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CHAPTER 5

Time-varying spectral characteristics
of stop releases

5.1 Introduction
The aspirated alveolar stop /t/ in Standard Danish is usually strongly
affricated. This was already pointed out by Otto Jespersen (1897–1899:
355). He maintained that /t/ was best described as an aspirated stop,
but assumed that Danish was undergoing a sound change whereby all
aspirated stops would eventually become affricates, as had happened
in some varieties of German a millennium earlier with the Second
Consonant Shift. Jespersen assumed that /t/ was most advanced in this
sound change, followed by /k/, and finally /p/. Today, more than a
century after Jespersen’s observations, the affrication of /t/ is taken
for granted in the literature; it has been established several times over,
and has been shown to be exceptionless (see Section 2.3.4). While it is
cross-linguistically common for the initial burst noise of stops to have
a similar frequency range to fricatives at the same place of articulation,

A revised paper corresponding to this chapter has been published (Puggaard-Rode
2022b). Audio data are available online in password-protected form (Grønnum 2016);
replication data and code are freely available (Puggaard-Rode 2022a).
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this usually makes up a comparatively small portion of stop releases
in other languages. Brink and Lund (1975) tracked the development of
/t/-affrication across more than a century of recordings of Copenhagen
Danish, and showed that it went from a widespread phenomenon in
the mid-19th century to an exceptionless phenomenon in the mid-20th
century.

As discussed in Section 2.3.4, the prominent affrication in /t/ has
led to a variety of different phonetic transcription strategies. In very
narrow transcription, it is often assumed that /t/ in simple onset is
best represented as /d/ with some ‘garnish’: [d̥ˢ] (e.g. Basbøll 1968,
2005; Grønnum 1998), [d̥ˢʰ] (e.g. Petersen 1983), and [dˢh] (Brink and
Lund 1975) are all used in the literature, under the assumption that the
only meaningful difference between /d t/ is the release. More broad
transcriptions include [tsʰ] (Basbøll and Wagner 1985), and [tˢ] (e.g.
Grønnum 1998), the latter of which has emerged as the standard. More
recently, Schachtenhaufen (2022) has proposed that the sound is a true
affricate and should be transcribed as [ts].

Fischer-Jørgensen (1972d) shows that having the right noise profile
during the release is a crucial cue to the perception of the laryngeal
contrast in stops at all places of articulation, which suggests that /t/ is
not so special after all. While there is consensus about the affrication in
/t/, possible affrication patterns in /p k/ have never been investigated.
On the one hand, since /p t k/ show class behavior in other matters
(e.g. phonotactics; see Section 2.4.2), we might also expect them to
show class behavior in phonetic implementation; on the other hand,
Chodroff and Wilson (2018) recently found only moderate signs of
class behavior in the realization of place cues in American English /p
t k/. The most straightforward explanation for the lack of interest in
affrication patterns in Danish /p k/ is that it is not particularly salient
(if it is there at all); perhaps this is simply because coronal frication
is more salient than labial and dorsal frication. This is a reasonable
assumption, which can help account for why most affricates cross-
linguistically are coronal (Ladefoged and Maddieson 1996).

One goal of this chapter is to investigate Jespersen’s prediction a
century later: are Danish aspirated stops changing into affricates?This
is not straightforward: the boundary between an aspirated stop and an
affricated one is fuzzy, as is boundary between an affricated stop and
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a proper affricate. I approach the question by looking holistically and
dynamically at time-varying spectral characteristics throughout stop
releases, and how they vary, using the DanPASS corpus (see Section
4.5.1). I focus on the following questions, which are more readily
answerable than the question of whether or not the sounds in question
are affricates:

(1) How do the spectral characteristics of Danish stop releases vary
across time?

(2) How are the time-varying characteristics of Danish stop
releases affected by different phonetic contexts? An example
could be coarticulation effects following from features of the
following vowel, like backness, height, and rounding, all of
which affect the size and shape of the vocal tract.

When analyzing the dynamics of spectral characteristics, researchers
usually resort to using a small number of discrete measurements aimed
at capturing as much of the relevant spectral information as possible.
For vowels and sonorant consonants, an example is formants; for
obstruent consonants, examples are spectralmoments or coefficients of
discrete cosine transformations of the spectrum. A second goal of this
chapter is to demonstrate function-on-scalar regression (FOSR; Reiss
et al. 2010; Greven and Scheipl 2017a; Bauer et al. 2018) as a method
for taking the entire spectrum into account when analyzing sources
of phonetic variance. Rather than relying on discrete measurements,
FOSR allows for the use of complete spectra as response variables.
FOSR gives a clear and easily interpretable overview of the influence
of various factors on time-varying spectral characteristics, and does so
withminimal reduction of the information in the acoustic signal. Other
recent studies have compared full (temporally static) spectra in order to
illuminate differences between palatalized and non-palatalized conso-
nants using smoothing spline ANOVA (Iskarous and Kavitskaya 2018)
and generalized additive models (Nance and Kirkham 2020); in Section
6.7, I use functional principal component analysis to analyze the main
sources of variance in spectra of stop releases. Functional regression
models have been used in the analysis of phonetic data previously (e.g.
Pouplier et al. 2014, 2017; Cederbaum et al. 2016; Carignan et al. 2020;
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Volkmann et al. 2021). However, to the extent of my knowledge, this
is the first study to use FOSR to analyze speech spectra.1

Section 5.2 of this chapter discusses the acoustic characteristics
of aspirated stops and affricates, and the available heuristics (or lack
thereof) for determining whether a sound is phonetically one or the
other. Section 5.3 discusses available methods for measuring frication
and some of the problems associated with these, and Section 5.4
presents FOSR and other smoothing-based approaches to dynamic data
analysis as possible solutions to these problems. Section 5.5 presents
the methods used in this study in detail, and Section 5.6 shows the
results. In Section 5.7, I discuss the hypotheses presented above on the
basis of the results, and discuss opportunities and limitations of FOSR
as used here. Section 5.8 briefly concludes the chapter.

5.2 Aspirated stops, affricates, and the
middle ground

The production of both stop consonants and affricates has been
modeled thoroughly in the work of Fant (1960) and Stevens (e.g.
1993a, 1993b, 1998: chs. 7–8). A shared component of both types of
sound is a complete occlusion somewhere in the oral cavity, which
allows intraoral air pressure to build up. Another shared component
is a release phase, in which this pressure is released, resulting in a
rapid sequence of acoustic events, including an initial brief transient
followed by frication. The transient shows a fairly even distribution
of noise throughout the spectrum. Frication noise is subsequently
generated at or near the point of occlusion; due to the high pressure
behind the constriction and the narrow gap in the oral cavity, the
escaping air becomes turbulent and excites the area around the
constriction.The nature of this noise gradually changes as the approxi-
mation gradually widens. In aspirated stops, air will continue to escape
through the open glottis for some time after the release, and turbulence
1Wood (2017a: 390ff.) proposes similar models for the analysis of other types of
spectra (infrared spectra and protein mass spectra), but in both cases, the spectra
are independent variables. In the studies reported here, spectra are the dependent
variables.
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noise generated at the area around the vocal folds continually excites
the vocal tract.

The energy distribution of the turbulent frication noise depends
on the nature of the obstruction (Shadle 1991). In labials, since
there is no cavity in front of the obstruction, the frication noise is
generated directly at the lips, causing a fairly even distribution of noise
throughout the spectrum, with a slight linear drop in amplitude at
increasing frequencies. In alveolars, the turbulent air stream impinges
on the teeth immediately in front of the constriction, meaning there
is only a very small cavity anterior to the constriction, causing high
resonance frequencies around 5 kHz to be excited. In velars, the
turbulent air stream impinges on the hard palate at an oblique angle,
before being filtered through a sizeable front cavity, causing relatively
low resonance frequencies somewhat below 2 kHz; note, however,
that the exact point of occlusion in velars is variable and depends on
surrounding vowel(s), since the tongue body is less precisely controlled
than the tip and blade (Ouni 2014), and the tongue body is itself more
directly involved in the production of vowels than the tip and blade.
A more fronted obstruction will cause the air stream to more directly
impinge on the hard palate, causing higher resonance frequencies.

During aspiration, low-frequency noise is generated as the
airstream passing through the glottis impinges on the vocal folds,
epiglottis, and surfaces directly above the glottis; this turbulence noise
further excites the natural resonances of the oral cavity, which of
course largely depend on e.g. the position of the tongue.The aspiration
noise is present throughout the release, but is initially dominated by
frication. As the obstruction above the glottis opens, aspiration noise
will gradually overtake frication noise in prominence (Hanson and
Stevens 2003).

In voiceless unaspirated stops, the frication phase is very brief, but
it is an important cue to place of articulation. There are two primary
place cues in stops: the spectral characteristics of the initial frication
phase (e.g. Stevens 1971; Stevens and Blumstein 1978; Blumstein and
Stevens 1979, 1980), and the transitions of formants as the articulators
move from occlusion to vowel (Kewley-Port 1982, 1983; Kewley-Port
et al. 1983; Stevens et al. 1999). In aspirated stops, formant transitions
are relatively weak, because movement of the articulators typically
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happens before the onset of voicing. This makes frication as a place
cue all the more important in aspirated stops. Frication is also usually
a stronger cue in aspirated stops: since the glottis is spread during at
least part of the closure, there is a greater build-up of supraglottal air
pressure, causing quicker releases and greater burst intensities than
in unaspirated stops (see e.g. Löfqvist 1975a, 1980; Jaeger 1983). Long
voicing lag can in itself lead to affrication in certain environments:
when devoiced, high front vowels can be acoustically similar to frica-
tives (Mortensen 2012). This can lead to the common sound change
whereby /k/ → /tʃ/ before /i/ (Hock 1991; Ohala 1992), as observed in
e.g. Slavic, Indo-Iranian, and Middle Chinese (Guion 1998 and refer-
ences therein), and the common phonological process where /t/ is
realized as an affricate or fricative before /i/, as observed in e.g. Finnish
and Korean (Kim 2001; Hall and Hamann 2006; Hall et al. 2006).

The timing of gestures in Danish aspirated stops is different from
comparable Germanic languages, as discussed throughout Section 2.3.
In Icelandic and Swedish, peak glottal opening is achieved relatively
early during the closure of aspirated stops (Pétursson 1976; Löfqvist
1980); in English and German as well, the glottis is typically fully
spread sometime before the stop release (Sawashima 1970; Hoole et
al. 1984). Furthermore, closures in aspirated stops are typically longer
than in unaspirated stops (Lisker 1957; Löfqvist 1976; Stathopoulos and
Weismer 1983; Braunschweiler 1997). This ensures that supraglottal
air pressure is high at the time of the release. In Danish, however,
peak glottal opening is typically just after the stop is released (Frøkjær-
Jensen et al. 1971), and closure duration is shortest in aspirated stops
(Fischer-Jørgensen 1969, 1972b). Taken together, these two facts about
Danish aspirated stops – late peak glottal opening, and relatively short
closure duration – mean that there are fewer mechanisms in place
to ensure high supraglottal air pressure at the time of release, and
accordingly, less guarantee of a prominent burst.2 This can motivate
why a constriction would be retained for relatively long in Danish

2This exposition suggests that Danish stops are outliers in Germanic, but in fact,
all languages which have been examined in detail have idiosyncrasies in their stop
articulation. If anything, it should indicate that oral and glottal gestures are largely
independently controlled, and that individual languages have a lot of freedom in
how phonetic categories are implemented.
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stop releases. Functionally, it can also explain the ‘need’ for affricated
releases in Danish: if the place cues of the burst are not otherwise so
prominent, they can be strengthened by retaining a constriction after
the release.

There are no clear heuristics to decide whether a particular speech
sound is an affricated aspirated stop or an affricate – at least not from
the acoustic signal alone. In phonology, a decision may be reached on
the basis of behavior. Affricates are often assumed to contain a feature
like [stop] as well as one usually used in the representation of frica-
tives, such as [strident] (e.g. Jakobson et al. 1951) or [continuant] (e.g.
Lombardi 1990);3 see Lin (2011) for an overview of how affricates have
been modeled in phonological theory. If an occlusive with a lot of
frication behaves like an aspirated stop to all extents and purposes,
it should probably be considered an aspirated stop at the phonological
level; there will be no need to posit a [continuant] feature. If it patterns
with fricatives, or shows other forms of exceptional behavior, those
would be grounds for considering it an affricate at the phonological
level.

On these grounds, Standard Danish /t/ should certainly be
considered an aspirated stop. The phonotactic behavior of /t/ is similar
to that of other stops (Vestergaard 1967), and /t/ shows the same
patterns of positional allophony as /p k/, with truncated release after
/s/ and in weak position (see Chapter 3), and loss of release syllable-
finally (although optional release phrase-finally; Grønnum 2005: 49).
Furthermore, when loan words with alveolar affricates are nativized
and adapted to Danish phonology, the affricate is generally reanalyzed
as /s/ rather than /t/, as in the examples in (3);4 etymologies are from
DSL (2018).

3In binary feature accounts, affricates are often represented with both [-continuant]
and [+continuant] (e.g. Sagey 1986).

4A counterexample is tzatziki, which is nativized as [tʰætˈsiki] (DSL 2018); here, the
first /ts/ is reanalyzed as /t/, and the second as ambisyllabic /t.s/.
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(3) [sɑːˀ] tsar ‘czar’ from Russain [tsarj]
[suˈkʰiːni] zucchini ‘zucchini’ from Italian [tsukˈkino]
[sɛn] zen ‘zen’ from Japanese [dzen]
[ˈsyɐe̯k] Zürich ‘Zurich’ from German [ˈtsyːʁɪç]
[suˈnɑːmi] tsunami ‘tsunami’ from Japanese [tsɨnami]

In a study of Danish speakers’ productive acquisition of Standard
Chinese coronal obstruents (Puggaard 2020c), it was further shown
that the most common error in the production of (non-aspirated) /ts/ is
realizing it with no closure phase, i.e. similar or identical to /s/. Native
speakers of Danish do not map Standard Chinese /ts/ to their native
/t/ phoneme. They do, however, tend to map Standard Chinese /tsʰ/ to
their native /t/ phoneme, further cementing that both affrication and
aspiration are crucial cues to Danish /t/.

From a phonetic perspective, Stevens (1993a) defines affricates as
sounds which have two separate constrictions formed by the primary
articulator. The anterior constriction forms a complete closure, while
the posterior one forms a close approximation. In affricates, frication
noise is generated at this posterior constriction, while in stops,
frication noise is generated directly at the point of occlusion. This
distinction is difficult to extend to acoustics or to gauge impres-
sionistically. In practice, most decisions about stop–affricate category
membership is likely based on intuition; a sound is categorized as an
affricate if frication lasts for more than a certain proportion of the
release. It is therefore not a goal of this chapter to determine whether
/p t k/ are phonetic affricates in Danish; such a decision can only be
made with targeted articulatory studies comparing Danish with other
languages with clear-cut stop–affricate distinctions. This is rather an
exploratory study aimed at better understanding the distribution of
spectral properties in Danish stop releases.

5.3 Measuring frication
It has long been established that frication at different places of artic-
ulation (whether in fricatives, stop releases, or otherwise) has distinct
spectral properties (see Kopp and Green 1946). A classic method for
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differentiating places of articulation in frication is locating peaks
and valleys in spectral energy distribution, essentially by ‘eyeballing’
spectrograms (e.g. Hughes and Halle 1956; Strevens 1960).

Forrest et al. (1988) popularized treating the spectrum as a proba-
bility mass function, and analyzing it by calculating four moments:
1) the ‘mean frequency’, also known as center of gravity (COG); 2)
standard deviation (SD), 3) skewness, and 4) kurtosis. COG reflects
the mean distribution of energy across the spectrum; SD reflects how
much the energy deviates from the mean; skewness reflects how
much the energy distribution is skewed relative to the mean, and in
which direction; kurtosis reflects the peakedness of the energy distri-
bution. Forrest et al. found that spectral moments distinguish fairly
well between places of articulation in stop bursts, and that partic-
ularly COG, skewness, and kurtosis distinguish fairly well between
places of articulation in alveolar and post-alveolar fricatives; Stoel-
Gammon et al. (1994), on the other hand, found that SD is particu-
larly stable in determining the difference between dental and alveolar
stop bursts. The results of subsequent studies have overall not been
particularly stable (see e.g. Shadle and Mair 1996), but COG remains
a very popular measure in the analysis of spectral properties of frica-
tives, often without taking into account other moments; an example
is Gordon et al. (2002). This is problematic, since spectra often corre-
spond to functions that are far from normally distributed. The mean
value from a non-normal distribution does not give a clear picture of
the shape of the distribution, and spectra with quite different shapes
may have very similar COG.

A number of other measures have been proposed for analyzing
frication, mainly for determining the precise place of articulation in
fricatives. Jongman et al. (2000) find that the different places of artic-
ulation in English fricatives are distinguished fairly well using the
average location of the spectral peak. Koenig et al. (2013) show that
the mid-frequency spectral peak, i.e. the frequency with the highest
amplitude within a 3–7 kHz band, captures the fairly subtle difference
between labialized and non-labialized alveolar fricatives in adoles-
cents.

Another proposed method is using cepstral coefficients derived
from a discrete cosine transform of the spectrum (DCT; Watson
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and Harrington 1999). DCT reduces the high dimensionality of the
spectrum to (typically) four discrete values, corresponding to the
amplitude of half-cycle cosine waves derived from the spectrum. DCT0
reflects the mean amplitude of the spectrum; DCT1 reflects the linear
slope; DCT2 reflects the curvature; and DCT3 reflects the amplitude
at higher frequencies. In a comparison of /ʃ ç/ in different varieties
of German, Jannedy and Weirich (2017) show that DCT-based classifi-
cation more closely approximates the perception of these sounds than
classification based on spectral moments, and DCT coefficients have
been shown to outperform spectral moments in classification of place
of articulation in both voiceless stops (Bunnell et al. 2004) and fricatives
(Spinu and Lilley 2016). While DCT coefficients give a fuller picture of
spectral shape than spectral moments, they are also more difficult to
interpret.

Measurements such as the ones discussed above are often taken
at static or normalized points in time, such as the midpoint (or some
pre-determined range around the midpoint) of fricatives or affricates
(for examples, see e.g. Jongman et al. 2000; Liu and Jongman 2013).
Mücke et al. (2014) refer to these points in time as ‘magic moments’.
Magic moments give us a limited picture of the acoustic nature of
sounds; affricates are inherently dynamic, and Reidy (2016a) shows
that even sibilant coronal fricatives vary dynamically throughout their
time course in language-specific ways. Spectral properties of stop
releases are usually measured only at the burst, which in aspirated
stops corresponds to a relatively small initial portion of the release
(see e.g. Chodroff and Wilson 2014).

Summing up, most approaches to quantifying frication reduce
the complex time-varying information in spectra to something more
manageable. This is very reasonable, because 1) many popular statis-
tical methods in linguistics cannot handle variables with high dimen-
sionality, and 2) it is a goal in itself to propose the simplest possible
model of how language works with the highest possible explanatory
value. With regards to 1), statistical models which can take complex
dynamic information into account are increasingly being used, as
discussed in the next section; this chapter demonstrates how FOSR
can be used to model time-varying spectral information with little
reduction of dimensionality. With regards to 2), deciding on a model
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of language which balances simplicity and explanatory value can
simply not be done without first testing very complex models. Studies
mentioned above have demonstrated how some patterns can only be
uncovered by increasing dimensionality. For example, Reidy (2016a)
shows that the language-specific nature of spectral dynamics in frica-
tives only becomes apparent when measuring spectral properties at
several timepoints, and Jannedy and Weirich (2017) show that the
spectral differences between [ʃ ç] in German are more readily apparent
when using a measure that takes more of the spectrum into account
(i.e. using DCT coefficients rather than moments).

5.4 Smoothing approaches to analyzing
dynamic data

In the past years, following Baayen’s (2008) popularization of mixed-
effects regression models in linguistics, the field has seen a rapid
increase in the use of sophisticated statistical techniques. A problem
with linear models is the analysis of dynamically varying data, in
particular data from time series. If some measure varies as a function
of time, then a linear model by necessity assumes that the variation
follows a straight line. As Sóskuthy (2017) demonstrates for formants,
this is a poor assumption: variance as a function of time is often non-
linear. A solution to this problem is using smoothed curves. Given a
number of data points associated with e.g. a time series, a smoothing
function can be used to approximate a continuous curve corresponding
to the data’s non-linear variation as a function of time (see de Boor
2001; Wood et al. 2016). Smoothing involves reducing the observa-
tions to a number of basis functions (or ‘knots’), and using a penal-
izing smoothing parameter to determine thewiggliness of the resulting
curve (see Gubian et al. 2015). Combining too many basis functions
with a low smoothing penalty will lead to overfitting, resulting in
curves that include irrelevant information; conversely, combining too
few basis functions with a high smoothing penalty will likely lead to
underfitting, resulting in curves that omit relevant information.

Generalized additive (mixed) models (GAMMs) have rapidly
become very popular in linguistics (see e.g. Wood 2017a; Wieling 2018;
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van Rij et al. 2020a; Sóskuthy 2021). These are similar to linear mixed-
effects models, but allow for the inclusion of smooth effects. They
are typically used for time series analysis, but have also been used
to analyze the dynamics of e.g. EEG registration (Baayen et al. 2018;
Voeten 2020: ch. 5), geo-linguistic variation (e.g. Wieling et al. 2011,
2014; see also Chapter 6), and speech spectra (Nance and Kirkham
2020).

Functional data analysis (FDA; Ramsay and Silverman 2005;
Ramsay et al. 2009; Gubian et al. 2015; Pouplier et al. 2017) has overall
been less influential in linguistics. FDA refers to a family of statis-
tical methods which extend existing methods to account for functional
data. In practice, this means that smoothed curves can be used as
input variables in statistical models, in addition to discrete values. An
example of this is the functional extension of principal component
analysis (FPCA), which can be used to determine the primary sources
of variance in curves. For example, Gubian et al. (2015) use FPCA to
jointly analyze how F1 and F2 pattern in the realization of diphthongs
and hiatuses in Spanish, respectively. I return to FPCA in Section 6.7,
where I use the method to determine the primary modes of variation
in noisy spectra.

Functional regression models are suitable when one or more of
the analyzed variables are of a functional nature. If an independent
variable is functional and the response variable is constant over
the functional domain, this can be modeled with scalar-on-function
regression; if the response variable is functional and all independent
variables are constant over the functional domain, this is suitably
modeled with function-on-scalar regression (Bauer et al. 2018). There
are several approaches to modeling function-on-scalar data (an
overview is given in Greven and Scheipl 2017b: 110ff.). Here, I will
focus on the implementation presented by Scheipl et al. (2015, 2016),
Greven and Scheipl (2017a) and Bauer et al. (2018). For the mathemat-
ically inclined, the model can be summarized as in (4), from Bauer et
al. (2018: 353).

(4) g(E(Yi(t)|χi, Ei(t))) = β0(t) +
R∑

r=1

fr(χri, t) + Ei(t)
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g(·) is a pre-specified link function mapping the predictor to the
functional domain. The expected value E(·) of each observation i =
1, …, n of the response variable Y as a function of t conditional on a
set of covariates χ and residual functional error E(t) corresponds to a
functional intercept β0(t), as well as R covariate effects fr(·), each of
which form a subset χr of the full covariate set and may vary over the
functional domain t, and the residual functional error E(t).

Functional regression models and GAMMs are conceptually very
similar. GAMMs are often fitted using the R package mgcv (Wood
2017a, 2021), which allows for significant flexibility in the selection of
spline bases (Wood 2017a: ch. 5), residual error distributions (Wood et
al. 2016), and smoothing parameter estimation methods (Wood 2011;
Wood et al. 2015), and handling of autocorrelated residuals (Baayen
et al. 2018), and can handle very large data sets (Wood et al. 2017).
Wood (2017a: 290ff.) gives a number of examples of how functional
regression models can be implemented in mgcv. Perhaps for this
reason, the framework for functional regression modeling I adhere to
here is sometimes referred to as (generalized) functional additivemixed
modeling (Scheipl et al. 2015, 2016). A disadvantage of GAMMs is that
they cannot take functional response variables. If I wanted to model
spectral variance with GAMMs, I would have to use an amplitude
measure as the response variable, andmodel the variation in amplitude
across the time and frequency domains. This is conceptually not very
satisfactory: the spectral shape is our variable of interest, not the
individual amplitude levels.

Functional additive regressionmodels are implemented in the pffr
function of the R package refund (Goldsmith et al. 2021).This function
uses the mgcv computation engine, and inherits the same flexibility as
GAMMs fitted with mgcv, but allows for dependent and independent
variables to be functional. The syntax is also similar to mgcv, except
there are several more term constructors for including various kinds
of variables; most of these are not discussed here. A fully reproducible
example of the model fitting and selection procedure using pffr is
given in Puggaard-Rode (2022a), where I also decompose the code.

Functional regressionmodels are usually high-dimensional and the
number of underlying data points is often very high. This can make
traditional significance tests unreliable, as these are highly affected
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by sample size (see e.g. Kühberger et al. 2015 and references therein).
Wood (2013) proposes an F-test for calculating significance of non-
linear variables in GAMMs, and the results of this test are also reported
in the output of pffr; however, researchers should exercise caution in
interpreting these results, as even tiny effects will appear highly signif-
icant if the sample size is sufficiently large. This is also the case for
likelihood ratio tests of nested models. For this reason, I do not report
p-values in this chapter. This issue is not specific to FOSR models; if
the same data was fitted to a GAMM, these concerns would still hold.

In any case, p-values and associated measures of non-linear effects
can only tell us if there is an effect, they cannot tell us much about the
nature of that effect. A more suitable way to explore non-linear effects
in exploratory studies is to visualize them. If the goal is hypothesis
testing, Bauer et al. (2018) propose several different solutions. Marra
andWood (2012) propose amethod for calculating confidence intervals
of non-linear effects; this method can be used to quantify and visualize
the uncertainty associated with non-linear fitted effects along the
functional grid. Bauer et al. (2018) propose a more precise bootstrap-
based method for calculating confidence intervals, but this precision
comes with a significant computational cost.

5.5 Methods and materials
5.5.1 Acoustic analysis
As in the study of intervocalic voicing presented in Chapter 4, this
study relies on the monologues from the DanPASS corpus (Grønnum
2009; see Section 4.5.1). The initial acoustic analysis was done in Praat
(Boersma 2001; Boersma and Weenink 2021). An automated script was
used to locate all aspirated stops (i.e. members of /p t k/) in simple
onset position in the DanPASS monologues, and combine them into a
single sound file with a subset of the original annotations. The script
is a modified version of the one used in Chapter 4 written by Dirk Jan
Vet (see Puggaard-Rode et al. 2022b). This located a total of 2,539 stops.
The release phases of the stops were segmented primarily on the basis
of the waveform, with the burst used to demarcate the beginning of
the release and the first signs of periodicity used to demarcate the end
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Figure 5.1: Example of a segmented /t/ release.

of the release (following Francis et al. 2003). If multiple bursts were
present, the final one was chosen (following Cho and Ladefoged 1999).
This process was partially automated with a Praat script searching
for sudden increases in amplitude, but the results required extensive
manual correction. An example of a segmented /t/ release is shown in
Figure 5.1. 205 tokens were excluded during this process if there was
no discernible closure phase. The distribution of stops by phoneme is
shown in Table 5.1, along with the mean duration of the release for
stressed and unstressed tokens, which is equivalent to positive voice
onset time (VOT).

In some cases, the mean VOT values differ quite dramatically from
those reported by Mortensen and Tøndering (2013) on the basis of
DanPASS (see Section 2.3.1). This is likely because Mortensen and
Tøndering follow Fischer-Jørgensen and Hutters (1981) in considering
the onset of higher formants to be the relevant landmark for measuring
VOT rather than the first signs of periodicity; this strategy leads to
higher overall values, particularly for /k/. The VOT measurements are
discussed in more detail, and compared to similar measurements from
traditional regional varieties of Danish, in Section 6.5.2.1.

A Praat script was subsequently used to extract the release duration
and information about the phonetic context for each token. The
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Table 5.1: Number of aspirated stops included in the study, along with
mean VOT values. First and third quantiles are given in paren-
theses.

Phoneme Number Mean duration
(stressed), ms

Mean duration
(unstressed), ms

/p/ 642 57 (42–70) 41 (27–50)
/t/ 850 79 (60–92) 68 (53–79)
/k/ 842 59 (43–69) 46 (36–54)

phonetic context is coded four binary variables concerning vowel
height, bacKness, and Rounding, as well as stRess. For this purpose,
as motivated in Section 4.4.1.1, [i y u ɪ ʏ ʊ e ø o] are all defined
as high vowels. [u ʊ o ʌ ɔ ɑ ɒ] are the relevant back vowels, and
[y u ʊ ø o œ ɔ ɶ ɒ] are the relevant rounded vowels.

Each release was divided into 20 equally long time steps. This
is too coarse-grained to tease apart very dynamic sequences, such
as the segue from initial transient to frication, but should be fine-
grained enough to capture gross changes in affrication and aspiration.
The recordings were filtered to include a frequency range between
500–12,000 Hz. Frequencies below 500 Hz were removed to avoid
a potential influence of intrusive voicing or low frequency ambient
noise. Frequencies above 12 kHz were removed because they rarely
play a role in speech. In fact, 12 kHz is a relatively high cut-off point
compared to other comparable studies; this is motivated a study on
sociolinguistic variation in Danish /t/ which showed that mean COG
for fronted realizations of /t/ can go above 6 kHz, suggesting that
very high frequencies may occasionally play a role in /t/ releases
(Pharao and Maegaard 2017). For each time step, the four first spectral
moments were also extracted; the spectral moments are not used in the
analysis, but are available alongside the other data used for the analysis
(Puggaard-Rode 2022a).
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Multitaper spectra for each time step were generated in R (R Core
Team 2021; RStudio Team 2022).5 Compared to spectra computed using
fast Fourier transformation (FFT), such as those computed in Praat,
multitaper spectra provide a lower variance spectral estimate which
make them suitable for spectra that are noisy and highly dynamic
(Blacklock 2004; Reidy 2015). 3 tokens of /k/ were excluded because
the total duration of their release was below 10 ms, and the algorithm
used to generate the spectra does not work for sound files shorter
than 0.5 ms. The dependent variables in the statistical models are the
multitaper spectra; each of these consists of a vector of amplitude
values along the frequency domain. The frequency ranges differ in size
depending on the duration of the time step; longer time steps result in
more fine-grained spectra, and thus smaller frequency ranges. Within
each spectrum, the amplitude measurements were standardized,6 since
plenty of non-linguistic factors can lead to deviations in overall
amplitude level. Note that the multitaper spectral analysis returns
intensity values inwatt per squaremeter (W/m2) rather than amplitude
values in the more common logarithmic decibel (dB) scale. I use the
W/m2 scale for this study, as statistical results proved similar across
scales, but visualizations are more readily interpretable when using
theW/m2 scale. Only the frequency range between 500–10,000 Hz was
used for the statistical analysis of /t/ spectra, and 500–8,000 Hz for /p
k/, since the minor activity above these limits seemed to be essentially
random noise, and interfered with the clarity of the results.

5This was done using the add-on packages tuneR (Ligges 2021) and multitaper
(Rahim 2014; Rahim and Burr 2020), with convenience functions based on code from
Reidy (2013, 2016b).

6The amplitude measurements were standardized by subtracting the mean and
dividing by two standard deviations, following Gelman and Hill (2006).



188 Stop! Hey, what’s that sound?

5.5.2 Statistical analysis
All statistics were calculated in R (R Core Team 2021; RStudio Team
2022) with a number of add-on packages.7 Separate FOSR models were
fitted for each stop with multitaper spectra as the dependent variables.
The spectra are smoothed using P-splines with the number of basis
functions for the global intercept set as the mean number of amplitude
observations per spectrum (corresponding to 32 for /t/, 19 for /k/,
and 17 for /p/). This seems to strike a good balance between signal
and noise. For the functional responses, 6 basis functions were used
for the /t/ model and 5 for the /k/ and /p/ models, guided by the
selection procedure proposed by Pya and Wood (2016). P-splines are
useful for data sampled on uneven grids (Wood 2017b). Normalized
time is included as a non-linear independent variable, smoothed with
thin plate regression splines (Wood 2003) with 16 basis functions to
ensure high granularity in the temporal dimension. Smoothing penal-
ization parameters were automatically selected using fast restricted
maximum likelihood estimation (fREML; Wood 2011). The residuals
for the models are reasonably normally distributed,8 although for the
/p/ model, they are somewhat leptokurtic (kurtosis = 5.45); however,
Gaussian models with a high number of observations should be quite
robust to violations of normality (e.g. Knief and Forstmeier 2021).

A major advantage of GAMMs is the ability to account for autocor-
related residual error (Baayen et al. 2018; Wieling 2018); for example,
measurements taken at adjacent steps in a time series are likely to
be correlated simply because they are adjacent, which adds unwanted
structure to themodel residuals.This also applies to adjacent amplitude
values in the frequency domain. One way to correct for this is by
setting a ρ-parameter, often corresponding to the autocorrelation at
‘lag-1’, i.e. the mean correlation between adjacent measurements. This
correction, called an aR(1) model, can also be included in FOSRmodels.
aR(1) models are included in all models with ρ set at 0.1 below the
7As mentioned above, refund (Goldsmith et al. 2021) was used to fit FOSR models.
mgcv (Wood 2017a, 2021), itsadug (van Rij et al. 2020b), and moments (Komsta and
Novomestky 2015) were used for health checks of the resulting models. ggplot2
(Wickham 2016;Wickham et al. 2021) was used for visualizations, with added conve-
nience functions from FoSIntro (Bauer et al. 2018; Bauer 2021).

8See the supplementary data (Puggaard-Rode 2022a) for various residual plots.
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lag-1 autocorrelation in a corresponding model with no correction.9
Autocorrelation along the functional domain in the aR(1)-corrected
models is moderate and short-range, and autocorrelation along the
temporal domain is relatively moderate and short-range even without
correction. Another method for accounting for autocorrelated errors
is the use of functional random intercepts, with smoothing parameters
set using splines based on functional principal components (Greven
and Scheipl 2017a; Bauer et al. 2018; for an introduction to the latter
concept, see Section 6.7.1). Pouplier et al. (2017) argue in favor of the
latter approach because 1) the influence of random effects can then
be more readily decomposed, and 2) the basis for the correction is
computed directly from the data, while the parameter setting used for
aR1-correction is necessarily somewhat ad hoc.The latter approach can
also be implemented in pffr, but at a significant computational cost.

The models further include by-category smooths for a number of
independent binary variables: speaker sex, following vowel height,
bacKness, and Rounding, as well as stRess. The influence of speaker
sex on the spectral profile has not been discussed much above, but
is also included here, since previous studies have shown a gender
effect on the spectral profile of fricatives (e.g. Stuart-Smith 2007). I
am interested only in how these variables affect the time-varying
characteristics of spectra, so no main effects were included for these
variables. The binary variables are contrast coded (see Schad et al.
2020 and Section 4.5.3), such that absence of the feature in question
is coded numerically as -½ and the presence as +½; the sex variable is
(randomly) coded as -½ female, +½ male. Contrast coding categorical
variables is similar to centralizing continuous variables, and ensures
that the global intercept corresponds to a weighted global mean, which
makes the final results much easier to interpret. For each of these

9The reason for setting ρ lower than the autocorrelation at lag-1 is that all models
show some degree of negative autocorrelation at higher lags, which is exacerbated
when ρ is increased; see more details in Puggaard-Rode (2022a).
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effects, by-speaker random slopes are also included (except for sex,
which logically cannot vary by-speaker).10

As discussed in Section 5.4, I do not report p-values for the
FOSR models, as they likely reflect the number of observations
rather than practical significance. Instead, I explore the model fits
through two types of plots: 1) Spectrum intercepts, which visualize
the functional intercepts of the models, corresponding to an average
release spectrum when all other variables are kept at zero. These
are not very telling in themselves, but are important for interpreting
other effects. The spectrum intercepts are plotted with 95% confidence
intervals, computed in the manner proposed by Marra and Wood
(2012). 2) Spectro-temporal fits, which visualize the spectrum across
time. The interpretation of these is similar to spectrograms; they are
‘flipped’ spectra, with normalized time along the x-axes, frequency
along the y-axes, and greyscale shading indicating differences in fitted
amplitude along the time–frequency domains. These visualizations
reflect the effect size of different variables. The plots of the main effect
of time are computed by combining the functional intercept with the
fitted effect of time; the plots of other variables are computed by
combining the functional intercept, the fitted (main) effect of time,
and the fitted time-varying effect of the variable in question. This
means that if the model finds no noticeable effect of time, there will
be no noticeable change along the horizontal dimension; if there is
no noticeable effect of a particular variable, the plot associated with
this variable will be similar or identical to the plotted main effect of
time. Since these plots are two-dimensional, visualizing 95% confidence
intervals would require separate plots for the upper and lower limits; in
order to keep the number of visualizationsmanageable, I do not include
these here, but they can be found online in Puggaard-Rode (2022a).
These plots demonstrate the uncertainty associated with each fitted
effect. I will refer to these plots only when they show that a variable is
associated with a great deal of uncertainty.

10Using factor smooths instead of random slopes would have given a more thorough
estimation of the by-speaker variation in the data (Baayen et al. 2018; Wieling 2018;
Sóskuthy 2021), but unfortunately these cannot currently be fitted with data along
uneven grids.
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Another way to get an indication of the fitting–complexity trade-
off of including an individual variable is by comparing the minimized
smoothing parameter selection scores (fREML scores) of a nested
model without that variable (van Rij 2016; van Rij et al. 2020a). fREML
scores are conceptually similar to information criteria like the Akaike
Information Criterion (AIC): a lower fREML score indicates a better
model fit.11 For each variable in each model, I report the increase
in fREML score of a nested model 1) without that variable and its
associated random slope, and 2) without its associated random slope
only. If a variable is associated with a large fREML decrease, this means
that including the variable results in a much better model fit, i.e. the
variable is very influential.This gives an indication of the relative effect
size of each variable, and (in the case of random effects) how much of
this can be accounted for with by-speaker variation. Note, however,
that it is only meaningful to compare fREML scores within the same
model, and not across models; fREML scores can be taken as a proxy
for relative effect size, not for statistical significance.

5.6 Results
The results of the three different models will be presented in separate
sections below, starting with the model for /t/.

5.6.1 /t/
The model of /t/ releases has a high effect size of R2 = 0.54. The
functional intercept (see Figure 5.2) shows an energy peak around 3.5–
5 kHz, with comparatively little energy elsewhere, particularly above
8 kHz. Recall that the intercept summarizes the grand weighted mean
over a dynamic series of events, so it is not in itself very meaningful.
In the spectro-temporal fits, any changes on the horizontal dimension
are a result of spectral characteristics changing as a function of time.

The /t/ model shows a strong main effect of time in the expected
direction, as shown in Figure 5.3. Initially, energy is skewed towards
the higher end of the spectrum, with fairly strong energy around the
11AIC does not provide a reliable test for smooth variables (van Rij 2016).
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Figure 5.2: Functional intercept for the model of /t/ releases.

Figure 5.3: Fitted time-varying spectrum of /t/ (main effect of time).

intercept but also reasonably equal distribution of energy in the 5.5–8
kHz range. Increased energy above the main peak gradually tapers off,
and in the final three-fourths of releases, energy is broadly distributed
below 5 kHz, including at the lowest frequencies visualized (500 Hz).

Spectro-temporal fits for each direction of the individual variables
are shown in Figure 5.4. Table 5.2 shows the reduction in fREML
score associated with each variable. Figure 5.4 reflects a residual issue
with this modeling technique. In contexts where we expect reduced
affrication and earlier onset of aspiration, as in e.g. non-high vowels
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Figure 5.4: Spectro-temporal fits of /t/ for each direction of the individual
variables.
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Table 5.2: fREML score reduction associated with each variable in the /t/
model.

Variable fREML reduction
sex 1,539
stRess 1,875
stRess (random slope only) 1,546
high vowel 2,264
high vowel (random slope only) 1,384
bacK vowel 913
bacK vowel (random slope only) 648
Round vowel 286
Round vowel (random slope only) 174

relative to high vowels, the figures show a relatively early increase in
energy at low frequencies, but also tend to show a sudden final increase
in energy at higher frequencies. There is no linguistic reason to expect
this, and it is consistent across models; I assume that this is a technical
issue that does not reflect the data or the linguistic reality.

Overall, men show relatively little energy above the peak in the
intercept spectrum, and lower frequencies (indicative of aspiration)12
begin dominating relatively early. Women show strong initial energy
in frequencies above 5 kHz, and although lower frequencies come into
play late in the release, frequencies up to 5 kHz are excited throughout
the release. The effect of sex is strong and associated with a large
reduction in fREML score.

Lower frequencies start dominating towards the end of the release
in unstressed syllables, and much earlier in stressed syllables. stRess
is an influential variable, although much of its influence is due to the
by-speaker random slope. Lower frequencies also dominate relatively
late before high vowels, and frequencies above 6 kHz are also more
excited at the beginning of the release in this context. This is a very

12Asmentioned in Section 5.2, during aspiration, low-frequency noise is generated at
or near the glottis, and the turbulent airstream excites the resonant frequencies of
the oral cavity. The dominance relationship between these sources may differ, but
in both cases, the primary frequencies being excited are well below those excited
during alveolar frication.



Time-varying spectral characteristics of stop releases 195

Figure 5.5: Functional intercept for the model of /k/ releases.

strong effect, which is relatively stable across speakers (i.e. the random
slope contributes fairly little.) Lower frequencies dominate relatively
early before back vowels and round vowels. In both of these contexts,
there is also a coarticulatory effect at the start of the release: relatively
high frequencies are excited before round and non-back vowels. These
variables are less influential, with the fitting–complexity trade-off
being relatively poor for the Round vowel variable in particular.

It is interesting that none of these variables are particularly influ-
ential around the middle portion of the release; they may affect
whether particularly high frequencies are excited around the start of
the release, and whether/when lower frequencies begin to dominate
near the end of the release, but high energy in frequencies around
3.5–5 kHz in the middle of the release is a consistent feature across
all variables.

5.6.2 /k/
The model of /k/ releases has a high effect size of R2 = 0.57. Recall that
the frequency range for themodels of /k/ and /p/ does not extend above
8 kHz. The functional intercept (see Figure 5.5) shows almost evenly
distributed energy below 4 kHz, with small peaks around 500 Hz and
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Figure 5.6: Fitted time-varying spectrum of /k/ (main effect of time).

Table 5.3: fREML score reduction associated with each variable in the /k/
model.

Variable fREML reduction
sex 1,708
stRess 577
stRess (random slope only) 507
high vowel 6,082
high vowel (random slope only) 4,785
bacK vowel 17,829
bacK vowel (random slope only) 13,502
Round vowel 3,620
Round vowel (random slope only) 3,231

just below 4 kHz, and linearly decreasing energy between approx. 4–7
kHz.

There is no strong main effect of time; there is little variance in
the time domain in Figure 5.6, and the variance that we do see is
associated with significant uncertainty (as evidenced by the 95% confi-
dence intervals shown in Puggaard-Rode 2022a). Spectro-temporal fits
for each direction of the individual variables are shown in Figure 5.7.
Table 5.3 shows the reduction in fREML score associated with each
variable.
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Figure 5.7: Spectro-temporal fits of /k/ for each direction of the
individual variables.
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There is a noticeable sex difference, although the associated
reduction in fREML is modest. There is little energy at lower
frequencies during the first half of the release for female speakers,
and more activity at frequencies above 4 kHz. Lower frequencies
becomes dominant in the last quarter of the release for female speakers,
whereas for male speakers, they are seemingly dominant throughout
the release.

As expected, phonetic context effects have a clear influence on the
/k/ spectral trajectory, particularly those effects that reflect properties
of the following vowel. Stressed syllables have somewhat more energy
at the lower band around 500–1,000 Hz, while unstressed syllables
have more energy at the higher band around 3.5–4 kHz, although
lower frequencies gradually become dominant in the latter half of the
release. The size of this effect is modest, and mostly comes down to
by-speaker variation; it is also associated with significant uncertainty,
as evidenced by 95% confidence intervals (see Puggaard-Rode 2022a).

Before high vowels, there is a lot of high frequency energy between
3–5 kHz during the first half of the release, with more diffuse distri-
bution of energy before the onset of low-frequency noise towards the
end of the release; low frequency energy overall dominates releases
before non-high vowels. This variable is associated with a large fREML
reduction. Non-back vowels and non-round vowels show roughly the
same patterns as high vowels, although with slightly varying temporal
alignment. The bacK vowel variable in particular is associated with
a very large fREML reduction. High frequency noise lasts somewhat
longer for non-round vowels than non-back vowels. The fREML
reduction associated with the Round vowel variable is also relatively
large, although largely a result of by-speaker variation.

5.6.3 /p/
The model of /p/ releases has a very high effect size of R2 = 0.71.
The functional intercept (see Figure 5.8) shows most energy in the
lowest frequencies around 500 Hz, with energy gradually reducing
at higher frequencies. Assuming that the more diffuse distribution of
noise towards the end of the release is not linguistically relevant, there
is only a very marginal main effect of time (see Figure 5.9).
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Figure 5.8: Functional intercept for the model of /p/ releases.

Figure 5.9: Fitted time-varying spectrum of /p/ (main effect of time).

There are clearer by-variable time-varying characteristics of /p/, as
shown in Figure 5.10. Table 5.4 shows the reduction in fREML score
associated with each variable. Compared to the other models, random
slopes account for a large proportion of the variance in /p/ releases.
There are modest signs of higher frequencies being excited more in the
first half of releases produced bywomen, but not bymen.The sex effect
is, however, quite weak, and associatedwith a great deal of uncertainty,
as evidenced by 95% confidence intervals (Puggaard-Rode 2022a).
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Figure 5.10: Spectro-temporal fits of /p/ for each direction of the
individual variables.
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Table 5.4: fREML score reduction associated with each variable in the /p/
model.

Variable fREML reduction
sex 189
stRess 1,531
stRess (random slope only) 1,248
high vowel 1,123
high vowel (random slope only) 1,035
bacK vowel 911
bacK vowel (random slope only) 804
Round vowel 494
Round vowel (random slope only) 460

During the first portion of the release, unstressed tokens have a
broader distribution of energy throughout the spectrum, and more
energy at higher frequencies (above approx. 5 kHz). The stRess
variable is quite strong, and relative to other variables, quite robust
across speakers. A similar pattern is found before high vowels, with
lower frequencies dominating relatively late in the release. To a lesser
extent, the same pattern is found before non-back vowels. Both of
these effects are associated with large fREML reductions, but largely
due to by-speaker variation. There is no obvious influence of round
vowels, and this variable is associated with significant uncertainty, as
evidenced by 95% confidence intervals. The modest fREML reduction
associated with the Round vowel variable is almost exclusively due
to by-speaker variation.

5.7 Discussion
5.7.1 Contextual variation in stop releases
In Section 5.6 above, I described the patterns of energy distribution that
are visible in the spectro-temporal fits in prose. In this section, I aim
to provide a link between those representations and the articulatory
mechanisms that presumably underlie them. This discussion is neces-
sarily somewhat speculative, but relies on established knowledge about
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the articulation–acoustics link, and about the articulation of Danish
specifically.

While all stops show diffuse patterns of energy distribution
towards the end of the release, only /t/ clearly shows a strong main
effect of time, with a gradual downward trend in energy distribution
over time. During the first half of the release, high frequencies are
excited, often above and beyond what is necessarily expected for an
alveolar constriction. During the second half of the release, lower
frequency energy consistent with a glottal noise source gradually
becomes dominant. As mentioned in Section 5.2 above, there is reason
to assume that oral air pressure is not particularly high at the time
of release in Danish aspirated stops, which provides both an aerody-
namic reason and a functional–phonological motivation for why
the constriction is maintained somewhat longer than in comparable
‘aspiration languages’: there is no high air pressure to ensure that
the constriction is quickly released, and to ensure a salient burst.
Nevertheless, contrary to the general conception in literature, alveolar
constriction usually does not dominate the entire release.

The relative timing of the shift in dominance from an alveolar noise
source to a glottal one is largely determined by contextual factors, in
particular stress and vowel height. Speaker sex also plays a role. Stop
releases in stressed syllables show a larger proportion of aspiration.
In other words, phonetic reduction mainly targets the aspiration in /t/
releases, not the frication. Features of the following vowel affect the
relative timing of the dominance shift much more than they affect the
distribution of energy during the first half of the release, although high
and round vowels do show coarticulatory effects lasting throughout
the release. The linguistic upshot is that lengthy alveolar frication is
an invariant feature of /t/ releases in Modern Standard Danish, but
the proportion of alveolar frication varies; some degree of aspiration
is almost always observed.

Stevens’ (1998) model of velar stop releases suggested that the velar
frication excites low resonance frequencies mostly below 2 kHz. The
results here, however, show two primary patterns of energy distri-
bution:much higher resonance frequencies around 4 kHz, or resonance
frequencies centered around the lower end of the spectrum. I presume
that the former represents a velar noise source – likely fronted,
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since a fronted velar constriction leads to a shorter distance between
the constriction and the hard palate, which the turbulent air stream
partially impinges on – and that the latter corresponds primarily to a
glottal noise source. However, it may be difficult to tease apart a noise
source in the back portion of the velum and a glottal noise source.
The dominant noise source is mostly contextually determined. The
main effect of time is marginal, although low-frequency aspiration is
overall dominant during the final portion of the release. Before high
vowels and non-back vowels in particular, noise at higher frequencies
is dominant during the first part of the release. If the following vowel
is high, the tongue dorsum logically remains fairly close to the velum
throughout the release, causing a dominant dorsal noise source, the
characteristics of which vary on the basis of other vowel features. The
point of occlusion varies by backness of the following vowel, such
that the outgoing air impinges more directly on the hard palate before
front vowels, causing more salient noise at higher frequencies. The
energy from the palatal noise source is dampened by lip rounding,
which increases the size of the oral cavity. The linguistic upshot is
that coarticulation has a major influence on spectral characteristics
throughout /k/ releases; this is in line with the general observation
that the point of occlusion in /k/ is prone to coarticulatory variation
(e.g. Ouni 2014).

/p/ releases also vary in whether there is a primary glottal noise
source (a strong energy peak at lower frequencies), or whether there
is a primary labial noise source (no strong energy peak at lower
frequencies). There is no strong main effect of time. In unstressed
syllables, before high vowels, and to some extent before non-back
vowels, energy is more broadly distributed throughout the spectrum,
indicating a dominant labial noise source. /p/ releases vary relatively
little compared to /t k/, and much of the variance found in the data is
the result of by-speaker variation.

These results confirm the observation that /t/-affrication inModern
Standard Danish is invariant. Generally, however, /t/ affrication does
not last throughout the release; aspiration is also an important
component of /t/ releases, especially in stressed position.There is also a
frication component in /p k/ releases, but undermany conditions, these
releases are dominated by a glottal noise source. During a /t/ release,
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the outgoing air impinges on a hard surface – the teeth – immediately
downstream of the preceding occlusion. This is not the case for either
/p/ or /k/; the lips constitute a soft surface, and the hard palate is further
removed from the velar occlusion. As such, it is well-understood why
an alveolar noise source dominates a glottal one more readily than
corresponding bilabial or velar noise sources.

5.7.2 Function-on-scalar regression and the spectrum
This chapter has introduced the use of FOSR in the analysis of speech
spectra and their variance as a function of time. This method shows
a lot of promise. It allows us to get around the problem of choosing
one or a few discrete measures to represent the spectrum, all of
which come with their own set of methodological problems. In a
sense, analyzing these models is similar to the classical technique of
‘eyeballing’ spectrograms, but in a way that allows the user to more
efficiently and reliably find systematic patterns of variation in the data,
to tease apart various influences on the results, and to filter out by-
speaker variation. Some lingering issues remainwith themethod; some
specific to this study, and some inherent to the field. I will briefly
address a few of these.

As with any kind of quantitative phonetic study, there are signif-
icant researcher degrees of freedom involved in FOSR modeling
of spectra (see Roettger 2019). Token selection, spectral estimation,
smoothing procedure, low-level software implementation, as well as
several other factors all have a potentially non-trivial influence on the
results. There is no easy remedy to this, but transparent reporting and
motivation of all these choices goes a long way. I have aimed to do that
here, and the actual code used to implement the analysis is available
in annotated form (Puggaard-Rode 2022a).

FOSRmodeling of spectra quickly leads to highlymultidimensional
data, especially if the temporal dimension is also taken into account,
and this makes the use of traditional methods for significance testing
problematic. I do not consider this to be an issue in the current study.
For one, the study is largely exploratory, and the research questions are
not necessarily suitable for null hypothesis significance testing. With
that said, there are methods for testing the stability of the results. This
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includes the 95% confidence intervals proposed by Marra and Wood
(2012), which I have occasionally referred to here, and include in the
online appendix to this chapter (Puggaard-Rode 2022a); this method
is implemented for FOSR visualization in the FoSIntro package in
R (Bauer 2021). Additionally, there are functional implementations
of discriminant analysis and regression trees which may be used to
explore the generalizability of results, and fully Bayesian implemen-
tation of the analysis would make it possible to readily quantify the
uncertainty related to the results (see e.g. Vasishth et al. 2018b). This
will hopefully be explored in future research, but is beyond the scope of
the current study. The prospects of hypothesis testing in FOSR models
is explored in a recent dissertation by Biswas (2022).

The implementation of FOSR in this study shares a problem with
analyses based on e.g. spectral moments, mid-frequency peaks, and
DCT: the Hz-based frequency scale and the W/m2-based amplitude
scale are ‘physicalist’ in nature, in that they represent the behavior
of vibrations in the air, and not how these vibrations are perceived
by the human ear (Plummer and Reidy 2018). I use the Hz scale here
because it results in a model output which is more immediately inter-
pretable for readers with experience with analyzing spectrograms; I
use the W/m2 scale because it results in more clearly interpretable
patterns in the fitted models. It is, however, worth exploring in future
studies how the results would be affected by combining perceptually
motivated scales, such as the equivalent rectangular bandwidth (ERB)
scale and the decibel scale.13

The most serious lingering issue is the diffuse patterns sometimes
seen in the final time steps of the spectro-temporal visualizations.
These cannot be considered linguistically meaningful; there is no
linguistic reason why high frequencies above 4 kHz would suddenly
be excited immediately before the onset of voicing in a stop–vowel
sequence. I can see three possible explanations for this: 1) the spectral

13Alternatively, the positions of knots used for smoothing could be placed according
to a (semi-)logarithmic scale, e.g. giving the model higher granularity in frequency
regions where humans have greater perceptual acuity. This could potentially
achieve a similar effect while keeping the ‘physicalist’ scales. In this study, the
knots are equidistantly spaced, but mgcv and consequently pffr allow the user to
specify knot locations freely.
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characteristics of aspiration are highly variable, making it impossible
for the model to make precise predictions, 2) the pseudo-centralization
of categorical variables sometimes causes the model to infer patterns
that are not meaningful for one value of variables, or 3) it is caused
by phase variation. Regarding 2), consider /k/ before high and non-
high vowels: the model finds a strong increase in low frequency energy
in the final time steps before high vowels, which is linguistically
meaningful, as the glottal noise source becomes dominant immedi-
ately before the onset of voicing. The model finds a corresponding
increase in high frequencies and decrease in low frequencies in the
final time steps before non-high vowels, which is not linguistically
meaningful, but is the direct opposite of the meaningful finding before
high vowels. A possible solution would be to fit the model without
contrast-coded categorical variables, but this would make it impos-
sible to interpret models’ intercepts and main effects of time, which
I believe would seriously harm the interpretability of the findings.
Regarding 3), phase variation is a practical problem in functional data
analysis, where lateral displacement in input curves can cause results
to be blurred and distorted. Managing phase variation in the analysis of
functional data is an area of active research (Marron et al. 2015; Bauer
et al. 2021)

5.8 Conclusion
The study presented in this chapter is, to the extent of my knowledge,
the first to use function-on-scalar regression to analyze sound spectra.
This method forgoes the need to boil down the complex, multi-
dimensional information in the spectrum to a few discrete values, and
it forgoes the need to rely on ‘magic moments’ in time. By plotting
the fit of a FOSR model, we can explore the systematic influences of
different variables on the spectrum with visualizations that should be
intuitively familiar to anyone used to working with spectrograms. I
showed how this tool can be fruitfully applied in the analysis of Danish
stop releases, how their spectral characteristics vary vary over time,
and how they are affected by their phonetic environments.
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The analysis finds that /t/, as expected from the literature, is
invariably affricated, but also that the spectrum is very dynamic
throughout /t/ releases, with dominant affrication gradually being
replaced by dominant aspiration. Affrication dominates the majority of
the spectrum, and much of the aspiration is lost in unstressed syllables.
Coarticulatory context effects may affect the entirety of /t/ releases,
and not just the final portion. Coarticulatory context effects greatly
influence the spectra of /k/ releases, particularly in the first portion of
the release. The acoustic characteristics of /p/ releases show a lot of
by-speaker variation, but also coarticulatory context effects, mainly in
the first half of the release.




