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EDITORIAL COMMENT
Individualized Patient Risk Stratification
Using Machine Learning and
Topological Data Analysis*

Arnold C.T. Ng, MBBS, PHD,a,b Victoria Delgado, MD, PHD,c Jeroen J. Bax, MD, PHDc
O riginally associated with the 18th-century
mathematician Leonhard Euler, topology
is a discipline in mathematics that studies

shapes. One of the key ideas in topology is that the
properties of shapes are invariant (i.e., unchanging)
when deformed (e.g., a circle, an ellipse, and a
hexagon are all topologically identical in that they
are all “loops,” and any of these shapes can be ob-
tained by deforming and stretching it). In topologi-
cal data analysis (TDA), data points from large
datasets are summarized into nodes, and the rela-
tionships between these nodes are connected by a
line (also called an “edge”), thereby forming a large
network of nodes connected by edges. This network
has a particular “shape,” and typical networks
shapes are either “loops” (continuous circular seg-
ments) or “flares” (long linear segments) (1). Groups
within these network shapes can be arbitrarily parti-
tioned into segments with similar properties to
identify patterns within the data, and they can be
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compared with other groups within the network us-
ing standard statistical techniques. Because these
network shapes are invariant under deformations,
one of the strengths of TDA is that it is less sensitive
to noise and can detect patterns that can be missed
by other analysis techniques such as principal-
component analysis, multidimensional scaling, and
cluster analysis (1).

TDA can be combined with machine learning,
which involves computer algorithms that adjust and
learn from input data. These algorithms can auto-
matically divide a large dataset into clusters of
smaller datasets such that those within the same
cluster group are more similar to one another than to
those in other clusters (e.g., echocardiograms from
normal subjects vs. those of patients with heart
failure) (2). In unsupervised machine learning, no a
priori knowledge of the expected outcome is incor-
porated, and the computer algorithm uses only the
content of the input data to discover any possible
underlying structure. Such combined machine
learning and TDA techniques can be used to identify
novel classifications systems or offer further insights
into the natural history of diseases. In the first ever
application of TDA in cardiovascular research,
Casaclang-Verzosa et al. (3) described the natural
history of aortic stenosis, which has 2 distinct mod-
erate stenosis phenotypic expressions as it progresses
from mild to severe stenosis (i.e., moderate aortic
stenosis with normal vs. reduced ejection fraction).

In this issue of iJACC, the same group (4) report
on an evaluation of a large number of patients with a
wide range of cardiac diseases at different stages of
severity. Using unsupervised machine learning with
TDA, 4 subgroups of patients were automatically
identified with distinct differences in major adverse
cardiac event (MACE) outcomes on the basis of
standard echocardiographic parameters such as left
ventricular ejection fraction, mass, and so on.
https://doi.org/10.1016/j.jcmg.2020.02.003
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Identifying patients within each individual subgroup
provided incremental risk stratification compared
with traditional risk scoring such as New York Heart
Association functional class.

The investigators should be commended as pio-
neers, bringing machine learning and state-of-the-art
TDA into clinical cardiovascular research and devel-
oping novel risk stratification tools in the growing
field of big data, electronic medical records, and
artificial intelligence. The strengths of the present
study are the large number of patients from different
retrospective and prospective datasets, validation of
their topological network shape using the prospective
cohort, and including a longitudinal cohort to predict
individual patient risk as they move from 1 subgroup
to another as their disease severity changes over
time. “Traditional” risk stratification presents a haz-
ard ratio or an odds ratio for an “average” patient. In
contrast, one of the most important clinical implica-
tions of this study is the ability of machine learning
and TDA to automatically present individual patient
risk profiles on the basis of similarities with other
patients within the topological network.

However, several important questions remain
unanswered. First, there are nodes that do not fit into
the network, as demonstrated in the Central Illus-
tration, and no information is provided on the
characteristics of these patients. Therefore, not all
patients’ data can be automatically compressed into a
node to fit the topological network.

Second, the data used to form the network are
simple and crude echocardiographic measures. The
data do not include newer imaging techniques such
as strain imaging, identification of subclinical coro-
nary atherosclerosis on cardiac computed tomogra-
phy, and scarring or interstitial fibrosis on cardiac
magnetic resonance. Many of these techniques are
already routinely used in clinical practice. Moreover,
the network had limited information on patient
diagnosis and therapeutic interventions such as
device therapies, revascularizations, and so on. These
variables will clearly have an impact on MACE
outcomes for individual patients.

Finally, the investigators suggest that heart failure
should be viewed as a continuum instead of arbitrary
divisions into reduced, midrange, or preserved left
ventricular ejection fraction. However, a long line of
research had demonstrated the futility of therapies
such as beta-blockers, angiotensin-converting
enzyme inhibitors, and so on, for patients with heart
failure with preserved ejection fraction. This strongly
suggests a different pathophysiology compared with
those with reduced left ventricular ejection fraction.
As such, one should not confuse the association
between subgroups of patients (with a particular
pattern of echocardiographic parameters) and the
corresponding MACE rates with direct causality.

In summary, Tokodi et al. (4) used a “new” math-
ematical modeling technique (i.e., TDA) with unsu-
pervised machine learning to map the “shape” of a
large echocardiographic dataset. The shape of the
network can identify patterns in our echocardio-
graphic measurements (e.g., left ventricular ejection
fraction, mass, filling pressures) associated with
different MACE rates. This study represents an initial
stepping-stone in developing more complex and
comprehensive cardiac risk stratification models
using unsupervised machine learning fed with large
datasets. Using novel mathematical modeling tech-
niques such as TDA, clinicians may be able to provide
individualized risk stratification for patients at
different stages of their disease.
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