner medulla and papilla, often surrounding tubules (Fig.

2.14c, Fig. 2.16c). CLDN11, another gene identi�ed by analysis of the gene-singular vectors

(Fig. 2.15b-e), was found mostly in the medulla, but also in the outermost cortex. A more

detailed, biological interpretation of the results can be found in Additional File 3.
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Figure 2.14: Subpopulations in a human fetal kidney data set revealed by phiclust can be con�rmed
experimentally.c-e Immunostainings of week 15 fetal kidney sections. c UPK1A and KRT7 are expressed in the

urothelial cells of the developing ureter (upper panel) and absent from the tubules in the adjacent inner medulla

(lower panel). d PECs express CLDN1 and CAV2 (upper panel), as well as CLDN1 at the capillary loop stage and

later stages (lower panel). MAFB staining is found in podocytes and their precursors in the SSB (lower panel). e

CLDN11 and POSTN are expressed in interstitial cells visualized by immunostaining (upper panel). SULT1E1 is

expressed in the interstitial cells surrounding the ureter (marked by UPK1A) and the tubule in the inner medulla

(lower panel). Scale bars: 100 µm.
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Figure 2.15: Congruence between variance-driving genes and di�erentially expressed genes between
sub-clusters in a fetal kidney data set. a g-phiclust for each cluster in the fetal kidney data set. b First two

singular vectors of three clusters from the fetal kidney data set with high phiclust. The color indicates sub-

clustering. Dashed grey lines indicate the 0 value on each of the axes. c First two singular vectors of clusters shown

in panel a with color indicating the average log-transformed gene expression of genes with the 1% highest values

in the �rst gene singular vector. d First two singular vectors of clusters shown in panel a with color indicating

the average log-transformed gene expression of genes with the 1% lowest values in the �rst gene singular vector.

e Genes driving the variance in the three clusters shown in b. These genes have the 20 highest/lowest values in

the �rst gene singular vector respectively. In blue: top 20 upregulated genes based on di�erential expression (DE)

test between the sub-clusters using �ndMarkers (from scran R package).
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Figure 2.16: Immunostaining validates newly identi�ed subclusters in fetal kidney data set. (Caption
on the next page)
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2.3 Discussion

Here, we presented phiclust, a clusterability measure that can help detect subtly di�erent

phenotypes in scRNA-seq data. Universal properties of the underlying theory make it

possible to apply phiclust to arbitrary noise distributions, and the noise can be additive

or multiplicative. Empirically, we �nd that the bulk of the singular value distribution of

measured expression matrices is well-approximated by the MP distribution. This supports

the assumption that the noise is generated by independent and identically distributed

random processes.

While most of the technical and biological noise can likely be considered random, there are

also known systematic errors and unwanted, confounding factors (such as the e�ciency of

RNA recovery, cell cycle phase etc.) Therefore, regressing out uninformative, deterministic

factors, is an important part of the method.

The approach underlying phiclust also allows us to identify the genes that are most relevant

for the biological interpretation of the observed variability. We found these genes to overlap

strongly with di�erentially expressed genes identi�ed after sub-clustering. The g-phiclust

measure, a conjugate to phiclust, quanti�es how distinguishable the expression pro�les of

di�erent phenotypes are in the presence of noise.

The most important application of phiclust is the nomination of clusters for sub-clustering

and subsequent experimental validation. All clusters that were nominated in the fetal

kidney data set turned out to have subpopulations that could be validated by experiments:

rare urothelial cells, which di�er from nearby clusters in only a few genes; PECs and

subtypes of interstitial cells, which had distinct spatial distributions.

There are several other methods that attempt to detect the presence of meaningful in-

formation in single-cell RNA-seq data. Below, we will compare phiclust to some of the

most popular examples: the silhouette coe�cient, ROGUE, robust PCA, the dip test and

ZINB-WaVE.

The silhouette coe�cient is a popular tool to assess clustering quality. In contrast to

phiclust, this coe�cient requires a (sub-)clustering and it cannot be used to decide, whether

a cluster contains meaningful variability and should be sub-clustered further. As demon-

strated, using the silhouette coe�cient can lead to over-clustering of random noise as well

as missing the presence of subtly di�erent phenotypes. Likewise, phiclust appeared to be

more sensitive than ROGUE, an entropy-based clusterability measure. Both ROGUE and

the silhouette coe�cient do not scale linearly with the tARI, which we introduced as an

upper limit to the achievable agreement of an empirical clustering with the ground truth.

Figure 2.16: Immunostaining validates newly identi�ed subclusters in fetal kidney data set. (Figure
on the previous page) a-c Upper panels show UMAPs of the selected clusters in the fetal kidney data set.

Log-normalized expression of selected genes is indicated by color. Lower panels show immunostainings of week

15 fetal kidney sections. a UBCD cluster. UPK1A, CDH1, and KRT7 expression is shown in a complete section

(leftmost image) and in the urothelial epithelium. b SSBpr cluster. Expression of AKAP12, CLDN1 and CAV2

is shown. The dashed lines indicate S-shaped bodies, arrowheads indicate PECs in developing glomeruli c ICa

cluster. Expression of SULT1E1 and UPK1A is visible around the ureter expression of POSTN is visible in cortical

areas, CLDN11 is visible in the cortical area (CLDN11, left image) and around the ureter (CLDN11, right image).

Scale bars: 100�m.



2.4 Conclusion

2

55

Robust PCA [32, 33] decomposes a measured expression matrix into a sparse component and

a low-rank component. Under the assumption that noise is sparse, the sparse component

is identi�ed with random noise. In our opinion, there is no reason to assume that the

noise in scRNA-seq data is sparse, or sparser than the measured expression matrix itself.

Likely, every non-zero gene expression measurement was corrupted by noise. Additionally,

the remaining low-rank component cannot be identi�ed as the noise-free signal. It is

fundamentally impossible to reconstruct the noise-free signal from the measured expression

because the noise is created by a random process. The low-rank component is therefore

only a (noisy) approximation of the noise-free signal. Given the fundamental limit to signal

reconstruction, the best thing we can do is quantify the closeness between signal and

measured expression, as implemented by phiclust. In robust PCA, the low-rank matrix is

often further subjected to dimensionality reduction, where it is di�cult to determine the

correct number of dimensions. phiclust does not require any dimensionality reduction and

uses all available data.

The dip test [9], a method aimed at detecting the presence of clusters, tests whether

there are multiple modes in the data. It can be applied directly to the distribution of

distances between expression pro�les or a low-dimensional representation of the data,

such as principal component scores. The dip test will miss relevant variability, if it does

not manifest itself as separate modes, which can easily occur, for example in the case of

di�erentiation paths. It also just provides a binary result (modes present or not), whereas

phiclust is a continuous measure and does not require the presence of modes.

ZINB-WaVE [25] performs dimensionality reduction based on a zero-in�ated negative

binomial distribution and is similar to principal component analysis, if no additional

covariates are added to the model. ZINB-WaVE acknowledges the fact that principal

components are prone to correlate with nuisance parameters, even after normalization.

The problem is circumvented by adding such parameters as covariates to the model, which

is similar to the confounder regression used for phiclust. However, the user has to decide

the number of dimensions to use and currently there is no principled way to determine the

optimal number. phiclust does not have any such adjustable parameters.

2.4 Conclusion
We hope that this manuscript will bring renewed awareness to random noise as a factor that

imposes hard limits on clustering and identi�cation of di�erentially expressed genes. We

hope that quantitative measures of clusterability, such as phiclust, can play an important

role in making single-cell RNA-seq analysis more reproducible and robust.
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2.5 Methods
2.5.1 Preprocessing
Before applying the method to simulated or measured single-cell RNA-seq data sets, several

preprocessing steps are necessary. The raw counts are �rst normalized and log-transformed.

Next, the expression matrix is standardized, �rst gene-wise, then cell-wise. These steps

assure the proper agreement of the bulk of the singular value distribution with the MP

distribution (Additional �le 1: Fig. S2). See also Supplementary Note, Section 3.1.

2.5.2 Phiclust
To derive phiclust, we assume that the expression matrix X̃ measured by scRNA-seq, can be

written as the sum of a random matrix X, which contains random biological variability and

technical noise, and a signal matrix P, which contains the unobserved expression pro�les

of each cell:

X̃ = X +P

Note that in this decomposition, cells that belong to the same cell type (or phenotype) have

identical expression pro�les in the signal matrix P. Below we will show that multiplicative

noise can be treated analogously.

We apply SVD to obtain the singular values, as well as the right and left singular vectors of

X̃ . The left singular vectors span gene-space and the right singular vectors span cell-space.

Hence, we call them gene-singular vectors and cell-singular vectors, respectively. If we use

the term “singular vector” it is implied to mean cell-singular vector.

Considering the signal matrix P a perturbation to the random matrix X, we can apply

results from both random matrix theory and low-rank perturbation theory. Random matrix

theory [33, 34] predicts that the singular value distribution of X is a Marchenko-Pastur (MP)

distribution [18, 19, 35], which coincides with the bulk of the singular value distribution

[12–14] of X̃ . The singular values of X̃ above the values predicted by the MP distribution

characterize the signal matrix P. Since the agreement with the MP distribution holds strictly

only for in�nite matrices, we use two additional concepts to identify relevant singular

values exceeding the range de�ned by the MP distribution. The Tracy-Widom [16, 36] (TW)

distribution describes the probability of a singular value to exceed the MP distribution, if

the matrix is �nite. Additionally, since singular vectors of a random matrix are normally

distributed, relevant singular vectors have to be signi�cantly di�erent from normal [14].

To test for normality we used the Shapiro-Wilk test.

We apply low-rank perturbation theory [17] to calculate the singular values (�i) of P from

the outlying singular values (
i) of the measured expression matrix X̃ :

�i (
i) =
√

2c


i2 − (c +1)−
√
(
i2 − (c +1))

2 −4c

where c is the cell-to-gene ratio, i.e. the total number of cells divided by the total number

of genes.
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The values of �i are then used to obtain the angles �i between the singular vectors of X̃
and P. These angles are conveniently expressed in terms of their squared cosine as

�i = cos (�i)2 = 1−
c (1+�2i )
�2i (�

2
i +c)

.

The leading singular vector of the measured expression matrix, which has the largest

singular value, has the smallest angle to its unperturbed counterpart. The squared cosine

of this smallest angle is then used as a measure of clusterability:

�clust = cos(mini�i)2 = maxi cos(�i)2, pℎii ∈ [0,
�
2
]

For a detailed derivation of phiclust, see Additional File 2, Section 2.1-2.4.

Uncertainty of phiclust
The uncertainties for the values phiclust are estimated using a sampling approach. The

basic idea is to approximate the signal matrix P and add new realizations of the noise matrix

by sampling from a random distribution. The uncertainty is then obtained from the values

phiclust calculated for this ensemble of sampled matrices. First, we decompose a simulated

or measured expression matrix X̃ into a noise matrix Xr and a matrix Xs that contains

deterministic structure. Xs is constructed from the relevant singular vectors, which were

identi�ed as described in the previous section. Note that Xs contains noise and is thus

di�erent from the signal matrix P. To create an approximation Ps of the signal matrix P,

we replace the singular values 
i used in the construction of Xs with the singular values

�i of P, calculated using low-rank perturbation theory as shown in the previous section.

The entries of the noise matrix Xr have a mean of 0 and a standard deviation of 1, as a

result of preprocessing. Since the results of RMT are valid irrespective of the particular

noise distribution, we can create additional realizations of the noise matrix by sampling

from a normal distribution with mean 0 and standard deviation 1. By adding sampled noise

matrices to the approximated signal matrix Ps, we can create an ensemble of matrices with

the same singular value spectrum as the original measured expression matrix but di�erent

realizations of the noise. The uncertainty for positive and negative deviations from the

mean is then calculated as the standard deviation for at least 50 sampled matrices. See

Supplementary Note, Section 2.4.3 for a detailed description.

Test for deviation from the MP distribution
To validate the use of the MP distribution, we test whether the bulk of the measured

singular value distribution deviates signi�cantly. Singular values are considered to be part

of the bulk, if they are located below the MP upper bound and not associated with the

transcriptome mode. We sample 1000 values from the MP distribution using the RMTstat

R package (V 0.3) and subsequently test for similarity with the Kolmogorov-Smirnov

test [35]. The resulting p-values are adjusted for multiple hypothesis testing with the

Benjamini-Hochberg procedure [37].
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Confounder regression
scRNA-seq data contains various confounding factors that drive uninformative variability.

These either emerge from technical issues (such as the varying e�ciency of transcript

recovery, which cannot be fully eliminated by normalization) or biological factors (such

as cell cycle phase, metabolic state, or stress). To account for these factors, a regression

step, inspired by current gene expression normalization methods [23, 26], is included. We

perform a linear regression by using each relevant singular vector as a response variable

and the confounding factors as covariates. This is a valid approach because the singular

vectors of the measured expression matrix contain normal distributed noise. The amount

of variance explained by the nuisance parameters is then given by the value of the adjusted

R2 (coe�cient of determination) of this linear regression. To relate the regression result

to the singular values, we consider the squared singular values (= eigenvalues) which

correspond to the variance explained by the corresponding singular vectors / eigenvectors.

Squared singular values are corrected by multiplication with (1 – adjusted R2) to retrieve

the fraction of variance not explained by nuisance parameters. The square root of the result

is the corrected singular vector. See also Supplementary Note, Section 3.2. For Additional

�le 1: Fig. S5a, each nuisance parameter was individually regressed on, to compare the

in�uence of each factor.

Multiplicative noise
To model multiplicative noise, we use a rectangular random noise matrix X with the same

dimensions as the measured expression matrix X̃ and a square signal matrix P whose

number of rows or columns is equal to the number of measured genes. The measured

expression matrix X̃ is then modeled as:

X̃ = (I +P)
1
2 X,

Where I denotes the identity matrix. Importantly, the bulk of the singular vector distribution

of the measured expression matrix X̃ still follows the MP distribution in this model. The

singular values of the signal matrix P are calculated from the outlying singular values of X̃
by:

�i =
2c

�i −c −1−
√
(�i −a) (�i −b)

with a,b = (1±
√
c)
2
. The angles between the corresponding singular vectors of the mea-

sured expression matrix and the signal matrix are then calculated as: �� imult =
1
�i

�i 2−c
�i(c+1)+2c

More information on multiplicative perturbation can be found in [38].

2.5.3 Clustering
Theoretically achievable clusteringqality
To construct a Bayes classi�er [22], which achieves the minimal error rate, we need to know

the ground truth clustering. Hence, we used data simulated with Splatter [20], containing

two clusters. For each ground truth cluster, we �t a multidimensional Gaussian to the

corresponding entries of the singular vectors (see Additional �le 1: Fig. S3a). We only
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consider singular vectors with singular values larger than predicted by the MP distribution.

For the �t, we use the mclust [39] R package (V 5.4.6). We then construct a classi�er by

assigning a cell to the cluster for which it has the highest value of the �tted Gaussian

distribution. This classi�er is thus approximately a Bayes classi�er (for a true Bayes

classi�er, we would need to know the exact distributions of the singular vector entries). The

ARI [21] calculated based on this classi�cation is thus approximately the best theoretically

achievable ARI (tARI). We also tested the silhouette coe�cient [8] as a potential alternative

to the ARI for quantifying our notion of clusterability. The silhouette coe�cient was

calculated on the �rst singular vector using Euclidean distances. In Additional �le 1: Fig.

S4 the silhouette coe�cient averaged over all cells is reported. The theoretically achievable

silhouette coe�cient tSIL is de�ned as the silhouette coe�cient of the Bayes classi�cation

described in the previous paragraph. The calculation of tARI and tSIL is described in more

detail in Additional File 2, section 2.5.

Clustering methods
For the validation of the tARI and tSIL, several clustering methods were used on simulated

data with two clusters. Seurat clustering [2] was performed with the Seurat R package

with 10 principal components (PCs) and 20 nearest neighbors. Three di�erent resolution

parameters were used: 0.1, 0.6, and 1.6. Scanpy clustering [3] was performed with the

scanpy python package with 10 PCs and 20 nearest neighbors. Three di�erent resolution

parameters were used: 0.1, 0.6, and 1.6. Hierarchical clustering [5] was performed on the

�rst 10 PCs and Euclidean distances. The hierarchical tree was built with the Ward linkage

and the tree was cut at a height where 2 clusters could be identi�ed. K-means [4] was

performed on the �rst 10 PCs using Euclidean distances and two centers. TSCAN [40]

was calculated on the �rst 10 PCs. In Additional �le 1: Fig. S7 k-means clustering was

performed on the �rst 3 principal components and using Euclidean distances.

Clusterability measures
ROGUE [10] is an entropy-based clusterability measure. A null model is de�ned under the

assumption of Gamma-Poisson distributed gene expression and its di�erential entropy is

then compared to the actual di�erential entropy of the gene expression pro�le. For the

RNA-mix data set ROGUE (V 1.0) was used with 1 sample (see Fig S6), “UMI” platform, and

a span of 0.6. For the simulated data sets, ROGUE was used with k = 10 (Additional �le 1:

Fig. S4 d). The silhouette coe�cient was calculated with the cluster R package (V 2.1.0)

using euclidean distances in the space of the relevant singular vectors. The reported values

for the silhouette coe�cients are average values per cluster. The con�dence intervals given

in Additional �le 1: Fig. S6 and S7 are standard deviations of its values per cluster.

2.5.4 Variance driving genes
Genes that drive the variance in the signi�cant singular vectors can be used to explore the

biological information in the sub-structures. Genes with large positive or negative entries

in a gene-singular vector are localized in cells with high positive or negative entries in the

corresponding cell-singular vector. It is also possible to assess the signal-to-noise ratio

for the genes by calculating the angle between the gene singular vectors of the measured
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expression matrix X̃ and the gene singular vectors of the signal matrix P, given by15

�gclust = cos (�̃�)
2 = 1− (c +�2i )

�2i (�
2
i +1)

,

where c is the cell-to-gene ratio. We call �gclust the gene phiclust (g-phiclust). See Additional

File 2, section 2.4 for a more detailed discussion.

2.5.5 Data sets
The simulated data sets in Additional �le 1: Fig. S1 comprised 201 cells and 350 genes. The

random noise matrix was sampled from a normal distribution with mean 0 and variance 1

in panels a and b, or from a Poisson distribution with parameter 1 in panels c and d. The

rank 1 signal matrix was constructed from one cell-singular vector and one gene-singular

vector. The cell-singular vector consisted of 67 entries equal to 1/
√
Ncell and all other

entries equal to −1/
√
Ncell , where Ncell is the number of cells. The gene-singular vector

consisted of 200 entries equal to 1/
√
Ngene and the rest equal to −1/

√
Ngene , where Ngene

is the number of genes. The signal matrix was then created by matrix multiplication of

the gene-singular vector and the transposed cell-singular vector times the singular value �
(� = 2 in a,c and � = 5 in b,d). In Additional �le 1: Fig. S2f,g a rank 1 signal matrix was

created similarly as described above. The cell-singular vector with a number of entries

matching the number of cells in the cluster was constructed as before. The gene-singular

vector was drawn from a normal distribution and subsequently normalized to unit length.

The rank 1 signal matrix was then added to the preprocessed expression matrix of the

indicated cluster. The remaining simulated data sets were produced with the splatter [20]

R package (V 1.10.1). The parameters used for the simulation are shown in Table S1. For

Fig. 1c,d, Additional �le 1: Fig. S3b-e, Additional �le 1: Fig. S4, and Additional �le 1: Fig.

S8a the simulations for each parameter were performed 50 times, each with a di�erent

seed. The results were averaged over the 50 runs. Confounder regression was performed

for the total number of transcripts per cell. PBMC data [23] was downloaded from the

10x genomics website (). For the calculation of the tARI, clustering with Scanpy, TSCAN,

k-means, and hierarchical clustering, preprocessing was performed with the scanpy python

package (V 1.4.6) following the provided pipeline () for the �ltering of cells and genes,

normalization, and log-transformation as well as cluster annotation. For the clustering

with Seurat, the provided Seurat pipeline was used () for preprocessing, such as cell and

gene �ltering, normalization, log-transformation and cluster annotation using the Seurat R

package (V 3.1.5). CD8 T cells and B cells were extracted from the data and each cluster

was standardized gene-wise and cell-wise before the calculation of the SVD. To remove

any sub-structure in these clusters and before the reconstruction of the matrices from

the SVD, singular values above the MP distribution were moved into the bulk, and the

transcriptome mode (i.e. the singular vector that would have the largest singular value

without normalization, see Supplementary Methods Note 1) was moved above the MP

distribution. Then, two synthetic clusters containing 150 cells each were created from the

cleaned-up original clusters. For cluster 1, a weighted average of a randomly picked B

cell with expression pro�le cB and a randomly picked CD8 T cell with expression pro�le

cCD8 T was calculated according to: c1 = � ∙ cB + (1− �) ∙ cCD8 T . For cluster 2, the weights

https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://satijalab.org/seurat/archive/v3.2/pbmc3k_tutorial.html
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were �ipped: c2 = (1−�) ∙ cB +� ∙ cCD8 T . � was chosen in a range from 0 to 1. � close to

0.5 produced highly similar clusters, while � close to 0 or 1 produced maximally di�erent

clusters (see Fig S3e). For each value of � , the procedure was repeated 50 times, each

with a di�erent seed for selecting 300 cells per cell type, and the results were averaged.

RNA-mix data [24] was downloaded from the provided GitHub page. The data were

normalized with the R scran package (V 1.14.6) and then log-transformed. Confounder

regression was performed for the total number of transcripts, average mitochondrial gene

expression, and average ribosomal gene expression. Two di�erent merged clusters were

created from the provided RNA mixtures as shown in Additional �le 1: Fig. S6. The bone

marrow mononuclear cell data set (BMNC) [28] was downloaded from the R package

SeuratData (bmcite, V 0.2.1). Normalization and calculation of the G2M score [41] were

performed with the Seurat R package (V 3.1.5). Confounder regression was performed for

the log-transformed total number of transcripts, cell cycle score, and average expression of:

mitochondrial genes and ribosomal genes (list obtained from the HGNC website). For the

fetal kidney data set [31], the same preprocessing and normalization was used as reported

previously (scran R package [42]). The data was then log-transformed and the G2M score

was calculated with the Seurat R package. Confounder regression was performed for the

log-transformed total number of transcripts, G2M scores, and the average expression of:

mitochondrial genes, ribosomal genes, and stress-related genes [43].

2.5.6 Single cell data analysis
Embedding
Uniform Manifold Approximation and Projections [44] (UMAPs) for individual clusters

were calculated with the R package umap (V 0.2.7.0) on the �rst 10 PCs, 20 nearest neighbors,

min_ dist = 0.3, and Euclidean distances. The umap for BMNC data was calculated with the

Seurat R package using 2000 highly variable genes (hvg), d = 50, k = 50, min.dist = 0.6 and

metric = cosine. For the fetal kidney data set a force-directed graph layout was calculated

using the scanpy python package. The graph was constructed using 100 nearest neighbors,

50 PCs, and the ForceAtlas2 layout for visualization.

Differential expression test
Di�erentially expressed genes within the sub-clusters found in Additional �le 1: Fig. S9

and Additional �le 1: Fig. S10 were calculated with the function �ndMarkers of the scran R

package on log-transformed normalized counts. Genes with a false discovery rate below

0.05 were selected and then sorted by log2 fold change. In Figures S9e and S10e, genes with

the top 20 highest/lowest values in the gene singular vectors are listed and colored blue if

they correspond to the top 20 DE genes.

2.5.7 Staining
A human fetal kidney (female) at week 15 of gestation was used for immuno�uorescence

using the same procedure as reported previously [31]. The following primary antibodies

were used: rabbit anti-UPK1A (1:35, HPA049879, Atlas Antibodies), mouse anti-KRT7

(1:200, # MA5-11986, Thermo Fisher Scienti�c), rabbit anti-CDH1 (1:50, SC-7870, Santa

Cruz), rabbit anti-CLDN1 (1:100, # 717800, Thermo Fisher Scienti�c), goat anti-CAV2 (1:100,

AF5788-SP, R& D Systems), mouse anti-AKAP12 (1:50, sc-376740, Santa Cruz), rabbit anti-
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CLDN11 (1:50, HPA013166, SIGMA Aldrich), mouse anti-POSTN (1:100, sc-398631, Santa

Cruz) and goat anti-SULT1E1 (1:50, AF5545-SP, R& D Systems). The secondary antibodies

were all purchased from Invitrogen and diluted to 1:500: Alexa Fluor 594 donkey anti-mouse

(A21203), Alexa Fluor 594 donkey anti-rabbit (A21207), Alexa Fluor 647 donkey anti-mouse

(A31571), Alexa Fluor 647 donkey anti-rabbit (A31573), Alexa Fluor 647 donkey anti-goat

(A21447). The sections were imaged on a Nikon Ti-Eclipse epi�uorescence microscope

equipped with an Andor iXON Ultra 888 EMCCD camera (Nikon, Tokyo, Japan).

2.5.8 Data availability
All sequencing data sets were obtained from publicly available resources. The BMNC data

can be downloaded with the R package SeuratData, named “bmcite.” The fetal kidney data

is available in the GEO database under the accession number GSE114530. The PBMC data

can be downloaded at h�ps://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_
gene_bc_matrices.tar.gz and the RNA-mix data is available at h�ps://github.com/LuyiTian/
sc_mixology, named “mRNAmix_qc”. Supplementary tables are available in the online

version at h�ps://doi.org/10.1186/s13059-021-02590-x.

https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://github.com/LuyiTian/sc_mixology
https://github.com/LuyiTian/sc_mixology
https://doi.org/10.1186/s13059-021-02590-x
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2.6 Supplementary Note 1
Introduction
Our aim is to develop a clusterability measure for scRNA-seq data. As we de�ne more

precisely in section (2.6), we consider clusterability to be the clustering quality that is

optimally achievable, given a certain amount of noise in the data. Clustering quality can

only be assessed quantitatively if the ground truth is known, which is strictly only the

case for simulated data. A clusterability measure must thus be able to re�ect clustering

quality without knowledge of the ground truth. Such a measure would be highly useful,

since it would allow us to detect the presence of meaningful (non-random) variability, and

thus determine the necessity to sub-cluster measured data. For the development of this

clusterability measure we will use concepts from random matrix theory and perturbation

theory. In short, we decompose the single-cell gene expression matrix X̃ into a random

matrix X , which contains technical and biological noise, and a signal matrix P , which

contains the expression pro�les of di�erent cell types or states. Then, we apply perturba-

tion theory, treating the signal matrix P as a low-rank perturbation of the noise matrix X .

Perturbation theory then allows us to calculate the angle between the singular vectors of

the measured single cell expression matrix X̃ and the corresponding singular vectors of

the unobserved signal matrix P . The cosine of this angle constitutes a useful clusterability

measure because a large value (small angle) indicates a high signal-to-noise ratio (and thus

high clusterability) and a small value (large angle) indicates a low signal-to-noise-ratio

(and thus low clusterability). We show empirically that this clusterability measure is a

proxy for the theoretically achievable adjusted rand index [Fig. 1d].

In what follows, we �rst present our model of gene expression data (2.6) and introduce

matrix decomposition (2.6). Subsequently, we introduce the Marchenko-Pastur (MP) dis-

tribution (2.6), which describes the eigenvalue spectrum of a random matrix and apply

perturbation theory to link the (unobserved) signal matrix to the spectrum of the measured

expression matrix (2.6). In section (2.6), we establish our notion of clusterability. In section

(2.6), we describe the preprocessing steps necessary for the application of the theory to

single-cell RNAseq data. Then, in section (2.6), we develop a method to remove the e�ect

of nuisance variables (i.e. sources of systematic, non-random variability that should not

drive clustering.) The complete algorithm can be found in section (2.6).

Phiclust
Model
Let X̃ ∈ ℝM×N be the measured single-cell expression matrix with M the number of genes

(rows) and N the number of cells (columns). We model the measurement X̃ as the sum of a

random noise matrix X ∈ ℝM×N and a "signal" matrix P ∈ ℝM×N .

X̃ = X +P (2.1)

In our model, X contains both technical and biological noise. For example, if there was

only one cell type or cell state present in a data set, P would consist of identical columns.

Note that we only observe the matrix X̃ experimentally. We will show below, that we can

make a statement about the in�uence of the noise X on the signal P , without knowing

X or P . To achieve that we invert the logic of conventional models: instead of modeling
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the in�uence of random noise on the signal, we consider the in�uence of a deterministic

perturbation on a random matrix. All results rely on matrix decomposition, which will be

introduced next.

Matrix decomposition
1. Eigendecomposition
We �rst de�ne the cell-cell correlation matrix. To that end, we assume that X̃ has been

standardized cell-wise (i.e. column-wise) to mean 0 and standard deviation 1. The cell-cell

correlation matrix C ∈ [−1,1]N×N is then de�ned as:

C =
1

M −1
X̃T X̃ (2.2)

The correlation matrix is a square and symmetric matrix which can hence, by the spectral

theorem, undergo eigendecomposition into the form

C = VΣV T =
N
∑
i=1

�ivivTi . (2.3)

V ∈ ℝN×N contains the eigenvectors vi of C in the columns and Σ ∈ ℝN×N is a diagonal

matrix containing the eigenvalues �i of C . If M < N , then C is a singular matrix and will

contain at least N −M eigenvalues equal to 0, which is an important consideration for the

de�nition of the Marchenko-Pastur distribution (see below).

In full analogy to the cell-cell correlation matrix we can de�ne a gene-gene correlation

matrix Ĉ , now assuming that the expression matrix X̃ has been standardized gene-wise

(row-wise) to mean 0 and standard deviation 1:

Ĉ =
1

N −1
X̃ X̃T . (2.4)

If M > N , then Ĉ is a singular matrix and will contain at least M −N eigenvalues equal to

0. Therefore either C (if M < N ) or Ĉ (if M > N ) is a singular matrix (unless M = N ) with

at least |N −M| eigenvalues equal to 0.

2. Singular value decomposition
To decompose the (rectangular) expression matrix X̃ into noise and signal, we use singular

value decomposition:

X̃ =
N
∑
i=1


iuivTi .

The vi ’s are the right singular vectors of X̃ and correspond to the eigenvectors of the

cell-cell correlation matrix. We will call them cell singular vectors or singular vectors in the

following. The ui ’s are the left singular vectors of X̃ and correspond to the eigenvectors of

the gene-gene correlation matrix, which we will call gene singular vectors. The singular

values are denoted by 
i . The singular values of X̃ and the eigenvalues of the corresponding

correlation matrix have a known connection given by:

�i = 
 2i .
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Random Matrix Theory
The Marchenko-Pastur (MP) distribution is widely used to reveal nonrandom properties

of empirical correlation matrices in physics and �nance [12, 13]. The MP distribution

describes the distribution of eigenvalues of a random correlation matrix in the asymptotic

limit [18, 19, 36] (for N →∞ and M →∞,
N
M < 1). The entries of the random matrix are

arbitrary as long as they are distributed identically and independently. scRNA-seq data are

typically modeled by a Poisson, a negative binomial or a zero-in�ated negative binomial

distribution, which are in principle admissible in random matrix theory.

Theorem 1 (Marchenko-Pastur) ([18, 19, 36]) Let Y be a M ×N matrix with entries that
are independent identically distributed (i.i.d.), mean 0 and variance �2 < ∞. The corresponding
Wishart matrix is de�ned as W = 1

M Y
TY . For N →∞, M →∞ and 0 < c < 1, where c is

de�ned as N
M . The distribution of the eigenvalues � ofW is given by

�(�) =
√
(b −�)(� −a)
2�c��2

d� if a ≤ � ≤ b

For c > 1 the distribution has an additional number of 0 eigenvalues:

�(�) =
√
(b −�)(� −a)
2�c��2

1[a,b] + (1−
1
c
)�0(�)

with

a,b = �2 [1±
√
c]
2 .

�0(�) is the Dirac delta function, which is 1 if � = 0 and 0 otherwise. For the correlation

matrix we obtain � = 1 because the mean of all eigenvalues is 1.
This theorem places the eigenvalues of a random correlation matrix into a compact interval

between [a,b]. All eigenvalues of an empirical correlation matrix that fall within this

interval can be considered to be due to random noise. The presence of eigenvalues above

this distribution indicates the existence of non-random structure in the data. An empirical

(measured) correlation matrix can therefore be decomposed into a random part Cr and a

signal part Cs [19]:

C = ∑
�≤b

�ivivTi + ∑
�>b

�ivivTi = C
r +Cs

Cs contains the non-random and therefore biologically relevant correlations.

For the application of the MP distribution to an empirical correlation matrix we need

to consider that the eigenvalues of a correlation matrix always sum up to 1. Thus, if there

are eigenvalues above the MP distribution the bulk of the distribution (which is described by

MP) will shift to the left. To approximately account for this shift, we introduce a modi�ed

MP-distribution as follows:

�∗(�) =
�(�)
�

,

a∗ = �a, b∗ = �b.
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where � = 1− �max
N and a∗ and b∗ replace a and b respectively.

We can formulate the MP distribution also for singular values, via a variable transform,

and obtain the following density:

d�(
 ) =
√
(b −
 2)(
 2 −a)

�
c
d
 if

√
a ≤ 
 ≤

√
b (2.5)

In this case, all singular values that lie within the compact interval of [
√
a,

√
b] can be

considered to arise from random noise and singular values above this threshold indicate

deterministic biological relevant signal. Thus, we can decompose the matrix X̃ into two

parts:

X̃ = ∑

≤

√
b

iuivTi + ∑


>
√
b

iuivTi = X̃

r + X̃ s
(2.6)

The �rst part X̃ r
is random noise, the second part X̃ s

contains relevant signal.

The MP theorem holds strictly only in the asymptotic limit, but provides a very good

approximation for big enough N and M . For �nite dimensions, there is however a non-zero

probability that a random i.i.d matrix has eigenvalues above the MP distribution. That

probability is described by the Tracy-Widom (TW) distribution.

Theorem 2 (Tracy-Widom) ([36]) For empirical correlation matrices of size N ×N of i.i.d.
random variables with a �nite fourth moment, the distance between the upper edge of the
spectrum of the MP distribution b and the largest eigenvalue �max converges towards the
Tracy-Widom distribution

Prob(�max ≤ b +
N −2/3u) = F1(u),

where 
 in this case is given by 
 =
√
c b2/3.

F1(u) is the TW distribution, the probability distribution of the re-scaled eigenvalues of a

random Hermitian matrix. We are interested in the type-1 distribution which holds for

Gaussian orthogonal ensembles [15]. The distribution function can not be explicitly stated

but relies on numerical approximations.

The TW distribution can be formulated, as well, for the singular values via the variable

transform:

Prob(
max ≤
√
b +
N −2/3u) = F1(u), (2.7)

Since we always work with �nite matrices in practice, we use the TW distribution to dis-

criminate between singular values that belong to noise and signal, respectively. Speci�cally,

we use u = 1 as a cuto�, so that F1(1) ≈ 0.95. In other words, there is a probability of 0.05
that a singular value bigger than

√
b+
N −2/3

is observed, if the matrix is entirely random.

If N is very low, the MP distribution is not a good approximation anymore. For N < 50, we

create an empirical distribution of noise-related singular values, by permuting the entries
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of the measured expression matrix X̃ . For each permutation we calculate the singular

values and note the largest singular value. The 95th quantile of the distribution of the

largest singular values across permutations is then taken to be the cuto� between singular

values stemming from noise and signal respectively.

To discriminate random from non-random matrix components we can also look at the singu-

lar vectors [14]. Singular vectors that correspond to random components are "de-localized"

and their elements have the following distribution:

f ( ) = (1− 2)
N−3
2

If N is large, this distribution can be estimated by a Gaussian distribution with mean zero

and variance
1
N .

f ( ) ∼
N√
2�

e
−N 2
2 (2.8)

In order to distinguish localized from de-localized singular vectors, we can therefore assess

the normality of the singular vectors. In our implementation we use a Shapiro-Wilk test.

We assign singular vectors that obtain a p-value < 0.01 or are associated to singular values

far from the bulk (the highest 50% of signal singular values) to real variability above the

MP distribution.

Perturbation theory
As explained above, we model the observed expression matrix X̃ as a random matrix X
perturbed by a deterministic signal matrix P . There is an important di�erence between the

perturbation matrix P in equation 2.1 and the matrix X̃ s
in equation 2.6. X̃ s

does contain

biologically relevant information, but is still in�uenced by the e�ects of random noise,

whereas the matrix P consists of the pure signal without any added noise. The only case

where these two matrices are identical is when the singular vectors of the noise matrix X
and the perturbation matrix P are linearly independent, which is rarely the case. It is thus

not possible to recover the unobserved, noise-free signal matrix by using those singular

vectors that are associated with the highest singular values.

While it is not possible to reconstruct the signal matrix from measured data, perturbation

theory [17] establishes a simple relationship between the singular value of the observed

expression matrix X̃ and those of the signal matrix P . P is assumed to have �nite rank r .
Its singular value decomposition is thus:

P =
r
∑
i=1

�iuivTi , where r ≪ N ,M

For scRNA-seq data, we only have to consider singular values �i > 0, which means that X̃
potentially has singular values above the MP distribution. Thus, we only need to consider

the largest singular values of X̃ .
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Theorem 3 (Largest Singular Value for MP) ([17] ) The r largest singular values 
i(X̃ )
of the M ×N perturbed matrix X̃ exhibit the following behaviour as M,N →∞ and N

M →c:
For each �xed 1 ≤ i ≤ r ,


i(X̃ )
a.s.
→

{ √
(1+�2i )(c+�2i )

�2i
if i ≤ r and �i > c1/4,

b otherwise
(2.9)

Moreover, for each �xed i > r , we have that 
i (X̃n)
a.s.
⟶b.

This theorem establishes a functional relationship between the largest singular values 
i
of the measured expression matrix and the singular values �i of the signal matrix P . Note

that if �i is smaller than or equal to c
1
4 , the corresponding 
i will be equal to b, which is

the upper limit of the MP distribution. In other words, if the perturbation (signal) is too

small, the singular value spectrum of the observed expression matrix X̃ will be just the MP

distribution and hence, no meaningful signal can be extracted.

From the above formula we are able to calculate the singular values of the perturba-

tion matrix P . These are the values that describe the actual variances of the signal matrix

without any contribution of the noise. This is achieved by calculating the inverse function

�i(
i)
a.s.

⟶

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

√
2c


 2i −(c+1)−
√
(
 2i −(c+1))2−4c

if 
i > b,

c
1
4 otherwise

(2.10)

Phiclust
Next, we want to establish how the singular vectors of X̃ depend on the perturbation P . In

section 2.6 it is described that the elements of the singular vectors will follow a Gaussian

distribution for a random matrix and large N . The elements of the singular vectors of

the perturbation P are deterministic and correspond to biological variance. The following

theorem describes the scalar product between the singular vector of the perturbation P
and the perturbed matrix X̃ .

Theorem 4 (Norm of Projection of Largest Singular Vectors for MP) ([17] ) Let ṽ the
right unit singular vectors of X̃ . Then, the norm of projection of the right singular vector is
given by

|⟨ṽi ,vi⟩|2
a.s.
⟶

{
1− c(1+�2i )

�2i (�2i +c)
if �i ≥ c1/4

0 otherwise
(2.11)

This theorem shows the same qualitative behavior as equation 2.9. If the singular value �i
of the perturbation matrix is below the threshold of c

1
4 , the scalar product is zero, indicating

that the perturbed matrix X̃ has no relationship to the perturbation P . In other words, no

relevant signal can be extracted. In the other limit, when the scalar product goes to 1, the
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singular vectors of the perturbation P are perfectly aligned with the singular vectors of the

perturbed matrix X̃ . Thus, random noise has a negligible in�uence on the signal.

The scalar product given by |⟨ṽi ,vi⟩|2 is identical to the squared cosine of the angle between

the vectors:

�
clust

= cos(�)2 = (
ṽ ⋅ v

‖v‖ ‖ṽ‖)

2
= (ṽ ⋅ v)2 = |⟨ṽi ,vi⟩|2.

This holds because the singular vectors are assumed to have norm 1.

We propose �
clust

(phiclust) as a measure of clusterability in scRNA-seq data. If, for a

given cluster, there are no values above the MP distribution the signal of the perturbation

matrix P can not be recognized any more and phiclust will be zero. If there are singular

values above the MP distribution, phiclust evaluates how closely related the singular vectors

of the expression matrix X̃ are to those of the perturbation matrix P .

We obtain a value of phiclust for each singular value that can be found above the MP

distribution. Each of them indicates the signal-to-noise ratio for the variance that the

corresponding singular vector explains. Thus, the more singular values are above the

MP distribution, the more variances can be found in the data and it can be interpreted as

proportional to the number of clusters. In the de�nition of phiclust, we have decided to use

the maximum of all angles, thus indicating the maximal clusterability that can be achieved

from clustering.

G-phiclust
In accordance with the above de�nition of phiclust (2.6), we can also de�ne the cluster-

ability, or signal-to-noise ratio, for the gene space. The following theorem describes the

equation.

Theorem 5 (Norm of Projection of Largest Singular Vectors for MP) ([17] ) Let ũ be
the left unit singular vectors of X̃ . Then, the norm of projection of the left singular vector by

|⟨ũi ,ui⟩|2
a.s.
⟶

{
1− (c+�2i )

�2i (�2i +1)
if �i ≥ c1/4

0 otherwise
(2.12)

For the gene singular vector, �g
clust

(g-phiclust) indicates how closely the variance among

genes is related to the original variance in the perturbation matrix P . For each singular

vector, the variance-driving genes correspond to those with the highest absolute loading in

the corresponding gene singular vector. Cells with high positive or negative entries in the

singular vector have high expression of genes with large positive or negative entries in the

corresponding gene singular vector, respectively. This relationship is not a replacement

for the calculation of di�erentially expressed genes, but merely indicates the genes that

drive the variance across cells for each singular vector. Based on the value of g-phiclust, it

is possible to evaluate how accurate the determination of di�erentially expressed genes

will be. With a low signal-to-noise ratio, it is more likely to obtain genes di�erentially

expressed that can be attributed to noise. As well as for phiclust, we obtain several angles,
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one for each singular value above the MP distribution. Thus, genes driving the variances

in gene singular vectors with a higher g-phiclust are more accurate. We decided, to be

consistent, to de�ne g-phiclust as the highest squared cosine of the angle.

Uncertainty of phiclust
The theory presented above holds as the expected value in the in�nite limit, however we

do not know about the variations within the �nite limit. To address this, we constructed

a con�dence interval for the values of phiclust using the following sampling approach.

The basic idea is to approximate the signal matrix P and add new realizations of the noise

matrix by sampling from a random distribution. The standard deviation is then constructed

from the values of phiclust calculated for this ensemble of sampled matrices.

First, the matrix X̃ is pre-processed as described in section 2.6. By applying the MP dis-

tribution, we then determine the singular values associated with signal and noise. We

decompose the simulated or measured expression matrix X̃ into a noise matrix X r
and a

matrix X s
that contains deterministic structure (see equation 2.6).

Then, we estimate the �rst two moments of X r
, which due to the pre-processing of the

measured expression matrix are equal to a mean of 0 and a standard deviation of 1. It is

thus possible, given the universality property of the MP distribution, to sample a new noise

matrix X with the same two �rst moments (mean = 0 and variance = 1) from a normal

distribution.

To approximate the perturbation matrix, we use the singular values �i of X s
to calculate

the expected singular values �i of the perturbation matrix based on equation 2.10. We

replace the singular values �i of the matrix X s
with those of the perturbation matrix �i and

call it P s . In this way we have created a perturbation matrix with the expected singular

values �i and unit singular vectors. Note that P s contains noise and is thus di�erent from

the signal matrix P . Luckily, low rank-perturbation theory is independent of the exact

distribution of the signal singular vectors.

Together, we obtain a sample measurement matrix (Step 1):

X̃ ∗ = X +P s .

We next calculate the values phiclust of X̃ ∗ (Step 2). By sampling new values for the noise

matrix X several times (∼ 50), and repeating step 1 and 2, we are now able to estimate the

in�uence of random variations, in �nite limits, on the additive perturbation and thus on

phiclust.

We can subsequently calculate the upper �up
clust

and lower �down
clust

standard deviation as

follows. Let k be the number of values above the original value �∗
clust

and N the total

number of sampled values then

�up
clust

=
(

1
k −1

∑
�∗

clust
≥�

clust

(�∗
clust

−�
clust

)2
)

1/2

(2.13)

�down
clust

=
(

1
N −k −1

∑
�∗

clust
<�

clust

(�∗
clust

−�
clust

)2
)

1/2

(2.14)

are the upper and lower boundaries of the interval.
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Clusterability
Assessing clustering quality
We use two di�erent methods to assess clustering quality, the adjusted rand index (ARI)

and the silhouette coe�cient.

Assuming two partitions, A and B, of a set of N cells, the rand index is de�ned as[21]:

RI (A,B) =
N11 +N00

(N2)
,

where N11 is the number of pairs of elements that are in the same cluster in A and in the

same cluster in B. N00 is the number of pairs of elements that are in a di�erent cluster

in A and in a di�erent cluster in B. The rand index takes values between 0 and 1, where

0 indicates the complete lack of agreement between the partitions and 1 would indicate

identical partitions. Even a random clustering of elements produces a non-zero rand index.

The ARI is de�ned in such a way, that its value is on average 0 for a pair of partitions with

randomly permuted cluster labels. A positive ARI thus indicates that partitions agree more

than expected to happen by random chance. Let partition A have KA clusters of sizes ai
and partition B have KB clusters of sizes bj , then the adjusted rand index is de�ned as:

ARI (A,B) =
RI (A,B)−E[RI (A,B)]
1.0−E[RI (A,B)]

=
(N2)∑

KAKB
k,m=1 (

nkm
2 )−∑

KA
m=1 (

ak
2 )∑

KB
m=1 (

bm
2 )

1
2(

N
2)[∑

KA
k=1 (

ak
2 )∑

KB
m=1 (

bm
2 )]−∑

KA
k=1 (

ak
2 )∑

KB
m=1 (

bm
2 )

For synthetic data, we take a high ARI between a clustering and the ground truth partition

to indicate a clustering of high quality.

Another useful measure for clustering quality is the silhouette coe�cient. Let a(i) be

the mean distance from point i to all other data points in the same cluster and b(i) be the

mean distance from point i to all other points from di�erent clusters, then the silhouette

coe�cient is de�ned as [8]:

s(i) =
b(i) − a(i)

max{a(i),b(i)}
.

For the calculation of the distance, we consider the euclidean distance metric in the space

spanned by the singular vectors that are associated with singular values above the MP

distribution of the expression matrix X̃ (see 2.6). The �nal silhouette coe�cient is taken as

the mean value over all data points. For the calculation of the silhouette coe�cient we use

the cluster R package (V 2.1.0).

Theoretically achievable clustering quality
A perfect clustering would coincide with the ground truth and obtain an ARI of 1. Here

we argue that such a perfect clustering is in general not achievable, if there is noise in

the data. In other words there is always a �nite Bayes error rate (also called irreducible

error) for assigning cells to the appropriate cluster. To construct a Bayes classi�er, which

achieves the minimal error rate, we need to know the ground truth partition. Hence, we

use simulated data. For each ground truth cluster, we �t a multidimensional Gaussian to
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the elements of the singular vectors of the expression matrix X̃ that correspond to the cells

in the respective cluster (see Additional �le 1: Fig. S3a). We only consider singular vectors

with singular values above the MP distribution. For the �t we use the mclust R package
(V 5.4.6). We then construct a classi�er by assigning a cell to the cluster for which it has

the highest value of the �tted Gaussian distribution. This corresponds to the best cluster-

ing one can achieve if the ground truth partition is known. We de�ne the theoretically

achievable adjusted rand index (tARI) as the ARI between this best achievable clustering

and the ground truth partition. Similarly, we de�ne the theoretically achievable silhouette

coe�cient (tSIL) as the silhouette coe�cient of the best achievable clustering. Since we use

the �tted Gaussian distributions instead of the actual (unknown) distribution of singular

vector elements, the constructed classi�er only approximates the Bayes classi�er. However,

we con�rmed empirically, that the tARI de�ned above is an upper bound for all tested

clustering methods, which comprises the currently most popular tools used for single-cell

RNA-seq data [Additional �le 1: Fig. S3 b, c].

The tARI embodies our notion of clusterability. We de�ne high clusterability as a low Bayes

error rate for cluster assignments, which corresponds to a high tARI. We show empirically

that our clusterability measure is a proxy of the tARI and thus a way to assess clusterability

without knowing the ground truth [Fig. 1d].

Application to single-cell RNA-seq data
Preprocessing of scRNA-seq data
In the following the necessary preprocessing steps for the application of the clusterability

measure for scRNA-seq data are described.

Transcriptome Mode
The largest eigenvalue �1 of an expression matrix is typically much larger than all the

other singular values and its corresponding singular vector has entries of equal sign, which

often have similar magnitude (of order
1√
N , which is the ideal value in the perfectly ho-

mogeneous case). This singular vector re�ects a general, global trend in the data. This

structure has been observed for many empirical data matrices. (In time series analysis of

the stock market, this singular vector is called the "market mode" since it corresponds to a

trend that is common across many stocks [19]). Here, we refer to this singular vector as

"transcriptome mode" since it re�ects a trend that is shared across the whole transcriptome

(see Additional �le 1: Fig. S2 a-d). In order to reduce the in�uence of this singular value on

the calculation of the MP �t, we center the expression matrix X̃ gene-wise. As a result, the

singular value of the transcriptome mode will be reduced to a value close to 0.

Normalization
The e�ciency of the capture of transcripts and their conversion to cDNA is known to be

highly variable between cells. Hence, single-cell gene expression data is usually normal-

ized cell-wise. We have tested several normalization methods but none of them seemed

su�cient to remove all technical variability in the data. Thus, in section 2.6 we describe a

method to reduce these e�ects for our clusterability measure phiclust. Nevertheless, we

normalize the expression to the total counts per cell and subsequently log-transform to

stabilize the variance.
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Gene distribution
Gene expression is typically modelled by a Poisson, negative binomial or zero in�ated neg-

ative binomial distribution. However, the parameters of these distributions di�er between

genes, this violates the assumptions of the MP theorem, where all values are sampled from

the same distribution. In practice, gene-wise standardization to a mean of 0 and standard

deviation of 1 mostly circumvents this problem. Additionally, we have observed that there

is a bias resulting from variations in cells. These biases are as well reduced by standardising

the cells to a mean of 0 and standard deviation of 1 (see Additional �le 1: Fig. S2 c,d). This

is equivalent to calculating the eigenvalues and vectors of a correlation matrix instead of a

covariance matrix.

Zero in�ation
Another factor to be considered is the large amount of zero values in scRNA-seq data.

These zeros might be on the one hand due to technical artefacts (low e�ciency, dropout)

or simply due to low, stochastic gene expression. After performing the above mentioned

preprocessing steps we mostly do not observe deviations from the MP distribution. How-

ever, this is a known problem discussed within the framework of sparsity induced singular

values. For single cell RNA-seq data an extensive analysis has been performed in [14],

where the authors observe deviations from the MP distribution caused by sparsity. The

authors suggest the exclusion of outlier genes that can be identi�ed through the �t of the

MP distribution. For phiclust we do not use this preprocessing step, however we do exclude

genes that have a high expression in only a few number of cells.

Regressingoutunwanted sources ofvariability (ConfounderRegression)
scRNA-seq data su�ers from several sources of technical variability that can obscure or

even be mistaken for relevant biological signal. One of the most important of these is

the variable e�ciency of mRNA capture and cDNA conversion. The total number of

detected transcripts per cell is typically taken as a proxy of this e�ciency. There are

also biological processes that can cause unwanted signal. Most cells are stressed due to

the tissue dissociation necessary for single-cell library preparation. The percentage of

expression coming from mitochondrial genes or the expression of marker genes for stress

can be used to estimate the level of stress. Di�erent metabolic states of cells might be

re�ected in the level of ribosomal gene expression and many genes �uctuate with the cell

cycle. Here, we seek to establish a method to remove any e�ect of these nuisance variables

on the clusterability measure.

We model the signal matrix P as a sum of relevant signal B and unwanted signal due to

nuisance variables Y . Inspired by published approaches to expression data normalization

[23, 26], we model the in�uence of Y by linear regression. This is a valid approach because

the regression is performed on the singular vectors of X̃ , which contain Gaussian distributed

noise. Given the singular value decomposition of X̃ and singular vectors ṽi ,

ṽi = �Z , with � ∈ ℝk (2.15)

where Z ∈ ℝN×k is a matrix of covariates, such as the total counts per cell, with k the

number of covariates and N the number of cells. Each covariate is normalized to a length
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of 1 such that the range agrees with the range of the singular vectors. The amount of

variance explained by the nuisance parameters is then given by the value of the adjusted R

squared (R2adj ) of this linear regression. Since the eigenvalues of the cell-cell correlation

matrix can be interpreted as the amount of variance explained, we reduce the eigenvalues

�i by �̃i = (1−R2adj )�i . In the next step, we calculate adjusted singular values by 
̃i =
√
�̃i

and use these adjusted singular values 
̃i for the consecutive steps in the calculation of the

clusterability measure.

Algorithm
The procedure to obtain the clusterability measure involves the following steps:

1. Preprocess the single cell expression matrix as described in section 2.6:

(a) Normalization

(b) Log-transformation

(c) Standardization gene-wise

(d) Standardization cell-wise

2. Calculate the singular value decomposition of the gene expression matrix X̃ .

3. Fit the MP distribution to the singular values (equation 2.5).

4. Determine singular values/vectors that correspond to non-random variability using

the Tracy-Widom distribution (equation 2.7) or the Shapiro-Wilk test (equation 2.8),

respectively.

5. Adjust the singular values for e�ects of nuisance variables by linear regression

(equation 2.15).

6. Calculate the singular values �i of the signal matrix P using the inverse of equation

2.9, given by 2.10.

7. Calculate the projections of the singular vectors of the expression matrix X̃ on the

corresponding singular vector of the signal matrix P with equations 2.11 for the

singular vectors and 2.12 for the gene singular vectors.

8. The clusterability measure is the largest of the projections for the singular vectors

obtained in the previous step.
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Application of phiclust to our previously published single-cell RNA-sequencing study of

the human fetal kidney [31] revealed two distinct groups of clusters (Fig. 3a). Connecting

tubule (CnT), nephron progenitor cells-a (NPCa), nephron progenitor cells-b (NPCb), and

mesangial cells (Mes) all obtained a phiclust of 0, which signi�ed that these clusters consist

of pure populations with homogeneous gene-expression pro�les. The rest of the clusters

obtained higher values of phiclust, indicating that they contained subpopulations that were

previously overlooked. For further analysis, we explored all clusters with highest phiclust

and chose to further investigate clusters in which new cell populations were identi�ed: the

ureteric bud/collecting duct (UBCD), the S-Shaped Body proximal precursor cells (SSBpr),

and the Interstitial cells a (ICa), with phiclust of 0.97, 0.95, and 0.93, respectively.

UBCD The analysis of this cluster yielded two clearly separate subpopulations (Fig. 3b,

Additional �le 1: Fig. S10b). The bigger subpopulation contained developing collecting

duct cells and their precursors (ureteric bud), indicated by the expression of genes such as

WFDC2, AQP2, CLDN3, MMP7, and CALB1. In contrast, the smaller sub-cluster showed

little or no expression of the aforementioned genes and was characterized by UPK1A and

UPK1B, well-known markers of the urothelial epithelium, which constitutes the inner

lining of the ureter. The presence of such cells in our data is plausible given that the whole

fetal kidney was used in our sequencing experiment. Both DE analysis (Table S4) and

inspection of the top variance-driving genes (Additional �le 1: Fig. S10e) revealed SPINK1,

UPK2, S100A6, KRT7, and KRT19 as additional markers. Staining of week 15 fetal kidney

sections with UPK1A and KRT7 antibodies con�rmed our interpretation (Fig. 3c, Additional

�le 1: Fig. S11a). UPK1A was restricted to the super�cial urothelial cells in major and minor

calyces as well as the developing ureter. KRT7 was expressed more broadly, across the

super�cial, intermediate, and basal urothelium. Both KRT7 and UPK1A were completely

absent from the whole collecting system and the branching ureteric bud, marked by CDH1

(Additional �le 1: Fig. S11a).

SSBpr Sub-clustering the SSBpr population showed the presence of 3 subpopulations

(Fig. 3b, Additional �le 1: Fig. S10b). One subpopulation contained markers of proximal

cell precursors (GPC3, LHX1, CADM2) together with low expression of AMN and APOE

(see Table S4), which is consistent with the original annotation of the cluster. A second

subpopulation, contiguous to the previous one, showed the expression of CLDN1, which

is expressed in the proximal epithelium, together with CITED2, expressed in developing

podocytes. This suggested parietal epithelial cells (PECs) as the most likely cell type, as

these cells were reported to share several markers with both proximal epithelium and

podocytes [45]. To con�rm this interpretation, we performed Immunostaining of CLDN1,

as well as CAV2 and AKAP12 which were found by DE analysis (Fig. 3d, Additional �le 1:

Fig. S11b). Interestingly, CLDN1 was found in all segments of the S-shaped body except in

the precursors of the PECs, which are the thin layer of cells at the lateral side of the proximal

segment of the SSB. CLDN1 appeared in the parietal epithelium only at the capillary loop

stage and continued to be expressed in all PECs in more mature glomeruli. CAV2 was

present in the parietal epithelium in developing glomeruli, but also in the endothelial cells

of both the glomerular capillaries and the surrounding vasculature. Intriguingly, CAV2
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overlapped with CLDN1 only in a subpopulation of PECs in individual glomeruli, which

might indicate previously unobserved heterogeneity within these cells in the developing

kidney. Only AKAP12 marked the precursors of the PECs in S-shaped bodies and continued

to be abundantly expressed. However, AKAP12, was not speci�c to PECs, as it was also

expressed in interstitial cells in the cortex. Finally, a third, small and distinct subpopulation

in the SSBpr cluster expressed distal tubule markers (SPP1, ODC1, IRX3, and S100A10),

suggesting that these cells were misclassi�ed during the original clustering. This shows

that phiclust can pinpoint clustering errors, making it a useful tool for clustering quality

control.

ICa This cluster consisted of 5 subpopulations (Fig. 3b, Additional �le 1: Fig. S10b). All

subpopulations expressed markers of the renal interstitium. One also expressed genes

found uniquely expressed in other cell types (EPCAM, CD24, BST2, NNAT, DAPL1) and

thus likely contains doublets. Another small subset was characterized by markers of mesan-

gial cells (MGP, ACTA2, PDGFRB), suggesting that it contains mesangial cells erroneously

grouped with the ICa or renal pericytes, which share a similar gene expression pro�le

[46]. Another subpopulation showed high expression of non-speci�c genes related to

components and regulators of microtubules together with metabolic, mitochondrial and

stress-related genes (H2AFZ, TUBA1B, TYMS, STMN1, DUT, MT-CO3, MT-ND5). The

two remaining subpopulations were clearly interstitial but their gene expression pro�les

could not be linked to known interstitial populations, likely due to the dearth of knowledge

about the renal stroma. We hypothesized that these two subpopulations were localized

in di�erent regions of the kidney. To test this idea, we stained fetal kidney sections with

POSTN, CLDN11, and SULT1E1 (Fig. 3e, Additional �le 1: Fig. S11c), which were identi�ed

by DE analysis and inspection of the top variance-driving genes. SULT1E1 was highly

expressed in the pelvic area in the immediate vicinity of the developing ureter, as well

as the inner and outer medulla, preferentially surrounding tubules. This marker might

thus indicate the medullary interstitium as well as pelvic smooth muscle cells. Staining

with CLDN11 showed a higher signal in the medulla and papilla, similar to SULT1E1, but

with a wider spatial distribution. In contrast to SULT1E1, CLDN11 was also expressed in

groups of cortical interstitial cells, situated directly underneath the renal capsule, in the

nephrogenic zone. CLDN11 might thus also be expressed by the interstitial progenitor

cells or their immediate progeny. Lastly, POSTN was mainly found in the renal cortex

surrounding tubules and glomerular microvasculature. POSTN was also expressed in

cortical blood vessels with larger diameters together with their arborizations. POSTN is

a secreted extracellular matrix protein known to be expressed in cardiac smooth muscle

cells, as well as connective tissues. Here, POSTN might mark smooth muscle cells of the

cortical vasculature.

In conclusion, a reanalysis of our previously published data showed the ability of ph-

iclust to reveal overlooked subpopulations. Interestingly, phiclust identi�ed sub-clusters

with only a few cells (41 developing PECs, 68 urothelial cells, 29 distal cells), highlighting

its sensitivity to relevant substructure hidden within a bigger cluster. Finally, phiclust

was also useful to pinpoint clustering errors and the presence of doublets, which makes it

useful for quality control prior to DE analysis.
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