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The assessment of microbiome biodiversity is the most common application of metagenomics. While 16S se-
quencing remains standard procedure for taxonomic profiling of metagenomic data, a growing number of studies
have clearly demonstrated biases associated with this method. By using Whole Genome Shotgun sequencing
(WGS) metagenomics, most of the known restrictions associated with 16S data are alleviated. However, due to
the computationally intensive data analyses and higher sequencing costs, WGS based metagenomics remains a
less popular option. Selecting the experiment type that provides a comprehensive, yet manageable amount of
information is a challenge encountered in many metagenomics studies. In this work, we created a series of
artificial bacterial mixes, each with a different distribution of skin-associated microbial species. These mixes
were used to estimate the resolution of two different metagenomic experiments - 16S and WGS - and to evaluate
several different bioinformatics approaches for taxonomic read classification. In all test cases, WGS approaches
provide much more accurate results, in terms of taxa prediction and abundance estimation, in comparison to
those of 16S. Furthermore, we demonstrate that a 16S dataset, analysed using different state of the art tech-
niques and reference databases, can produce widely different results. In light of the fact that most forensic
metagenomic analysis are still performed using 16S data, our results are especially important.

abundance distributions of inhabitants.
The most common technique to investigate microbiome composi-

1. Introduction

In recent years, metagenomics - the genomic analysis of micro-
organisms by direct extraction of DNA from an environmental sample —
has become one of the most rapidly developing branches of micro-
biology [1-3]. The interest in metagenomics has grown drastically due
to the expanding number of studies showing that the vast majority of
microorganisms cannot be grown under laboratory conditions [4-7].
The possibility of culture-free investigation of microbial biodiversity
directly from an environmental habitat led to many studies benefiting a
wide range of fields such as human health [8-12], ecology [13,14],
agriculture [15-17], forensics [18,19], food and drugs production
[20-22]. Taxonomic profiling of metagenomic data is a key step during
the data analysis, allowing researchers to understand the structure of a
microbiome and to estimate relative abundances of the organisms living
in it. The main goal of this study is to compare different data types and
methods for taxonomic profiling of metagenomic data sets with known
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tion is amplicon-based sequencing of the 16S rRNA gene [23,24]. This
relatively short (~1500 bp) gene is universal among bacteria and ar-
chaea [25,26]. There are in total nine hypervariable regions in the 16S
rRNA gene that provide phylogenetic signatures on different taxonomic
levels. Hypervariable regions are surrounded by highly conserved se-
quences, which are used for primer design. The analysis of 16S meta-
genomic datasets is usually performed in combination with one of
several curated databases that contain annotated sequences of the 16S
rRNA gene or its parts [27]. The most commonly used 16S-specific
databases are RDB [28,29], GreenGenes [30] and SILVA [31]. Analysis
of 16S data is now routine for metagenomic-associated projects, though
many studies demonstrated a number of biases associated with this type
of data that make the validity of this approach questionable. Several
reports stressed uneven coverage of microorganisms’ diversity spectrum
by common PCR primers for the 16S rRNA gene amplification [32-37].
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Second, the 16S rRNA gene does not have a correct phylogenetic re-
lationship within particular taxa [38,39]. The fact that bacteria and
archaea might carry different copy numbers of the 16S rRNA gene in
their genomes seriously influences a reliable abundance estimation
after analysis of 16S data [40]. Additionally, the choice of a specific
hypervariable region and the reference database for the subsequent
analysis requires a priori knowledge about the investigated meta-
genome. Lastly, 16S data cannot be used to investigate the metagenome
functional profile, nor does it provide any information about eukaryotic
or viral members of the microbial community. The applicability of 16S
data was shown for a set of forensic studies. For example, 16S data was
successfully used for body fluid recognition [41] or matching between
individuals’ skin datasets and touched objects [42,43]. The success of
such analyses, however, does not imply that a 16S-based analysis of all
metagenomic data is reliable (or possible).

Apart from 16S, there are other methods that use rRNA genes to
investigate microbial diversity. Among them are 23S, 5S, 12S and
various combinations [44-46]. Other methods like the IS-pro approach
use 16S-23S ribosomal interspace fragment lengths to analyse microbial
communities [47]. Although these methods are very suitable for some
specific tasks, they are not as widely applied as 16S. Several recent
studies are based on targeting other genes in addition to 16S in order to
determine the cell type of the forensic traces [48] or to perform skin
sample identification using only microbial targeting genes [49,50].
These studies also suggest that traditional 16S data is not always suf-
ficient for a meaningful metagenomic analysis of forensic traces.

In recent years, the number of metagenomic studies based on the
whole genome shotgun (WGS) sequencing data type has grown
[51-55]. Among the main reasons for this are advantages in sequencing
techniques allowing for the generation of sufficient number of high-
quality reads for the WGS datasets, and bioinformatics algorithms to
perform subsequent analysis of the big data. Though using WGS data
avoids the biases introduced by 168, it requires more computationally
intense analysis, as well as higher sequencing costs.

While many studies in the field of forensics are based on the analysis
of 16S data [56], “the capacity of WGS data of microbiomes to aid in
forensic investigations by connecting objects and environments to in-
dividuals has been poorly investigated” [57]. Presently, WGS experi-
ments are reserved for those studies for which analysis beyond the
taxonomical assignment is required: investigating the microbiomes’
functional profile, correlation between metagenome and host genome,
search for the possible virulent genes, etc. The vast majority of tax-
onomical annotations is still performed by using only 16S data, despite
all known disadvantages of the method [51]. One of the reasons for that
is the lack of a well-performed benchmark study, comparing 16S and
WGS data types. The vast majority of existing metagenomics bench-
marks are created in order to evaluate the accuracy of various meta-
genomic profiles and comprise either only 16S [58] or only WGS data
[59-66]. Existing benchmarks that can be used to compare 16S and
WGS data types are in-silico created and based on a random set of
bacterial species, lacking the information about whether or not the
selected set of organisms might live together in the same environment
[67]. One of the main goals of this study is the creation of a set of
benchmarks allowing to compare the 16S and WGS data types using a
set of in-vitro DNA mixes of bacteria species inhabiting skin.

Over the last decade, the number of different techniques for meta-
genomics data analysis has grown remarkably. The tools used for per-
forming the taxonomical annotation, can be split into several groups
based on the following criteria: strategy for reads assignment (align-
ment or matching based on the k-mers or sequences signatures); the
database against which the search is performed; the proportion of reads
participating in the profiling (all reads, only one read per read group,
only reads with particular features).

To investigate which type of metagenomic data is preferable for
accurate taxonomic annotation, as well as to test which method of reads
assignment yields more precise output, we created a series of bacterial
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mixes with known content. Each metagenomic mix incorporated 14-15
bacterial species belonging to 7 distinct bacterial genera. Each mix had
a distinct distribution of the species abundances. For the analysis we
selected two popular tools: Centrifuge [68] and MG-RAST [69]. These
allow analysis of amplicon and WGS sequencing data and both perform
the metagenome profiling by a comparison of sequencing data to a
reference database. However, the strategies for metagenome profiling
they exploit are different.

We did not include other popular tools for metagenomic analysis in
this study as they either have a similar analysis strategy as the tools
described above or are designed only for WGS or amplicon data ana-
lysis. In many studies, QIIME [70], objectively the most popular tool for
amplicon data analysis, was shown to perform with the same accuracy
as the MG-RAST pipeline for 16S rRNA sequencing data [71].

2. Materials and methods
2.1. DNA extraction and concentration measurement

Laboratory pure cultures of 15 bacterial species that frequently in-
habit human skin (Table 2) were grown with gentle shaking overnight
at 37°C. Genomic DNA was isolated with the Easy-DNA™ gDNA Pur-
ification Kit (Invitrogen™ Thermo Fisher Scientific) using the standard
protocol with ethanol precipitation [72]. RNA contamination was re-
moved using RNase A (Roche) and the DNA was stored at 4°C. DNA
concentrations were measured with the Qubit 3.1 Fluorometer (In-
vitrogen™).

2.2. Metagenomic mixes creation

Four bacterial mixes with known genome abundances were created
for this research. In order to achieve the desired species abundances,
the estimated genome size and the measured DNA concentration for
each bacteria were used. One mix was created to have a uniform- and
other three mixes an exponential (A = 1/6, A =1/2 and A = 5/6)
distribution of species abundances. From here on, these mixes are re-
ferred to as EQ, EXP16, EXP12 and EXP56 respectively. Due to tech-
nical reasons, Corynebacterium jeikeium was included only in EQ. The
remaining 14 species were used in all mixes.

2.3. WGS sequencing library creation

DNA shearing was performed using the Covaris S2 sonicator
(Covaris®) with the following settings: duty factor =10 %, in-
tensity = 2.5, cycles/burst = 200, temperature =6°C, total time,
sec = 45. Size selection was performed on the sheared products with
Ampure XP beads (Agencourt) to maintain insert size around 450 base
pairs.

Nlumina sequencing libraries were prepared by ligating custom
[lumina Truseq adapters with dual barcoding (10 base pairs) using the
KAPA Hyper Prep Library Preparation kit (KAPA Biosystems, Inc.). To
increase library yield, additional library amplification was performed
with KAPA HIFI HotStart ReadyMix using the PCR protocol described in
Table 1. To enable balanced pooling, sequencing libraries were quan-
tified in duplicate by real time PCR using the KAPA SYBR® FAST qPCR
kit. Quantification reactions were performed on a LightCycler® 480

Table 1

PCR protocol for the WGS library preparation.
Step Temperature, °C  Duration, min  Cycles
Initial denaturation 95 3 1, hold
Denaturation 98 0.25 Ranged from 3 to 8
Annealing 59 0.5 depending on sample
Extension 72 1.5
Final extension 72 5 1, hold
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Table 2
Bacterial species used for metagenomics mixes.
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Bacteria Number of contigs Accession number Reference length, Mb Total assembly length, Mb
Acinetobacter johnsonii ATCC 17969 206 NZ_CP010350.1 3.51 3.88
Acinetobacter woffii ATCC 15309 180 NA NA 3.44
Corynebacterium jeikeium ATCC 43734 234 NC_007164.1 2.46 2.6
Corynebacterium urealyticum ATCC 43042 929 NC_010545.1 2.37 2.35
Moraxella osloensis NCTC 10145 89 CP014234.1 2.43 2.58
Propionibacterium acnes ATCC 6919 26 NC_017550.1 2.49 2.55
Pseudomonas aeruginosa ATCC 10145 99 NC_002516.2 6.26 6.35
Staphylococcus aureus ATCC 29213 45 NZ_CP009361.1 2.78 2.72
Staphylococcus capitis ATCC 27840 52 NZ_CP007601.1 2.44 2.6
Staphylococcus epidermidis ATCC 12228 142 NC_004461.1 2.5 3.3
Staphylococcus haemolyticus ATCC 29970 770 NC_007168.1 2.69 2.86
Staphylococcus saprophyticus ATCC 15305 351 NC_007350.1 2.15 1.89
Streptococcus pyogenes ATCC 19615 65 NZ_CP008926.1 1.84 1.82
Staphylococcus xylosus ATCC 29971 97 NZ_CP008724.1 2.52 2.74
Streptococcus mitis LMG 14552 49 NC_013853.1 2.76 2.83

(Roche) using a dilution series of PhiX control library (Illumina) as
standard [72]. After pooling the libraries, the final pool was quantified
again using the same method to enable optimal loading of the flow cell.

2.4. 16S sequencing library creation

Previously published [73] Primers and PCR-protocol for the am-
plification of V3-V4 region of the 16S rRNA were used. Illumina se-
quencing libraries were prepared by ligating custom Illumina Truseq
adapters with dual barcoding (10 base pairs) using the KAPA Hyper
Prep Library Preparation kit (KAPA Biosystems, Inc.).

2.5. DNA sequencing

Sequencing of WGS and 16S libraries was performed on the
MiSeq®sequencer (Illumina) using v3 sequencing reagents according to
the manufacturer’s protocol with approximately 5 % of PhiX control.
This yielded one paired-end dataset with a read length of 299bp per
sample.

2.6. Bacterial genomes assembly

Sequencing reads for each bacterium were preprocessed using the
Flexiprep quality control pipeline [74].

Post-QC reads were assembled by SPAdes Genome Assembler [75]
with default settings.

2.7. Regression analysis

k-mer counting was performed using command count of the kPAL
toolkit [76] with k set to 11. In case of the absence of the alternative
DNA stand, k-mer profiles were balanced with balance command of the
kPAL toolkit. Linear regression was done using the sklearn.linear_ model
class of the scikit-learn package for Python [77] with the fit intercept
parameter set to “False”. The model training and prediction was per-
formed using 5-fold Cross Validation.

2.8. Analysis using Centrifuge

Centrifuge is a popular tool that enables a fast classification of reads
in a metagenomic dataset using comparison of k-mers derived from
each read to an indexed database. Centrifuge performs classification for
all reads in a metagenomic dataset independently using the following
algorithm. A fast and effective comparison is achieved using the
genome indexing technique, which is based on the Burrows-Wheeler
transform [78] and the Ferragina-Manzini index [79]. To perform
taxonomy assignment, Centrifuge requires an indexed database which

is based on the reference database and its associated phylogenetic tree.
A number of popular and regularly updated premade indexed databases
are available on the Centrifuge website [80]. It is also possible to create
a custom Centrifuge indexed database.

Metagenomic mixes datasets were subjected to a QC-check using
FastQC (version 0.11.7, [81]). Leftover adapter removal and quality
trimming of the reads was performed with cutadapt [82] (version 1.16,
using options —trim-n, -minimum-length = 50 and —quality-cutoff =
20). The number of reads before and after each aforementioned step
can be found in Supplementary Table S1. High quality pairs of over-
lapping reads were merged with FLASH [83] (version 1.2.11, using
option —max-overlap = 300). For the subsequent taxonomic classifica-
tion with Centrifuge, both merged reads and pairs of non-merged reads
were used.

Post-QC reads were analysed with Centrifuge (version 1-0-2-beta,
default settings). Three different reference databases were used for the
analysis: RefSeq database of complete genomes of bacteria and archaea
[84] (downloaded as premade in April 2018 Centrifuge index);
GreenGenes 16S sequences database (downloaded in June 2018) and
SILVA 16S sequences database (version SSURef Nr99, downloaded June
2018). In order to make the content of reference databases comparable,
sequences marked as eukaryotic were removed from SILVA database.
Results obtained by Centrifuge were analysed using the Pavian inter-
active browser [85] application.

2.9. Analysis using MG-RAST

MG-RAST is a web-based tool that allows the user to upload sequences
and their metadata and download the analysis results. The MG-RAST pi-
peline creates a metagenomic profile by extracting rRNA and protein
coding sequences. Gene calling is performed by the FragGeneScan [86]
algorithm, predicted protein sequences are clustered using UCLUST [87].
Potential rRNA genes are identified using BLAT [88] against a reduced
version of the SILVA database and clustered with UCLUST. From each
obtained cluster one representative sequence (the longest one) is chosen
for the comparison with a reference database (M5nr58 [89] for proteins
and combination of SILVA59, GreenGenes42 and RDP41 for rRNA ana-
lysis) using BLAT. All sequences from a particular cluster are assigned to
the same taxonomic group as the clusters’ representative. Thus, only rRNA
genes and functional genes are used for the analysis of the metagenome,
and the reads assignments are not independent. This strategy allows MG-
RAST to perform taxonomic and functional profiling of metagenomic data.
Finally, MG-RAST supports different metagenomics datatypes: genomic
(including WGS and 16S) and transcriptomic. It also considers the meta-
genome origin, sequencing platform and many other features to tune the
pipeline for a specific task.

Raw reads of bacterial mixes datasets were submitted to the MG-
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RAST Metagenomics analysis server under project number 85582.
Paired reads merging and quality control was performed as part of the
standard MG-RAST pipeline.

2.10. Taxa abundance estimation and results evaluation

Since the 16S amplification product has the same length among all
bacterial taxa, no correction for genome length is needed when esti-
mating relative abundances of the taxa. For the WGS datasets however,
normalization of read counts is required because of the differences in
genome lengths. In order to perform correct taxa abundance estima-
tions for taxonomic ranks higher than species, it is important to know
how many reads assigned to that taxon belong to each species within
the taxon. Both tools, Centrifuge and MG-RAST, assign reads to a node
in the phylogenetic tree. Thus, reads assigned to a particular genus, for
example, might belong to each of the species included to that genus as
well as to the genus itself. The main assumption of our approach for the
estimation of taxa abundances is the following: All reads, assigned to
the node higher than species level (regardless of whether or not they
have species annotation), will be distributed among the species be-
longing to that node the same way as the reads with known species
annotation. If the estimated abundances for species were known (in
case of taxonomic annotation with Centrifuge), the procedure is trivial.
When performing the analysis with MG-RAST the reads are classified
only up to the genus level. In that case an equal distribution of reads
among the species belonging to the particular genus was assumed.

2.11. Statistical and correlation analysis

Correlation analysis was performed using the Pearson correlation
coefficient, pair wise comparisons were performed using the two-sided
Mann-Whitney U test [90] and False Discovery Rate (FDR, a statistical
approach used in multiple hypothesis testing to correct for multiple
comparisons) control was performed using the Benjamini-Hochberg
procedure [91]. We used the ratio of properly predicted taxa to all taxa
predicted at that rank as a measure for the precision. Sensitivity was
calculated as the ratio of properly predicted taxa to all taxa that were
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supposed to be present in the sample at that rank. F-scores (a measure
of accuracy that considers both precision and sensitivity) were calcu-
lated as described in [92].

3. Results and discussions
3.1. Individual bacterial genomes assembly

We sequenced and assembled the genomes of all 15 selected skin-
associated bacteria individually. The total length of the assembly for
each species was comparable to the length of the species references (see
Table 2 and Section S1 of the Supplementary materials).

For one species (Acinetobacter lwoffii) there was no reference se-
quence available. Obtained assembly lengths as well as the DNA con-
centration measured for each bacterium were used to create four me-
tagenomic mixes: one with equal and three with exponential (A = 1/6,
A =1/2 and A = 5/6) distribution of bacterial species abundances.
Taxa abundances were ordered from high to low as shown in Fig. 1.

3.2. Estimation of reference abundances

In order to estimate an abundance of an organism in terms of
genome copies, the length of the genome and the lengths and (relative)
copy numbers of any plasmids needs to be known. In the absence of a
strain-specific reference sequence, a de novo assembly of a single or-
ganism can be used to obtain these data [93]. In most common ap-
proaches [94], the coverage (and thereby the copy number) of contigs
(see Supplementary Fig. S1) is not considered when estimating an as-
sembly length, which leads to an inaccurate estimation of the organ-
isms’ genome length and thus influence the accuracy when creating
bacterial mixes (see Supplementary Fig. S2 for a step-by-step explana-
tion). Other factors, such as inaccuracy in DNA concentration mea-
surement or mixing, can also lead to different abundances in the final
bacterial mixes from those intended. Since the content of all our me-
tagenomic mixes is known and individual assemblies of all bacterial
species were available, the intended distribution of bacterial abun-
dances in the metagenomic mixes could be verified using the following

Fig. 1. Regression analysis performed for me-
tagenomic mixes to estimate relative abun-
dances. Results for each mix are shown in a
separate plot. Each boxplot represents the dis-
tribution of regression coefficients (vertical
axes) obtained for a particular organism (hor-
izontal axes), thus representing its relative
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approach. We used k-mer counts as a proxy for the number of genomes
present in a pure (unmixed) sample. Using these counts, we are able to
infer the relative contributions to a mixture. We use randomly chosen k-
mers from the pure samples as profiles for the organisms, the same k-
mers are used to make a profile of the mix and by linear regression, we
estimate the contribution of each profile and thereby the contribution
of each organism to the mix. For a more detailed description and a
motivational example, see Section S1 and Fig. S2 of the Supplementary
materials. We calculated the 11-mer profiles for each bacteria using the
contigs obtained after individual genome sequencing and assembly.
Since profiles were calculated using contigs, we compensated for the
absence of the reverse-complement DNA strand. We also calculated the
11-mer profiles of the WGS datasets of each of the metagenomic mixes,
in these cases strand balancing was not applied. The 11-mer profiles
were used to build a linear regression model in which the individual
bacterial k-mer counts were treated as independent variables and the k-
mer counts of the metagenomic mix served as dependent variable.
Since k-mer counts within one profile might be correlated, which
violates the condition for using the regression analysis, we did not
analyse the complete profile of 4,194,304 possible 11-mers. Instead we

performed 1000 iterations, in each iteration choosing 10,000 random k-
mers and performing the regression analysis on that subset of k-mers.
Thus, for each organism we got 1000 estimations of its abundance in
each mix. The result of this analysis is presented in Fig. 1. Each boxplot
shows the distribution of the organisms' abundances obtained from the
regression analysis. The median model fit of the cross-validated models
(measured using the R? coefficient of determination) for each mix was
larger than 0.95, accuracy of the prediction (also measured using the R?
but on the data that did not participate in the model training) ranged
from 0.8 to 0.92 depending on the mix.

The regression analysis confirmed the distribution of bacterial abun-
dances we aimed for (uniform distribution turning into the exponential
one), though for some species (e.g., S. haemoliticus and P. aeruginosa),
slight positive or negative deviations from the anticipated values were
found. This can be caused by a number of factors such as inaccuracy in the
DNA concentration measurement or DNA mixing, presence of large
amounts of non-chromosomal DNA (e.g., plasmids) in the pool of bacterial
DNA or inaccuracy in bacterial genome size estimation.

We use the results of this analysis as reference abundances for the
experiments done in Section 3.5.
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Fig. 3. Comparison of F-scores (combination of precision and sensitivity) ob-
tained from different mixes for different combinations of methods, data type
and databases. Red dots indicate a p-value below 0.05. Combinations of
methods, data type and databases are shown on the horizontal axis, Taxonomic
levels are shown on the vertical axis. RS — RefSeq database, GG — GreenGenes
database, SILVA — SILVA database. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

3.3. Analysis of bacterial mixes using Centrifuge and MG-RAST

The mixes were sequenced on the Illumina MiSeq using WGS (da-
tasets EQ_WGS, EXP16_WGS, EXP12_ WGS and EXP56_WGS) and 16S for
V3-V4 region (datasets EQ_16S, EXP1616S, EXP12.16S and
EXP56_16S). Information about read counts and QC statistics for each
obtained dataset can be found in Supplementary Table S1.

WGS and 16S datasets obtained from our four metagenomic mixes
were analysed with Centrifuge using the RefSeq complete bacterial
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genomes database. We performed additional analysis for 16S datasets
using Centrifuge with the GreenGenes and SILVA reference databases.

All eight datasets four WGS and four 16S were submitted to the MG-
RAST Metagenomics analysis server under project number 85582.
RefSeq and GreenGenes databases provide taxonomic annotation down
to the species level, while SILVA database as well as the databases used
by MG-RAST are restricted to the genus level. Since the NCBI taxonomy
and the taxonomy used by MG-RAST were different at the order level
for our set of bacteria, we excluded annotation at the order level from
further analysis.

3.4. Profiling accuracy without considering relative abundances

Because the content of the metagenomic mixes is known, we can
verify how many of the reported taxa on each taxonomic rank are
correct (true positive counts), how many are incorrect (false positive
counts) and how many are missed (false negative counts).

Using these counts, both precision and sensitivity can be calculated.
A perfect prediction is made if both precision and sensitivity equal one.
As can be seen in Fig. 2, both precision and sensitivity tend to increase
in all cases with increasing taxonomic rank. For all 16S datasets ana-
lysed with Centrifuge, we observe that precision never reaches its
maximum value, while for WGS datasets analysed with Centrifuge
precision reaches its maximum already at the genus level. Interestingly,
for 16S datasets analysed with MG-RAST, precision reaches its max-
imum at the genus level, but the sensitivity does not increase any fur-
ther. For WGS datasets analysed with MG-RAST, sensitivity reaches its
maximum already at the family level.

The accuracy of the classifications can be expressed using the F-
score, a measure of prediction accuracy that considers both precision
and sensitivity. We tested whether the F-scores differed significantly for
each pair-wise comparison using the Mann-Whitney U test and the
Benjamini-Hochberg procedure for FDR control. The full table of p-
values can be found in Supplementary Table S2, a summary of the
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Fig. 4. Comparison of relative abundances reported by Centrifuge (using two different reference databases) for WGS and 16S with relative abundances obtained from
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reference abundances, RS — RefSeq database, GG — Greengenes database. Please note that data points are connected only to visualize the various types of dis-

tributions.
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Fig. 5. Comparison of relative abundances reported by Centrifuge (using three different reference databases) for WGS and 16S datasets on genera, orders and phyla
levels with relative reference abundances. In the above grid of figures each row indicates the mix and each column indicates the taxonomic level. In each figure, the
taxa are shown on the horizontal axis and the relative abundances are shown on the vertical axis. Ref - reference abundances, RS — RefSeq database, GG — Greengenes

database, S - SILVA database.

results is shown in Fig. 3. In most cases, the F-scores differ significantly
when comparing WGS to 16S.

3.5. Abundance assignment accuracy

Both Centrifuge and MG-RAST provide read counts for each re-
ported taxon. We considered only reads that were assigned to the ex-
pected taxa and compared their relative abundances to the reference
abundances.

Only Centrifuge, when using either the RefSeq or GreenGenes da-
tabase, reported the taxonomic assignment down to the species level. In
Fig. 4, each metagenomic mix is shown as a separate graph with species
listed on the horizontal axes and their relative abundances shown on
the vertical axes. The black line represents the intended distribution of
species abundances. The dark green line shows the mean reference
abundances with the light green area representing + 3 standard

deviation around those means. The blue and red lines show the relative
abundances obtained for 16S and WGS datasets respectively, with the
solid blue line for the 16S analysis done using the RefSeq database and
the dashed blue line using the GreenGenes database. As can be seen in
Fig. 4, the analysis of 16S data results in a considerable overestimation
of abundance of A. johnsonii. Centrifuge failed to identify A. Iwoffii,
since there is no complete genome of that bacterium in the RefSeq
database and it did not report any significant presence of C. jeikeium in
the exponentially distributed metagenomic mixes. Analysis of the 16S
datasets using the GreenGenes database reported overestimated values
for S. epidermidis and A. johnsonii and did not report the presence of nine
out of fifteen bacteria because of their absence in the GreenGenes da-
tabase.

We repeated the same analysis on three higher taxonomic ranks:
genera, families and phyla. For all these three taxonomic levels we
analysed the results of Centrifuge (Fig. 5) and MG-RAST (Fig. 6). As can
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be seen in Fig. 4, the Centrifuge analysis of 16S datasets using different
reference databases provided a similar biased output, mostly due to an
overestimation of the abundance of the Acinetobacter genus, Morax-
elaceae family and Proteobacteria phylum. The dissimilarity with the
reference abundances is especially pronounced at the phylum level.
Results obtained for the WGS datasets with Centrifuge were concordant
with the reference abundances with slight deviation for Acinetobacter
genus, Moraxelaceae family and Proteobacteria phylum (Fig. 5). It is
interesting to note, that these taxa were also the major reason for dis-
agreement between results obtained by Centrifuge for 16S datasets and
reference abundances.

The results obtained for different 16S datasets by MG-RAST were
not consistent (as is the case for Centrifuge) up to the phylum level. As
can be seen in Fig. 5, analysis of 16S datasets with MG-RAST reported
many disagreements with reference abundances. The reasons of those
disagreements are dataset- and taxonomy rank-specific. Results re-
ported by MG-RAST became more or less consistent only at the phylum

Forensic Science International: Genetics 46 (2020) 102257

level, where they followed the same trend: overestimating the abun-
dance of Firmicutes relative to that of Proteobacteria.

Abundances obtained after analysis with MG-RAST of WGS datasets
were also following the reference results closely. There were, however,
slight deviations from the reference abundances. These deviations were,
like the results for 16S datasets, specific to taxonomy-rank and dataset.

In order to quantify the dissimilarity among the abundances pro-
vided by the different methods, datasets, reference databases and the
results of regression analysis we calculated the absolute differences in
abundances for each particular dataset and taxonomic rank. The
averages of these values (from here on called the error rate) are re-
ported in Fig. 7.

For the analyses of 16S datasets it is interesting to note that for
Centrifuge the average error rate grew with the increase of the taxo-
nomic rank in general. This was not the case for the error rate obtained
for the 16S datasets using MG-RAST. We tested whether the average
errors differed significantly for each pair-wise comparison using the
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Mann-Whitney U test and the Benjamini-Hochberg procedure for FDR
control. The full table of p-values can be found in Supplementary Table
S3, a summary of the results is shown in Fig. 8. This analysis demon-
strates that for all taxonomic levels the error rates in the abundance
estimations provided by the analysis of 16S datasets (regardless of the
method or reference database) are significantly different (higher)
compared to the abundances reported for WGS datasets. We did not
observe any significant difference in average error rate between WGS
datasets analysed with Centrifule and MG-RAST.

We compared the error rates reported by Centrifuge when using the
three different 16S reference databases. Error rates observed in the

analysis with RefSeq and GreenGenes databases were similar. Running
the Centrifuge analysis using the SILVA database reported a much
higher error rate. That might be a direct consequence of taxonomic
annotation done using the SILVA database where a smaller proportion
of reads was assigned to the expected taxa in comparison to other re-
ference databases (see Section 3.4).

We also evaluated the similarity among the abundances obtained by
employing distinct methods and databases using a correlation analysis.
In Fig. 9 the results of these comparisons are presented as a series of
heatmaps. As can be seen from Fig. 9, abundances obtained by the
analysis of WGS data (Centrifuge and MG-RAST) for all datasets at all
taxonomic levels positively correlate with reference abundances. Cor-
relation of 16S analysis obtained using Centrifuge with the reference
abundances becomes worse at higher taxonomic levels, which is the
opposite for the 16S data results obtained using MG-RAST. The 16S data
analyses obtained for Centrifuge and MG-RAST do not demonstrate
positive correlation with each other.

4. Conclusions

In this study we created a series of bacterial mixes with known
content in order to investigate which type of metagenomics data and
reads assignment strategy yields better taxonomic classification. For
each mix we generated WGS and 16S sequencing datasets and analysed
them using Centrifuge with RefSeq, GreenGenes and SILVA reference
databases and the MG-RAST metagenomics analysis server with M5nr
and Mbnra reference databases. We compared the results of all analysis
done with Centrifuge and MG-RAST to the reference abundance profiles
obtained from a k-mer-based regression analysis.

The results from both Centrifuge and MG-RAST show that WGS
datasets provide much more accurate results in comparison to 16S-
based methods. The analysis of WGS data displayed better coverage of
all taxa expected to be present in the mixes on all phylogenetic levels,
reaching the maximum accuracy already at the genus level for
Centrifuge and at the family level for MG-RAST. On the other hand,
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results obtained for 16S-based data were often missing several taxa
and/or had very high false-positive rates. Centrifuge analyses based on
the 16S datasets were suffering from low precision, while MG-RAST
analysis of the 16S datasets had low sensitivity. Abundance profiles
obtained from WGS demonstrated much less disagreement with the
expected abundances in comparison to the abundance profiles based on
16S data. This was shown using two different measurements: the
average (per taxonomy rank) absolute difference between abundance
profiles and by a correlation analysis.

For 16S datasets analysed with Centrifuge, the deviation from the
reference abundances, introduced at the species/genus levels,

10

propagated further up the taxonomy which led to a greater difference
with the expected outcome on the higher taxonomic ranks as well. In
contrast, the analysis of 16S datasets performed by the MG-RAST pi-
peline demonstrated greater differences with the reference abundances
on the lower taxonomic ranks in comparison with the higher ones. Our
correlation analysis shows that the agreement between the MG-RAST
results of 16S datasets and reference abundances was growing with
increasing taxonomic level.

Both tailor-made 16S databases (GreenGenes and SILVA) did not
perform better than the RefSeq database when analysing 16S datasets
using Centrifuge. The Centrifuge results using RefSeq and GreenGenes



L. Khachatryan, et al.

databases were correlated with a correlation coefficient higher than
0.95 for all 16S datasets on each taxonomic rank starting with genus.

We conclude that WGS data is preferable for the study of metage-
nomic data, especially when the correct inhabitant abundances are
required. We could not determine which of the explored methods for
the taxonomic assignment of the WGS data provides a more accurate
outcome. Centrifuge, however, has minor advantages in comparison to
MG-RAST, such as a faster, deeper and slightly better reads classifica-
tion, the possibility of local installation and use of custom databases
and a more flexible tuning of the tools’ settings. Among the investigated
techniques for 16S metagenomic data analysis, MG-RAST demonstrated
slightly better results in both reads assignment and abundance esti-
mation, albeit only at higher taxonomic ranks.

As previously quoted, “the capacity of WGS data of microbiomes to
aid in forensic investigations by connecting objects and environments
to individuals has been poorly investigated”. In light of this, our results
are especially important, as they demonstrate the inefficiency of routine
16S data to produce the accurate taxonomical profiling.

The synthetic metagenomes created in our study is restricted to DNA
of bacteria that inhabit skin surface — a logical target for forensics
analysis. However, human skin is also the environment with one of the
most within- and between-individual diverse microbiota on the human
body. The benchmark we created is rather small and simple as the di-
versity of microbial species living on the human skin surface is much
larger than only 15 species [95]. The significant inaccuracy of the re-
sults obtained for 16S data in comparison with those for WGS data on a
small and simple set of benchmarks can possibly question the accuracy
of the previous 16S-based forensic studies, at least those done on skin-
associated microbial communities.

Data accessibility
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