Coronary atherosclerosis scoring with semiquantitative CCTA risk scores for prediction of major adverse cardiac events: propensity score-based analysis of diabetic and non-diabetic patients
Hoogen, I. J. van den; Rosendael, A. R. van; Lin, F. Y.; Lu, Y.; Dimitriu-Leen, A. C.; Smit, J. M.; ...; Bax, J. J.
Coronary atherosclerosis scoring with semiquantitative CCTA risk scores for prediction of major adverse cardiac events: Propensity score-based analysis of diabetic and non-diabetic patients

Aims: We aimed to compare semiquantitative coronary computed tomography angiography (CCTA) risk scores – which score presence, extent, composition, stenosis and/or location of coronary artery disease (CAD) – and their

Keywords: Computed tomography (CT) Atherosclerosis

ARTICLE INFO

ABSTRACT

Aims: We aimed to compare semiquantitative coronary computed tomography angiography (CCTA) risk scores which score presence, extent, composition, stenosis and/or location of coronary artery disease (CAD) – and their
Diabetes mellitus
Risk stratification
Prognostic application

1. Introduction

Diabetes mellitus (DM) is a well-established risk factor for coronary artery disease (CAD) as described by global guidelines. Patients with DM exhibit higher burden of coronary plaque and have higher adverse event-rates as compared to patients without DM. Risk scores derived from general chest-pain populations are often challenging to use in DM patients, because of many confounders that are associated with CAD. For example, the universal percentiles of coronary artery calcium from the Multi-Ethnic Study of Atherosclerosis (MESA) do not directly apply to diabetic patients. Coronary computed tomography angiography (CCTA) allows for non-invasive detailed characterization of CAD, and this modality has proven its superiority to functional stress testing as an initial diagnostic test in DM patients. Coronary plaque characteristics by CCTA (e.g. presence, extent, composition, stenosis and location) can be used for further optimization of risk stratification. Recently, it has been demonstrated that the Leiden CCTA risk score, which grades all the aforementioned features of coronary atherosclerosis, improves prediction and reclassification of adverse events as compared to the stenosis severity component of the coronary artery disease-reporting and data system (CAD-RADS). However, it remains uncertain if comprehensive atherosclerotic scores derived from general chest-pain populations apply well to a specific cohort of DM patients. The aim of the current study is to compare a subset of semiquantitative CCTA risk scores and their prognostic value between patients with and without DM alone.

2. Methods

2.1. Study design and population

Out of a combined cohort from the Leiden University Medical Center and the CONFIRM registry with 5-year follow-up data, we performed a secondary analysis in diabetic patients with suspected CAD who were clinically referred for CCTA. A total of 732 DM patients was 1:1 propensity-matched with 732 non-DM patients by age, sex and cardiovascular risk factors. A subset of 7 semiquantitative CCTA risk scores was compared between groups: (1) any stenosis ≥ 50%, (2) any stenosis ≥ 70%, (3) stenosis-severity component of the coronary artery disease-reporting and data system (CAD-RADS), (4) segment involvement score (SIS), (5) segment stenosis score (SSS), (6) CT-adapted Leaman score (CT-LeSc), and (7) Leiden CCTA risk score. Cox-regression analysis was performed to assess the association between the scores and the primary endpoint of all-cause death and non-fatal myocardial infarction. Also, area under the receiver-operating characteristics curves were compared to evaluate discriminatory ability.

Results: A total of 1,464 DM and non-DM patients (mean age 58 ± 12 years, 40% women) underwent CCTA and 155 (11%) events were documented after median follow-up of 5.1 years. In DM patients, the 7 semiquantitative CCTA risk scores were significantly more prevalent or higher as compared to non-DM patients (p = 0.022). All scores were independently associated with the primary endpoint in both patients with and without DM (p ≤ 0.020), with non-significant interaction between the scores and diabetes (interaction p ≥ 0.109). Discriminatory ability of the Leiden CCTA risk score in DM patients was significantly better than any stenosis ≥50% and ≥70% (p = 0.003 and p = 0.007, respectively), but comparable to the CAD-RADS, SIS, SSS and CT-LeSc that also focus on the extent of CAD (p ≥ 0.265).

Conclusion: Coronary atherosclerosis scoring with semiquantitative CCTA risk scores incorporating the total extent of CAD discriminate major adverse cardiac events well, and might be useful for risk stratification of patients with DM beyond the binary evaluation of obstructive stenosis alone.

2.2. CCTA acquisition and image analysis

Patients were scanned with ≥64-slice CT scanners, and protocols with regard to the acquisition and post-processing of scans were previously published. At the LUMC, scans were analyzed according to a 17-segment modified American Heart Association (AHA) model of the coronary artery tree by consensus of experienced physicians. Qualitative analysis of all diseased segments was performed. Coronary plaque composition was defined as calcified for plaques with high density, non-calcified for plaques with lower density than the contrast-enhanced lumen and mixed for plaques with both characteristics. Stenosis severity was categorized as normal, <30%, 30–50%, 50–70%, 70–99% and 100%. System dominance was determined upon the origin of the posterior descending artery as part of either the right coronary artery or left circumflex artery. For the CONFIRM registry, image analysis was systematically performed according to the Society of Cardiovascular Computed Tomography (SCCT) guidelines at the time.

2.2.1. Semiquantitative CCTA risk scores

For all patients, a subset of 7 semiquantitative CCTA risk scores was calculated: (1) any stenosis ≥ 50%, (2) any stenosis ≥ 70%, (3) stenosis severity component of the CAD-RADS, (4) segment involvement score (SIS), (5) segment stenosis score (SSS), (6) CT-adapted Leaman score (CT-LeSc), and (7) Leiden CCTA risk score. Any stenosis ≥ 50% or ≥ 70% was scored in a binary fashion. The stenosis severity component of the CAD-RADS was stratified into 3 groups according to previously published methods for reasons of uniformity and sample size: no to minimal CAD (i.e. CAD-RADS 0–1), moderate CAD (i.e. CAD-RADS 2–3) and severe CAD (i.e. CAD-RADS 4–5). No high-risk plaque features were
incorporated into this classification as these were not consistently evaluated in this study population. The SIS corresponded to the total number of diseased segments, irrespective of stenosis severity (range 0–17). The SSS graded stenosis severity from 0 to 3 in each individual segment and summed this into a continuous score (range 0–48). The CT-LeSc graded composition, stenosis and location in each individual segment and merged this into a continuous score (range 0–33). The Leiden CCTA risk score graded in each individual segment in consecutive order: presence and composition (i.e. plaque weight factor, range 0–1.3), stenosis (i.e. stenosis weight factor, range 1.0–1.4) and location according to system dominance, major epicardial artery and distance from ostium (i.e. location weight factor, range 0–6) (Appendix Supplement 1, online calculator available at http://18.224.14.19/calcApp/). The 3 weight factors were multiplied to compute individual segment scores, and summation of these scores resulted in a continuous score (range 0–42). Further, this continuous score was stratified into 3 groups that were proven to discriminate adverse events best: 0–5, 6–20 and > 20. Moreover, plaque weights, stenosis weights and location weights were summed to create per-patient weight scores. Per-patient weight scores were divided by the number of segments with coronary plaque to create per-segment weight scores (only when plaque was observed).

2.3. Study endpoints

The primary endpoint was a composite of all-cause death and non-fatal myocardial infarction (MI). Non-fatal MI was defined according to standard definitions and/or current guidelines. Methodology on how mortality and follow-up data were documented was previously reported.

2.4. Statistical analysis

2.4.1. Propensity-matching

Propensity-matching of DM and non-DM patients was performed in a 1:1 ratio in order to detect the pure effect of diabetes on the CCTA risk scores. A propensity score was calculated to predict DM from the a 1:1 ratio in order to detect the pure effect of diabetes on the CCTA risk scores and the primary endpoint. To avoid overfitting of the multivariable model, backward selection with the Akaikes information criterion was used for selection of clinical variables. In DM-patients, also an area under the receiver-operating characteristics curves (AUC) between the scores were compared with the DeLong’s test to evaluate discriminatory ability. With regard to the Leiden CCTA risk score, also survival analysis with the Kaplan-Meier method was performed. Event-free survival curves were compared with the log-rank test. All statistical tests were 2-sided and a p-value of < 0.05 indicated statistical significance. All analyses were performed with R (version 3.3.2, R Development Core Team, Vienna, Austria) and SPSS software (version 25, SPSS IBM Corp., Armonk, New York).

3. Results

3.1. Study population

A total of 1,464 DM and non-DM patients (mean age 58 ± 12 years, 40% women) underwent CCTA and had a median follow-up of 5.1 years (interquartile range 2.2–6.2 years). The primary endpoint was documented in 155 (11%) patients, of which 95 (7%) and 60 (4%) in patients with and without DM, respectively. DM patients were largely comparable to non-DM patients with regard to age, sex, cardiovascular risk factors and medication, except for the prevalence of hypercholesterolemia and statin therapy (Table 1). However, on CCTA, patients with DM demonstrated more obstructive CAD than patients without DM, whilst no or non-obstructive CAD was less frequently observed (p < 0.001) (Table 2).

3.2. Semiquantitative CCTA risk scores

All binary or categorized CCTA risk scores were significantly more
prevalent in DM patients ($p \leq 0.022$) (Table 3). Also, all continuous CCTA risk scores were significantly higher in this group (for SIS 3.7 ± 3.6 vs. 2.6 ± 3.1, $p < 0.001$; for SSS 5.3 ± 5.8 vs. 3.8 ± 5.1, $p < 0.001$; for CT-LeSc 6.5 ± 6.3 vs. 5.0 ± 5.5, $p < 0.001$; and for Leiden CCTA risk score 9.2 ± 8.6 vs. 7.0 ± 7.7, $p < 0.001$). With regard to the Leiden CCTA risk score, it was observed that all per-patient weights scores were higher, whereas the per-segment location weight score was lower in patients with DM ($p < 0.001$ and $p = 0.019$, respectively) (Table 4).

3.3. Prediction of major adverse cardiac events

3.3.1. Cox-regression analysis

In univariable analysis, all semiquantitative CCTA risk scores were significantly associated with the primary endpoint in patients with and without DM ($p < 0.001$) (Table 5). In multivariable analysis, the scores remained independent predictors of events in both groups ($p \leq 0.020$). More importantly, a non-significant interaction between DM and the scores was observed ($p \geq 0.109$) (Appendix Supplement 2). For instance, this was demonstrated by a similar elevation in risk for Leiden CCTA risk scores of >20 over scores of 6–20: HR 3.90 (95% CI 1.88–8.09) ($p < 0.001$) versus HR 2.38 (95% CI 1.28–4.44) ($p = 0.006$) in DM patients, and HR 3.02 (95% CI 1.27–7.22) ($p = 0.013$) versus HR 2.18 (95% CI 1.11–4.28) ($p = 0.024$) in non-DM patients.

3.3.2. Discriminatory ability

In DM patients, the AUC for discrimination of the primary endpoint was 0.636 (95% CI 0.585–0.688) for any stenosis $\geq 50\%$, 0.623 (95% CI 0.572–0.675) for any stenosis $\geq 70\%$, 0.679 (95% CI 0.630–0.729) for the CAD-RADS, 0.696 (95% CI 0.643–0.748) for the SIS, 0.704 (95% CI 0.652–0.757) for the CAD (68% vs. 90%, $p < 0.001$), more obstructive CAD (32% vs. 10%, $p < 0.001$) and a higher prevalence of SIS >5 (37% vs. 13%, $p < 0.001$), SSS >5 (25% vs. 5%, $p < 0.001$) and CT-LeSc >8.3 (41% vs. 16%, $p < 0.001$) as compared to non-DM patients. Whether these CCTA risk scores were predictive of adverse events was not tested in this study. However, the long-term prognostic value of the CT-LeSc with regard to hard endpoints (e.g. non-fatal MI, all-cause death, cardiac death) has been established in other patient populations, such as a general chest-pain population and patients with non-obstructive CAD.1,2,20

No prior studies evaluated the Leiden CCTA risk score in diabetic patients. Recently, van Rosendaal et al. established the prognostic importance of the Leiden CCTA risk score for adverse events (i.e. all-cause death, non-fatal MI) in a large observational study of 2,134 patients with suspected but without known CAD.15 When the Leiden CCTA risk score was added to a selection of classical cardiovascular risk factors, both the discrimination of adverse events (AUC 0.768 vs. 0.742, $p = 0.001$) and reclassification of patients (net reclassification improvement 12.4%, $p < 0.001$) increased compared to the stenosis severity component of the CAD-RADS plus the same risk factors. Also, this discriminatory ability was reproduced in an external validation cohort. To this end, we hypothesized that the Leiden CCTA risk score might not be applicable to DM patients, because of various confounders that are associated with CAD.15 Our analysis proved that the Leiden CCTA risk score was independently predictive of adverse events, and importantly,

Table 3

<table>
<thead>
<tr>
<th>DM patients</th>
<th>Non-DM patients</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 732</td>
<td>n = 732</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean ± SD or n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any stenosis $\geq 50%$</td>
</tr>
<tr>
<td>CAD-RADS</td>
</tr>
<tr>
<td>CAD-RADS 0-1</td>
</tr>
<tr>
<td>CAD-RADS 2-3</td>
</tr>
<tr>
<td>CAD-RADS 4-5</td>
</tr>
<tr>
<td>SIS</td>
</tr>
<tr>
<td>3.7 ± 3.6</td>
</tr>
<tr>
<td>SSS</td>
</tr>
<tr>
<td>5.3 ± 5.8</td>
</tr>
<tr>
<td>CT-LeSc</td>
</tr>
<tr>
<td>6.5 ± 6.3</td>
</tr>
<tr>
<td>Leiden CCTA risk score</td>
</tr>
<tr>
<td>9.2 ± 8.6</td>
</tr>
</tbody>
</table>

Abbreviations: CAD-RADS, coronary artery disease-reporting and data system; CCTA, coronary computed tomography angiography; CT-LeSc, CT-adapted Leaman score; DM, diabetes mellitus; SIS, segment involvement score; SSS, segment stenosis score.
Table 4
Leiden CCTA risk score and weight scores stratified by DM.

<table>
<thead>
<tr>
<th>Leiden CCTA risk score category</th>
<th>DM patients</th>
<th>Non-DM patients</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>n = 348</td>
<td>n = 348</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD or n (%)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Plaque weight score</td>
<td>4.4 ± 4.4</td>
<td>3.2 ± 3.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Stenosis weight score</td>
<td>4.1 ± 4.1</td>
<td>3.0 ± 3.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Location weight score</td>
<td>6.8 ± 6.2</td>
<td>5.2 ± 5.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Per-segment weight scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaque weight score</td>
<td>1.2 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>0.431</td>
</tr>
<tr>
<td>Stenosis weight score</td>
<td>1.1 ± 0.1</td>
<td>1.1 ± 0.1</td>
<td>0.160</td>
</tr>
<tr>
<td>Location weight score</td>
<td>2.1 ± 0.7</td>
<td>2.2 ± 0.8</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Abbreviations: CCTA, coronary computed tomography angiography; DM, diabetes mellitus.

cardiovascular disease, accounting for abundant morbidity, mortality and public health costs.31−34 Accordingly, current global guidelines underlined that patients with DM should be considered at high-risk for cardiovascular disease, and at very high-risk with ≥1 other cardiovascular risk factors or end organ damage.1,35 Hence, multiple studies declared DM as an equivalent of CAD.23,36,37 These statements were evaluated through a large systematic review and meta-analysis by Bulugahapitiya et al.38 In this analysis, 13 cohort- and observational studies involving 45,108 patients were included: 21,675 DM patients and 23,433 non-DM patients. This study, with mean follow-up of 13.4 years, demonstrated that for DM patients without prior MI the risk for fatal or non-fatal MI was 43% lower than in non-DM patients with prior MI. Thus, they did not support the hypothesis of DM as a CAD-equivalent. Although our results showed that patients with DM exhibited higher overall burden of coronary atherosclerosis, all semiquantitative CCTA risk scores were still able to predict the primary endpoint of all-cause death and non-fatal MI accurately. Especially scores incorporating the total extent of CAD performed particularly well. Additional results with regard to the extent atherosclerotic disease and the survival of diabetic and non-diabetic patients are available in Appendix Supplement 3.

4.3. Limitations

First, this was a nested case-control study with all the intrinsic limitations of an observational cohort study like unmeasured confounding factors and selection bias. Second, the event-rate of the primary endpoint was relatively low, and therefore the present study was underpowered to enter a multitude of variables into the multivariable model. Though, by employing the backward selection method overfitting of this model was avoided. Third, we only performed qualitative analysis or visual categorization of all diseased segments within patients. Quantitative analysis of coronary plaque might capture the full extent of atherosclerotic disease more precisely or will provide additional information.43 Fourth, recent studies addressed the value of serial CCTA to detect not only coronary plaque growth but also the progression of high-risk or vulnerable plaques in order to evaluate the natural history of the atherosclerotic process in patients with DM.44 Our study only ascertained scans at a single timepoint.

5. Conclusion

In summary, coronary atherosclerosis scoring with semiquantitative...
CCTA risk scores incorporating the total extent of CAD, might be useful for risk stratification of patients with DM beyond the binary evaluation of obstructive stenosis alone.

Funding

The research reported in this publication was funded, in part, by the National Institute of Health (Bethesda, MD, USA) under award number R01 HL115150. This research was also supported, in part, by the Dalio Institute of Cardiovascular Imaging (New York, NY, USA) and the Michael Wolk Foundation (New York, NY, USA).

Declaration of competing interest

Dr. James K. Min receives funding from the Dalio Foundation, National Institutes of Health, and GE Healthcare. Dr. Min serves on the scientific advisory board of Arineta and GE Healthcare, and has an equity interest in Cleerly. The Department of Cardiology of the Leiden University Medical Center received research grants from Biotronik, Medtronic, Boston Scientific and Edwards Lifesciences. Arthur J.H.A. Scholte received consulting fees from GE Healthcare and Canon.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcct.2019.11.015.

References

