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A B S T R A C T   

With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of 
nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets 
generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by 
means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with 
nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but signifi
cantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, 
Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was 
reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles 
treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation 
ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Be
sides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most 
important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of 
microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning 
model and metadata analysis to investigate the relationship between the properties of nanoparticles and the 
hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles 
for which the impacts on soil microbiota are minimized.   

1. Introduction 

Nanoparticles (NPs) are becoming extensively used additives in 
modern intensive agriculture. They are widely used in various applica
tions, including the improvement of the quality of saline-alkali soil 
(Guerriero et al., 2021), the maintenance of vegetables fresh (Fayaz 
et al., 2009), and the design of new agricultural nanopesticides (You 
et al., 2018). The unintended release of NPs may lead to their accu
mulation in soil and pose potential ecological and human health risks 

(Peng et al., 2017). The production of NPs in the USA was estimated to 
be 2.8–20 tons per year in 2011 and will reach 2.5 million tons per year 
by 2025 (Hendren et al., 2011; McShane et al., 2012), and the soil is 
considered to be the sink of these NPs (Sun et al., 2015). Soil bacteria 
helps crops grow by improving soil structure, and recycling of soil nu
trients (Bahram et al., 2018; Guo et al., 2020; Qu et al., 2020; Ray et al., 
2020; Zhang et al., 2022). Therefore, the stability of soil microbial 
community is one of the key factors in the maintenance of the soil 
ecosystem functions (Delgado-Baquerizo et al., 2016). For example, 
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altered microbial community would interfere with the biosynthesis of 
nutrients from the soil pool and the degradation of organic matter into 
inorganic matter (Lehmann et al., 2017). 

The negative influence of NPs on soil microbiota is related to the 
composition, concentration, type, exposure time, and particle size of 
NPs (Zhang et al., 2020b). NPs have detrimental effects on microbial 
activity, abundance, and diversity (Simonin and Richaume, 2015) and 
alter ecosystem functioning (Simonin et al., 2018). The microbiota of 
soils exposed by NPs have been characterized by high-throughput 
sequencing (HTS) methods to show microbial taxonomic and func
tional diversity (Nilsson et al., 2019). Development of HTS methods help 
to reveal the effects of NPs on the structure and stability of the soil 
microbial community (Zhang et al., 2020a). Open-access HTS data from 
independent studies and the development of analytical workflows pro
vide a new opportunity to evaluate global microbial patterns (Ramirez 
et al., 2018; Wright et al., 2021). 

However, independent studies have occasionally reported contrast
ing results due to the high heterogeneity of soils from different localities, 
NPs properties, and variable experimental conditions, which result in a 
lack of a consensus concerning microbiota responses to NPs treatment 
(Ben-Moshe et al., 2013; Fan et al., 2018; Zhang et al., 2018). To shed 
light into these responses, machine learning, can become a key tool for 
NPs properties identification (Wright et al., 2021; Yuan et al., 2020; Ban 
et al., 2020; Ahneman et al., 2018; Oh et al., 2016). In fact, machine 
learning combined with HTS metadata analysis have already been 
applied to analyze the characteristics of the soil microbiome and pre
dicting the occurrence of Fusarium wilt (Yuan et al., 2020). 

With the aim of identifying the main factors associated with the 
ecological impact of NPs overcoming the high heterogeneity of data in 
independent experiments, we integrated the available raw HTS se
quences data for microbiome nanotoxicology and re-analyzed the data 
using machine learning. Our aims were to: (1) identify the common 
effects of NP treatment on soil microbial community diversity, compo
sition and function; (2) determine how NPs affect the abundance of 
beneficial and pathogenic bacteria in soils; and (3) build a predictive 
model to correlate NPs properties with the stability of soil microbial 
community. Accurately predicting the contribution of NP characteristics 
on soil and agricultural ecosystem variation can guide the wide use of 

eco-friendly NPs. 

2. Material and methods 

2.1. Data collection and description 

The data of microbial high-throughput sequencing (HTS) in NPs 
treated and untreated soils were collected by searching the keywords 
“NPs and soil microbial”, “NPs and soil HTS”, “nanomaterials and soil 
bacterial” in Google Scholar and the National Center for Biotechnology 
Information (NCBI) SRA database. After filtering the sources of meta
data that did not contain basic information, we grouped the data into the 
categories of nano-treated or -untreated soils. Since the bioproject 
accession numbers of the HTS data results of most microbial community 
studies were not uploaded, we collected approximately 63 studies 
matching the keywords, of which only 18 data sets could be downloaded 
from public databases (Table S1). We obtained 632 microbial HTS 
samples from 10 countries around the globe (Fig. 1). After removing 
samples of incomplete, low-abundance sequences, and containing 
chlorophyll and mitochondria, and then rarefied according to the min
imum frequency, there were 365 high quality bacterial samples left. 
Based on the data preprocessing presented above, we acquired 13 in
dependent studies with 125 controls and 240 NPs-treated samples. The 
metadata were classified as from “nano-treated” and “nano-untreated” 
after carefully read the full texts of each paper. We defined nano-treated 
group as the soil exposed by NPs, and nano-untreated group as the soil 
without the NPs treatment. 

2.2. Data processing 

For each independent study, the HTS data were processed using 
QIIME2 (Version 2020.8) core distribution, following the standard 
workflows (Bolyen et al., 2019). Raw data from each of the studies were 
imported into QIIME2, and adaptor and primer sequences were then 
removed from the reads using Cutadapt (Martin, 2011). The latter step 
was omitted for samples where the sequences had already been 
removed. Then, we used Dada2 to join paired end reads, denoising se
quences as well as resolving amplicon sequence variants (ASVs) under 

Fig. 1. Overview of sample collection. The geographic region information about sampling sites, and the number of independent studies and samples in this study 
were displayed. A dot represents a single independent experiment. 
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default quality thresholds (Callahan et al., 2016). Dada2 was run using 
trim lengths determined by the read quality for each study. The samples 
with low reverse read qualities, which caused too few reads remaining 
after running Dada2, were only used the forward reads to gain more 
reads after Dada2. Feature tables and the representative sequence of 
ASVs were acquired, and then merged by the QIIME2’s merge plugin. All 
feature sequences were annotated with the SILVA v138 database of 
full-length 16S rRNA gene sequences for subsequent analysis. The 
workflow of this study is shown in Fig. S1. To eliminate PCR primer 
deviation and over amplification, we filtered the ASVs table according to 
the following rules: (1) the samples were rarefied to 2000 reads, and 
those with <2000 reads were removed; (2) sequences annotated to 
mitochondria and chloroplasts or that could not be classified at the 
kingdom level were removed; and (3) ASVs with a maximum number of 

20 reads (1% total reads in each sample) were removed. Feature tables 
for each taxonomic level were then generated, and the data were con
verted to relative abundance. 

2.3. PICRUSt2 for prediction of metagenome functions 

Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt2) is a software package suited for pre
dicting functional abundances based on marker gene sequences (Doug
las et al., 2020). Function prediction on the merged ASVs table and 
sequences was applied. The annotation and classification of the func
tional pathways were acquired through the database MetaCyc 
(https://metacyc.org) (Caspi et al., 2020). 

Fig. 2. Effects of the nanoparticles on diversity and structure of microbial community. (a) Alpha diversity of soil bacterial community. The Shannon and Richness 
indices were calculated with all amplicon sequence variants (ASVs) merged from 365 samples. (b) Principal coordinates analysis (PCoA) with Bray–Curtis dissim
ilarity performed on the taxonomic (at the genus level) for nano-untreated and nano-treated group. Statstical significance was evaluated via PERMANOVA test. (c) 
Relative abundance of the 10 most abundant phyla in nano-untreated and nano-treated group. (d) Venn diagram of shared and unique genus numbers observed in 
nano-untreated and nano-treated soil. 
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2.4. Construction of a predictive random forest model 

We developed a regression model established by the random forest 
(RF) algorithm. The established RF model not only took the properties 
related to NPs as independent variables, but also the properties related 
to the soil, with a total of 21 input variables (Table. S2). The dependent 
variables of the RF model were the values of Richness and Shannon of 
the soil microbial community previously analyzed. To ensure the pre
diction accuracy and applicability, we utilized the 10-fold cross vali
dation method, R2 (coefficient) and RMSE (root mean square error) to 
evaluate the model performance. 

The imported dataset was partitioned into 10 folds, in which 70% of 
the training data were used to build the regression model, and the 
remaining 30% were used for prediction using the trained model. Ten- 
fold cross-validation with five repeats was used to verify the regres
sion models, and we selected the model with the highest R2 value for 
subsequent analysis. To estimate the importance of the different prop
erties, the increase of node purity of each model was calculated by the R 
package ‘RandomForest’. The construction and prediction performance 
of the random forest regression model with the verification of the 10- 
fold cross-validation method (n_estimators = 150, max_leaf_nodes =
10) were performed by the scikit-learn (Version 0.24.0) library in the 
python language (Python 3.9). 

2.5. Statistical methods 

The alpha diversity index of Shannon and Richness were calculated 
using the R vegan and picante package (version 4.0.3). Principal co- 
ordinates analysis (PCoA) plots were generated from the Bray-Curtis 
distance created using the R package ggplot2 and vegan (version 
4.0.3). Permutational multivariate analysis of variance (PERMANOVA) 
(ADONIS, transformed data by Bray-Curtis, permutation = 999) was 
used to determine if beta diversity differed between NPs treated and 
untreated groups. A hierarchical bubble chart, sunburst chart and world 
map were drawn by R package ggplot2, ggmap, ggraph and igraph 
(version 4.0.3). Opportunistic human pathogens were searched from an 
online database (https://www.bode-science-center.com/center/rele 
vant-pathogens-from-a-z.html). All bar charts were designed by the 
software Prism 5.0. The graphical abstract was created with BioRender. 
com. The remaining results are presented as the means ± standard er
rors (SEs). Significant differences (p < 0.05) were evaluated by Kruskal- 
Wallis test using the R function kruskal. test (version 4.0.3). 

Fig. 3. Profile of beneficial and pathogenic soil bacteria following treatment of NPs. (a), (b), (c) and (d) Differentially beneficial bacteria at genus level after NPs 
treatment. (e) Differentially pathogenic bacterium at genus level after NPs treatment. The significant difference evaluated by Kruskal-Wallis test (p < 0.05). 
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3. Results 

3.1. Diversity and taxonomic difference after NPs treatment 

Alpha diversity indices (Richness and Shannon) of soil microbial 
community were not significantly different between the NPs-treated and 
NPs-free soils (Fig. 2a), while principal coordinates analysis (PCoA) of 
Bray–Curtis dissimilarity with multivariate permutational analysis of 
variance (PERMANOVA) revealed that the structure of the microbial 
community significantly differed (Fig. 2b, R2 = 0.010, p < 0.001; 
ADONIS). At the phylum level, the soil microbial community in all 
samples were mainly composed of Proteobacteria, Actinobacteriota, Bac
teroidetes, Acidobacteriota etc. (Fig. 2c). Among these phyla, Proteobac
teria in NPs treatment increased significantly by 29%, while 
Acidobacteriota, Verrucomicrobiota, and Planctomycetota decreased by 31, 
60, and 43%, respectively (Fig. S2). The Venn diagram illustrated that 
the microbial community composition of the control and NPs-treated 
groups shared most of the bacterial taxa, with more unique bacterial 
taxa in the NPs-treated group (219) than in the untreated group (114) 
(Fig. 2d). In conclusion, our results indicated that NPs treatment altered 
the microbial community composition and structure. 

3.2. The profile of beneficial and pathogenic soil bacteria after NPs 
treatment 

We retrieved 33 plant growth-promoting and soil disease suppres
sion bacteria, as well as 26 pathogenic bacteria related to human and 
soil-borne bacteria pathogens. NPs treatment decreased the abundances 
of Methylophilus, Dyella and Streptomyces, which are bacteria that pro
mote plant growth, and increased the abundance of symbiotic Bur
kholderia-Caballeronia-Paraburkholderia (Fig. 3a–d). NPs treatment also 
increased the abundance of one pathogenic bacterium, Sphingomonas 
(Fig. 3e). 

3.3. Functional traits of bacteria after NPs treatment 

Most functional pathways were shared between the NPs-treated and 

untreated groups, but 189 out of a total of 415 functional pathways were 
different between the two groups (Fig. S3; Table. S3). These 189 
significantly different functional pathways belong to four major cate
gories: Biosynthesis, Degradation, Macromolecule modification, Gen
eration of precursor metabolites and energy (Fig. 4), and 91 of them 
were down-regulated, whereas 98 pathways were up-regulated in the 
NPs treatment. In the superclass Biosynthesis, although there were a few 
up-regulated functional pathways, especially in Cofactor, Carrier, and 
Vitamin Biosynthesis, most functional pathways were down-regulated. 
On the other hand, most pathways in the superclass Degradation were 
up-regulated, such as the subclasses Aromatic Compound Degradation, 
Amino Acid Degradation, Carboxylate Degradation, Amine and Poly
amine Degradation (Fig. 4). 

3.4. Development of models to connect NPs characteristics and microbial 
community traits 

The models for the 10-fold cross validation displayed a robust per
formance (consistently high R2, mostly >70%) with values of R2 mostly 
ranging between 69 and 91% (Fig. 5a) revealing a proper prediction of 
the microbial diversity (Fig. S4). Based on the models constructed, we 
analyzed the importance in the characteristics of the models. Regardless 
of whether it was the model for predicting Richness or the model for 
predicting the value of the Shannon index, the most important traits 
were related to heterogeneous soil characteristics, such as longitude, soil 
sampling depth, and amplification area (Fig. 5b and c). Despite het
erogeneities, the exposure time of the NPs had the greatest impact on the 
soil microbial community, followed by the extent of aggregation of the 
NPs (Fig. 5b and c). To explore the specific variation of the most 
important NPs property, we carried out a two-dimensional scatter dia
gram analysis of the NPs exposure time and the value of the Richness and 
Shannon indices of the microbial community. No matter the exposure 
time, the Richness of the microbial community decreased after NPs 
treatment (Fig. 5d). We separated exposure time into three phases, with 
the acute group treated for no more than three days, the subacute group 
treated in between three to 90 days, and the chronic group treated for 
more than 90 days. We found that acute NPs treatment increased the 

Fig. 4. Functional pathways of the microbial com
munity altered after NPs treatment. The different 
colors of the outermost layer represented different 
categories of metabolic pathway functions. The inner 
circles represented the functional pathways at BioCyc 
ID level. Pathways showing significant difference (p 
< 0.05) between the nano-untreated and nano- 
treated group are colored according to direction of 
change by treatment. The size of circles represented 
the change-fold of the functional pathway abundance 
after NPs treatment. The change-fold represented the 
ratio of nano-treated to nano-untreated functional 
pathways. (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
Web version of this article.)   
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Shannon value, but subacute and chronic exposure decreased the 
Shannon value (Fig. 5d). Three beneficial bacteria were all down- 
regulated significantly after NPs treatment, including Dyella, Methyl
ophilus, and Streptomyces. (Fig. 5e). The abundance of Burkholderia- 
Caballeronia-Paraburkholderia increased after long-term exposure 
(Fig. 5e). However, the abundance of the human pathogen Sphingomonas 
increased under both subacute and chronic exposure conditions 
(Fig. 5e). 

4. Discussion 

We merged and normalized the HTS data sets of independent ex
periments to avoid the deviation of heterogeneous factors in traditional 
experiments such as sequencing depth, primers, and amplification area, 

and analyzed the soil microbial characteristics and potential functional 
features to figure out clearly and uniformly the impact of NPs on soil 
microbial community diversity, composition, and functions. The results 
of this analysis show that the treatment of NPs can cause a decrease in 
biomass and reduce bacterial diversity (Chen et al., 2019; Cocozza et al., 
2019). This finding is consistent with previous results (Fig. 2a, b and 2c). 
Proteobacteria, Acidobacteriota, Verrucomicrobia, and Planctomycetota 
were four dominant bacterial phyla in soil (Yang et al., 2019). NPs 
treatment enriched Proteobacteria, including many genera of pathogenic 
bacteria in this phylum (Shin et al., 2015). Several beneficial soil phyla 
were down-regulated after NPs treatment, such as Acidobacteriota, 
which is a driver of ecosystem processes by regulating biogeochemical 
cycles (Kalam et al., 2020), Verrucomicrobia, which is one of the most 
indispensable phyla that affect soil multifunctional resistance in the soil 

Fig. 5. Model building by Random Forest for connection between NPs characteristics and microbial community traits. (a) The values of R2 in validation model 
evaluated by tenfold cross-validation. (b) and (c) The contribution of NPs characteristics of Richness and Shannon models on microbial traits. Orange represented the 
heterogeneity factors, and green represented the NPs factors. The larger the arc of the circle, the more important the factors. The letter abbreviations represent the 
following: A, Bulk group; B, NPs type; C, NPs category; D, Dispersion medium; E, NPs existence state; F, NPs shape; G, NPs size; H, Zeta potential; I, Dispersion 
medium pH; J, Exposure time; K, Temperature; L, Extent of agglomeration; M, Crystal structure; N, NPs concentration; O, Soil type; P, Rhizosphere microbiota; Q, Soil 
pH; R, Soil depth; S, Longitude; T, Latitude; X, Amplicon area. (d) Correlation analysis of the most important NPs factor and microbial diversity. The green dots 
indicate the change-fold of Richness, and the yellow dots mean the change-fold of Shannon. (e) Correlation analysis of the most important NPs factor and beneficial 
and pathogenic bacteria. The green dots indicate the change-fold of beneficial bacteria, and the yellow dots mean the change-fold of pathogenic bacterium. The 
shapes of the dots represent different bacteria. The change-fold represents the ratio of the value of nano-treated to nano-untreated. (For interpretation of the ref
erences to color in this figure legend, the reader is referred to the Web version of this article.) 
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microbial community (Wiegand et al., 2018), and Planctomycetota, 
which plays an important role in global carbon and nitrogen cycles 
(Yang et al., 2021). The decrease of beneficial bacterial genera of Dyella, 
Methylophilus, Streptomyces could decrease resistance of plants to path
ogenic microbiota, and weaken exogenous pollutants degradation in soil 
(Ali et al., 2021; Tapia-García et al., 2020; You et al., 2021). Therefore, 
these negative effects of NPs contamination on soil-borne beneficial 
bacteria aggravated potential risks to soil ecosystem health. The in
crease of the human pathogenic abundance raised the potential risk for 
human health (Fang et al., 2018). 

The soil microbiota is a crucial driver of global nutrient cycles and 
plant growth regulation (Bahram et al., 2018; Finkel et al., 2020). Ac
curate functional prediction from our merged metadata sets by the 
PICRUSt2 software showed that degradation pathways in NPs treatment 
were generally up-regulated, while several biosynthetic pathways were 
generally down-regulated (Fig. 4). This implies that the ability of the soil 
microbiota to synthesize antibiotics, siderophores, and hormones 
related to plant growth, was in all cases weakened (Hibbing et al., 2010). 
Soil microbiota submitted to NPs treatment increased the degradation of 
organic nutrients enhancing the tolerance to contamination (Kusi et al., 
2020). 

A complex set of data was used to obtain meaningful and regular 
patterns and predict various biological responses through machine 
learning (Ahneman et al., 2018). The non-linear regression models ob
tained by applying a Random Forest (RF) algorithm were built to reveal 
the nano-characteristics that contributed most to variations in the di
versity of the soil microbial community. Compared with logistic 
regression, support vector machines, and other machine learning algo
rithms, the RF model displayed robust predictive performance for 
discrete as well as continuous data (Yuan et al., 2020). The RF model 
provided the possibility to explore the most important properties of NPs 
that alter the stability of soil microbial community. Our developed RF 
models had good predictive performance with high R2 (mostly>70%). 
From these public data, we determined that the geographic location of 
the sampling site, soil type, soil acidity and alkalinity, and other het
erogeneous characteristics of the soil microbiota, have greater impact on 
soil microbial diversity than NPs properties themselves. Notably, after 
removing other soil heterogeneity factors, the exposure time of NPs was 
the most crucial for the Richness and Shannon models we constructed, 
implicating that NPs displayed long-term impacts on soil microbiota 
(Moll et al., 2017). Although in many independent experimental kinds of 
research, the concentration and type of NPs were considered to be 
non-negligible traits affecting soil microbial community, the profile of 
NPs properties by machine learning provides a baseline for using 
eco-friendly NPs. The potential adverse effects of NPs to the soil 
ecosystem can be minimized by adjusting and restricting the exposure 
time of NPs in soil. With the available heterogeneous data in hand, the 
RF model can be applied to explore unknown and complex relationships 
hidden in various quantitative and qualitative factors (Yu et al., 2021). 
However, the innovative exploration of metadata analysis combined 
with machine learning still has certain limitations. Due to the lack of 
standardization workflow of the uploaded HTS data sets, and some 
low-quality data sets, only 365 samples were available to construct RF 
models in this study. Although our models displayed good performance, 
they had certain limitations in explaining the impacts of NPs properties 
on the diversity and community of the soil microbiota. 

5. Conclusions 

Our results indicate that NPs exposure altered the structure of the soil 
microbial community in the studies included in this modelling exercise. 
The decrease of the abundance of bacteria beneficial to plants increased 
the risk of diseases of animals and plants in the soil. NPs treatment 
weakens the biosynthesis ability and strengthens the degradation ability 
of soil microbiota, thus affecting of soil ecosystemic functioning. Long- 
term NPs exposure down regulated the diversity of microbial 

community and the abundance of beneficial bacteria. This study pro
vided an accurate predictive model to reveal the properties of NPs that 
determine soil microbial diversity and soil microbial functioning. The 
model provides guidance for the application of NPs in industrial, agri
cultural, manufacturing, and other fields to minimize environmental 
risks. 
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