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How a cell decides its own fate: A
single-cell view of molecular

mechanisms and dynamics of cell type
specification

On its path from a fertilized egg to one of the many cell types in a multicellular organism,
a cell turns the blank canvas of its early embryonic state into a molecular pro�le �ne-tuned
to achieve a vital organismal function. This remarkable transformation emerges from the
interplay between dynamically changing external signals, the cell’s internal, variable state and
a tremendously complex molecular machinery we are only beginning to understand. Recently
developed single-cell omics techniques have started to provide an unprecedented, comprehen-
sive view of the molecular changes during cell type speci�cation and promise to reveal the
underlying gene regulatory mechanism. The exponentially increasing amount of quantitative
molecular data being created at the moment is slated to inform predictive, mathematical
models. Such models can suggest novel ways to manipulate cell types experimentally, which
has important biomedical applications. This review is meant to give the reader a starting point
to participate in this exciting phase of molecular developmental biology. We �rst introduce
some of the principal molecular players involved in cell type speci�cation and discuss the
important organizing ability of biomolecular condensates, which has been discovered recently.
We then review some of the most important single-cell omics methods and relevant �ndings
they produced. We devote special attention to the dynamics of the molecular changes and
discuss methods to measure them, most importantly lineage tracing. Finally, we introduce a
conceptual framework that connects all molecular agents in a mathematical model and helps
us make sense of the experimental data.

This chapter is based on Maria Mircea, Stefan Semrau; How a cell decides its own fate: a single-cell view of

molecular mechanisms and dynamics of cell-type speci�cation. Biochem Soc Trans 17 December 2021; 49 (6):

2509–2525. doi: https://doi.org/10.1042/BST20210135 [1]
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1.1 Introduction

Single-cell omics technologies:
Experimental methods to measure the

entire genome, epigenome, transcrip-

tome, proteome etc. of a cell in high-

throughput.

Pluripotency:

Ability of a cell to give rise to multiple

cell types.

Histone:

Proteins that are crucial for the orga-

nization of DNA in the nucleus. DNA

is tightly wound around nucleosome

core particles which consist of 8 his-

tones.

What is a cell type, anyway? Traditionally, cell types have

been de�ned by their function within an organism: Neu-

rons process and transmit information, macrophages re-

move harmful microorganisms and podocytes are crucial

for blood �ltration in the kidney. As function can be dif-

�cult to ascertain, especially for subtle variants of cell

types, cell morphology and the presence of certain marker

genes are often used as proxies [2, 3]. With the advent of

single-cell omics technologies, cell types have increas-

ingly come to be identi�ed with their molecular pro�les.

While most cell types persist over long periods of time,

often the entire life span of an adult organism, cells are found in short-lived, transient

states such as di�erent phases of the cell cycle, di�erent metabolic states or multiple

forms of stress response. Here, we are only concerned with the speci�cation of cell types,

which occurs during embryonic development or regeneration of adult tissues. During

development, pluripotent embryonic cells di�erentiate into progenitors with diminishing

developmental potential, and eventually fully speci�ed cell types [2, 4–6]. In adult tissue,

long-lived adult stem cells give rise to multiple types of descendants. These processes are

collectively termed di�erentiation. Di�erentiation involves changes in gene expression

(i.e., messenger RNA and protein levels), which are accompanied and guided by epigenetic

changes. Broadly, the epigenetic pro�le of a cell encompasses any heritable molecular mark,

with the exceptions of changes in the DNA sequence [7, 8]. Two of the most important

epigenetic marks are DNA methylation and histone modi�cations. These marks are tightly

linked to the accessibility of the DNA and thus in�uence the expression of speci�c genes.

A comprehensive introduction to epigenetics can be found in [9].

Here, we will review a few of the many cell-autonomous molecular mechanism that make

di�erentiation a reproducible process and ensure the long-term stability of cell types. Im-

portantly, cells do not develop in isolation. Their communication with neighboring cells

via chemical and mechanical signaling is an integral part of embryonic development and

tissue regeneration, which we will not discuss here (for recent reviews see [10, 11]). Equally

important, but also outside the scope of this review, is the role of molecular noise, which

can drive cell type decisions but must also be controlled to ensure the stability of the fully

di�erentiated state (for recent reviews see [12, 13]). In this review, we will �rst introduce

some of the most important molecular players, which can be used to de�ne a cell type, and

discuss omics techniques that can measure molecular pro�les comprehensively in single

cells. We will then focus on the dynamics of di�erentiation and novel methods that allow

the inference of the developmental lineage tree. Finally, we will discuss challenges arising

in the analysis of data sets comprising multiple modalities and a conceptual framework

that enables a quantitative understanding of di�erentiation (Figure 1.1).
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Figure 1.1: Conceptual framework for cell types and di�erentiation dynamics. Left: TFs bind to enhancer

and promoter regions depending on the chromatin state. All molecules are drawn at a scale of 1:106. Center

left: A simpli�ed gene regulatory network consisting of TFs (nodes of the network graph) and their interactions

(edges of the network graph). Center right: A gene regulatory network can be modeled by a dynamical system,

which can be represented by a potential energy landscape. The position in the landscape is determined by TF

abundance. The shape of the landscape depends on the TF interactions. Cells follow the path of steepest descent

to stable states, which correspond to cell types. Right: The collection of trajectories in the potential landscape

form a cell type decision tree, which highlights the hierarchical nature of di�erentiation.

1.2 Molecular embodiment of a cell type

Transcription factor:
A protein that binds to speci�c DNA

sequences and regulates transcription.

Cis-regulatory elements:
Sequences of non-coding DNA which

regulate the transcription of genes.

Chromatin:

The complex of nucleosomes, DNA

and other associated proteins.

Nucleosome:

Smallest unit of DNA organization.

Consists of DNA wound around 8 hi-

stones.

Pioneer factor:
A transcription factor that can bind to

nucleosome-bound DNA.

Most, if not all, cell type decisions involve speci�c tran-
scription factors (TFs) [2, 3, 5, 6, 14, 15]. These DNA

binding proteins control a gene’s transcription level by

binding to cis-regulatory elements (CREs) in the DNA.

Enhancers, CREs that can be found at large distances from

the regulated gene, play a particularly important role for

cell type determination. Enhancers work in concert and

physically interact with promoters, another type of CRE

that is usually found near the regulated gene. TF bind-

ing of CREs not only depends on the presence of speci�c

DNA sequence motifs but is also strongly modulated by

the con�guration of the chromatin (the complex of DNA,

nucleosomes and other associated proteins, see Figure 1, left). With the exception of

so-called pioneer factors [16], TFs only bind accessible, nucleosome-free DNA [17]. Chro-

matin con�guration and TF binding are a�ected by chemical modi�cations of histones (the

components of a nucleosome), as well as the DNA [17]. Di�erent histone modi�cations, or

marks, are associated with di�erent functions, broadly categorized as active and repressive,

and the e�ect of DNA modi�cations strongly depends on the genomic context [18, 19]. For

example, DNA methylation at the enhancer regions of the pluripotency gene Sox2 results

in silencing of its expression in embryonic stem cells [19]. Importantly, the interaction

between TFs and chromatin con�guration is reciprocal: TFs recruit enzymes that locally
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Regulatory network:

A system of interacting molecules that

regulate each other’s gene expression

as well as a set of target genes.

Master transcription factor / mas-
ter regulator:
A transcription factor that e�ects the

transcription of multiple downstream

genes and is essential for cell type spec-

i�cation.

Super-enhancer:
A group of multiple enhancers in close

proximity characterized by high levels

of Mediator complex, which strongly

drives gene expression of its target

genes.

Mediator:
A multiprotein complex that coacti-

vates transcription by interacting with

TFs and RNA polymerase II.

Biomolecular condensates:
Droplets of a condensed liquid phase

formed in cells by homotypic, multiva-

lent interactions (i.e., interactions be-

tween identical molecules that involve

multiple binding sites). One example

are membrane-less organelles.

Liquid-liquid phase separation:

De-mixing of a homogeneous liquid

into two distinct liquid phases.

change the molecular make-up of the chromatin [17].

Both histone marks and DNA methylation are heritable

molecular marks, as they are copied to the newly syn-

thesized DNA during cell division [8, 9, 20]. They can

therefore function as long-term memory of a cell’s molec-

ular pro�le and hence cell type. The pattern of chromatin

accessibility and epigenetic marks can thus be used to

identify a cell type and reveal relevant CREs [17, 21]. Im-

portantly, cell type speci�cation cannot be understood by

studying individual TFs or epigenetic features in isolation.

Cell types rather emerge from the complex interactions of

several TFs. The presence of particular subsets of TFs has

therefore been used to de�ne a periodic table of cell types

[5]. Together with their target genes, TFs form gene regu-
latory networks that establish and maintain cell identity

[2], see Figure 1, middle. Regulatory interactions between

TFs, in particular negative feedback loops, are crucial for

the stability of molecular states. Due to the presence of

�uctuations in the environment as well as the internal

state of the cell, robustness is an important requirement

for regulatory networks. At the same time, they need to

be dynamic and react appropriately to external signaling

inputs [2]. Mutual repression of TFs is one mechanism by which multiple, alternative cell

types can be created. A prominent example is the interaction between the TFs GATA6

and NANOG, which governs the lineage decision between two of the earliest cell types in

the mammalian embryo [22–24]. The conceptual framework discussed in the �nal section

of this review explains how various stable cell types and unidirectional di�erentiation

dynamics emerge from gene regulatory networks, see Figure 1.1, right.

Despite the fact that TFs always work in concert, some have a particularly large impact

on lineage decisions: Overexpression of certain TFs can revert a di�erentiated cell back

to a pluripotent state (reprogramming) or convert one cell type into another (transdif-

ferentiation) [25]. The remarkable power of these TFs, termed master TFs or master
regulators, can be rationalized by their DNA binding patterns. Master TFs have been

shown to bind clusters of enhancers, or super-enhancers, which drive high levels of key

cell type-speci�c genes [26, 27], see Figure 1.2. Super-enhancers owe their special role to a

high density of co-localized Mediator complex [26, 27], a protein complex that links TF

binding to the recruitment of the transcription machinery and therefore gene expression.

A well-studied example of master TFs that bind cell-type speci�c super-enhancers are

regulators of the pluripotent state in embryonic stem cells: NANOG, SOX2 and OCT4 [27].

TFs, CREs, epigenetic marks and enzymes that modify chromatin state are just a small,

albeit important, subset of the many molecular species that are involved in cell type speci-

�cation. It has long been unclear, how all of these mobile molecules, some of which are

freely di�using in the nucleus, can interact in an e�cient manner. Recently, biomolecular
condensates, which form through liquid-liquid phase separation (LLPS) [28–30], have

been suggested as a possible answer to this question. Biomolecular condensates form
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Paraspeckle:

A biomolecular condensate that forms

in the presence of the long non-coding

RNA NEAT1 and several RNA binding

proteins.

Intrinsically disordered regions:
Segments of a protein that do not form

a stable three-dimensional structure.

according to well-known thermodynamic principles as

a result of multivalent, homotypic interactions between

molecules [31]. The high concentration of several molec-

ular species in the condensed phase leads to increased

interaction rates [30]. Examples of biomolecular conden-

sates are the well-known membrane-less organelles, such

as the nucleolus or Cajal bodies, as well as paraspeckles
and many more [28, 29, 32]. It has been found that intrinsically disordered regions
(IDRs) of proteins can lead to the multivalent interactions that can cause condensates

to form [33–35]. Interestingly, MED1, a member of the Mediator complex, and BRD4, a

coactivator of transcription, have large IDRs and form condensates at super-enhancers [33],

see Figure 1.2. Thus, phase-separated condensates likely concentrate components of the

transcription apparatus and thereby ensure robust transcription of key cell type-speci�c

genes. Additionally, the large size of the Mediator cluster at super-enhancers enables the

contact with multiple promoter sites [36]. Therefore, biomolecular condensates are likely

of crucial importance for establishing a cell type.
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Figure 1.2: Master transcription factors and super-enhancers play a major role in guiding cell type
speci�cation and are compartmentalized by biomolecular condensates. Left: super-enhancer with bound

master transcription factors in a large biomolecular condensate. Right: A paraspeckle that forms in the presence

of the lncRNA NEAT1. All molecules are drawn at a scale of 1 ∶ 2 ⋅ 105.

1.3 Molecular profiling

In recent years, omics technologies have emerged that measure one or multiple molecular

species comprehensively in single cells (see Box 3 and Figure 1.3 for a selection of common

methods). These technologies can reveal cell type-speci�c molecular pro�les in high

throughput. With single-cell RNA-sequencing (scRNA-seq) the transcriptomes of individual

cells can be obtained [2, 5, 6], which enables the identi�cation of new cell types and

cell states in complex tissues [37]. Multiple large consortia are currently generating

transcriptional atlases of entire organisms (reviewed in [38]). The human cell atlas [39]
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and Tabula Muris [40] are two prominent examples. Notwithstanding the great value of

scRNA-seq measurements, gene expression should ideally be measured at the protein level.

Numerous regulatory mechanisms at the translational and post-translational level make

mRNA abundance just a proxy for protein abundance. Protein measurements have indeed

revealed phenotypic features that could not be discerned with scRNA-seq alone [41, 42]. As

Transcript-
omics

Smart-seq2 [127]
Drop-seq [128]
CEL-seq2 [129]

sci-RNA-seq [130]

Proteomics

scCyTOF [41]
SCoPE-MS [131]

CITE-seq [134]
REAP-seq [135]

RAID [136]
DNA 

methylation

scBS-seq [137]
scRRBS [139]

sc 5hmC-seq [140]

Chromatin 
accessibility

scATAC-seq [43, 44]

Genomics

MALBAC [146]
NanoSeq [147]

scM&T-seq [47]
scMT-seq [141]

sci-CAR [45]
Paired-seq [88]

G&T-seq [148]
TARGET-seq [149]

CoTech [90]
Paired-Tag [46]

Retrospective 
Lineage tracing

NanoSeq [147]
GoT [150]

EMBLEM [152]
RETrace [154]

Prospective 
Lineage tracing

scScarTrace [155]
scGESTALT [156]
LINNAEUS [157]

Chromatin 
conformation

scHi-C [48, 49]

sn-m3C-seq [50]
methyl-HiC [145]

Histone 
modifications

scChIP-seq [143]
scCUT&Tag [144]

scNMT-seq [142]

Figure 1.3: A selection of single-cell omics and multi-omics techniques useful for studying cell type
speci�cation. Colors indicate the measurement of di�erent molecular species in a cell (green: DNA sequence,

grey: RNA abundance, blue: protein abundance , orange: chromatin accessibility, red: DNA methylation, pink:

histone modi�cations, violet: chromatin conformation). Circles with color gradients contain techniques that

measure several types of molecules at the same time. Dashed lines envelop techniques that aim at understanding

similar concepts.

mentioned before, chromatin state is an important factor in gene regulation. Knowledge of

the chromatin landscape can therefore improve the identi�cation of cell types [43]. There

is a growing variety of single-cell methods that measure chromatin features. For example,

by using scATAC-seq [44, 45], which reveals accessible chromatin regions in single cells, it

is possible to identify cell type-speci�c regulatory elements and candidate master TFs. By

combining scATAC-seq and scRNA-seq, open chromatin regions can be associated with

active transcription, which improves the identi�cation of TFs and target genes compared
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to pure RNA measurements. It was also shown that considering the chromatin state of

distal CREs signi�cantly increased the power to predict cell-type speci�c gene expression,

compared to using promoter chromatin state alone [46].

Transcriptomics: The currently most prevalent single-cell omics method is single-cell RNA

sequencing, which measures RNA abundance. Di�erent experimental implementations of

this method include: Smart-seq2 [47], Drop-seq [48], CEL-seq2 [49] and Sci-RNA-seq [50].

Proteomics: It is not yet feasible to measure every protein in a single cell. Antibody-based

methods, for example scCyTOF [42], can measure hundreds of proteins, but cannot easily

be scaled to the whole proteome and rely on the existence of highly speci�c antibodies.

Mass spectrometry-based proteomics methods, which recently became available, might

soon produce high-quality proteomes of single cells. One example is SCoPE-MS [51],

which detects around 1000 proteins per cell. Improvements to this method have been

recently made in SCoPE2 [52] and another method [53]. By sequencing of DNA-tagged

antibodies, the quanti�cation of hundreds of proteins together with the transcriptome in

single cells is possible with CITE-seq [54] and REAP-seq [55]. RAID [136] uses RNA-tagged

antibodies for the same purpose.

Epigenomics: To gain insights into chromatin accessibility, one of the most promi-

nent techniques is scATAC-seq [44, 45], which uses transposons to barcode accessible

DNA. scATAC-seq can be performed simultaneously with scRNA-seq, which was

implemented, for example, by sci-CAR [46] and Paired-seq [56]. DNA methylation is

measured by scBS-seq [57, 58] and scRRBS [59]. Single-cell 5hmC-seq measures DNA

hydroxymethylation [60]. Joint measurements of DNA methylation and the transcriptome

is possible with, for example, scM&T-seq [61] and scMT-seq [62]. A method to measure all

three molecular pro�les (DNA methylation, transcriptome and chromatin accessibility) is

scNMT-seq [63]. Histone modi�cations can be measured, for example, with scChIP-seq

[64] and scCUT&Tag [65]. New methods to measure the transcriptome jointly with histone

modi�cations are CoTech [66] and PairedTag [67]. It is now also possible to study the

chromatin conformation in every single cell with scHi-C [68, 69]. Recent methods have

allowed the capture of both chromatin conformation and DNA methylation (sn-m3C-seq

[70] and methyl-HiC [71]).

Genomics: The DNA sequence of single cells can be measured by methods such

as MALBAC [72] and NanoSeq [73]. NanoSeq which has been designed to detect even

small somatic mutations in single DNA molecules. Measurement methods that combine

DNA sequencing with transcriptomics are, for example, G&T-seq [74] and TARGET-seq

[75].

Box 1: Common single-cell omics and multi-omics techniques
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Similarly, a simultaneous measurement of histone modi�cations and transcriptome showed

that active enhancers are epigenetically more variable across cell types than promoter

regions [67]. A related �nding resulted from the simultaneous measurement of DNA

methylation and transcriptome (scM& T-seq [61]). The authors con�rmed that promoter

DNA methylation in mouse ESCs is typically correlated with reduced gene expression. By

contrast, DNA methylation of distal enhancers is more often correlated with increased

gene expression, compared to promoters. Since active transcription typically requires the

physical proximity of enhancers and promoters, knowledge of chromatin organization can

be helpful to understand cell type decision making.

scHi-C is a high-throughput method to reveal chromatin interactions throughout the

genome in single cells [68, 69]. In combination with DNA methylation measurements,

cell type speci�c chromatin conformations can be obtained [70], which might help to

clarify the role of biomolecular condensates [76, 77]. In a recent study, a new variant

of Hi-C [77] was used to determine the stability of chromatin interactions, which were

revealed to vary substantially between organelles. Approaches to measure the spatial

distribution of transcripts [78, 79] and proteins [80] with sub-cellular resolution might lead

to an even better understanding of cellular compartmentalization through biomolecular

condensates. Multi-omics single-cell methods, like those presented here, promise to enable

an improved mechanistic understanding of cell type-speci�c gene regulation [81]. A more

comprehensive discussion of these methods can be found in [82].

1.4 Dynamics of differentiation

Chromatin remodeler:
Protein complexe that catalyze molec-

ular changes of the chromosome, such

as nucleosome removal.

Bivalent domain:

Chromatin domain that carries both

activating and repressing histone

marks.

RNA Polymerase II:
A multiprotein complex that

transcribes DNA into messenger

RNA.

During di�erentiation, the molecular pro�le of a cell is

remodeled substantially. TFs are, unsurprisingly, impor-

tant drivers of this transformation. As the majority of TFs

binds to accessible chromatin regions, di�erentiation is

accompanied by pervasive changes in chromatin accessi-

bility [13, 16, 17]. One underlying mechanism involves

pioneer TFs, which bind to nucleosome-associated DNA

and create an open chromatin state [16, 17]. These TFs

can explore nucleosomal DNA through non-speci�c and

transient binding, which in turn allows partial opening of

the chromatin and other, non-pioneering factors to bind [16]. This mechanism has been

recently validated, for example, for the pioneer factor PAX7 [83]. Another mechanism

is passive competition of TFs for DNA binding during short periods of local chromatin

opening, which increases and stabilizes with higher TF concentrations [17, 84].

Chromatin state is also in�uenced by chromatin remodelers that are recruited by TFs

[16, 18, 85] and bind to di�erent histone marks [85, 86]. This is one mechanism by which

epigenetic marks strongly impact chromatin accessibility. Importantly, activating and

repressing histone marks can also occur simultaneously, on the same nucleosome. These

bivalent domains play a particularly important role in cell type decisions [87] and are

more abundant in embryonic stem cells (ESCs) than in adult tissues. A prominent example

is the combination of H3K4me3 (Trimethylation of histone H3 on lysine 4) which is asso-

ciated with active transcription and H3K27me3 (Trimethylation of histone H3 on lysine
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27), which causes chromatin compaction and is thus a repressive mark. It has been shown

that bivalent domains are positioned at key TF genes that are important for development

[87–89]. Enhancers and promoters with bivalent marks are thought to be in a poised state,

that can be quickly resolved to either activation or repression. This e�ect can be mediated

by multiprotein complexes composed of polycomb group (PcG) proteins. These proteins

cause gene silencing by, for example, catalyzing methylation of H3K27 [90, 91]. In ESCs,

the occupancy of PcG proteins at bivalent histone marks can change during di�erentiation,

which results in altered gene expression [89, 92]. Poised enhancers have been found to

be necessary, for example, for the di�erentiation into speci�c neural cell types [93]. The

examples mentioned here are only few of many epigenetic mechanisms that drive dynamic

chromatin remodeling during stem cell di�erentiation (reviewed in [94]).

Epigenetic marks are not homogeneously distributed in the nucleus, but rather need to

be localized at important regulatory sites, which might be promoted by biomolecular

condensates. The formation of biomolecular condensates during di�erentiation has been

linked to di�erent long non-coding RNAs (lncRNA) and RNA-binding proteins (RBPs)

[32, 95]. For example, the lncRNA DIGIT forms biomolecular condensates together with

the RNA binding protein BRD3, which contains an IDR [95]. BRD3 is recruited to sites of

the activating histone mark H3K18ac (Acetylation of histone H3 on lysine 18). Paraspeckles

are another important class of biomolecular condensates de�ned by the presence of the

lncRNA NEAT1, which recruits several RBPs [96], see Figure 1.2. These condensates can,

for example, in�uence transcriptional regulation via associated RBPs [96–98]. NEAT1

has been found to physically interact with EZH2, a PcG protein, which is involved in

catalyzing histone methylation [99]. Interestingly, paraspeckles were found to be involved

in slowing down the di�erentiation process and their number changes dynamically during

di�erentiation to several lineages [32, 97]. Another example of dynamic transcriptional

regulation through biomolecular condensates is the association of RNA polymerase II

with Mediator condensates (see Figure 1.2). It has been found that, upon phosphorylation,

RNA polymerase II transitions from condensates involved in transcription initiation to

condensates involved in RNA splicing at genes associated with super-enhancers [35].

1.5 Measurement of differentiation dynamics
In simple organisms the entire lineage tree can be assembled using a microscope [100].

In larger organisms that becomes unfeasible and scRNA-seq data of developing tissues

has been used instead to infer lineage relationships [101]. Due to asynchrony in embry-

onic development or regeneration of adult tissues, a single scRNA-seq measurement can

capture cells in di�erent stages of di�erentiation [43, 102] and developmental order, or

pseudotime, can be inferred by computational methods (reviewed in [103], see also the

section on data analysis below). If the developmental process is su�ciently accessible for

repeated sampling, scRNA-seq measurements at several time points can be used to resolve

developmental dynamics [14, 104–107]. This approach improves the temporal resolution

and revealed that cells with di�erent lineage histories can converge to globally similar cells

[108]. However, combining multiple data sets to infer the correct developmental trajectory

is challenging.

Lineage reconstruction has also been performed based on protein measurements in single
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cells at di�erent time points. In a recent study [108], 27 proteins, of which 16 were TFs,

were measured over a time course of 22 days during hematopoietic di�erentiation. This

study showed that, at the protein level, cell type decisions are accompanied by gradual

changes in lineage speci�c TFs, as no abrupt switches in TF levels were observed.

There are two, conceptionally distinct approaches to lineage tracing: retrospective and

prospective. In retrospective lineage tracing, lineage relationships are inferred from natu-

rally occurring somatic mutations. These mutations can be traced using DNA sequencing

methods [73]. In a recent study, such mutations were linked with scRNA-seq data to inves-

tigate clonal relationships and cell types in human [109]. Mitochondrial DNA has a 10 fold

higher mutation rate than nuclear DNA [110, 111], which makes it a good candidate for

retrospective lineage tracing. Interestingly, these mutations can be tracked with ATAC-seq

measurements because mitochondrial DNA is accessible [111]. DNA methylation also

undergoes stochastic changes during cell division known as epimutations, which allows

tracking of lineage histories through measurements of DNA methylation [110, 112]. Cou-

pling genomics to DNA methylation measurements allows both lineage tracing and the

study of cell type speci�c methylation patterns [113]. However, naturally occurring muta-

tions are rare, which requires highly accurate and sensitive measurement techniques and

computational methods. In prospective lineage tracing, heritable markers are introduced

that are read out at a later time point. The most recently developed dynamic lineage tracing

methods insert ‘scars’ into the DNA at random or pre-determined locations, resulting in a

large variety of di�erent markers [114, 115]. In some cases, these markers, or barcodes,

are also transcribed, so that scRNA-seq is able to capture transcriptomes and lineage in-

formation simultaneously. Di�erent omics technologies have been used in the context

of lineage tracing (see Box 1 for a list of omics techniques). For retrospective lineage

tracing, NanoSeq [73] has been used to track even small somatic mutations and GoT [109]

linked transcriptomics to genotyping. scATAC-seq has been used to track mutations in

mitochondrial DNA [111] and scRRBS has been used together with DNA sequencing to

track DNA mutations together with DNA methylation [113]. Examples of prospective

lineage tracing techniques that use transcriptomics measurements are scScarTrace [116],

scGESTALT [117] and LINNAEUS [118].

Box 2: Lineage tracing

To reveal the gene regulatory programs that cause gene expression changes, chromatin

conformation measurements during development can be used. Bulk methods have been

used extensively to measure epigenetic changes and chromatin accessibility of cell popu-

lations [119], which produced many important insights. However, cell-to-cell variability

and rare cell populations can only be distinguished with single-cell methods. Therefore,

time-resolved single cell chromatin accessibility measurements can be very informative

[120], in particular in combination with transcriptomics [46, 56, 121, 122]. One study found

a class of genes with a high number of putative enhancers whose chromatin accessibility

is predictive of gene expression [122]. These genes are enriched in TFs that regulate cell

type-speci�c gene expression. These �ndings suggest participation in super-enhancers and
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a central role in cell-type speci�cation. Additionally, it was observed that the expression of

TFs precedes the accessibility of their target sites, which might indicate a causal role of

TFs in chromatin remodeling, possibly through additional epigenetic mechanisms [121].

Another interesting case is the simultaneous measurement of chromatin accessibility, DNA

methylation and transcriptome (scNMT [123]) at several timepoints in mouse development.

The authors were able to study the dynamic changes of all three pro�les in time and

con�rmed ectoderm, one of the three embryonic germ layers, as the default developmental

pathway. Speci�c histone marks have also been measured during di�erentiation and devel-

opment. For example, the co-occurrence of H3K4me3 and H3K27me3 (bivalent mark) was

measured in mouse ESCs together with scRNA-seq. The authors calculated a bivalency

score along an RNA based pseudotime trajectory and were able to classify genes by trends

in bivalency dynamics [66]. A similar method found a signi�cant overlap between H3K27ac

(Acetylation of histone H3 on lysine 27) and H3K27me3 in the adult mouse brain at CREs

related to forebrain development [67].

An entirely di�erent approach to study developmental dynamics is used in lineage tracing

techniques [114, 115, 124] (see Box 2, which aim to �nd the correct phylogenetic tree

[125, 126] from pluripotent cells to fully speci�ed cell types. Lineage tracing methods have

produced a large number of valuable insights. A recent study used lineage tracing to reveal

early biases towards particular cell types [127] that are not resolved with transcriptomics:

Transcriptionally similar cells were found to be committed to particular cell types prior

to the divergence of their transcriptional pro�les [114, 128]. Importantly, such cells can

easily be mistaken for multipotent progenitors. Coupling lineage tracing with epigenomics

or proteomics measurements might help to avoid some of these biases and pinpoint the

correct sequence of transcriptional and epigenetic changes during development. Lineage

tracing experiments also seem to indicate that cell fate decisions occur in a more contin-

uous manner rather than abruptly, as previously believed [129]. Finally, lineage tracing

made it possible to observe the convergence of di�erentiation trajectories from distinct

developmental origins [128].
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1.6 Data analysis

Many single-cell methods involve advanced data analysis (see Box 3 and Figure 1.4 for

a selection of computational methods). In scRNA-seq data, cell types can in principle be

identi�ed by clustering similar transcriptomes [130] and the underlying gene regulatory

networks can be inferred [131–133]. However, both cell type identi�cation and network

inference are improved by integrating multiple omics data sets [41, 134]. Integration meth-

ods typically aim to extract variations common to all measured modalities [135–137]. That

is even possible if molecular species are not measured simultaneously in the same cell, as

shown, for example, for DNA methylation and transcriptome measurements [138]. Trajec-
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Figure 1.4: Common elements of single-cell omics data analysis. a) Each rectangle represents a data matrix

from an omics technology with cells in columns and features in rows. Data Integration methods can be used

to combine these data sets. b) Each circle represents a cell projected into a two-dimensional space. Cells that

are closer have more similar molecular pro�les. Di�erent colors indicate di�erent clusters of cells, which have

been determined through a clustering algorithm. Clusters are usually identi�ed with cell types. c) Inferred

gene regulatory network. Circles show transcription factors and their target genes. Edges correspond to the

interactions between them. d) Each circle represents a cell in a two-dimensional space. Developmental dynamics,

indicated by a black line, are revealed with trajectory inference methods. The cell fate decision boundary separates

molecular pro�les that develop into di�erent cell types. e) Each node represents a cell type. The leaves of the

tree (lowest nodes) are the observed �nal cell types, whereas the other cell types are transient. Lines indicate the

lineage relationships.

tory inference algorithms seek to reconstruct gene expression dynamics from scRNA-seq

measurements of developing tissues. Many of these methods use similarity of transcrip-

tomes to estimate temporal proximity, which comes with many challenges and limitations

[102, 127, 139, 140]: For example, the starting point of a di�erentiation trajectory has to be

provided by the user, because most methods cannot infer directionality. One exception is

RNA velocity [141, 142], which exploits RNA splicing dynamics to infer gene expression

dynamics and directionality. Time-resolved measurements can be analyzed with optimal

transport theory to infer probabilities for the transitions between the observed cell types

[14, 106].

Prospective lineage tracing presents a completely di�erent set of challenges for data analy-

sis. The increase in data complexity caused by randomly inserted barcodes, necessitates

the development of novel algorithms to infer the underlying phylogenetic tree [127, 143],

which captures the hierarchy and relationship of cells during di�erentiation. As barcoding

is often limited to a short period of time, it becomes di�cult to infer the lineage tree

beyond the point where barcoding has stopped. However, a new method [127] leverages

covariances between barcodes to transcend this limitation. An interesting concept in this

regard is phylodynamics [125], which studies how the cell type distribution changes over
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time, given an observed lineage tree. For example, it has been shown that a model with

constant cell division rate, can result in a skewed lineage tree that appears like earlier

generations were dividing more rapidly [125].

The algorithms mentioned here are just a small selection of the many tools that have been

developed speci�cally to deal with the challenges arising in single-cell methods. We refer

the reader to [144–146] for a much more comprehensive overview.

Clustering methods have been used extensively for transcriptomics data (reviewed in

[99]), where they partition cells based on the similarity of their transcriptomes. Clustering

is now also applied to a combination of di�erent omics data sets (reviewed in [147–149]).

Clusters can be �rst obtained separately for each modality and then combined, or the

di�erent data sets are integrated prior to clustering. Popular examples of integration

methods are WNN [41], totalVI [137], MOFA+ [135] and LIGER [138].

Inference of gene regulatory networks has been frequently performed using

scRNA-seq data [150]. Examples of existing algorithms are GENIE3 [131], SCENIC [132],

SINCERITIES [133] and Scribe [151]. A new method, CellOracle [134], allows the identi�ca-

tion of gene regulatory networks from a combination of scRNA-seq and scATAC-seq data.

Symphony [152] provides multi-omics clustering as well as gene regulatory network in-

ference. Importantly, these methods often rely on the proper identi�cation of TFs and CREs.

Inference of di�erentiation trajectories was �rst introduced for transcriptomics

data. These methods make use of the asynchrony during di�erentiation and order

cells by developmental progress (pseudotime). Examples of trajectory inference

methods are PAGA [153], DPT [154], Monocle3 [155], FateID [156] and Palantir [157]

(reviewed in [103]). A pseudotime method that makes use of spliced and unspliced

RNA is RNA velocity [141, 142], which has also been expanded to include protein

dynamics [158]. In order to combine several transcriptomics data sets and recreate the

di�erentiation trajectory, optimal transport theory has been applied [14, 106]. A new, in-

teresting method is MATCHER [159], which infers pseudotime based on multi-omics assays.

Reconstruction of lineage trees is the goal of dynamic lineage tracing tech-

niques, where barcodes are introduced randomly during a short period of time. Classic

reconstruction methods, like neighbor joining [160] are not robust enough for this purpose.

Several studies therefore designed custom made methods [118, 161] and additionally, a

new, more robust inference method has been proposed, Cassiopeia [143]. Building on

the neighbor joining algorithm, CLiNC [127] tries to discover inconsistencies within the

phylogenic tree.

Box 3: A selection of computational methods for the analysis of single-cell omics data
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1.7 Conceptual framework

Coupled di�erential equations:
Di�erential equations describe the

temporal evolution of a system. They

are coupled, if variables appear in sev-

eral equations. Such equations can

have multiple stable solutions, which

do not evolve in time, unless per-

turbed.

Critical point:
A point in parameter space where the

number or stability of solutions to a dy-

namical system change abruptly.

Intrinsically disordered regions: Seg-

ments of a protein that do not form

a stable three-dimensional structure.

Stable states:
A solution of a dynamical system that

is a local minimum of the correspond-

ing potential landscape.

Even with appropriate data analysis algorithms in place,

we still need a conceptual framework for the quantitative

understanding of cell types and their formation. The chal-

lenge is to reveal, how gene regulatory networks with

certain topologies give rise to the observed cell types and

molecular dynamics during di�erentiation. Dynamical

systems theory has been used extensively to model gene

regulatory networks quantitatively. In this framework, cell

types can be understood as stable states in a system of

coupled di�erential equations [162]. Number, position

and robustness of these stable states all depend on param-

eters that re�ect the interactions between TFs and other

members of the regulatory network. These parameters can

be di�cult to infer from experiments, except for (unrealis-

tically) small networks. Nevertheless, dynamical systems describe key properties of the

di�erentiation process. They explain how the interactions between several TFs jointly

give rise to cell types that are robust up to a certain level of perturbation [163]. They

also explain how a change in TF interactions causes cell types to destabilize [164]. Finally,

unstable, intermediate cell states can be found, depending on the parameters of the system

[165, 166].

A dynamical systems model can be represented by a potential energy landscape, where a

cell follows the path of steepest decent into locally stable states, that correspond to cell

types [166–168], see Figure 1.1, middle right. This potential energy landscape is closely

related to Waddington’s epigenetic landscape [169], a pioneering metaphor that abstracted

from molecular details to conceptualize embryonic development. Importantly, the shape of

Waddington’s landscape is constant in time and a location in the landscape corresponds

to the complete molecular pro�le of a cell. By contrast, most dynamical systems models

identify the state of a cell by its transcriptome or even just the expression levels of the

TFs in a gene regulatory network (see Figure 1.1, middle left). The shape of the potential

landscape is then de�ned by the gene regulatory network, most importantly the inter-

actions between TFs and their target genes [162]. Changes in the epigenetic state and

other gene regulatory molecules can modulate the strength of those interactions (i.e. the

parameters of the dynamic system) and thereby cause di�erent stable and unstable states

to appear or disappear [166, 167]. De�ning the gene expression pro�le as the state of the

cell and modeling the epigenetic pro�le as parameters of the gene regulatory network has

certain conceptual advantages. For example, at critical points, which have been studied

extensively by catastrophe theory, small changes of the parameters can cause large changes

in the stable states of a dynamical system [162, 166]. Lineage decisions might thus be

driven by dynamic epigenetic changes around critical points. Importantly, Waddington’s

landscape implies a strict hierarchy of di�erentiation, leading from multipotent to more

and more speci�ed, unipotent states (see Figure 1.1, right).

Despite its many advantages, the landscape model also has clear drawbacks, including its

inability to describe periodic trajectories, e.g. caused by the cell cycle [102, 167]. Therefore,
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many other ways to conceptualize di�erentiation have been devised. For example, the

spin glass, a model that originated in physics, describes a system of interacting particles

that can have stable low energy states corresponding to di�erent cell types [162, 170]. It

accommodates di�erent strengths of interactions between TFs, can describe symmetry

breaking events and is scalable to larger numbers of TFs. However, it is often simpli�ed by

the usage of binary TF expression (on/o�) and symmetric interactions for mathematical

tractability. The concepts discussed here are just a few examples of the many models that

are currently being developed. More comprehensive overviews can be found in [162, 171].

1.8 Perspectives
• To discover the molecular underpinnings of cell types and their formation is of funda-

mental interest in developmental and stem cell biology. It is equally important for the

understanding of diseases such as cancer, where cell types lose their stability and are

transformed to malignant states.

• New single-cell measurement techniques have given us unprecedented insights into the

interactions and dynamics of the relevant molecular agents. In the current paradigm,

transcription factors, regulatory DNA elements and other classes of molecules form a

regulatory network from which cell types emerge.

• In the future, lineage tracing and other quantitative methods will be leveraged to reveal

the complete lineage tree and infer a predictive mathematical model of the underlying

gene regulatory network. Such a model would allow us to manipulate cell types at will,

which has numerous medical applications.
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1.9 Outline of Thesis
Despite being the object of intense study, embryonic development has been di�cult to

model for several reasons. One primary reason is that complex tissues can comprise many

cell types, of which we probably only know a subset. Thus, we �rst focus on discovering

cell types with single-cell RNA sequencing (scRNA-seq), which has proven very successful.

Throughout this thesis, we will use scRNA-seq to uncover di�erent cell types and tran-

scriptional changes during cellular di�erentiation.

Additionally, many signaling processes and morphogenic events co-occur in a developing

tissue, making it hard to isolate the cell’s individual contributions. For this purpose, we

look at stem cell-derived in vitro systems, in which a small number of speci�c cell types

can be studied in isolation. In this thesis, we mainly focus on stem-cell-derived endothelial

cells, which line the inside of vessels, and gastruloids which mimic the process of gastru-

lation. We use scRNA-seq to investigate changes in gene expression patterns of master

transcription factors and their target genes. Cellular di�erentiation, particularly, depends

on extensive communication between cells and must lead to the formation of non-trivial

spatial patterns in a robust and reproducible way. For this purpose, we analyze di�erent

in vitro model systems showing that cellular communication causes morphogenic and

transcriptional changes in the developing cells. Speci�cally, we show in one chapter that

cellular communication can overrule the developmental origin and in another that it can

cause the formation of epithelial structures.

Lastly, we want to use measurements of developmental processes to reveal the underlying

regulatory mechanisms. To that end, we use a neural network to infer the parameters of a

model for gene regulation and cellular communication.

In Chapter 2 we develop a new method to assess clusterability in single-cell transcrip-

tomics data. Single-cell transcriptomics data has revolutionized biology by its ability to �nd

new cell phenotypes through clustering. However, all clustering methods have adjustable

parameters, making it challenging to �nd the correct number of clusters. There was no

principled method to decide whether a cluster of cells contains meaningful sub-populations

that can be further resolved. We developed phiclust (�clust ) a clusterability measure de-

rived from random matrix theory and low-rank perturbation theory that can identify the

presence of non-random substructures. We showed that, by using this method, we could

identify previously overlooked subtypes.

In Chapter 3 we analyze the co-di�erentiation of endothelial cells and cardiomyocytes

from human-induced pluripotent stem cells (hiPSCs). Both cell types are building blocks

of the heart: Cardiomyocytes generate contractile forces, and endothelial cells line the

inside of blood vessels. During embryonic development, these two cell types arise from

a common hematoendothelial lineage. A known master regulator of this speci�cation in

mice is ETV2. We used scRNA-seq and a reporter cell line to uncover the role of ETV2

in the di�erentiation from human iPSCs. We showed that a transient expression of an

ETV2-high state initiates the speci�cation of endothelial cells. Functional cardiomyocytes

can arise from cells that do not express ETV2 or, surprisingly, have sub-threshold expression.
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In Chapter 4 we investigate the importance of cellular communication compared to devel-

opmental origin in a 3D model of endothelial cell di�erentiation from hiPSCs. Endothelial

cells appear across di�erent organs where, on the one hand, their common function is

to create a barrier between a liquid, such as blood, and the surrounding tissue. On the

other hand, each vessel has speci�c requirements for each environment and liquid. We

lacked an understanding of how endothelial cells acquire their organ-speci�c function. We

investigated the hypothesis that developmental origin plays a role in the speci�cation. For

this purpose, endothelial cells were di�erentiated from paraxial or cardiac mesoderm. We

showed that upon integration into a 3D microtissue, including cardiomyocytes and �brob-

lasts, the transcriptomic signature of the developmental origin is partially removed. This

�nding suggests that environmental cues might be more critical in function speci�cation

than developmental origin.

In Chapter 5 we characterize the e�ect of cellular communication between embryonic and

extra-embryonic cell types in an enhanced gastruloid system. In particular, we combined

in vitro mouse embryonic stem cells (mESCs), used in regular gastruloid protocols, with

extraembryonic-endoderm (XEN) cells. With this addition, we observed the formation

of a neural epithelium absent in gastruloids derived only from mESCs. We characterized

the neural epithelia with scRNA-seq, imaging, and di�erentiation protocols and observed

similarities with the formation of a neural tube with dorsal characteristics. The XEN

cells in�uence morphogenic changes in mESCs, and we also showed that mESCs induce

di�erentiation in the XEN cells. We analyzed candidates of signaling pathways between

these cell types and found that local inhibition of WNT signaling is one of the processes.

In Chapter 6 we explore the use of physics-informed neural networks (PINNs) for the

inference of gene regulatory networks (GRNs). GRNs regulate, among many other things,

the robust di�erentiation of a progenitor into speci�ed cell types. Existing methods to infer

GRNs mostly use correlation or other similarity-based metrics which limits the predictive

power of the resulting model. In order to incorporate prior biological knowledge and

thereby make the inference of mechanistic relationships feasible, we chose to use PINNs.

We analyze two relevant experimental scenarios in detail: In the �rst scenario single-cell

trajectories are available and cells communicate with each other. In the other scenario,

cells do not communicate and the provided data is only a snapshot, which corresponds to

a destructive single-cell RNA-sequencing measurement. In both cases, a PINN is used to

infer the strengths of gene interactions. We show the bene�ts of using PINNs compared to

regular feedforward NNs in this context and determine the performance level of PINNs for

di�erent experimental designs. This analysis will serve as the starting point for exploring

the great potential of PINNs for GRN inference.
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