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Abstract
We consider an inhomogeneous Erdős-Rényi random graphGN with vertex set [N ] =
{1, . . . , N } for which the pair of vertices i, j ∈ [N ], i �= j , is connected by an edge
with probability r( i

N ,
j
N ), independently of other pairs of vertices. Here, r : [0, 1]2 →

(0, 1) is a symmetric function that plays the role of a reference graphon. Let λN be the
maximal eigenvalue of the adjacency matrix of GN . It is known that λN/N satisfies
a large deviation principle as N → ∞. The associated rate function ψr is given by a
variational formula that involves the rate function Ir of a large deviation principle on
graphon space. We analyse this variational formula in order to identify the properties
of ψr , specially when the reference graphon is of rank 1.
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1 Introduction andMain Results

1.1 Motivation

In the past 20 years, many properties have been derived about spectra of random
matrices associated with random graphs, like the adjacency matrix and the Laplacian
matrix [3,7,9,15,18,20–25,30,31]. The focus of the present paper is on inhomogeneous
Erdős-Rényi random graphs, which are rooted in the theory of complex networks. We
consider the dense regime, where the average degree of the vertices are proportional to
the size of the graph, and analyse the rate function of the large deviation principle for
the maximal eigenvalue of the adjacency matrix derived in [17]. In [10] the non-dense
non-sparse regime was considered, where the degrees diverge but sublinearly in the
size of the graph, and identified the scaling limit of the empirical spectral distribution
of both the adjacency matrix and the Laplacian matrix. Recent results on the maximal
eigenvalue in the sparse regime, where the degrees are stochastically bounded, can be
found in [6].

Large deviations of Erdős-Rényi random graphs were studied in [12,13,27] with
the help of the theory of graphons, in particular, subgraph densities and maximal
eigenvalues. We refer to [12] for a comprehensive review of the literature. Large
deviation theory for random matrices started in [4], with the study of large deviations
of the empirical spectral distribution of β-ensembles with a quadratic potential. The
rate was shown to be the square of the number of vertices, and the rate function was
shown to be given by a non-commutative notion of entropy. The maximal eigenvalue
for such ensembles was studied in [5]. Large deviations of the empirical spectral
distribution of random matrices with non-Gaussian tails were derived in [8]. More
recently, the maximal eigenvalue in that setting was studied in [1,2]. The adjacency
matrix of an inhomogeneous Erdős-Rényi random graph does not fall in this regime,
and hence different techniques are needed in the present paper.

As mentioned above, the large deviation principle for dense inhomogeneous Erdős-
Rényi random graphs was recently proved in [17]. Subsequently, in [28] the conditions
on the reference graphon were relaxed and a simplified form of the rate function was
derived. The large deviation principle for the largest eigenvalue of the adjacencymatrix
follows through the contraction principle, because the spectral norm of the graphon
operator is a “nice graph parameter” (see Definition 6.1 of [12]) on the space of
graphons. The main goal of the present paper is to study the variational formula for
the rate function that arises from this contraction.

It is not possible to explicitly solve the variational formula, which is why we study
the rate function around three points, namely, its unique minimiser and its two bound-
ary points. For the case where the reference graphon is rank 1, we identify the optimal
perturbations around these three points,which reveal how the large deviation is realised
by the random graph. Interestingly, it turns out that if the reference graphon is not con-
stant, then the optimal graphon is not rank 1. We further derive some basic properties
of the rate function. We do not know whether the rate function is convex or analytic.
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Inhomogeneous random graphs are essential in the study of complex networks with
community structure. A further discussion and a list open problems are provided in
Sect. 1.5.

1.2 LDP for Inhomogeneous Erdos-Rényi RandomGraphs

Let

W = {h : [0, 1]2 → [0, 1] : h(x, y) = h(y, x) ∀ x, y ∈ [0, 1]} (1.1)

denote the set of graphons. Let M denote the set of Lebesgue measure-preserving
bijective maps φ : [0, 1] �→ [0, 1]. For two graphons h1, h2 ∈ W , the cut-distance is
defined by

d�(h1, h2) = sup
S,T⊂[0,1]

∣∣∣∣

∫

S×T
dx dy

[
h1(x, y) − h2(x, y)

]
∣∣∣∣, (1.2)

and the cut-metric by

δ�(h1, h2) = inf
φ∈M

d�(h1, h
φ
2 ), (1.3)

where hφ
2 (x, y) = h2(φ(x), φ(y)). The cut-metric defines an equivalence relation ∼

on W by declaring h1 ∼ h2 if and only if δ�(h1, h2) = 0, and leads to the quotient
space W̃ = W/∼. For h ∈ W , we write h̃ to denote the equivalence class of h in W̃ .
The equivalence classes correspond to relabelings of the vertices of the graph. The
pair (W̃, δ�) is a compact metric space [26].

Let r ∈ W be a reference graphon satisfying

∃ η > 0 : η ≤ r(x, y) ≤ 1 − η ∀ (x, y) ∈ [0, 1]2. (1.4)

Fix N ∈ N and consider the random graph GN with vertex set [N ] = {1, . . . , N }
where the pair of vertices i, j ∈ [N ], i �= j , is connected by an edge with probability
r( i

N ,
j
N ), independently of other pairs of vertices. Write PN to denote the law of GN .

Use the same symbol for the law on W induced by the map that associates with the
graph GN its graphon hGN , defined by

hGN (x, y) =
{
1, i f thereisanedgebetweenvertex�Nxandvertex�Ny,
0, otherwise.

(1.5)

Write P̃N to denote the law of h̃GN .
The following LDP is proved in [17] and is an extension of the celebrated LDP for

homogeneous ERRG derived in [13] and further properties of the rate functions were
derived in [27].
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Theorem 1 (LDP for inhomogeneous ERRG) Subject to (1.4), the sequence (̃PN )N∈N
satisfies the large deviation principle on (W̃, δ�) with rate

(N
2

)
, i.e.,

lim sup
N→∞

1
(N
2

) log P̃N (C) ≤ − inf
h̃∈C

Jr (̃h) ∀ C ⊂ W̃closed,

lim inf
N→∞

1
(N
2

) log P̃N (O) ≥ − inf
h̃∈O

Jr (̃h) ∀O ⊂ W̃open,

(1.6)

where the rate function Jr : W̃ → R is given by

Jr (̃h) = inf
φ∈M

Ir (h
φ), (1.7)

where h is any representative of h̃ and

Ir (h) =
∫

[0,1]2
dx dy R(h(x, y) | r(x, y)), h ∈ W, (1.8)

with

R(a | b) = a log a
b + (1 − a) log 1−a

1−b (1.9)

the relative entropy of twoBernoulli distributions with success probabilities a ∈ [0, 1],
b ∈ (0, 1) (with the convention 0 log 0 = 0).

It is clear that Jr is a good rate function, i.e., Jr �≡ ∞ and Jr has compact level
sets. Note that (1.7) differs from the expression in [17], where the rate function is the
lower semi-continuous envelope of Ir (h). However, it was shown in [28] that, under
the integrability conditions log r , log(1− r) ∈ L1([0, 1]2), the two rate functions are
equivalent, since Jr (̃h) is lower semi-continuous on W̃ . Clearly, these integrability
conditions are implied by (1.4).

1.3 Graphon Operators

With h ∈ W we associate a graphon operator acting on L2([0, 1]), defined as the
linear integral operator

(Thu)(x) =
∫

[0,1]
dy h(x, y)u(y), x ∈ [0, 1], (1.10)

with u ∈ L2([0, 1]). The operator norm of Th is defined as

‖Th‖ = sup
u∈L2([0,1])

‖u‖2=1

‖Thu‖2, (1.11)
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where ‖ · ‖2 denotes the L2-norm. Given a graphon h ∈ W , we have ‖Th‖ ≤ ‖h‖2.
Hence, a graphon sequence converging in the L2-norm also converges in the operator
norm.

The product of two graphons h1, h2 ∈ W is defined as

(h1h2)(x, y) =
∫

[0,1]
dz h1(x, z)h2(z, y), (x, y) ∈ [0, 1]2, (1.12)

and the n-th power of a graphon h ∈ W as

hn(x, y) =
∫

[0,1]n−1
dz1 · · · dzn−1h(x, z1) × · · · × h(zn−1, y),

(x, y) ∈ [0, 1]2, n ∈ N. (1.13)

Definition 1 (Eigenvalues and eigenfunctions) μ ∈ R is said to be an eigenvalue of
the graphon operator Th if there exists a non-zero function u ∈ L2([0, 1]) such that

(Thu)(x) = μu(x), x ∈ [0, 1]. (1.14)

The function u is said to be an eigenfunction of Th associated with μ.

Proposition 1 (Properties of the graphon operator) For any h ∈ W:
(i) The graphon operator Th is self-adjoint, bounded and continuous.
(ii) The graphon operator Th is diagonalisable and has countably many eigenvalues,
all of which are real and can be ordered asμ1 ≥ μ2 ≥ · · · ≥ 0. Moreover, there exists
a collection of eigenfunctions which form an orthonormal basis of L2([0, 1]).
(iii) The maximal eigenvalue μ1 of the graphon operator Th is strictly positive and
has an associated eigenfunction u1 satisfying u1(x) > 0 for all x ∈ [0, 1]. Moreover,
μ1 = ‖Th‖, i.e., the maximal eigenvalue equals the operator norm.
Proof The claim is a special case of [29, Theorem 7.3] (when the compact Hermi-
tian operators considered there are taken to be the graphon operators). See also [14,
Theorem 19.2] and [19, Appendix A]. ��

1.4 Main Theorems

Let λN be the maximal eigenvalue of the adjacency matrix AN of GN . Write P∗
N to

denote the law of λN/N .

Theorem 2 (LDP for themaximal eigenvalue) Subject to (1.4), the sequence (P∗
N )N∈N

satisfies the large deviation principle on R with rate
(N
2

)
and with rate function

ψr (β) = inf
h̃∈W̃‖Th̃‖=β

Jr (̃h) = inf
h∈W‖Th‖=β

Ir (h), β ∈ R. (1.15)
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Cr 10

C1
r

C0
r

β

ψr(β)

+∞+∞
◦◦

Fig. 1 Graph of β �→ ψr (β)

Proof Note that λN/N = ‖ThGN ‖, where h is any representative of h̃ (because ‖T̃h‖ =
‖Thφ‖ for all φ ∈ M). Also note that h̃ �→ ‖T̃h‖ is a bounded and continuous function
on W̃ [12, Exercises 6.1–6.2, Lemma 6.2]. Hence the claim follows from Theorem 1
via the contraction principle [16, Chapter 3]. ��

Put

Cr = ‖Tr‖. (1.16)

Whenβ = Cr , the graphon h thatminimizes Ir (h) such that‖Th‖ = Cr is the reference
graphon h = r almost everywhere, for which Ir (r) = 0 and no large deviation occurs.
When β > Cr , we are looking for graphons h with a larger operator norm. The large
deviation cannot go above 1, which is represented by the constant graphon h ≡ 1, for
which Ir (1) = C1

r . Similarly, when β < Cr , we are looking for graphons h with a
smaller operator norm. The large deviation cannot go below 0, which is represented
by the constant graphon h ≡ 0, for which Ir (0) = C0

r (see Fig. 1).

Theorem 3 (Properties of the rate function) Subject to (1.4):
(i) ψr is continuous and unimodal on [0, 1], with a unique zero at Cr .
(ii) ψr is strictly decreasing on [0,Cr ] and strictly increasing on [Cr , 1].
(iii) For every β ∈ [0, 1], the set of minimisers of the variational formula for ψr (β)

in (1.15) is non-empty and compact in W̃ .

If the reference graphon r is of rank 1, i.e.,

r(x, y) = ν(x) ν(y), (x, y) ∈ [0, 1]2, (1.17)

for some ν : [0, 1] → [0, 1] that is bounded away from 0 and 1, then we are able to
say more. Define

mk =
∫

[0,1]
νk, k ∈ N. (1.18)
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Note that Cr = m2. Abbreviate Br = ∫[0,1]2 r3(1 − r), and note that Br = m2
3 − m2

4.
Further abbreviate

N 1
r =

∫

[0,1]2
1 − r

r
, N 0

r =
∫

[0,1]2
r

1 − r
. (1.19)

Recall thatM is the set of Lebesgue measure-preserving bijective maps φ : [0, 1] →
[0, 1].
Theorem 4 (Scaling of the rate function) Let ψr be the rate function in (1.15).
(i) Subject to (1.4) and (1.17),

ψr (β) = [1 + o(1)] Kr (β − Cr )
2, β → Cr , (1.20)

with

Kr = (Cr )
2

2Br
= m2

2

2(m2
3 − m2

4)
. (1.21)

(ii) Subject to (1.4),

C1
r − ψr (β) = (1 − β)

[
log

(
N 1
r

1 − β

)
+ 1 + o(1)

]
, β ↑ 1. (1.22)

(iii) Subject to (1.4),

C0
r − ψr (β) = β

[
log

(
N 0
r

β

)
+ 1 + o(1)

]
, β ↓ 0. (1.23)

Theorem 5 (Scaling of the minimisers) Let hβ ∈ W be any minimiser of the second
infimum in (1.15).
(i) Subject to (1.4) and (1.17),

lim
β→Cr

(β − Cr )
−1‖hβ − r − (β − Cr )	‖2 = 0, (1.24)

with

	(x, y) = Cr

Br
r(x, y)2[1 − r(x, y)], (x, y) ∈ [0, 1]2. (1.25)

(ii) Subject to (1.4),

lim
β↑1(1 − β)−1‖1 − hβ − (1 − β)	‖2 = 0, (1.26)

with

	(x, y) = 1

N 1
r

1 − r(x, y)

r(x, y)
, (x, y) ∈ [0, 1]2. (1.27)
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(iii) Subject to (1.4),

lim
β↓0 β−1‖hβ − β	‖2 = 0, (1.28)

with

	(x, y) = 1

N 0
r

r(x, y)

1 − r(x, y)
, (x, y) ∈ [0, 1]2. (1.29)

1.5 Discussion and Outline

1. Theorem 3 confirms the picture of ψr drawn in Fig. 1. It remains open whether or
not ψr is convex. We do not expect ψr to be analytic, because bifurcations may occur
in the set of minimisers of ψr as β is varied.
2. Theorem 4 identifies the scaling ofψr near its zero and near its end points, provided
r is of rank 1. Theorem 5 identifies the corresponding scaling of the minimiser hβ of
ψr . Interestingly, the scaling corrections are not rank 1. It remains open to determine
what happens near Cr when r is not of rank 1 (see the Appendix).
3. The inverse curvature 1/Kr equals the variance in the central limit theorem derived
in [11]. This is in line with the standard folklore of large deviation theory.
4. It would be interesting to investigate to what extent the condition on the reference
graphon in (1.4) can be weakened to some form of integrability condition. Especially
for the upper bound in the LDP this is delicate, because the proof in [17] is based on
block-graphon approximation (see [28]).
5. It would be interesting to generalise Theorems 4–5 to reference graphons of higher
rank. This is possible in principle, but at the cost of more technicalities (see the
Appendix).
Outline. The proof of Theorems 3–5 is given in Sect. 3 and relies on the variational
formula in (1.15). Since the maximal eigenvalue is invariant under relabeling of the
vertices, we can work directly with Ir in (1.8) without worrying about the equivalence
classes. In Sect. 2 we derive an expansion for the operator norm of a graphon around
any graphon of rank 1. This expansion will be needed in Sect. 3.

2 Expansion Around Graphons of Rank 1

In order to prepare for the proof of Theorem 4, we show how we can expand the
operator norm of a graphon around any graphon of rank 1.

Lemma 1 (Rank 1 expansion) Consider a graphon h̄ ∈ W of rank 1 such that
h̄(x, y) = ν̄(x)ν̄(y), x, y ∈ [0, 1]. For any h ∈ W such that ‖Th−h̄‖ < ‖Th‖,
the operator norm μ = ‖Th‖ is a solution of the equation

μ =
∑

n∈N0

1

μn
Fn(h, h̄), (2.1)
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where

Fn(h, h̄) =
∫

[0,1]2
dx dy ν̄(x)(h − h̄)n(x, y)ν̄(y). (2.2)

Proof By Proposition 1, we have

Thu = μu, (2.3)

where μ equals both the norm and the maximal eigenvalue of Th , and u is the eigen-
function of Th associated with μ. Put g = h − h̄ and we have (μ − Tg)u = Th̄u. This
gives

u = (μ − Tg)
−1ν̄〈ν̄, u〉 (2.4)

where we use thatμ−Tg is invertible because ‖Tg‖ = ‖Th−h̄‖ < ‖Th‖. Hence, taking
the inner product of u with ν̄ and observing that 〈ν̄, u〉 �= 0, we get

〈ν̄, u〉 = 〈ν̄, u〉〈ν̄, (μ − Tg)
−1ν̄〉 (2.5)

which gives

μ = 〈ν̄, (1 − Tg/μ)−1ν̄〉. (2.6)

We can expand the above to get

μ =
〈
ν̄,
∑

n∈N0

(
Tg
μ

)n

ν̄

〉

=
∑

n∈N0

1

μn

∫

[0,1]n+1
dx0 dx1 · · · dxn ν̄(x0)g(x0, x1) × · · · × g(xn−1, xn)ν̄(xn)

=
∑

n∈N0

1

μn
Fn(h, h̄), (2.7)

and this completes the proof. ��
Subject to (1.17), it follows from Lemma 1 with h = h̄ = r that

Cr = ‖Tr‖ = m2, (2.8)

because only the term with n = 0 survives in the expansion.

Remark 1 (Higher rank) The expansion around reference graphons of rank 1 can be
extended to finite rank. We provide the details in the Appendix. In this paper we focus
on rank 1, for which Lemma 1 allows us to analyse the behaviour of ψr (β) near the
values β = Cr , β = 1 and β = 0. This corresponds to an expansion around the
graphons h = ν × ν, h ≡ 1 and h ≡ 0, which are all of rank 1.
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3 Proofs of Main Theorems

Theorem 3 is proved in Sect. 3.1, Theorems 4–5 are proved in Sects. 3.2–3.4.

3.1 Continuity, Unimodality and UniqueMinimisers

Proof We follow [12, Chapter 6]. Even though this monograph deals with constant
reference graphons only, most arguments carry over to r satisfying (1.4).
(i), (iii) Define

ψ+
r (β) = inf

h∈W‖Th‖≥β

Ir (h), ψ−
r (β) = inf

h∈W‖Th‖≤β

Ir (h), β ∈ R. (3.1)

Because h �→ ‖Th‖ is a nice graph parameter, in the sense of [12, Definition 6.1], it
follows that β �→ ψ+

r (β) is non-decreasing and continuous, while β �→ ψ−
r (β) is

non-increasing and continuous [12, Proposition 6.1]. (The proof requires the fact that
‖ fn − f ‖2 → 0 implies Ir ( fn) → Ir ( f ) and that Ir ( f ) is lower semi-continuous on
W .)

The variational formulas in (3.1) achieve minimisers. In fact, the sets of minimiser
are non-empty compact subsets of W̃ [12, Theorem 6.2]. In addition, all minimisers h
of φ+

r (h) satisfy h ≥ r almost everywhere, while all minimisers h of φ−
r satisfy h ≤ r

almost everywhere [12, Lemma 6.3]. Moreover, because

h1 ≥ h2 ≥ r �⇒ ‖Th1‖ ≥ ‖Th2‖, Ir (h1) ≥ Ir (h2),

h1 ≤ h2 ≤ r �⇒ ‖Th1‖ ≤ ‖Th2‖, Ir (h1) ≤ Ir (h2),
(3.2)

(use that a �→ R(a | b) is unimodal on [0, 1] with unique zero at b), it follows that
both variational formulas achieve minimisers with norm equal to β, and so

ψr (β) =
{

ψ+
r (β), β ≥ Cr ,

ψ−
r (β), β ≤ Cr .

(3.3)

Hence, ψr is continuous and unimodal on [0, 1]. Since Ir (h) = 0 if and only if h = r
almost everywhere, it is immediate that Cr is the unique zero of ψr .
(ii) The proof is by contradiction. Suppose that β �→ ψ+

r (β) is not strictly increasing
on [Cr , 1]. Then there exist β1, β2 ∈ [Cr , 1]with β1 < β2 such thatψ+

r is constant on
[β1, β2]. Consequently, there exist minimisers hφ1

β1
, hφ2

β2
with φ1, φ2 ∈ M satisfying

r ≤ hφ1
β1

≤ hφ2
β2

such that

Ir (h
φ1
β1

) = Ir (h
φ2
β2

), ‖T
h

φ1
β1

‖ = β1 < β2 = ‖T
h

φ2
β2

‖. (3.4)

However, since a �→ R(a | b) is strictly increasing on [b, 1] (recall (1.8)), it follows
that hφ1

β1
= hφ2

β2
almost everywhere. This in turn implies that ‖T

h
φ1
β1

‖ = ‖T
h

φ2
β2

‖, which
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is a contradiction. A similar argument shows that β �→ ψ−
r (β) cannot have a flat piece

on [0,Cr ]. ��

3.2 Perturbation Around theMinimum

In this section we study ψr (β) around the point Cr when the reference graphon is of
rank 1. Along the way we prove Theorem 4(i) and Theorem 5(i). The proof is split
into 4 steps.

Step 1. In Lemma 2 we show that if we take a perturbation aroundCr and consider
the constraint ‖Tr+	ε ‖ = Cr+ε for someperturbation	ε of the reference graphon
r , then the constraint can be reduced to a much simpler expression with the help
of Lemma 1.
Step 2. In Lemma 3 we show that the cost function Ir (r + 	ε) is at least 2ε2

for any perturbation around r . In fact, we show that the optimal perturbation has
L2-norm of order ε. From the proof of this fact we deduce that if 	ε = ε	 for
some 	 ∈ L2([0, 1]2), then we get the best possible perturbation.
Step 3. The proof proceeds by looking at block graphons. Since block graphons
are constant on blocks, the geometry of the perturbation no longer plays a role. In
Lemma 4 we compute the contribution of a single block. In Lemma 5 we show
that the cost function is well approximated by block graphons. In Lemma 6 we
show that the blocks contribute uniformly to the cost. In Lemma 7 we compute the
cost function for perturbations of the form ε	. These computations can also be
used for block graphons, which allows us to show that unbalanced perturbations
do not contribute optimally to the cost function. This implies that we can restrict
to perturbations of the form 	ε = ε	, with 	 not depending on ε.
Step 4.Via the proof of Lemma 7, we identify the optimal	 and hence the scaling
of the variational formula around Cr .

Note that when β = Cr , the infimum in (1.15) is attained at h = r andψr (Cr ) = 0.
Take β = Cr + ε with ε > 0 small, and assume that the infimum is attained by a
graphon of the form h = r + 	ε , where 	ε : [0, 1]2 → R represents a perturbation
of the graphon r . Note that r + 	ε ∈ W , and so we are dealing with a perturbation
	ε that is symmetric and bounded. We compare

ψr (Cr + ε) = inf
	ε : [0,1]2→R

r+	ε∈W‖Tr+	ε ‖=Cr+ε

Ir (r + 	ε) (3.5)

with ψr (Cr ) = 0 by computing the difference

δr (ε) = ψr (Cr + ε) − ψr (Cr ) = ψr (Cr + ε) (3.6)

and studying its behaviour as ε → 0. To study this we use the following lemma. The
next lemma shows that in the rank 1 case we can reduce the constraint ‖Tr+	ε ‖ =
Cr + ε to something simpler.
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Lemma 2 Let r(x, y) = ν(x)ν(y)be the reference graphon. Let 	ε ∈ L2([0, 1]2) be
such that r + 	ε ∈ W and ‖	ε‖2 → 0 as ε → 0. Then the constraint ‖Tr+	ε ‖ =
Cr + ε is equivalent to

∫

[0,1]2
r	ε = εCr + ε2 + O

(
‖	ε‖22

)
. (3.7)

In particular, if 	ε = ε	 for some 	 ∈ L2([0, 1]2), then (3.7) reads as

∫

[0,1]2
r	 = Cr [1 + o(1)] . (3.8)

Proof Since r(x, y) = ν(x)ν(y), x, y ∈ [0, 1], we can use Lemma 1 to control the
norm of Th = Tr+	ε . Pick h̄ = r and h = r + 	ε in (2.1) such that ‖	ε‖2 → 0 as
ε → 0. Note that ‖T	ε ‖ ≤ ‖	ε‖2 < Cr for ε small enough. Hence, writing out the
expansion for the norm, we get

‖Tr+	ε ‖ = Cr +
∑

n∈N

1

‖Tr+	ε ‖n
Fn(r + 	ε, r). (3.9)

Since ‖Tr+	ε ‖ = Cr + ε, we have

Cr + ε = Cr + 〈ν,	εν〉
Cr + ε

+
∑

n∈N\{1}

1

(Cr + ε)n
〈ν,	n

ε ν〉 (3.10)

with 〈ν,	εν〉 = ∫[0,1]2 r	ε . So

ε(Cr + ε) =
∫

[0,1]2
r	ε +

∑

n∈N\{1}

1

(Cr + ε)n−1 〈ν,	n
ε ν〉. (3.11)

Since ν is bounded, using the generalised Hölder’s inequality [27, Theorem 3.1] we
get

|〈ν,	n
ε ν〉| ≤ ‖	ε‖n2 . (3.12)

Since ‖	ε‖2 → 0 as ε → 0, we can choose ε small enough such that ‖	ε‖2 <
1
2 (Cr + ε), which gives

∑

n∈N\{1}

1

(Cr + ε)n−1 〈ν,	n
ε ν〉 = O

(
‖	ε‖22

)
. (3.13)
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The constraint ‖Tr+	ε ‖ = Cr + ε therefore reads

∫

[0,1]2
r	ε = εCr + ε2 + O

(
‖	ε‖22

)
. (3.14)

��

3.2.1 Small Perturbation on a Given Region

In what follows we use the standard notation o(·), O(·), � to describe the asymptotic
behaviour in the limit as ε → 0.

We are interested in finding the asymptotic behaviour of (3.5) as ε → 0. In the next
lemma we show that the cost is bounded below by 2ε2 for any perturbation 	ε , and
that if 	ε is of the form ε	 for some 	 ∈ L2([0, 1]2), then the cost is of order ε2.

Lemma 3 (Order of minimal cost) Let 	ε : [0, 1]2 → R be such that r + 	ε ∈ W
and ‖Tr+	ε ‖ = Cr + ε. Then

Ir (r + 	ε) ≥ 2ε2. (3.15)

Moreover, if 	ε = ε	, then

Ir (r + ε	) = [1 + o(1)] 2ε2
∫

[0,1]2
	2

4r(1 − r)
, ε → 0. (3.16)

Proof Fix b ∈ [0, 1] and abbreviate (recall (1.9))

χ(a) = R(a | b) = a log
a

b
+ (1 − a) log

1 − a

1 − b
, a ∈ [0, 1]. (3.17)

Note that

χ(b) = χ ′(b) = 0, χ ′′(a) ≥ 4, a ∈ [0, 1]. (3.18)

Consequently,

χ(a) ≥ 2(a − b)2, a ∈ [0, 1], (3.19)

and hence

Ir (r + 	ε) ≥ 2
∫

[0,1]2
	2

ε = 2‖	ε‖22. (3.20)

Next observe that

Cr + ε = ‖Tr+	ε ‖ = ‖Tr + T	ε ‖ ≤ ‖Tr‖ + ‖T	ε ‖ ≤ Cr + ‖	ε‖2, (3.21)
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which gives ‖	ε‖2 ≥ ε. Inserting this lower bound into (3.20), we get (3.15). To get
(3.16), we need a higher-order expansion of χ , namely, χ(x) = 1

2χ
′′(b)(x − b)2 +

O((x − b)3), x → b. Since r is bounded away from 0 and 1, and the constraint
r + 	ε ∈ W implies that 	ε(x, y) ∈ [−1, 1], we see that the third-order term is
smaller than the second-order term when 	ε = ε	. Hence (3.16) follows. ��
Remark 2 (Order) In the above proofwe found that ‖	ε‖2 ≥ ε.Moreover, the optimal
	ε for the minimisation problem in (3.5) must satisfy ‖	ε‖2 = O(ε) because

inf
	ε : [0,1]2→R

r+	ε∈W‖Tr+	ε ‖=Cr+ε

Ir (r + 	ε) ≤ inf
	∈L2([0,1]2)
r+ε	∈W‖Tr+ε	‖=Cr+ε

Ir (r + ε	), (3.22)

where in the right-hand side we restrict to the special class 	ε = ε	. From (3.16) it
follows that the right-hand side is O(ε2). Now, if there is an optimal	∗

ε that minimises
the cost function in the left-hand side of (3.22), then by the lower bound in (3.20) it
follows that ‖	∗

ε‖2 = O(ε).

Lemma 4 (Cost of small perturbations) Let B ⊆ [0, 1]2 be a measurable region with
area |B|. Suppose that 	ε = εα	 on B, with ε > 0, α > 0 and 	 : [0, 1]2 → R.
Then the contribution of B to the cost Ir (h) is

∫

B
dx dyR(h(x, y) | r(x, y)) = [1 + o(1)] ε2α

∫

B

	2

2r(1 − r)
, ε → 0.(3.23)

If the integral diverges, then the contribution decays slower than ε2α .

Proof The proof is similar to that of Lemma 3. ��

3.2.2 Approximation by Block Graphons

We next introduce block graphons, which will be useful for our perturbation analysis.
It follows from Remark 2 that optimal perturbations 	∗

ε must satisfy ‖	∗
ε‖2 � ε.

We know that if 	ε = ε	, then the order of the cost is ε2 and ‖	ε‖2 � ε. We
argue through block graphon approximation that perturbations of the form ε	 are
optimal. The usefulness of block graphons is that they are constant on blocks, so that
no optimisation is needed over the shape of	ε inside blocks.Wefirst show inLemma5
that the cost function is well approximated by block graphons. Afterwards we apply
Lemma 4 to find the cost function for block graphon perturbations. The restriction to
block graphons simplifies the optimisation problem, i.e., it reduces the optimisation
in (3.5) to a finite-dimensional problem.

Definition 2 (Block graphons) LetWN ⊂ W be the space of graphons with N blocks
having a constant value on each of the blocks, i.e., f ∈ WN is of the form

f (x, y) =
{
fi, j , (x, y) ∈ Bi × Bj ,

0, otherwise,
(3.24)
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where Bi = [ i−1
N , i

N ), 1 ≤ i ≤ N − 1 and BN = [ N−1
N , 1] and fi, j ∈ [0, 1]. Write

Bi, j = Bi × Bj . With each f ∈ W associate the block graphon fN ∈ WN given by

fN (x, y) = N 2
∫

Bi, j
dx ′ dy′ f (x ′, y′) = f̄N ,i j , (x, y) ∈ Bi, j . (3.25)

Observe that if fN is the block graphon associated with a graphon f , then

‖T fN − T f ‖ = ‖T fN− f ‖ ≤ ‖ fN − f ‖2. (3.26)

Weknowfrom[12, Proposition2.6] that‖ fN− f ‖2 → 0, andhence limN→∞ ‖T fN ‖ =
‖T f ‖ for any f ∈ W and its associated sequence of block graphons ( fN )N∈N. The
following lemma shows that the cost function associated with the graphons r and f
is well approximated by the cost function associated with the block graphons rN and
fN .

Lemma 5 (Convergence of the cost function) limN→∞ IrN ( fN ) = Ir ( f ) for any
f ∈ W .

Proof Since f ∈ L2([0, 1]2), fN is bounded. The assumption in (1.4) implies that
η ≤ rN ≤ 1 − η for all N ∈ N. We know from [17, Lemma 2.3] that there exists a
constant c > 0 independent of f such that

|IrN ( f ) − Ir ( f )| ≤ c ‖rN − r‖1 ≤ c ‖rN − r‖2. (3.27)

Hence

|IrN ( fN ) − Ir ( f )| ≤ |IrN ( fN ) − Ir ( fN )| + |Ir ( fN ) − Ir ( f )|
≤ c ‖rN − r‖2 + |Ir ( fN ) − Ir ( f )|. (3.28)

But we know from [12, Proposition 2.6] that limN→∞ ‖rN − r‖2 = 0 and
limN→∞ ‖ fN − f ‖2 = 0, while we know from [28, Lemma 3.4] that Ir is continuous
in the L2-topology on W . ��

3.2.3 Block Graphon Perturbations

In what follows we fix N ∈ N, analyse different types of perturbation and identify
which one is optimal. For each N ∈ N, we associate with the perturbed graphon
h = r + 	ε the block graphon hN ∈ WN given by (recall that Bi, j = Bi × Bj )

hN ,i j (x, y) = r N ,i j (x, y) + 	εN ,i j (x, y), (x, y) ∈ Bi, j , (3.29)

where

r N ,i j = N 2
∫

Bi, j
dx ′ dy′ r(x ′, y′), 	εN ,i j = N 2

∫

Bi, j
dx ′ dy′ 	ε(x

′, y′). (3.30)
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Observe that optimal perturbations must have ‖	ε‖2 � ε (see Remark 2), and hence
the constraint in (3.14) becomes

N∑

i, j=1

∫

Bi, j
r	ε =

N∑

i, j=1

1

N 2 r	εN ,i j = [1 + o(1)]Crε, ε → 0. (3.31)

The block constraint in (3.31) implies that the sum over each block must be of order
ε. We therefore must have that

r	εN ,i j = O(ε), ε → 0 ∀ (i, j), (3.32)

which means that

	εN ,i j = O(ε), ε → 0 ∀ (i, j), (3.33)

since (1.4) implies that r	εN ,i j � 	εN ,i j . There are two possible cases:

(I) All blocks contribute to the constraint with a term of order ε (balanced perturba-
tion).

(II) Some blocks contribute to the constraint with a term of order ε and some with o(ε)
(unbalanced perturbation).

Perturbations of type (I) consist of a small perturbation on each block, i.e.,	εN ,i j � ε

for each block Bi, j . By Lemma 4, this contributes a term of order ε2 to the total cost.
Since all blocks have the same type of perturbation, they all contribute in the same
way, and so we get IrN (hN ) � ε2.

The following lemma shows that perturbations of type (II) are worse than pertur-
bations of type (I).

Lemma 6 (Unbalanced perturbations) Perturbations of order ε that are not balanced,
i.e., that do not cover the entire unit square [0, 1]2, are worse than the balanced
perturbation in Lemma 7.

We defer the proof of the above lemma to the next section, since it uses similar
computations as in the proof of Lemma 7. Let 1 ≤ k ≤ N 2−1 be the number of blocks
that contribute a term of order o(ε) to the constraint, i.e.,	εN ,i j = o(ε). By Lemma 4,
such blocks contribute order o(ε2) to the total cost. The remaining blocks must fall in
the class of blocks of type (I), with a perturbation of order ε on each of them. Lemma
6 shows that the cost function attains its minimum when the perturbation of order ε

is uniform on [0, 1]2. This shows that without loss of generality we may assume that
the optimal perturbation 	∗

ε is of the form ε	 for some 	 ∈ L2([0, 1]2).

3.2.4 Optimal Perturbation

Since we have shown that the optimal perturbations are of the form ε	, we can
now solve (3.5). We know that the order of the cost is ε2. Below we identify the
proportionality constant. In the course of the proof we also find the optimal 	.
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Lemma 7 (Balanced perturbations) Suppose that 	ε = ε	 with 	 : [0, 1]2 → R.
Let M be the set of Lebesgue measure-preserving bijective maps. Then

δr (ε) = [1 + o(1)] Krε
2, ε → 0, (3.34)

with

Kr = 1

2
(Cr )

2 inf
φ∈M

Dφ
r

(Bφ
r )2

, (3.35)

where Bφ
r = ∫[0,1]2 rφr2(1 − r) and Dφ

r = ∫[0,1]2(rφ)2r(1 − r).

Proof The constraint in (3.14) becomes

∫

[0,1]2
r	 = [1 + o(1)]Cr , ε → 0, (3.36)

and we get

δr (ε) = inf
	 : [0,1]2→R

r+ε	∈W∫
[0,1]2 r	=[1+o(1)]Cr

Ir (r + ε	)

= inf
	 : [0,1]2→R

r+ε	∈W∫
[0,1]2 r	=[1+o(1)]Cr

∫

[0,1]2
dx dyR((r + ε	)(x, y) | r(x, y)).

(3.37)

By Lemma 4 (with α = 1), we have

δr (ε) = [1 + o(1)] Krε
2, ε → 0, (3.38)

with

Kr = inf
	 : [0,1]2→R∫
[0,1]2 r	=Cr

∫

[0,1]2
	2

2r(1 − r)
. (3.39)

The prefactor 1 + o(1) in (3.38) arises after we scale 	 by 1 + o(1) in order to force∫
[0,1]2 r	 = Cr . Note that the optimisation problem in (3.39) no longer depends on ε.
We can apply the method of Lagrange multipliers to solve this constrained optimi-

sation problem. To that end we define the Lagrangian

LAr (	) =
∫

[0,1]2
	2

2 r(1 − r)
+ Ar

∫

[0,1]2
r	, (3.40)
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where Ar is a Langrange multiplier. Since
∫
[0,1]2 r = ∫

[0,1]2 r
φ for any Lebesgue

measure-preserving bijective map φ ∈ M, we get that the minimiser (in the space of
functions from [0, 1]2 → R) is of the form

	φ = −Ar r
φr(1 − r), φ ∈ M. (3.41)

We pick Ar such that the constraint is satisfied, i.e.,

− Ar B
φ
r = [1 + o(1)]Cr (3.42)

with

Bφ
r =

∫

[0,1]2
rφr2(1 − r). (3.43)

We get

	φ = Cr

Bφ
r

rφr(1 − r), φ ∈ M, (3.44)

and

Kr = inf
φ∈M

∫

[0,1]2
(	φ)2

2r(1 − r)
= 1

2
(Cr )

2 inf
φ∈M

Dφ
r

(Bφ
r )2

(3.45)

with

Dφ
r =

∫

[0,1]2
(rφ)2r(1 − r). (3.46)

��

We next show that the infimum in (3.45) is uniquely attained when φ is the identity.
For this we will show that Dφ

r /(Bφ
r )2 ≥ 1/Br with equality if and only if φ = Id.
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Indeed, write

Br D
φ
r − (Bφ

r )2

=
∫

[0,1]2
dx dy r(x, y)[1 − r(x, y)]

∫

[0,1]2
dx̄ d ȳ r(x̄, ȳ)[1 − r(x̄, ȳ)]

×
{
r(x, y)2 rφ(x̄, ȳ)2 − r(x, y)rφ(x, y) r(x̄, ȳ)rφ(x̄, ȳ)

}

=
∫

[0,1]2
dx dy r(x, y)[1 − r(x, y)]

∫

[0,1]2
dx̄ d ȳ r(x̄, ȳ)[1 − r(x̄, ȳ)]

× 1
2

{
r(x, y)2 rφ(x̄, ȳ)2 + rφ(x, y)2 r(x̄, ȳ)2 − 2r(x, y)rφ(x, y) r(x̄, ȳ)rφ(x̄, ȳ)

}

=
∫

[0,1]2
dx dy r(x, y)[1 − r(x, y)]

∫

[0,1]2
dx̄ d ȳ r(x̄, ȳ)[1 − r(x̄, ȳ)]

× 1
2

(
r(x, y)rφ(x̄, ȳ) − rφ(x, y)r(x̄, ȳ)

)2
,

(3.47)

where the second equality uses the symmetry between the integrals. Hence Br D
φ
r −

(Bφ
r )2 ≥ 0, with equality if and only if r(x, y)/rφ(x, y) = C for almost every

(x, y) ∈ [0, 1]2. Clearly, this can hold only for C = 1, which amounts to φ = Id.
We conclude that the infimum in (3.45) equals 1/Br , and so we find that

Kr = (Cr )
2

2Br
. (3.48)

Finally, note that Cr = m2 by (2.8), and that Br = m2
3 − m2

4 by (1.18). This settles
the expression for Kr in (1.21).

Proof (Proof of Lemma 6) The argument of the variational formula can be reduced to
an integral that considers only those regions that contribute order ε2, which constitute
a subset A ⊂ [0, 1]2. Applying the method of Lagrange multipliers as in Lemma 7,
we obtain that the solution is given by

δr (ε) = [1 + o(1)] K ′
rε

2, ε → 0, (3.49)

with K ′
r > Kr . The strict inequality comes from the fact that the optimal balanced

perturbation 	Id found in (3.41) is non-zero everywhere. ��
In conclusion, we have shown that a balanced perturbation is optimal and we have

identified in (3.44) the form of the optimal balanced perturbation. Lemma 7 settles the
claim in Theorem 4(i), while (3.44) settles the claim in Theorem 5(i).

3.3 Perturbation Near the Right End

Take β = 1−ε and consider a graphon of the form h = 1−	ε , where	ε : [0, 1]2 →
[0,∞) represents a symmetric and bounded perturbation of the constant graphon
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h ≡ 1. We compare

ψr (1 − ε) = inf
	ε : [0,1]2→[0,∞)

1−	ε∈W‖T1−	ε ‖=1−ε

Ir (1 − 	ε) (3.50)

with

C1
r = Ir (1) (3.51)

by computing the difference

δr (ε) = ψr (1) − ψr (1 − ε) (3.52)

and studying its behaviour as ε ↓ 0. Since Ir (1) is a constant, we can write

δr (ε) = sup
	ε : [0,1]2→[0,∞)

1−	ε∈W‖T1−	ε ‖=1−ε

[Ir (1) − Ir (1 − 	ε)]. (3.53)

We again use the expansion in Lemma 1. Pick h̄ = 1 and h = 1− 	ε in (2.1), to get

‖T1−	ε ‖ = 1 +
∑

n∈N

1

‖T1−	ε ‖n
Fn(1 − 	ε, 1). (3.54)

Since ‖T1−	ε ‖ = 1 − ε, this gives

1 − ε = 1 + 〈1, (−	ε)1〉
1 − ε

+ 〈1, (−	ε)
21〉

(1 − ε)2
+

∑

n∈N\{1,2}

〈1, (−	ε)
n1〉

(1 − ε)n
. (3.55)

For ε ↓ 0 we have ‖	ε‖2 ↓ 0 and |〈1, (−	ε)
n1〉| = O(‖	ε‖n2). Therefore

ε(1 − ε) =
∫

[0,1]2
	ε − 〈1,	2

ε1〉
(1 − ε)

+ O
(
‖	ε‖32

)
. (3.56)

The restriction 1 − 	ε ∈ W implies that 	ε ∈ [0, 1]. Hence ‖	ε‖22 ≤ ‖	ε‖1.
Moreover,

1 − ε = ‖T1−	ε ‖ ≤ ‖1 − 	ε‖2 ≤ √‖1 − 	ε‖1. (3.57)

Since ‖1 − 	ε‖1 = 1 − ‖	ε‖1, we have

‖	ε‖1 ≤ 1 − (1 − ε)2 = ε(2 − ε). (3.58)
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Since ‖	ε‖32 = O(ε3/2), (3.56) reads

1

1 − ε

∫

[0,1]3
dx dy dz 	ε(x, y)[1 − 	ε(y, z)] − ε

1 − ε
‖	ε‖1 = ε(1 − ε) + O(ε3/2),

(3.59)

which, because ‖	ε‖1 = O(ε), further reduces to

∫

[0,1]3
dx dy dz 	ε(x, y)[1 − 	ε(y, z)] = ε [1 + O(ε1/2)]. (3.60)

Note that when 	ε = ε	, the constraint reads

∫

[0,1]2
	 = 1 + O(ε1/2), ε ↓ 0. (3.61)

The following lemma gives an upper bound for Ir (1) − Ir (1 − 	ε).

Lemma 8 (Order of minimal cost) Let	ε : [0, 1]2 → [0, 1] be such that 1−	ε ∈ W
and ‖T1−	ε ‖ = 1 − ε. Then, for ε small enough,

Ir (1) − Ir (1 − 	ε) ≤ ‖	ε‖1 log 1

‖	ε‖1 + O(‖	ε‖1). (3.62)

Moreover, δr (ε) ≤ ε log 1
ε

+ O(ε).

Proof Abbreviate (recall (1.9))

χ(a) = R(a | r) = a log
a

r
+ (1 − a) log

1 − a

1 − r
, a ∈ [0, 1]. (3.63)

Then

χ(1) − χ(1 − 	ε(x, y))

= 	ε(x, y) log

(
1 − 	ε(x, y)

	ε(x, y)

1 − r(x, y)

r(x, y)

)
− log(1 − 	ε(x, y)),

(3.64)

and so

Ir (1) − Ir (1 − 	ε) =
∫

[0,1]2

[
	ε log

(
1 − 	ε

	ε

1 − r

r

)
− log(1 − 	ε)

]
. (3.65)

Let με be the probability measure on [0, 1]2 whose density with respect to the
Lebesgue measure is Z−1

ε (1 − 	ε(x, y)), where Zε = ∫
[0,1]2(1 − 	ε) = 1 − O(ε).

Since u �→ s̄(u) = u log(1/u) is strictly concave, by Jensen’s inequality we have
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∫

[0,1]2
	ε log

(
1 − 	ε

	ε

)
= Zε

∫

[0,1]2
με s̄

(
	ε

1 − 	ε

)
≤ Zε s̄

(
Z−1

ε ‖	ε‖1
)

= ‖	ε‖1 log
(

Zε

‖	ε‖1
)

. (3.66)

Moreover,

∫

[0,1]2
	ε log

(
1 − r

r

)
= O(‖	ε‖1), −

∫

[0,1]2
log(1 − 	ε) = O(‖	ε‖1).(3.67)

Hence

Ir (1) − Ir (1 − 	ε) ≤ ‖	ε‖1 log 1

‖	ε‖1 + O(‖	ε‖1), ε ↓ 0, (3.68)

and since ‖	ε‖1 = O(ε) also δr (ε) ≤ ε log 1
ε

+ O(ε). ��
The following is the analogue of Lemma 4 for perturbations near the right end.

Lemma 9 (Cost of small perturbations) Let B ⊆ [0, 1]2 be a measurable region of
area |B|. Suppose that 	ε = εα	 on B with ε > 0, α > 0 and 	 : [0, 1]2 → [0,∞).
Then the contribution of B to the cost Ir (h) is

∫

B
dx dy

[
R(1 | r(x, y)) − R(1 − εα	(x, y) | r(x, y))

]

= [1 + o(1)]
∫

B
εα	 log

(
1 − r

εα	r

)
, ε ↓ 0. (3.69)

Proof The proof is the same as that of Lemma 8, with the observation that

R(1 | r) − R(1 − εα	 | r) = [1 + o(1)] εα	 log

(
1 − r

εα	r

)
, ε ↓ 0. (3.70)

��
Following the argument in Sect. 3.2, we can approximate the cost function by using

block graphons. We see

N∑

i, j=1

∫

Bi, j
dx dy 	ε,N (x, y) =

N∑

i, j=1

1

N 2	εN ,i j = ε [1 + o(1)], ε ↓ 0. (3.71)

The block constraint in (3.71) implies that the sum over each block must be of order
ε. Hence

	εN ,i j = O(ε), ε ↓ 0 ∀ (i, j). (3.72)
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There are two cases to distinguish: all blocks contribute to the constraint with a term of
order ε (balanced perturbation), or some of the blocks contribute to the constraint with
a term of order ε and somewith o(ε). Analogously to the analysis in Sect. 3.2, by using
Lemma 9 we can compute the total cost that different types of block perturbations pro-
duce. This again shows that the optimal perturbations are the balanced perturbations,
consisting of perturbations of order ε on every block. As N → ∞, a sequence of
such perturbations converges to a perturbation 	ε = ε	 with 	 : [0, 1]2 → [0,∞),
which we analyse next.

Lemma 10 (Balanced perturbations) Suppose that 	ε = ε	 with 	 : [0, 1]2 →
[0,∞). Then

δr (ε) = [1 + O(ε1/2)]
{
ε + ε log

(
N 1
r

ε

)}
+ O(ε2), ε ↓ 0. (3.73)

Proof By (3.61) and (3.65),

δr (ε) = sup
	 : [0,1]2→[0,∞)

1−ε	∈W∫
[0,1]2 	=1+O(ε1/2)

[
Ir (1) − Ir (1 − ε	)

]

= sup
	 : [0,1]2→[0,∞)

1−ε	∈W∫
[0,1]2 	=1+O(ε1/2)

∫

[0,1]2

[
ε	 log

(
1 − ε	

ε	

1 − r

r

)
− log(1 − ε	)

]
.
(3.74)

The integral in (3.74) equals

∫

[0,1]2

[
ε	 log

(
1 − r

ε	r

)
− (1 − ε	) log(1 − ε	)

]

=
∫

[0,1]2
ε	 log

(
1 − r

ε	r

)
+ ε

∫

[0,1]2
	 + O(ε2). (3.75)

Hence

δr (ε) = [1 + O(ε1/2)]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε + sup
	 : [0,1]2→[0,∞)∫

[0,1]2 	=1

∫

[0,1]2
ε	 log

(
1 − r

ε	r

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ O(ε2),

(3.76)

where the prefactor arises after we scale	 by 1+O(ε1/2) in order to force
∫
[0,1]2 	 =

1. Note that the constraint under the supremum no longer depends on ε.
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We can solve the optimisation problem by applying the method of Lagrange mul-
tipliers. To that end we define the Lagrangian

LAr (	) =
∫

[0,1]2
ε	 log

(
1 − r

ε	r

)
+ Ar

∫

[0,1]2
	, (3.77)

where Ar is a Langrange multiplier. Since
∫
[0,1]2 log

1−r
r = ∫

[0,1]2 log
1−rφ

rφ for any
Lebesgue measure-preserving bijective map φ ∈ M, we get that the minimiser (in the
space of functions from [0, 1]2 → R) is of the form

	φ = e− ε−Ar
ε

1

ε

1 − rφ

rφ
, φ ∈ M. (3.78)

We pick Ar such that the constraint
∫
[0,1]2 	 = 1 is satisfied. This gives

	φ = 1

N 1
r

1 − rφ

rφ
, φ ∈ M, (3.79)

with N 1
r = ∫[0,1]2 1−r

r . Hence the supremum in (3.76) becomes

sup
φ∈M

∫

[0,1]2
ε	φ log

(
1 − r

ε	φr

)
. (3.80)

We have

∫

[0,1]2
ε	φ log

(
1 − r

ε	φr

)
= ε log

(
N 1
r

ε

)
− ε

∫

[0,1]2
	φ log

(
	φ

	

)
, (3.81)

where we use that
∫
[0,1]2 	φ = 1. Since the function u �→ s(u) = u log u is strictly

convex on [0,∞), Jensen’s inequality gives

∫

[0,1]2
	φ log

(
	φ

	

)
=
∫

[0,1]2
	 s

(
	φ

	

)
≥ s

(∫

[0,1]2
	

	φ

	

)

= s

(∫

[0,1]2
	φ

)
= s(1) = 0, (3.82)

where we use that
∫
[0,1]2 	 = 1. Equality holds if and only if 	 = 	φ almost

everywhere on [0, 1]2, which amounts to φ = Id. Hence the supremum in (3.80) is
uniquely attained at φ = Id and equals

∫

[0,1]2
ε

1

N 1
r

(1 − r)

r
log

(
N 1
r

ε

)
= ε log

(
N 1
r

ε

)
. (3.83)

Consequently, (3.76) gives (3.73). ��
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Lemma 10 settles the claim in Theorem 4(ii). Since we have shown that a balanced
perturbation is optimal, (3.79) settles the claim in Theorem 5(ii).

3.4 Perturbation Near the Left End

Take β = ε and consider a graphon of the form h = 	ε , where	ε : [0, 1]2 → [0,∞)

represents a symmetric and bounded perturbation of the constant graphon h ≡ 0. We
compare

ψr (ε) = inf
	ε : [0,1]2→[0,∞)

	ε∈W‖T	ε ‖=ε

Ir (	ε) (3.84)

with

ψr (0) = Ir (0) (3.85)

by computing the difference

δr (ε) = ψr (ε) − ψr (0) (3.86)

and studying its behaviour as ε → 0.
We claim that analysing (3.86) is equivalent to analysing

δr̂ (ε) = φr̂ (1) − φr̂ (1 − ε), (3.87)

where r̂ is the reflection of r defined as

r̂(x, y) = 1 − r(x, y), x, y ∈ [0, 1]. (3.88)

Indeed,

Ir (0) =
∫

[0,1]2
R(0 | r) =

∫

[0,1]2
log

(
1

1 − r

)
=
∫

[0,1]2
R(1 | r̂) = Ir̂ (1) (3.89)

and

Ir (	ε) =
∫

[0,1]2
R(	ε | r) =

∫

[0,1]2

[
	ε log

(
	ε

r

)
+ (1 − 	ε) log

(
1 − 	ε

1 − r

)]

=
∫

[0,1]2
R(1 − 	ε | r̂) = Ir̂ (1 − 	ε). (3.90)

We can therefore use the results in Sect. 3.3. From Lemma 10 we know that

δr̂ (ε) = [1 + O(ε1/2)]
{

ε + ε log

(
N 1
r̂

ε

)}

+ O(ε2), ε ↓ 0, (3.91)
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and hence we obtain

δr (ε) = [1 + O(ε1/2)]
{
ε + ε log

(
N 0
r

ε

)}
+ O(ε2), ε ↓ 0. (3.92)

Consequently, the optimal perturbation is given by the balanced perturbation	ε = ε	

with

	 = 1

N 0
r

r

1 − r
, (3.93)

with N 0
r = ∫[0,1]2 r

1−r .
The scaling in (3.92) settles the claim in Theorem 4(iii). Since we have shown that

a balanced perturbation is optimal, (3.93) settles the claim in Theorem 5(iii).
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A Appendix

Lemma 11 (Finite-rank expansion) Consider a graphon h̄ ∈ W such that

h̄(x, y) =
k∑

i=1

θi ν̄i (x)ν̄i (y), x, y ∈ [0, 1], (A.1)

for some k ∈ N, where θ1 > θ2 ≥ . . . ≥ θk ≥ 0 and {ν̄1, ν̄2, . . . , ν̄k} is an orthonormal
set in L2([0, 1]). Then there exists an ε > 0 such that, for any h ∈ W satisfying
‖Th−h̄‖ < min(ε, ‖Th‖), the operator norm ‖Th‖ solves the equation

‖Th‖ = λk

⎛

⎝
∑

n∈N0

‖Th‖−nFn(h, h̄)

⎞

⎠ , (A.2)

where λk(M) is the largest eigenvalue of a k × k Hermitian matrix M, and Fn(h, h̄)

is a k × k matrix whose (i, j)-th entry is

√
θiθ j

∫

[0,1]2
dx dy ν̄i (x)(h − h̄)n(x, y)ν̄ j (y) (A.3)

for 1 ≤ i, j ≤ k and n ∈ N0.

Proof Put μ = ‖Th‖, and let u be the eigenfunction of h corresponding to μ, i.e.,

Thu = μu. (A.4)
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Put g = h − h̄ and rewrite the above as

(μ − Tg)u = Th̄u. (A.5)

The assumption ‖Th−h̄‖ < ‖Th‖ implies that μ − Tg is invertible, which allows us to
write

u = (μ − Tg)
−1Th̄u =

k∑

j=1

θ j 〈ν̄ j , u〉(μ − Tg)
−1ν̄ j . (A.6)

For fixed 1 ≤ i ≤ k, it follows that

〈ν̄i , u〉 =
k∑

j=1

θ j 〈ν̄ j , u〉〈ν̄i , (μ − Tg)
−1ν̄ j 〉. (A.7)

Multiplying both sides by μ
√

θ i , we get

Mv = μv, (A.8)

where M = (Mi j )1≤i, j≤k is the k × k real symmetric matrix with elements

Mi j = √θiθ j

〈

ν̄i ,

(
1 − Tg

μ

)−1

ν̄ j

〉

, 1 ≤ i, j ≤ k, (A.9)

and

v =
[√

θ1〈ν̄1, u〉, . . . ,√θk〈ν̄k, u〉
]′

. (A.10)

The first entry of v is non-zero for ε small with ‖Tg‖ < ε. Thus, (A.8) means that μ

is an eigenvalue of M . By studying the diagonal entries of M , we can shown with the
help of the Gershgorin circle theorem that, for small ‖Tg‖,

μ = λk(M). (A.11)

With the help of the observation

Mi j = √θiθ j

∑

n∈N0

μ−n〈ν̄i , gn ν̄ j 〉, 1 ≤ i, j ≤ k, (A.12)

i.e.,

M =
∑

n∈N0

μ−nFn(h, h̄), (A.13)

this completes the proof. ��
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